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Abstract

In most modern processor architectures, dif-
ference in data access time for values kept
in registers as compared to those in memory
is quite high. Thus, compilers should imple-
ment efficient register allocation strategies to
improve the runtime performance of the code.
Register rematerialization is a technique to im-
prove register allocation effectively by improv-
ing spill code generation. It is often desirable
to compute expressions at a “use” rather than
use an earlier spilled value. Normally, “re-
materializable” values are derived from reg-
isters that are live throughout the function.
On register-starved architectures with with ad-
dressing modes supporting limited displace-
ment, spilling values, which can be remateri-
alized, incurs an additional loss in performance
due to instructions generated to fetch data from
the frame. Hence, rematerialization aids in
good usage of registers to give a good gain in
execution performance of the code generated.
Experimental results indicate a gain of 1-6% in
code size and 1-4% improvement in execution
performance.

1 Introduction

Let us see the register rematerialization (remat)
concept in GCC in more detail. We discuss
the proposed improved remat implementation
in GCC as it occurs as a part of graph coloring
register allocator (in the new regalloc branch).

This optimization is supported by target archi-
tecture hooks and is currently implemented and
tested for SH4 architecture.

1.1 What is remat?

Certain values in a function can be recomputed
at any point, as the required source operands
will always be available for the computation.
Such values are called never killed values.
During global register allocation pass, if such
never killed values cannot be kept in registers
and need to be spilled, the register allocator
should recognize when it is cheaper to recom-
pute the value i.e. to rematerialize it [REMAT],
rather than to store and reload it from stack.
This often happens with frame pointer (FP) rel-
ative address computations as well as address
computations of large struct or arrays in local
scope, where unnecessary spills are seen. A
prime example of this can be cited:

1. GCC calculates FP + offset and stores into
r3 (say).

2. GCC spills and restores r3 to (from) stack
even though it would be cheaper to clob-
ber the register and recompute the value
of FP + offset.

Register remat occurs as part of a larger prob-
lem of improved spill code generation during
global register allocation. The description be-
low co-relates the two facets—Register Allo-
cation Problem and remat as a method of im-
proved spill code generation.
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1.2 Register Allocation as Graph coloring
Problem

The new register allocator in GCC models reg-
ister allocation as a graph-coloring problem. It
first constructs an interference graph G where
nodes in G represent live ranges and edges rep-
resentinterferences. So there is an edge from
nodei to nodej if and only if live rangeli in-
terferes with live rangelj i.e. they are simul-
taneously live at some point and hence cannot
occupy the same register. Live ranges that in-
terfere withli are its neighbors in the graph, the
degree ofli is the number of neighbors it has in
the graph.

To find an allocation from G, the compiler
looks for a k-coloring of G, i.e. an assignment
such that neighboring nodes always have dis-
tinct colors. If we choose k to match the num-
ber of machine registers, then we can map a
k-coloring for G into a feasible register assign-
ment for the underlying code. Because find-
ing a k-coloring of an arbitrary graph is NP-
complete, the compiler uses a heuristic method
to search for a coloring, it is not guaranteed to
find a k-coloring for all k-colorable graphs. If a
k-coloring is not discovered, some live ranges
are spilled, i.e. the values are kept in memory
rather than in registers [GCRA].

Spilling one or more live ranges changes both
the intermediate code and the interference
graphs; hence register allocation. The compiler
proceeds by iteratively spilling live ranges and
attempting to color the resulting new graph.
This process is guaranteed to terminate.

The new register allocator framework takes
two approaches while spilling a live range

• A simple Spill Everywhereapproach in-
volves spilling the entire live range in case
it needs. This would involve spilling all
the defs of value live range is represent-

ing on stack and inserting corresponding
reloads before all uses these defs flow
into. This spilling technique is fast but not
optimal as it would generate lot of spill
code.

