
The Python Language Reference
Release 2.6.2

Guido van Rossum
Fred L. Drake, Jr., editor

September 29, 2009

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Introduction 3
1.1 Alternate Implementations. 3
1.2 Notation . 4

2 Lexical analysis 5
2.1 Line structure. 5
2.2 Other tokens. 8
2.3 Identifiers and keywords. 8
2.4 Literals . 9
2.5 Operators. .12
2.6 Delimiters .12

3 Data model 15
3.1 Objects, values and types. .15
3.2 The standard type hierarchy. 16
3.3 New-style and classic classes. 23
3.4 Special method names. .24

4 Execution model 39
4.1 Naming and binding. .39
4.2 Exceptions .40

5 Expressions 43
5.1 Arithmetic conversions. .43
5.2 Atoms .43
5.3 Primaries. .47
5.4 The power operator. .50
5.5 Unary arithmetic and bitwise operations. 51
5.6 Binary arithmetic operations. 51
5.7 Shifting operations. .52
5.8 Binary bitwise operations. .52
5.9 Comparisons. .52
5.10 Boolean operations. .54
5.11 Lambdas. .54
5.12 Expression lists. .54
5.13 Evaluation order. .55
5.14 Summary. .55

6 Simple statements 57
6.1 Expression statements. .57

i

6.2 Assignment statements. .57
6.3 Theassert statement .60
6.4 Thepass statement. .60
6.5 Thedel statement. .60
6.6 Theprint statement .60
6.7 Thereturn statement .61
6.8 Theyield statement .61
6.9 Theraise statement .62
6.10 Thebreak statement .62
6.11 Thecontinue statement. .62
6.12 Theimport statement .63
6.13 Theglobal statement .65
6.14 Theexec statement. .66

7 Compound statements 67
7.1 Theif statement. .68
7.2 Thewhile statement .68
7.3 Thefor statement. .68
7.4 Thetry statement. .69
7.5 Thewith statement. .70
7.6 Function definitions .70
7.7 Class definitions. .71

8 Top-level components 73
8.1 Complete Python programs. 73
8.2 File input .73
8.3 Interactive input .73
8.4 Expression input. .74

9 Full Grammar specification 75

A Glossary 79

B About these documents 85
B.1 Contributors to the Python Documentation. 85

C History and License 87
C.1 History of the software. .87
C.2 Terms and conditions for accessing or otherwise using Python. 88
C.3 Licenses and Acknowledgements for Incorporated Software. 90

D Copyright 99

Index 101

ii

The Python Language Reference, Release 2.6.2

Release2.6

Date September 29, 2009

This reference manual describes the syntax and “core semantics” of the language. It is terse, but attempts to be
exact and complete. The semantics of non-essential built-in object types and of the built-in functions and modules
are described inThe Python Standard Library(in The Python Library Reference). For an informal introduction to
the language, seeThe Python Tutorial(in Python Tutorial). For C or C++ programmers, two additional manuals
exist: Extending and Embedding the Python Interpreter(in Extending and Embedding Python) describes the high-
level picture of how to write a Python extension module, and thePython/C API Reference Manual(in The Python/C
API) describes the interfaces available to C/C++ programmers in detail.

CONTENTS 1

The Python Language Reference, Release 2.6.2

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

This reference manual describes the Python programming language. It is not intended as a tutorial.

While I am trying to be as precise as possible, I chose to use English rather than formal specifications for everything
except syntax and lexical analysis. This should make the document more understandable to the average reader, but will
leave room for ambiguities. Consequently, if you were coming from Mars and tried to re-implement Python from this
document alone, you might have to guess things and in fact you would probably end up implementing quite a different
language. On the other hand, if you are using Python and wonder what the precise rules about a particular area of the
language are, you should definitely be able to find them here. If you would like to see a more formal definition of the
language, maybe you could volunteer your time — or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document — the implementation may
change, and other implementations of the same language may work differently. On the other hand, there is currently
only one Python implementation in widespread use (although alternate implementations exist), and its particular quirks
are sometimes worth being mentioned, especially where the implementation imposes additional limitations. Therefore,
you’ll find short “implementation notes” sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are documented inThe
Python Standard Library(in The Python Library Reference). A few built-in modules are mentioned when they interact
in a significant way with the language definition.

1.1 Alternate Implementations

Though there is one Python implementation which is by far the most popular, there are some alternate implementations
which are of particular interest to different audiences.

Known implementations include:

CPython This is the original and most-maintained implementation of Python, written in C. New language features
generally appear here first.

Jython Python implemented in Java. This implementation can be used as a scripting language for Java applications,
or can be used to create applications using the Java class libraries. It is also often used to create tests for Java
libraries. More information can be found atthe Jython website.

Python for .NET This implementation actually uses the CPython implementation, but is a managed .NET application
and makes .NET libraries available. It was created by Brian Lloyd. For more information, see thePython for
.NET home page.

IronPython An alternate Python for .NET. Unlike Python.NET, this is a complete Python implementation that gen-
erates IL, and compiles Python code directly to .NET assemblies. It was created by Jim Hugunin, the original
creator of Jython. For more information, seethe IronPython website.

3

http://www.jython.org/
http://pythonnet.sourceforge.net
http://pythonnet.sourceforge.net
http://www.ironpython.com/

The Python Language Reference, Release 2.6.2

PyPy An implementation of Python written in Python; even the bytecode interpreter is written in Python. This is
executed using CPython as the underlying interpreter. One of the goals of the project is to encourage experi-
mentation with the language itself by making it easier to modify the interpreter (since it is written in Python).
Additional information is available onthe PyPy project’s home page.

Each of these implementations varies in some way from the language as documented in this manual, or introduces
specific information beyond what’s covered in the standard Python documentation. Please refer to the implementation-
specific documentation to determine what else you need to know about the specific implementation you’re using.

1.2 Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This uses the following style
of definition:

name ::= lc_letter (lc_letter | “_”)*
lc_letter ::= “a”...”z”

The first line says that aname is anlc_letter followed by a sequence of zero or morelc_letter s and under-
scores. Anlc_letter in turn is any of the single characters’a’ through’z’ . (This rule is actually adhered to for
the names defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule) and::= . A vertical bar (|) is used to separate
alternatives; it is the least binding operator in this notation. A star (*) means zero or more repetitions of the preceding
item; likewise, a plus (+) means one or more repetitions, and a phrase enclosed in square brackets ([]) means zero
or one occurrences (in other words, the enclosed phrase is optional). The* and+ operators bind as tightly as possible;
parentheses are used for grouping. Literal strings are enclosed in quotes. White space is only meaningful to separate
tokens. Rules are normally contained on a single line; rules with many alternatives may be formatted alternatively
with each line after the first beginning with a vertical bar. In lexical definitions (as the example above), two more
conventions are used: Two literal characters separated by three dots mean a choice of any single character in the given
(inclusive) range of ASCII characters. A phrase between angular brackets (<...>) gives an informal description of
the symbol defined; e.g., this could be used to describe the notion of ‘control character’ if needed.

Even though the notation used is almost the same, there is a big difference between the meaning of lexical and
syntactic definitions: a lexical definition operates on the individual characters of the input source, while a syntax
definition operates on the stream of tokens generated by the lexical analysis. All uses of BNF in the next chapter
(“Lexical Analysis”) are lexical definitions; uses in subsequent chapters are syntactic definitions.

4 Chapter 1. Introduction

http://codespeak.net/pypy/

CHAPTER

TWO

LEXICAL ANALYSIS

A Python program is read by aparser. Input to the parser is a stream oftokens, generated by thelexical analyzer. This
chapter describes how the lexical analyzer breaks a file into tokens.

Python uses the 7-bit ASCII character set for program text. New in version 2.3: An encoding declaration can be
used to indicate that string literals and comments use an encoding different from ASCII. For compatibility with older
versions, Python only warns if it finds 8-bit characters; those warnings should be corrected by either declaring an
explicit encoding, or using escape sequences if those bytes are binary data, instead of characters.

The run-time character set depends on the I/O devices connected to the program but is generally a superset of ASCII.