• An improved but slowerInterference Re-
gion Spilling approach, which involves
spilling a live range partly. An interfer-
ence region for two live ranges can be
defined as the portion of the data flow
where they are live simultaneously. By
spilling interference region for one of the
live ranges, they will no longer be live si-
multaneously, thus will no longer inter-
fere. This effectively removes an edge be-
tween the two nodes in the interference
graph, making the graph more easily col-
ored. Any spill code addition due to inter-
ference region spilling would insert spill
code say after a particular use point (only
those uses which lie in the interference re-
gion). This use point may or may not be
the first one in the live range.

1.3 Improving the quality of spill code—Remat
Opportunities

In the existing implementation of new regis-
ter allocator, remat is performed only for those
values whose definition consists of moving a
immediate value to a pseudo. The proposed
approach can enhance the scope of remat by
taking into account more potential remat can-
didates and hence improvement in spill code
generation.

The opportunities identified for remat can be

• Immediate loads of integer/float constants

• Loads from literal pools

• Computing a constant offset from the
stack pointer
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• Computing a constant offset from the
static data area pointer

• Any Branch Related target Labels

• Address computations for access to non-
local names in case of nested functions

• Address computations from pointer to
global offset table in case of position in-
dependent code

• Address computations resulting from pa-
rameter registers (e.g. r4...r7 in case
of SH4) or parameter register copied to
callee save registers which dont have defs
elsewhere in the function

• Address computations resulting from re-
turn register (e.g. r0 in case of SH4) or
return register copied to other callee save
registers which don’t have defs elsewhere
in the function

2 Remat Strategy

The new register allocator is based on the anal-
ysis of definitions and uses of all the pseudos
in the instructions stream to form webs (nodes
of the interference graph), which are the basic
entity for allocation to a register. Hence, each
web corresponds to the live range of a variable,
which can be allocated a distinct symbolic reg-
ister number. The interference graph for webs
consists of a number of such intersecting webs,
the intersection between any two webs occurs
when they have a use in common. If a web
can’t be assigned a register then a decision is
made to spill it.

The proposed improved remat optimization
consists of identifying remat defs during data-
flow analysis and propagating this information
to the web spilling phase. The spilling phase
can choose between spilling or rematerializa-
tion of a web based on relative cost analysis.

Hence the remat strategy can be segregated into
the following sub-problems

• Gather and propagate remat/live-range in-
formation

• Criterion for spilling/remat decision

• Performing remat

2.1 Remat Information

To identify rematerializable candidates, remat
information needs to be built during the data-
flow analysis. All the defs can be analyzed
to see whether they come from any of the re-
mat sources. Such defs can be tagged with
their corresponding remat efinitions. Any re-
mat definition resulting from an operation on
two or more rematerializable definitions (say a
def consisting of adding a constant value to the
label) can be tagged likewise.

2.2 Remat Criterion

The obvious criterion for remat/spilling deci-
sion would be to compare the relative cost of
both the decisions in terms of aggregate cost of
instructions each would generate, and choose
the one with lower cost. This criterion is de-
scribed in Section 2.3. But due to some issues
mentioned further, it might not be possible to
calculate the exact spill costs. Another method
to choose remat in the absence of spill cost cri-
terion has been described in Section 2.4.

2.3 Spill v/s Remat Cost

Whenever a decision is taken to mark a web
for spilling, check if the definition in the web is
rematerializable. Calculation of the remat and
spill cost will be implemented in a target de-
pendent hook. Remat cost will be calculated in
terms of the aggregate of all the insns’ costs,
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which would be required to recompute a remat
definition before every use of such definition.
Similarly spill cost can be computed as instruc-
tion cost aggregate of all the insn’s cost gener-
ated to spill (and restore) the value. Choose
the one with lower cost. However in the exist-
ing new register allocator, it may be difficult to
calculate the exact accurate remat (spill) costs
of any value because

• During web spilling, actual stack offsets
of spill locations are not defined, instead
only stack pseudos are assigned

• The reload_cse pass may use address
inheritance information and may merge
some instructions for loading the offset,
by reusing any value close to or equal to
the offset loaded in some other pseudo.
Hence cost decisions may get invalidated
later

e.g. In case of SH4, the number of instruc-
tions to spill (restore) can be a minimum of
1, if spilling takes place at an offset less than
64 bytes relative to a base register. In case
the spill offset is more than 64 bytes, spilling
(restoring) may take two or more instructions,
one instruction for loading the stack offset to
spill (restore) and another consisting of stor-
ing (restoring) the value. In order to calcu-
late spill (restore) offset (and the number of
instructions required for spill ), stack slot in-
formation to which the pseudo is likely to be
spilled to, needs to be built and tracked for all
such pseudos, depending on which the number
of instructions needed to spill (restore) can be
calculated.