Future compatibility note: It may be tempting to assume that the character set for 8-bit characters is ISO Latin-1
(an ASCII superset that covers most western languages that use the Latin alphabet), but it is possible that in the future
Unicode text editors will become common. These generally use the UTF-8 encoding, which is also an ASCII superset,
but with very different use for the characters with ordinals 128-255. While there is no consensus on this subject yet, it
is unwise to assume either Latin-1 or UTF-8, even though the current implementation appears to favor Latin-1. This
applies both to the source character set and the run-time character set.

2.1 Line structure

A Python program is divided into a number oflogical lines.

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries
except where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line
is constructed from one or morephysical linesby following the explicit or implicitline joining rules.

2.1.2 Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files, any of the standard
platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the Windows form using
the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the ASCII CR (return)
character. All of these forms can be used equally, regardless of platform.

When embedding Python, source code strings should be passed to Python APIs using the standard C conventions for
newline characters (the\n character, representing ASCII LF, is the line terminator).

5

The Python Language Reference, Release 2.6.2

2.1.3 Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of the physical line. A
comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are ignored
by the syntax; they are not tokens.

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression
coding[=:]\s*([-\w.]+) , this comment is processed as an encoding declaration; the first group of this
expression names the encoding of the source code file. The recommended forms of this expression are

-*- coding: <encoding-name> -*-

which is recognized also by GNU Emacs, and

vim:fileencoding=<encoding-name>

which is recognized by Bram Moolenaar’s VIM. In addition, if the first bytes of the file are the UTF-8 byte-order mark
(’\xef\xbb\xbf’), the declared file encoding is UTF-8 (this is supported, among others, by Microsoft’snotepad).

If an encoding is declared, the encoding name must be recognized by Python. The encoding is used for all lexical
analysis, in particular to find the end of a string, and to interpret the contents of Unicode literals. String literals are
converted to Unicode for syntactical analysis, then converted back to their original encoding before interpretation
starts. The encoding declaration must appear on a line of its own.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows: when a physical
line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single
logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date

return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does
not continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines
using a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without using
backslashes. For example:

month_names = [’ Januari ’ , ’ Februari ’ , ’ Maart ’ , # These are the
’ April ’ , ’ Mei ’ , ’ Juni ’ , # Dutch names
’ Juli ’ , ’ Augustus ’ , ’ September ’ , # for the months
’ Oktober ’ , ’ November ’ , ’ December ’] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank
continuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly continued
lines can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

6 Chapter 2. Lexical analysis

The Python Language Reference, Release 2.6.2

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE
token is generated). During interactive input of statements, handling of a blank line may differ depending on the
implementation of the read-eval-print loop. In the standard implementation, an entirely blank logical line (i.e. one
containing not even whitespace or a comment) terminates a multi-line statement.

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of the
line, which in turn is used to determine the grouping of statements.

First, tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and
including the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number
of spaces preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split
over multiple physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to use
a mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different platforms
may explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations above.
Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance, they may
reset the space count to zero). The indentation levels of consecutive lines are used to generate INDENT and DEDENT
tokens, using a stack, as follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again. The
numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each logical
line, the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is larger, it is
pushed on the stack, and one INDENT token is generated. If it is smaller, itmustbe one of the numbers occurring on
the stack; all numbers on the stack that are larger are popped off, and for each number popped off a DEDENT token is
generated. At the end of the file, a DEDENT token is generated for each number remaining on the stack that is larger
than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
Compute the list of all permutations of l

if len (l) <= 1:
return [l]

r = []
for i in range (len (l)):

s = l[:i] + l[i +1:]
p = perm(s)
for x in p:

r . append(l[i:i +1] + x)
return r

The following example shows various indentation errors:

def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented

s = l[:i] + l[i+1:]
p = perm(l[:i] + l[i+1:]) # error: unexpected indent
for x in p:

r.append(l[i:i+1] + x)
return r # error: inconsistent dedent

2.1. Line structure 7

The Python Language Reference, Release 2.6.2

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the
indentation ofreturn r does not match a level popped off the stack.)

2.1.9 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be
used interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation could
otherwise be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist:identifiers, keywords, literals,
operators, anddelimiters. Whitespace characters (other than line terminators, discussed earlier) are not tokens, but
serve to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that forms a legal token,
when read from left to right.

2.3 Identifiers and keywords

Identifiers (also referred to asnames) are described by the following lexical definitions:

identifier ::= (letter|”_”) (letter | digit | “_”)*
letter ::= lowercase | uppercase
lowercase ::= “a”...”z”
uppercase ::= “A”...”Z”
digit ::= “0”...”9”

Identifiers are unlimited in length. Case is significant.

2.3.1 Keywords

The following identifiers are used as reserved words, orkeywordsof the language, and cannot be used as ordinary
identifiers. They must be spelled exactly as written here:

and del from not while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return
def for lambda try

Changed in version 2.4:None became a constant and is now recognized by the compiler as a name for the built-in
objectNone. Although it is not a keyword, you cannot assign a different object to it.Changed in version 2.5: Both
as andwith are only recognized when thewith_statement future feature has been enabled. It will always be
enabled in Python 2.6. See sectionThe with statementfor details. Note that usingas andwith as identifiers will
always issue a warning, even when thewith_statement future directive is not in effect.

8 Chapter 2. Lexical analysis

The Python Language Reference, Release 2.6.2

2.3.2 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns of
leading and trailing underscore characters:

* Not imported byfrom module import * . The special identifier is used in the interactive interpreter to
store the result of the last evaluation; it is stored in the__builtin__ module. When not in interactive mode,
_ has no special meaning and is not defined. See sectionThe import statement.

Note: The name_ is often used in conjunction with internationalization; refer to the documentation for the
gettext module for more information on this convention.

__*__ System-defined names. These names are defined by the interpreter and its implementation (including the
standard library); applications should not expect to define additional names using this convention. The set of
names of this class defined by Python may be extended in future versions. See sectionSpecial method names.

__* Class-private names. Names in this category, when used within the context of a class definition, are re-written
to use a mangled form to help avoid name clashes between “private” attributes of base and derived classes. See
sectionIdentifiers (Names).

2.4 Literals

Literals are notations for constant values of some built-in types.

2.4.1 String literals

String literals are described by the following lexical definitions:

stringliteral ::= [stringprefix](shortstring | longstring)
stringprefix ::= “r” | “u” | “ur” | “R” | “U” | “UR” | “Ur” | “uR”
shortstring ::= “”’ shortstringitem* “”’ | ‘”’ shortstringitem* ‘”’
longstring ::= “’‘”’ longstringitem* “’‘”’

| ‘”“”’ longstringitem* ‘”“”’
shortstringitem ::= shortstringchar | escapeseq
longstringitem ::= longstringchar | escapeseq
shortstringchar ::= <any source character except “\” or newline or the quote>
longstringchar ::= <any source character except “\”>
escapeseq ::= “\” <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefix and the rest of the string literal. The source character set is defined by the encoding declaration; it
is ASCII if no encoding declaration is given in the source file; see sectionEncoding declarations. In plain English:
String literals can be enclosed in matching single quotes (’) or double quotes ("). They can also be enclosed in match-
ing groups of three single or double quotes (these are generally referred to astriple-quoted strings). The backslash
(\) character is used to escape characters that otherwise have a special meaning, such as newline, backslash itself, or
the quote character. String literals may optionally be prefixed with a letter’r’ or ’R’ ; such strings are calledraw
stringsand use different rules for interpreting backslash escape sequences. A prefix of’u’ or ’U’ makes the string a
Unicode string. Unicode strings use the Unicode character set as defined by the Unicode Consortium and ISO 10646.
Some additional escape sequences, described below, are available in Unicode strings. The two prefix characters may
be combined; in this case,’u’ must appear before’r’ .