Thereload_cse pass may further merge in-
structions for loading the offset, by reusing any
value close to or equal to the offset loaded in
some other pseudo. In this case, even if the
spill location is at an offset greater than 64
bytes, it may require 1 instruction.

The first problem related to spill cost compu-
tation can be partially resolved by tracking the
size of frame data and number of pseudos be-
ing spilled so as to have an estimate of spill
offsets. This can predict the number of in-
structions that would actually be required to
spill (restore). However in the existing frame-
work of new register allocator, spill cost can-
not be computed correctly in some cases due
to reload_cse issue mentioned.

2.4 Remat Without Spill Cost Calculation

In the absence of a definite cost available for
spilling, spill cases can be segregated accord-
ing to the reason for their occurrence and also
cases, which will definitely be cheaper to re-
materialize than to spill

Definitive Remat Some defs can be identified
as remat cases based on the fact that they re-
quire 1/2 insns to compute and re-computing
them will always be less than or equal to mini-
mum cost of spilling a def for the given target.
Examples for such definitive remat would in-
clude

• Constant loads

• Label Loads

Defs having up to 1 insn in their remat insn
chain (spill (restore) together would require a
minimum of two insns).

For defs having two or more insns in their re-
computation sequence, insn merging can be at-
tempted on that sequence based on a target de-
pendent hook. If such sequence merging gen-
erates a valid single insn for the target, then it
fits as a candidate for definitive remat.

For remat in such cases, all the insns lead-
ing to definition of rematerializable value be-
ing spilled can be moved immediately before
its use.
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Moving Defs Near UsesThis approach may
be used for remat cases not covered in previ-
ous section. Spilling generally happens as a
result of spacing between the actual def and
use of values in case of high register pressure.
This can happen in case of complex compu-
tations involved in some program statements,
where LHS computations and some other inter-
mediate computations have to be spilled. Such
cases of spilling require generation of 2–4 spill
and restore instructions (e.g. 64-byte stack off-
set criterion in SH4). In case the computation
being spilled is rematerializable, spilling be-
comes unnecessary. The remat cost criterion
need not be taken into account here because
spilling is definitely not required.

In both the approaches for spilling described
above, unnecessary spill cases can be identified
as those having their spill point just after def
(before 1st use).

The following assembly illustrates this case:

chanserv.i/load_cs_dbase (in
stress 1.17) compiled with -O2
-ml -m4 -fnew -ra
-fno-argument-alias
-fno-schedule -insns
-fno-schedule-insns2 -g -S
-fpic generates

.L1404:
.loc 1 2844 0
mov.l .L1036,r0 <-- 1
mov.l @(r0,r12),r0<-- 2
mov.w @r0,r1 <-- 3 (remat

insn chain 1,2)
mov.w r1,@r14 <-- Spill

before 1st use
.L612:

.loc 1 2845 0
mov.w .L1037,r0
mov.w @r14,r1 <-- Reload
mov.w r1,@(r0,r11)
.loc 1 2848 0
mov r14,r4

mov.l .L1038,r1
bsrf r1

For remat in such cases, the all the insns lead-
ing to definition of rematerializable value be-
ing spilled can be moved immediately before
its use.

There are certain issues regarding the move-
ment of insns in this case. The placement of a
def before use requires addition of insns before
the use point which leads to increased register
usage there. Hence, a good heuristic needs to
be devised to make sure that such insn inser-
tion keeps the register pressure in check and
does not actually end up increasing it.