In triple-quoted strings, unescaped newlines and quotes are allowed (and are retained), except that three unescaped
quotes in a row terminate the string. (A “quote” is the character used to open the string, i.e. either’ or " .) Unless an
’r’ or ’R’ prefix is present, escape sequences in strings are interpreted according to rules similar to those used by
Standard C. The recognized escape sequences are:

2.4. Literals 9

The Python Language Reference, Release 2.6.2

Escape Sequence Meaning Notes
\newline Ignored
\\ Backslash (\)
\’ Single quote (’)
\" Double quote (")
\a ASCII Bell (BEL)
\b ASCII Backspace (BS)
\f ASCII Formfeed (FF)
\n ASCII Linefeed (LF)
\N{name} Character namednamein the Unicode database (Unicode only)
\r ASCII Carriage Return (CR)
\t ASCII Horizontal Tab (TAB)
\uxxxx Character with 16-bit hex valuexxxx(Unicode only) (1)
\Uxxxxxxxx Character with 32-bit hex valuexxxxxxxx(Unicode only) (2)
\v ASCII Vertical Tab (VT)
\ooo Character with octal valueooo (3,5)
\xhh Character with hex valuehh (4,5)

Notes:

1. Individual code units which form parts of a surrogate pair can be encoded using this escape sequence.

2. Any Unicode character can be encoded this way, but characters outside the Basic Multilingual Plane (BMP) will
be encoded using a surrogate pair if Python is compiled to use 16-bit code units (the default). Individual code
units which form parts of a surrogate pair can be encoded using this escape sequence.

3. As in Standard C, up to three octal digits are accepted.

4. Unlike in Standard C, exactly two hex digits are required.

5. In a string literal, hexadecimal and octal escapes denote the byte with the given value; it is not necessary that
the byte encodes a character in the source character set. In a Unicode literal, these escapes denote a Unicode
character with the given value.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e.,the backslash is left in the
string. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more easily
recognized as broken.) It is also important to note that the escape sequences marked as “(Unicode only)” in the table
above fall into the category of unrecognized escapes for non-Unicode string literals.

When an’r’ or ’R’ prefix is present, a character following a backslash is included in the string without change, and
all backslashes are left in the string. For example, the string literalr"\n" consists of two characters: a backslash and
a lowercase’n’ . String quotes can be escaped with a backslash, but the backslash remains in the string; for example,
r"\"" is a valid string literal consisting of two characters: a backslash and a double quote;r"\" is not a valid string
literal (even a raw string cannot end in an odd number of backslashes). Specifically,a raw string cannot end in a
single backslash(since the backslash would escape the following quote character). Note also that a single backslash
followed by a newline is interpreted as those two characters as part of the string,not as a line continuation.

When an’r’ or ’R’ prefix is used in conjunction with a’u’ or ’U’ prefix, then the\uXXXX and\UXXXXXXXX
escape sequences are processed whileall other backslashes are left in the string. For example, the string literal
ur"\u0062\n" consists of three Unicode characters: ‘LATIN SMALL LETTER B’, ‘REVERSE SOLIDUS’, and
‘LATIN SMALL LETTER N’. Backslashes can be escaped with a preceding backslash; however, both remain in the
string. As a result,\uXXXX escape sequences are only recognized when there are an odd number of backslashes.

2.4.2 String literal concatenation

Multiple adjacent string literals (delimited by whitespace), possibly using different quoting conventions, are allowed,
and their meaning is the same as their concatenation. Thus,"hello" ’world’ is equivalent to"helloworld" .

10 Chapter 2. Lexical analysis

The Python Language Reference, Release 2.6.2

This feature can be used to reduce the number of backslashes needed, to split long strings conveniently across long
lines, or even to add comments to parts of strings, for example:

re . compile(" [A-Za-z_] " # letter or underscore
" [A-Za-z0-9_]* " # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The ‘+’ operator must be
used to concatenate string expressions at run time. Also note that literal concatenation can use different quoting styles
for each component (even mixing raw strings and triple quoted strings).

2.4.3 Numeric literals

There are four types of numeric literals: plain integers, long integers, floating point numbers, and imaginary numbers.
There are no complex literals (complex numbers can be formed by adding a real number and an imaginary number).

Note that numeric literals do not include a sign; a phrase like-1 is actually an expression composed of the unary
operator ‘- ‘ and the literal1.

2.4.4 Integer and long integer literals

Integer and long integer literals are described by the following lexical definitions:

longinteger ::= integer (“l” | “L”)
integer ::= decimalinteger | octinteger | hexinteger | bininteger
decimalinteger ::= nonzerodigit digit* | “0”
octinteger ::= “0” (“o” | “O”) octdigit+ | “0” octdigit+
hexinteger ::= “0” (“x” | “X”) hexdigit+
bininteger ::= “0” (“b” | “B”) bindigit+
nonzerodigit ::= “1”...”9”
octdigit ::= “0”...”7”
bindigit ::= “0” | “1”
hexdigit ::= digit | “a”...”f” | “A”...”F”

Although both lower case’l’ and upper case’L’ are allowed as suffix for long integers, it is strongly recommended
to always use’L’ , since the letter’l’ looks too much like the digit’1’ .

Plain integer literals that are above the largest representable plain integer (e.g., 2147483647 when using 32-bit arith-
metic) are accepted as if they were long integers instead.1 There is no limit for long integer literals apart from what
can be stored in available memory.

Some examples of plain integer literals (first row) and long integer literals (second and third rows):

7 2147483647 0177
3L 79228162514264337593543950336L 0377L 0x100000000L

79228162514264337593543950336 0xdeadbeef

2.4.5 Floating point literals

Floating point literals are described by the following lexical definitions:

1 In versions of Python prior to 2.4, octal and hexadecimal literals in the range just above the largest representable plain integer but below the
largest unsigned 32-bit number (on a machine using 32-bit arithmetic), 4294967296, were taken as the negative plain integer obtained by subtracting
4294967296 from their unsigned value.

2.4. Literals 11

The Python Language Reference, Release 2.6.2

floatnumber ::= pointfloat | exponentfloat
pointfloat ::= [intpart] fraction | intpart “.”
exponentfloat ::= (intpart | pointfloat) exponent
intpart ::= digit+
fraction ::= “.” digit+
exponent ::= (“e” | “E”) [”+” | “-“] digit+

Note that the integer and exponent parts of floating point numbers can look like octal integers, but are interpreted using
radix 10. For example,077e010 is legal, and denotes the same number as77e10 . The allowed range of floating
point literals is implementation-dependent. Some examples of floating point literals:

3.14 10. .001 1e100 3.14e-10 0e0

Note that numeric literals do not include a sign; a phrase like-1 is actually an expression composed of the unary
operator- and the literal1.

2.4.6 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber ::= (floatnumber | intpart) (“j” | “J”)

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a pair of
floating point numbers and have the same restrictions on their range. To create a complex number with a nonzero real
part, add a floating point number to it, e.g.,(3+4j) . Some examples of imaginary literals:

3.14j 10.j 10j .001j 1e100j 3.14e-10j

2.5 Operators

The following tokens are operators:

+ - * ** / // %
<< >> & | ^ ~
< > <= >= == != <>

The comparison operators<> and!= are alternate spellings of the same operator.!= is the preferred spelling;<> is
obsolescent.

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

() [] { } @
, : . ‘ = ;
+= -= *= /= //= %=
&= |= ^= >>= <<= **=

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning
as an ellipsis in slices. The second half of the list, the augmented assignment operators, serve lexically as delimiters,
but also perform an operation.

The following printing ASCII characters have special meaning as part of other tokens or are otherwise significant to
the lexical analyzer:

’ " # \

12 Chapter 2. Lexical analysis

The Python Language Reference, Release 2.6.2

The following printing ASCII characters are not used in Python. Their occurrence outside string literals and comments
is an unconditional error:

$?