Interference Region SpillsAs discussed ear-
lier, in case of interference region spilling, spill
point may or may not be before the first use
point. Hence in such a case for spilling, we
have to choose between spill/rematerialize (in
the absence of cost of spilling). This case of
spilling generally occurs in spilling calculated
offsets for arrays/structs, and may not require a
lesser remat cost in most of the cases. Here re-
materialization decision is not taken, as spilling
might actually be cheaper. Nevertheless, the
decision may not be correct for all the cases.

2.5 Performing Remat

Remat of a value involves inserting re-
computation sequence for a definition before
use points by moving the insns forming the
definition before use points.

3 Implementation in GCC

The patch at the link

http://gcc.gnu.org/ml/gcc-patches/

2003-12/msg01985.html
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is the implementation of the ideas presented in
the paper in GCC. This implementation scope
and its constraints are discussed as follows.

3.1 Current Implementation Approach

Data Flow PhaseThe improved remat handler
detemines the defs, which have been generated
from never-killed sources and creates a remat
pattern sequence to recompute those defs. This
code is implemented along with the data flow
routines in df.c

Eg. r159 <- const1 (1)
r160 <- r14 + r159 (2)
r161 <- mem (r160) (3)

Here defs for r159, r160, r161 are all re-
mat, as all have been derived from never-killed
sources. The data flow routines determine all
such defs and store the respective patterns that
would be required for recomputing each poten-
tial remat definition.

So in the above example,
def(r159)->remat_sequence = (1)
def(r160)->remat_sequence = (1), (2)
and def(r161)->remat_sequence = (1), (2), (3)

Web Construction PhaseThe cost of webs
in ra_build.c is modified to accommodate
the cost of those webs which have rematerial-
izable defs. The cost for all the defs is added
up whether for remat defs or non-remat ones.

Web Colorize PhaseThe webs, which have
potentially, remat defs and the cost conse-
quently is lower than other defs are promoted
for spilling. This advocates their spilling, in
turn relieving the conflict edges. Remat han-
dler later picks up such webs and appropri-
ate processing is done there. This happens in
ra_colorize.c

Web Spilling Phase In this file i.e. ra_
rewrite.c , the allocator is let to spill as it
was doing earlier. After the first level spilling
is done, the spilled webs whose defs can be re-
mat are picked up and the remat patterns for
those defs can replace the restore insns for the
defs spilled. At the point of inserting compu-
tations, it needs to be ensured that the regs that
form the remat sequence

• Do not increase the register pressure at
that point.

• Live range of those regs is not exceeded.

The remat handler only concentrates on the
first pass of the allocator and spills generated
for the first time are handled only. Later rounds
do not call the remat sequence building rou-
tines.

Problems Encountered With Full Scope

• In the absence of a good register pres-
sure estimation heuristic, insertion of defs
with multiple insns in the remat sequence
poses problems. Also, the register alloca-
tor has strong asssumpions about the web
structure. Hence after inserting recompu-
tation patterns of length> 1 in place of
the restore insn, the allocator got stuck
up in a lot of in tight consistency checks
of ra_build.c especially inparts_
to_webs_1 .

• Due to the same problem, function pointer
and return register are not being consid-
ered for remat.

Current Implementation Scope Due to the
problems cited above, the current implementa-
tion implements the following remat handling:

• The data flow phase constructs remat se-
quences in full and then tries to collapse
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them (if allowed by the target) indf_
remat_validate . Rest of the chains
are discarded at this point.

• The build phase involving modifying
costs for remat webs functions as before.

• The colorize phase functions as before.

• The rewrite pass replaces the source of re-
store insns before the spilled uses of the
webs and replaces it with the remat source
(a single pattern).

The restricted implementation is scalable
enough to support the original concept of re-
mat envisaged and should stand any changes in
the register allocator passes.

4 Performance Data

The performance improvement due to register
rematerialization depends on the following fac-
tors.