2.6. Delimiters 13

The Python Language Reference, Release 2.6.2

14 Chapter 2. Lexical analysis

CHAPTER

THREE

DATA MODEL

3.1 Objects, values and types

Objectsare Python’s abstraction for data. All data in a Python program is represented by objects or by relations
between objects. (In a sense, and in conformance to Von Neumann’s model of a “stored program computer,” code is
also represented by objects.) Every object has an identity, a type and a value. An object’sidentity never changes
once it has been created; you may think of it as the object’s address in memory. The ‘is ‘ operator compares the
identity of two objects; theid() function returns an integer representing its identity (currently implemented as its
address). An object’stypeis also unchangeable.1 An object’s type determines the operations that the object supports
(e.g., “does it have a length?”) and also defines the possible values for objects of that type. Thetype() function
returns an object’s type (which is an object itself). Thevalueof some objects can change. Objects whose value can
change are said to bemutable; objects whose value is unchangeable once they are created are calledimmutable. (The
value of an immutable container object that contains a reference to a mutable object can change when the latter’s
value is changed; however the container is still considered immutable, because the collection of objects it contains
cannot be changed. So, immutability is not strictly the same as having an unchangeable value, it is more subtle.)
An object’s mutability is determined by its type; for instance, numbers, strings and tuples are immutable, while
dictionaries and lists are mutable. Objects are never explicitly destroyed; however, when they become unreachable
they may be garbage-collected. An implementation is allowed to postpone garbage collection or omit it altogether —
it is a matter of implementation quality how garbage collection is implemented, as long as no objects are collected
that are still reachable. (Implementation note: CPython currently uses a reference-counting scheme with (optional)
delayed detection of cyclically linked garbage, which collects most objects as soon as they become unreachable, but
is not guaranteed to collect garbage containing circular references. See the documentation of thegc module for
information on controlling the collection of cyclic garbage. Other implementations act differently and CPython may
change.)

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally
be collectable. Also note that catching an exception with a ‘try ...except ‘ statement may keep objects alive.

Some objects contain references to “external” resources such as open files or windows. It is understood that these
resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen,
such objects also provide an explicit way to release the external resource, usually aclose() method. Programs are
strongly recommended to explicitly close such objects. The ‘try ...finally ‘ statement provides a convenient way
to do this. Some objects contain references to other objects; these are calledcontainers. Examples of containers are
tuples, lists and dictionaries. The references are part of a container’s value. In most cases, when we talk about the
value of a container, we imply the values, not the identities of the contained objects; however, when we talk about the
mutability of a container, only the identities of the immediately contained objects are implied. So, if an immutable
container (like a tuple) contains a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense:

1 It is possible in some cases to change an object’s type, under certain controlled conditions. It generally isn’t a good idea though, since it can
lead to some very strange behaviour if it is handled incorrectly.

15

The Python Language Reference, Release 2.6.2

for immutable types, operations that compute new values may actually return a reference to any existing object with
the same type and value, while for mutable objects this is not allowed. E.g., aftera = 1; b = 1 , a andb may or
may not refer to the same object with the value one, depending on the implementation, but afterc = []; d = [] ,
c andd are guaranteed to refer to two different, unique, newly created empty lists. (Note thatc = d = [] assigns
the same object to bothc andd.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages,
depending on the implementation) can define additional types. Future versions of Python may add types to the type
hierarchy (e.g., rational numbers, efficiently stored arrays of integers, etc.). Some of the type descriptions below
contain a paragraph listing ‘special attributes.’ These are attributes that provide access to the implementation and are
not intended for general use. Their definition may change in the future.

None This type has a single value. There is a single object with this value. This object is accessed through the built-in
nameNone. It is used to signify the absence of a value in many situations, e.g., it is returned from functions
that don’t explicitly return anything. Its truth value is false.

NotImplemented This type has a single value. There is a single object with this value. This object is accessed through
the built-in nameNotImplemented . Numeric methods and rich comparison methods may return this value
if they do not implement the operation for the operands provided. (The interpreter will then try the reflected
operation, or some other fallback, depending on the operator.) Its truth value is true.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed through the
built-in nameEllipsis . It is used to indicate the presence of the... syntax in a slice. Its truth value is true.

numbers.Number These are created by numeric literals and returned as results by arithmetic operators and arith-
metic built-in functions. Numeric objects are immutable; once created their value never changes. Python
numbers are of course strongly related to mathematical numbers, but subject to the limitations of numerical
representation in computers.

Python distinguishes between integers, floating point numbers, and complex numbers:

numbers.Integral These represent elements from the mathematical set of integers (positive and negative).

There are three types of integers:

Plain integers These represent numbers in the range -2147483648 through 2147483647. (The range may
be larger on machines with a larger natural word size, but not smaller.) When the result of an operation
would fall outside this range, the result is normally returned as a long integer (in some cases, the
exceptionOverflowError is raised instead). For the purpose of shift and mask operations, integers
are assumed to have a binary, 2’s complement notation using 32 or more bits, and hiding no bits from
the user (i.e., all 4294967296 different bit patterns correspond to different values).

Long integers These represent numbers in an unlimited range, subject to available (virtual) memory only.
For the purpose of shift and mask operations, a binary representation is assumed, and negative num-
bers are represented in a variant of 2’s complement which gives the illusion of an infinite string of
sign bits extending to the left.

Booleans These represent the truth values False and True. The two objects representing the values False
and True are the only Boolean objects. The Boolean type is a subtype of plain integers, and Boolean
values behave like the values 0 and 1, respectively, in almost all contexts, the exception being that
when converted to a string, the strings"False" or "True" are returned, respectively.

The rules for integer representation are intended to give the most meaningful interpretation of shift and
mask operations involving negative integers and the least surprises when switching between the plain
and long integer domains. Any operation, if it yields a result in the plain integer domain, will yield the

16 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

same result in the long integer domain or when using mixed operands. The switch between domains is
transparent to the programmer.

numbers.Real (float) These represent machine-level double precision floating point numbers. You are at
the mercy of the underlying machine architecture (and C or Java implementation) for the accepted range
and handling of overflow. Python does not support single-precision floating point numbers; the savings
in processor and memory usage that are usually the reason for using these is dwarfed by the overhead of
using objects in Python, so there is no reason to complicate the language with two kinds of floating point
numbers.

numbers.Complex These represent complex numbers as a pair of machine-level double precision floating
point numbers. The same caveats apply as for floating point numbers. The real and imaginary parts of a
complex numberz can be retrieved through the read-only attributesz.real andz.imag .

SequencesThese represent finite ordered sets indexed by non-negative numbers. The built-in functionlen() returns
the number of items of a sequence. When the length of a sequence isn, the index set contains the numbers 0,
1, ...,n-1. Item i of sequencea is selected bya[i] . Sequences also support slicing:a[i:j] selects all items
with index k such thati <= k < j. When used as an expression, a slice is a sequence of the same type. This
implies that the index set is renumbered so that it starts at 0. Some sequences also support “extended slicing”
with a third “step” parameter:a[i:j:k] selects all items ofa with indexx wherex = i + n*k , n >= 0
andi <= x < j.

Sequences are distinguished according to their mutability:

Immutable sequencesAn object of an immutable sequence type cannot change once it is created. (If the object
contains references to other objects, these other objects may be mutable and may be changed; however,
the collection of objects directly referenced by an immutable object cannot change.)

The following types are immutable sequences:

Strings The items of a string are characters. There is no separate character type; a character is represented
by a string of one item. Characters represent (at least) 8-bit bytes. The built-in functionschr() and
ord() convert between characters and nonnegative integers representing the byte values. Bytes with
the values 0-127 usually represent the corresponding ASCII values, but the interpretation of values is
up to the program. The string data type is also used to represent arrays of bytes, e.g., to hold data read
from a file. (On systems whose native character set is not ASCII, strings may use EBCDIC in their
internal representation, provided the functionschr() andord() implement a mapping between
ASCII and EBCDIC, and string comparison preserves the ASCII order. Or perhaps someone can
propose a better rule?)

Unicode The items of a Unicode object are Unicode code units. A Unicode code unit is represented by a
Unicode object of one item and can hold either a 16-bit or 32-bit value representing a Unicode ordinal
(the maximum value for the ordinal is given insys.maxunicode , and depends on how Python
is configured at compile time). Surrogate pairs may be present in the Unicode object, and will be
reported as two separate items. The built-in functionsunichr() andord() convert between code
units and nonnegative integers representing the Unicode ordinals as defined in the Unicode Standard
3.0. Conversion from and to other encodings are possible through the Unicode methodencode()
and the built-in functionunicode() .

Tuples The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by
comma-separated lists of expressions. A tuple of one item (a ‘singleton’) can be formed by affixing
a comma to an expression (an expression by itself does not create a tuple, since parentheses must be
usable for grouping of expressions). An empty tuple can be formed by an empty pair of parentheses.

Mutable sequencesMutable sequences can be changed after they are created. The subscription and slicing
notations can be used as the target of assignment anddel (delete) statements.

There is currently a single intrinsic mutable sequence type:

3.2. The standard type hierarchy 17

The Python Language Reference, Release 2.6.2

Lists The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated list
of expressions in square brackets. (Note that there are no special cases needed to form lists of length
0 or 1.)

The extension modulearray provides an additional example of a mutable sequence type.

Set types These represent unordered, finite sets of unique, immutable objects. As such, they cannot be indexed by any
subscript. However, they can be iterated over, and the built-in functionlen() returns the number of items in
a set. Common uses for sets are fast membership testing, removing duplicates from a sequence, and computing
mathematical operations such as intersection, union, difference, and symmetric difference.

For set elements, the same immutability rules apply as for dictionary keys. Note that numeric types obey the
normal rules for numeric comparison: if two numbers compare equal (e.g.,1 and1.0), only one of them can
be contained in a set.

There are currently two intrinsic set types:

Sets These represent a mutable set. They are created by the built-inset() constructor and can be modified
afterwards by several methods, such asadd() .

Frozen setsThese represent an immutable set. They are created by the built-infrozenset() constructor. As
a frozenset is immutable andhashable, it can be used again as an element of another set, or as a dictionary
key.

Mappings These represent finite sets of objects indexed by arbitrary index sets. The subscript notationa[k] selects
the item indexed byk from the mappinga; this can be used in expressions and as the target of assignments or
del statements. The built-in functionlen() returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values. The only types of values
not acceptable as keys are values containing lists or dictionaries or other mutable types that are compared
by value rather than by object identity, the reason being that the efficient implementation of dictionaries
requires a key’s hash value to remain constant. Numeric types used for keys obey the normal rules for nu-
meric comparison: if two numbers compare equal (e.g.,1 and1.0) then they can be used interchangeably
to index the same dictionary entry.

Dictionaries are mutable; they can be created by the{...} notation (see sectionDictionary displays).
The extension modulesdbm, gdbm, andbsddb provide additional examples of mapping types.

Callable types These are the types to which the function call operation (see sectionCalls) can be applied:

User-defined functions A user-defined function object is created by a function definition (see sectionFunction
definitions). It should be called with an argument list containing the same number of items as the function’s
formal parameter list.

Special attributes:

18 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

Attribute Meaning
func_doc The function’s documentation string, orNone if unavailable Writable
__doc__ Another way of spellingfunc_doc Writable
func_name The function’s name Writable
__name__ Another way of spellingfunc_name Writable
__module__ The name of the module the function was defined in, orNone if unavailable. Writable
func_defaultsA tuple containing default argument values for those arguments that have defaults, or

None if no arguments have a default value
Writable

func_code The code object representing the compiled function body. Writable
func_globals A reference to the dictionary that holds the function’s global variables — the global

namespace of the module in which the function was defined.
Read-
only

func_dict The namespace supporting arbitrary function attributes. Writable
func_closure None or a tuple of cells that contain bindings for the function’s free variables. Read-

only

Most of the attributes labelled “Writable” check the type of the assigned value. Changed in version 2.4:
func_name is now writable. Function objects also support getting and setting arbitrary attributes, which
can be used, for example, to attach metadata to functions. Regular attribute dot-notation is used to get and
set such attributes.Note that the current implementation only supports function attributes on user-defined
functions. Function attributes on built-in functions may be supported in the future.

Additional information about a function’s definition can be retrieved from its code object; see the descrip-
tion of internal types below.

User-defined methodsA user-defined method object combines a class, a class instance (orNone) and any
callable object (normally a user-defined function).

Special read-only attributes:im_self is the class instance object,im_func is the function object;
im_class is the class ofim_self for bound methods or the class that asked for the method for unbound
methods;__doc__ is the method’s documentation (same asim_func.__doc__); __name__ is the
method name (same asim_func.__name__); __module__ is the name of the module the method
was defined in, orNone if unavailable. Changed in version 2.2:im_self used to refer to the class that
defined the method.Changed in version 2.6: For 3.0 forward-compatibility,im_func is also available as
__func__ , andim_self as__self__ . Methods also support accessing (but not setting) the arbitrary
function attributes on the underlying function object.

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance
of that class), if that attribute is a user-defined function object, an unbound user-defined method object, or
a class method object. When the attribute is a user-defined method object, a new method object is only
created if the class from which it is being retrieved is the same as, or a derived class of, the class stored
in the original method object; otherwise, the original method object is used as it is. When a user-defined
method object is created by retrieving a user-defined function object from a class, itsim_self attribute
is None and the method object is said to be unbound. When one is created by retrieving a user-defined
function object from a class via one of its instances, itsim_self attribute is the instance, and the method
object is said to be bound. In either case, the new method’sim_class attribute is the class from which
the retrieval takes place, and itsim_func attribute is the original function object. When a user-defined
method object is created by retrieving another method object from a class or instance, the behaviour is the
same as for a function object, except that theim_func attribute of the new instance is not the original
method object but itsim_func attribute. When a user-defined method object is created by retrieving
a class method object from a class or instance, itsim_self attribute is the class itself (the same as the
im_class attribute), and itsim_func attribute is the function object underlying the class method.

When an unbound user-defined method object is called, the underlying function (im_func) is called, with
the restriction that the first argument must be an instance of the proper class (im_class) or of a derived
class thereof.

When a bound user-defined method object is called, the underlying function (im_func) is called, inserting

3.2. The standard type hierarchy 19

The Python Language Reference, Release 2.6.2

the class instance (im_self) in front of the argument list. For instance, whenC is a class which contains
a definition for a functionf() , andx is an instance ofC, callingx.f(1) is equivalent to callingC.f(x,
1) .

When a user-defined method object is derived from a class method object, the “class instance” stored in
im_self will actually be the class itself, so that calling eitherx.f(1) or C.f(1) is equivalent to
calling f(C,1) wheref is the underlying function.

Note that the transformation from function object to (unbound or bound) method object happens each time
the attribute is retrieved from the class or instance. In some cases, a fruitful optimization is to assign the
attribute to a local variable and call that local variable. Also notice that this transformation only happens
for user-defined functions; other callable objects (and all non-callable objects) are retrieved without trans-
formation. It is also important to note that user-defined functions which are attributes of a class instance
are not converted to bound methods; thisonlyhappens when the function is an attribute of the class.

Generator functions A function or method which uses theyield statement (see sectionThe yield statement)
is called agenerator function. Such a function, when called, always returns an iterator object which can
be used to execute the body of the function: calling the iterator’snext() method will cause the function
to execute until it provides a value using theyield statement. When the function executes areturn
statement or falls off the end, aStopIteration exception is raised and the iterator will have reached
the end of the set of values to be returned.

Built-in functions A built-in function object is a wrapper around a C function. Examples of built-in func-
tions arelen() andmath.sin() (math is a standard built-in module). The number and type of the
arguments are determined by the C function. Special read-only attributes:__doc__ is the function’s doc-
umentation string, orNone if unavailable;__name__ is the function’s name;__self__ is set toNone
(but see the next item);__module__ is the name of the module the function was defined in orNone if
unavailable.

Built-in methods This is really a different disguise of a built-in function, this time containing an object passed
to the C function as an implicit extra argument. An example of a built-in method isalist.append() ,
assumingalist is a list object. In this case, the special read-only attribute__self__ is set to the object
denoted bylist.

Class TypesClass types, or “new-style classes,” are callable. These objects normally act as factories for new
instances of themselves, but variations are possible for class types that override__new__() . The argu-
ments of the call are passed to__new__() and, in the typical case, to__init__() to initialize the new
instance.

Classic ClassesClass objects are described below. When a class object is called, a new class instance (also
described below) is created and returned. This implies a call to the class’s__init__() method if it has
one. Any arguments are passed on to the__init__() method. If there is no__init__() method, the
class must be called without arguments.