1. Register Pressure and consequently num-
ber of values spilled.

2. The values spilled from rematerializable
sources and found to be obeying the con-
straints for performing remat

During performance analyis, se-
lect benchmarks were compiled us-
ing GCC-2.3 20021119 (new-regalloc
branch) for SH4 target using options
-O2 -ml -m4 -static . A new option
namely-fimproved-remat is introduced
to enable improved remat. The benchmarks
were executed on SH4 evaluation boards with
QNX 6.1. It is observed that best performance
improvement for execution performance is 4%
and that for code size is 6.46%. Table 1 gives
code size comparisons of stress1.17 files with

File size size with decrease
Name with new-ra improved-remat (%)
L3bitstream.o 7424 6944 6.46
aiunit.o 18880 17760 5.93
scanline.o 2400 2272 5.30
advdomestic.o 8280 7960 3.86
tif_fax3.o 10208 10176 3.13
tif_packbits.o 1316 1284 2.43
layer3.o 20752 20272 2.31
melee2.o 27516 26940 2.09
navion_aero.o 1600 1568 2.00
chanserv.o 63296 62112 1.87
s_serv.o 29740 29196 1.82
im_decode.o 290000 285936 1.40
quantize.o 10012 9948 0.64
wizard1.o 24064 23964 0.41
blowfish.o 8808 8776 0.36
map_fog.o 26272 28880 -9.6

Table 1: Code Size Comparisons

Input Data Gain
Benchmark Size (%)
GZIP Compression 80.5 MB 4
Mpg 123 - 4
GZIP Decompression 16.2 MB 2.6
GSM Compression 1.71 MB 0.05
GSM Decompression 361 KB 0

Table 2: Execution Timings

and without improved remat. The execution
results for some benchmarks are shown in
Table 2.

5 Further Improvements In New
RA

5.1 Loop Variable Spilling

Ideally, register allocation should take into ac-
count, the variables present inside the loops
and in case of high register pressure, try to as-
sign registers to frequently accessed variables
in a loop (for example loop indexes) on a pri-
ority basis. But such an allocation scheme is
not being observed in some cases. The follow-
ing example illustrates this fact

chanserv.i/check_modes compiled
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with -O2 -ml -m4 -fnew-ra -fno-
argument-alias -fno-schedule-insns
-fno-schedule-insns2 -g -S:

.loc 1 4743 0
mov.l .L2970,r7
mov.b @r7,r1
cmp/pl r1
bf/s .L2942
and r0,r3
mov #0,r1 <-- (1)
mov #64,r0 <-- (2)
mov.l r1,@(r0,r14)<-- (3)
mov #0,r2
.loc 1 4745 0
mov #64,r0

.L3043:
mov.l @(r0,r14),r6 <-- (4)
add r7,r6 <-- (5)
mov.l r6,@(r0,r14) <-- (6)
mov r6,r0
mov.l @(4,r6),r6
tst r6,r3
bt .L2922
mov.b @r0,r1
.loc 1 4747 0
mov.b r1,@r12
add #1,r12
.loc 1 4748 0
not r6,r6
mov.l @(56,r10),r1
and r6,r1
mov.l r1,@(56,r10)
.loc 1 4743 0

.L2922:
add #8,r2 <-- (7)
mov #64,r0 <-- (8)
mov.l r2,@(r0,r14) <-- (9)
mov r2,r0
mov.b @(r0,r7),r1
cmp/pl r1
bt/s .L3043
mov #64,r0

In the above example, the calculation corre-
sponding to register r1 in (1) is being spilled
within a loop instructions (4) through (9). Such

an example clearly illustrates inefficient regis-
ter allocation.

5.2 Loop Invariant Code Spilling

In case of any loop, invariant part of the code
is moved outside the loop. In some cases
such address computations might be spilled
onto a stack locations outside the loop. Inside
the loop these values are reloaded from stack.
Such cases are NOT direct candidates of remat
(as generally remat cost will be higher than the
spill cost). However in case the computation
requires single instruction within the loop (e.g.
loads within 64 byte window to a base regis-
ter i.e. r14, r12, r11 etc.) then it should well
be computed inside the loop instead of being
moved out as invariant code. This would result
in saving one instruction per loop iteration.

However, changes required in this case would
involve GCC passes, which move loop invari-
ant code.
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