Class instancesClass instances are described below. Class instances are callable only when the class has a
__call__() method;x(arguments) is a shorthand forx.__call__(arguments) .

Modules Modules are imported by theimport statement (see sectionThe import statement). A module object has
a namespace implemented by a dictionary object (this is the dictionary referenced by the func_globals attribute
of functions defined in the module). Attribute references are translated to lookups in this dictionary, e.g.,m.x
is equivalent tom.__dict__["x"] . A module object does not contain the code object used to initialize the
module (since it isn’t needed once the initialization is done).

Attribute assignment updates the module’s namespace dictionary, e.g.,m.x = 1 is equivalent to
m.__dict__["x"] = 1 . Special read-only attribute:__dict__ is the module’s namespace as a dic-
tionary object. Predefined (writable) attributes:__name__ is the module’s name;__doc__ is the module’s
documentation string, orNone if unavailable;__file__ is the pathname of the file from which the module
was loaded, if it was loaded from a file. The__file__ attribute is not present for C modules that are statically

20 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

linked into the interpreter; for extension modules loaded dynamically from a shared library, it is the pathname
of the shared library file.

ClassesBoth class types (new-style classes) and class objects (old-style/classic classes) are typically created by class
definitions (see sectionClass definitions). A class has a namespace implemented by a dictionary object. Class
attribute references are translated to lookups in this dictionary, e.g.,C.x is translated toC.__dict__["x"]
(although for new-style classes in particular there are a number of hooks which allow for other means of locating
attributes). When the attribute name is not found there, the attribute search continues in the base classes. For
old-style classes, the search is depth-first, left-to-right in the order of occurrence in the base class list. New-
style classes use the more complex C3 method resolution order which behaves correctly even in the presence of
‘diamond’ inheritance structures where there are multiple inheritance paths leading back to a common ancestor.
Additional details on the C3 MRO used by new-style classes can be found in the documentation accompanying
the 2.3 release athttp://www.python.org/download/releases/2.3/mro/. When a class attribute reference (for class
C, say) would yield a user-defined function object or an unbound user-defined method object whose associated
class is eitherC or one of its base classes, it is transformed into an unbound user-defined method object whose
im_class attribute isC. When it would yield a class method object, it is transformed into a bound user-
defined method object whoseim_class and im_self attributes are bothC. When it would yield a static
method object, it is transformed into the object wrapped by the static method object. See sectionImplementing
Descriptorsfor another way in which attributes retrieved from a class may differ from those actually contained
in its __dict__ (note that only new-style classes support descriptors). Class attribute assignments update the
class’s dictionary, never the dictionary of a base class. A class object can be called (see above) to yield a class
instance (see below). Special attributes:__name__ is the class name;__module__ is the module name in
which the class was defined;__dict__ is the dictionary containing the class’s namespace;__bases__ is
a tuple (possibly empty or a singleton) containing the base classes, in the order of their occurrence in the base
class list;__doc__ is the class’s documentation string, or None if undefined.

Class instancesA class instance is created by calling a class object (see above). A class instance has a namespace
implemented as a dictionary which is the first place in which attribute references are searched. When an attribute
is not found there, and the instance’s class has an attribute by that name, the search continues with the class
attributes. If a class attribute is found that is a user-defined function object or an unbound user-defined method
object whose associated class is the class (call itC) of the instance for which the attribute reference was initiated
or one of its bases, it is transformed into a bound user-defined method object whoseim_class attribute isC
and whoseim_self attribute is the instance. Static method and class method objects are also transformed, as
if they had been retrieved from classC; see above under “Classes”. See sectionImplementing Descriptorsfor
another way in which attributes of a class retrieved via its instances may differ from the objects actually stored
in the class’s__dict__ . If no class attribute is found, and the object’s class has a__getattr__() method,
that is called to satisfy the lookup. Attribute assignments and deletions update the instance’s dictionary, never a
class’s dictionary. If the class has a__setattr__() or __delattr__() method, this is called instead of
updating the instance dictionary directly. Class instances can pretend to be numbers, sequences, or mappings
if they have methods with certain special names. See sectionSpecial method names. Special attributes:
__dict__ is the attribute dictionary;__class__ is the instance’s class.

Files A file object represents an open file. File objects are created by theopen() built-in function, and also by
os.popen() , os.fdopen() , and themakefile() method of socket objects (and perhaps by other func-
tions or methods provided by extension modules). The objectssys.stdin , sys.stdout andsys.stderr
are initialized to file objects corresponding to the interpreter’s standard input, output and error streams. SeeFile
Objects(in The Python Library Reference) for complete documentation of file objects.

Internal types A few types used internally by the interpreter are exposed to the user. Their definitions may change
with future versions of the interpreter, but they are mentioned here for completeness.

Code objects Code objects representbyte-compiledexecutable Python code, orbytecode. The difference be-
tween a code object and a function object is that the function object contains an explicit reference to the
function’s globals (the module in which it was defined), while a code object contains no context; also the
default argument values are stored in the function object, not in the code object (because they represent val-
ues calculated at run-time). Unlike function objects, code objects are immutable and contain no references

3.2. The standard type hierarchy 21

http://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Release 2.6.2

(directly or indirectly) to mutable objects.

Special read-only attributes:co_name gives the function name;co_argcount is the number of posi-
tional arguments (including arguments with default values);co_nlocals is the number of local variables
used by the function (including arguments);co_varnames is a tuple containing the names of the local
variables (starting with the argument names);co_cellvars is a tuple containing the names of local
variables that are referenced by nested functions;co_freevars is a tuple containing the names of free
variables;co_code is a string representing the sequence of bytecode instructions;co_consts is a tu-
ple containing the literals used by the bytecode;co_names is a tuple containing the names used by the
bytecode;co_filename is the filename from which the code was compiled;co_firstlineno is the
first line number of the function;co_lnotab is a string encoding the mapping from bytecode offsets to
line numbers (for details see the source code of the interpreter);co_stacksize is the required stack
size (including local variables);co_flags is an integer encoding a number of flags for the interpreter.
The following flag bits are defined forco_flags : bit 0x04 is set if the function uses the*arguments
syntax to accept an arbitrary number of positional arguments; bit0x08 is set if the function uses the
**keywords syntax to accept arbitrary keyword arguments; bit0x20 is set if the function is a genera-
tor.

Future feature declarations (from __future__ import division) also use bits inco_flags to
indicate whether a code object was compiled with a particular feature enabled: bit0x2000 is set if the
function was compiled with future division enabled; bits0x10 and0x1000 were used in earlier versions
of Python.

Other bits inco_flags are reserved for internal use. If a code object represents a function, the first item
in co_consts is the documentation string of the function, orNone if undefined.

Frame objects Frame objects represent execution frames. They may occur in traceback objects (see below).
Special read-only attributes:f_back is to the previous stack frame (towards the caller), orNone if this
is the bottom stack frame;f_code is the code object being executed in this frame;f_locals is the
dictionary used to look up local variables;f_globals is used for global variables;f_builtins is
used for built-in (intrinsic) names;f_restricted is a flag indicating whether the function is executing
in restricted execution mode;f_lasti gives the precise instruction (this is an index into the bytecode
string of the code object). Special writable attributes:f_trace , if not None, is a function called
at the start of each source code line (this is used by the debugger);f_exc_type , f_exc_value ,
f_exc_traceback represent the last exception raised in the parent frame provided another exception
was ever raised in the current frame (in all other cases they are None);f_lineno is the current line
number of the frame — writing to this from within a trace function jumps to the given line (only for the
bottom-most frame). A debugger can implement a Jump command (aka Set Next Statement) by writing to
f_lineno.

Traceback objects Traceback objects represent a stack trace of an exception. A traceback object is created
when an exception occurs. When the search for an exception handler unwinds the execution stack, at each
unwound level a traceback object is inserted in front of the current traceback. When an exception handler
is entered, the stack trace is made available to the program. (See sectionThe try statement.) It is accessible
assys.exc_traceback , and also as the third item of the tuple returned bysys.exc_info() . The
latter is the preferred interface, since it works correctly when the program is using multiple threads. When
the program contains no suitable handler, the stack trace is written (nicely formatted) to the standard error
stream; if the interpreter is interactive, it is also made available to the user assys.last_traceback .
Special read-only attributes:tb_next is the next level in the stack trace (towards the frame where the

exception occurred), orNone if there is no next level;tb_frame points to the execution frame of the
current level;tb_lineno gives the line number where the exception occurred;tb_lasti indicates the
precise instruction. The line number and last instruction in the traceback may differ from the line number
of its frame object if the exception occurred in atry statement with no matching except clause or with a
finally clause.

Slice objects Slice objects are used to represent slices whenextended slice syntaxis used. This is a slice using
two colons, or multiple slices or ellipses separated by commas, e.g.,a[i:j:step] , a[i:j, k:l] , or

22 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

a[..., i:j] . They are also created by the built-inslice() function. Special read-only attributes:
start is the lower bound;stop is the upper bound;step is the step value; each isNone if omitted.
These attributes can have any type.

Slice objects support one method:

indices (self, length)
This method takes a single integer argumentlengthand computes information about the extended
slice that the slice object would describe if applied to a sequence oflength items. It returns a tuple
of three integers; respectively these are thestart andstopindices and thestepor stride length of the
slice. Missing or out-of-bounds indices are handled in a manner consistent with regular slices. New
in version 2.3.

Static method objects Static method objects provide a way of defeating the transformation of function objects
to method objects described above. A static method object is a wrapper around any other object, usually a
user-defined method object. When a static method object is retrieved from a class or a class instance, the
object actually returned is the wrapped object, which is not subject to any further transformation. Static
method objects are not themselves callable, although the objects they wrap usually are. Static method
objects are created by the built-instaticmethod() constructor.

Class method objectsA class method object, like a static method object, is a wrapper around another object
that alters the way in which that object is retrieved from classes and class instances. The behaviour of
class method objects upon such retrieval is described above, under “User-defined methods”. Class method
objects are created by the built-inclassmethod() constructor.

3.3 New-style and classic classes

Classes and instances come in two flavors: old-style (or classic) and new-style.

Up to Python 2.1, old-style classes were the only flavour available to the user. The concept of (old-style) class is
unrelated to the concept of type: ifx is an instance of an old-style class, thenx.__class__ designates the class of
x, but type(x) is always<type ’instance’> . This reflects the fact that all old-style instances, independently
of their class, are implemented with a single built-in type, calledinstance .

New-style classes were introduced in Python 2.2 to unify classes and types. A new-style class is neither more nor
less than a user-defined type. Ifx is an instance of a new-style class, thentype(x) is typically the same as
x.__class__ (although this is not guaranteed - a new-style class instance is permitted to override the value re-
turned forx.__class__).

The major motivation for introducing new-style classes is to provide a unified object model with a full meta-model. It
also has a number of practical benefits, like the ability to subclass most built-in types, or the introduction of “descrip-
tors”, which enable computed properties.

For compatibility reasons, classes are still old-style by default. New-style classes are created by specifying another
new-style class (i.e. a type) as a parent class, or the “top-level type”object if no other parent is needed. The
behaviour of new-style classes differs from that of old-style classes in a number of important details in addition to
whattype() returns. Some of these changes are fundamental to the new object model, like the way special methods
are invoked. Others are “fixes” that could not be implemented before for compatibility concerns, like the method
resolution order in case of multiple inheritance.

While this manual aims to provide comprehensive coverage of Python’s class mechanics, it may still be lacking in
some areas when it comes to its coverage of new-style classes. Please seehttp://www.python.org/doc/newstyle/for
sources of additional information. Old-style classes are removed in Python 3.0, leaving only the semantics of new-
style classes.

3.3. New-style and classic classes 23

http://www.python.org/doc/newstyle/

The Python Language Reference, Release 2.6.2

3.4 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or subscript-
ing and slicing) by defining methods with special names. This is Python’s approach tooperator overloading, allowing
classes to define their own behavior with respect to language operators. For instance, if a class defines a method named
__getitem__() , andx is an instance of this class, thenx[i] is roughly equivalent tox.__getitem__(i) for
old-style classes andtype(x).__getitem__(x, i) for new-style classes. Except where mentioned, attempts
to execute an operation raise an exception when no appropriate method is defined (typicallyAttributeError or
TypeError).

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented
to the degree that it makes sense for the object being modelled. For example, some sequences may work well with
retrieval of individual elements, but extracting a slice may not make sense. (One example of this is theNodeList
interface in the W3C’s Document Object Model.)

3.4.1 Basic customization

__new__ (cls, [...])
Called to create a new instance of classcls. __new__() is a static method (special-cased so you need not

declare it as such) that takes the class of which an instance was requested as its first argument. The remaining
arguments are those passed to the object constructor expression (the call to the class). The return value of
__new__() should be the new object instance (usually an instance ofcls).

Typical implementations create a new instance of the class by invoking the superclass’s__new__() method
usingsuper(currentclass, cls).__new__(cls[, ...]) with appropriate arguments and then
modifying the newly-created instance as necessary before returning it.

If __new__() returns an instance ofcls, then the new instance’s__init__() method will be invoked like
__init__(self[, ...]) , whereself is the new instance and the remaining arguments are the same as
were passed to__new__() .

If __new__() does not return an instance ofcls, then the new instance’s__init__() method will not be
invoked.

__new__() is intended mainly to allow subclasses of immutable types (like int, str, or tuple) to customize
instance creation. It is also commonly overridden in custom metaclasses in order to customize class creation.

__init__ (self, [...])
Called when the instance is created. The arguments are those passed to the class constructor expres-

sion. If a base class has an__init__() method, the derived class’s__init__() method, if any,
must explicitly call it to ensure proper initialization of the base class part of the instance; for example:
BaseClass.__init__(self, [args...]) . As a special constraint on constructors, no value may be
returned; doing so will cause aTypeError to be raised at runtime.

__del__ (self)
Called when the instance is about to be destroyed. This is also called a destructor. If a base class has a

__del__() method, the derived class’s__del__() method, if any, must explicitly call it to ensure proper
deletion of the base class part of the instance. Note that it is possible (though not recommended!) for the
__del__() method to postpone destruction of the instance by creating a new reference to it. It may then be
called at a later time when this new reference is deleted. It is not guaranteed that__del__() methods are
called for objects that still exist when the interpreter exits.

Note: del x doesn’t directly callx.__del__() — the former decrements the reference count forx by
one, and the latter is only called whenx ‘s reference count reaches zero. Some common situations that may
prevent the reference count of an object from going to zero include: circular references between objects (e.g., a
doubly-linked list or a tree data structure with parent and child pointers); a reference to the object on the stack

24 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

frame of a function that caught an exception (the traceback stored insys.exc_traceback keeps the stack
frame alive); or a reference to the object on the stack frame that raised an unhandled exception in interactive
mode (the traceback stored insys.last_traceback keeps the stack frame alive). The first situation can
only be remedied by explicitly breaking the cycles; the latter two situations can be resolved by storingNone
in sys.exc_traceback or sys.last_traceback . Circular references which are garbage are detected
when the option cycle detector is enabled (it’s on by default), but can only be cleaned up if there are no Python-
level __del__() methods involved. Refer to the documentation for thegc module for more information
about how__del__() methods are handled by the cycle detector, particularly the description of thegarbage
value.

Warning: Due to the precarious circumstances under which__del__() methods are invoked, exceptions
that occur during their execution are ignored, and a warning is printed tosys.stderr instead. Also,
when__del__() is invoked in response to a module being deleted (e.g., when execution of the program
is done), other globals referenced by the__del__() method may already have been deleted or in the
process of being torn down (e.g. the import machinery shutting down). For this reason,__del__()
methods should do the absolute minimum needed to maintain external invariants. Starting with version 1.5,
Python guarantees that globals whose name begins with a single underscore are deleted from their module
before other globals are deleted; if no other references to such globals exist, this may help in assuring that
imported modules are still available at the time when the__del__() method is called.

__repr__ (self)
Called by therepr() built-in function and by string conversions (reverse quotes) to compute the “official”

string representation of an object. If at all possible, this should look like a valid Python expression that could
be used to recreate an object with the same value (given an appropriate environment). If this is not possible, a
string of the form<...some useful description...> should be returned. The return value must be
a string object. If a class defines__repr__() but not__str__() , then__repr__() is also used when an
“informal” string representation of instances of that class is required. This is typically used for debugging, so
it is important that the representation is information-rich and unambiguous.

__str__ (self)
Called by thestr() built-in function and by theprint statement to compute the “informal” string represen-
tation of an object. This differs from__repr__() in that it does not have to be a valid Python expression: a
more convenient or concise representation may be used instead. The return value must be a string object.

__lt__ (self, other)
__le__ (self, other)
__eq__ (self, other)
__ne__ (self, other)
__gt__ (self, other)
__ge__ (self, other)

New in version 2.1. These are the so-called “rich comparison” methods, and are called for comparison operators
in preference to__cmp__() below. The correspondence between operator symbols and method names is
as follows: x<y calls x.__lt__(y) , x<=y calls x.__le__(y) , x==y calls x.__eq__(y) , x!=y and
x<>y call x.__ne__(y) , x>y callsx.__gt__(y) , andx>=y callsx.__ge__(y) .

A rich comparison method may return the singletonNotImplemented if it does not implement the operation
for a given pair of arguments. By convention,False andTrue are returned for a successful comparison.
However, these methods can return any value, so if the comparison operator is used in a Boolean context (e.g.,
in the condition of anif statement), Python will callbool() on the value to determine if the result is true or
false.

There are no implied relationships among the comparison operators. The truth ofx==y does not imply that
x!=y is false. Accordingly, when defining__eq__() , one should also define__ne__() so that the operators
will behave as expected. See the paragraph on__hash__() for some important notes on creatinghashable
objects which support custom comparison operations and are usable as dictionary keys.

There are no swapped-argument versions of these methods (to be used when the left argument does not sup-

3.4. Special method names 25

The Python Language Reference, Release 2.6.2

port the operation but the right argument does); rather,__lt__() and__gt__() are each other’s reflection,
__le__() and__ge__() are each other’s reflection, and__eq__() and__ne__() are their own reflec-
tion.

Arguments to rich comparison methods are never coerced.

__cmp__(self, other)
Called by comparison operations if rich comparison (see above) is not defined. Should return a negative integer
if self < other , zero if self == other , a positive integer ifself > other . If no __cmp__() ,
__eq__() or __ne__() operation is defined, class instances are compared by object identity (“address”).
See also the description of__hash__() for some important notes on creatinghashableobjects which support
custom comparison operations and are usable as dictionary keys. (Note: the restriction that exceptions are not
propagated by__cmp__() has been removed since Python 1.5.)

__rcmp__ (self, other)
Changed in version 2.1: No longer supported.

__hash__ (self)
Called by built-in functionhash() and for operations on members of hashed collections includingset ,

frozenset , anddict . __hash__() should return an integer. The only required property is that objects
which compare equal have the same hash value; it is advised to somehow mix together (e.g. using exclusive or)
the hash values for the components of the object that also play a part in comparison of objects.

If a class does not define a__cmp__() or __eq__() method it should not define a__hash__() operation
either; if it defines__cmp__() or __eq__() but not__hash__() , its instances will not be usable in hashed
collections. If a class defines mutable objects and implements a__cmp__() or __eq__() method, it should
not implement__hash__() , since hashable collection implementations require that a object’s hash value is
immutable (if the object’s hash value changes, it will be in the wrong hash bucket).

User-defined classes have__cmp__() and__hash__() methods by default; with them, all objects compare
unequal (except with themselves) andx.__hash__() returnsid(x) .

Classes which inherit a__hash__() method from a parent class but change the meaning of__cmp__() or
__eq__() such that the hash value returned is no longer appropriate (e.g. by switching to a value-based con-
cept of equality instead of the default identity based equality) can explicitly flag themselves as being unhashable
by setting__hash__ = None in the class definition. Doing so means that not only will instances of the class
raise an appropriateTypeError when a program attempts to retrieve their hash value, but they will also be
correctly identified as unhashable when checkingisinstance(obj, collections.Hashable) (un-
like classes which define their own__hash__() to explicitly raiseTypeError). Changed in version 2.5:
__hash__() may now also return a long integer object; the 32-bit integer is then derived from the hash of
that object.Changed in version 2.6:__hash__ may now be set toNone to explicitly flag instances of a class
as unhashable.

__nonzero__ (self)
Called to implement truth value testing and the built-in operationbool() ; should returnFalse or True , or
their integer equivalents0 or 1. When this method is not defined,__len__() is called, if it is defined, and the
object is considered true if its result is nonzero. If a class defines neither__len__() nor __nonzero__() ,
all its instances are considered true.

__unicode__ (self)
Called to implementunicode() builtin; should return a Unicode object. When this method is not defined,

string conversion is attempted, and the result of string conversion is converted to Unicode using the system
default encoding.

3.4.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or deletion
of x.name) for class instances.

26 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

__getattr__ (self, name)
Called when an attribute lookup has not found the attribute in the usual places (i.e. it is not an instance attribute
nor is it found in the class tree forself). name is the attribute name. This method should return the (computed)
attribute value or raise anAttributeError exception. Note that if the attribute is found through the normal
mechanism,__getattr__() is not called. (This is an intentional asymmetry between__getattr__()
and__setattr__() .) This is done both for efficiency reasons and because otherwise__getattr__()
would have no way to access other attributes of the instance. Note that at least for instance variables, you can
fake total control by not inserting any values in the instance attribute dictionary (but instead inserting them in
another object). See the__getattribute__() method below for a way to actually get total control in
new-style classes.

__setattr__ (self, name, value)
Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store
the value in the instance dictionary).name is the attribute name,value is the value to be assigned to it.
If __setattr__() wants to assign to an instance attribute, it should not simply executeself.name
= value — this would cause a recursive call to itself. Instead, it should insert the value in the dictio-
nary of instance attributes, e.g.,self.__dict__[name] = value . For new-style classes, rather than
accessing the instance dictionary, it should call the base class method with the same name, for example,
object.__setattr__(self, name, value) .

__delattr__ (self, name)
Like __setattr__() but for attribute deletion instead of assignment. This should only be implemented if
del obj.name is meaningful for the object.

More attribute access for new-style classes

The following methods only apply to new-style classes.

__getattribute__ (self, name)
Called unconditionally to implement attribute accesses for instances of the class. If the class also de-
fines__getattr__() , the latter will not be called unless__getattribute__() either calls it explic-
itly or raises anAttributeError . This method should return the (computed) attribute value or raise
an AttributeError exception. In order to avoid infinite recursion in this method, its implementation
should always call the base class method with the same name to access any attributes it needs, for example,
object.__getattribute__(self, name) .

Note: This method may still be bypassed when looking up special methods as the result of implicit invocation
via language syntax or builtin functions. SeeSpecial method lookup for new-style classes.

Implementing Descriptors

The following methods only apply when an instance of the class containing the method (a so-calleddescriptorclass)
appears in the class dictionary of another new-style class, known as theowner class. In the examples below, “the
attribute” refers to the attribute whose name is the key of the property in the owner class’__dict__ . Descriptors
can only be implemented as new-style classes themselves.

__get__ (self, instance, owner)
Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance
attribute access).owneris always the owner class, whileinstanceis the instance that the attribute was accessed
through, orNone when the attribute is accessed through theowner. This method should return the (computed)
attribute value or raise anAttributeError exception.

__set__ (self, instance, value)
Called to set the attribute on an instanceinstanceof the owner class to a new value,value.

3.4. Special method names 27

The Python Language Reference, Release 2.6.2

__delete__ (self, instance)
Called to delete the attribute on an instanceinstanceof the owner class.

Invoking Descriptors

In general, a descriptor is an object attribute with “binding behavior”, one whose attribute access has been overridden
by methods in the descriptor protocol:__get__() , __set__() , and__delete__() . If any of those methods
are defined for an object, it is said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance,
a.x has a lookup chain starting witha.__dict__[’x’] , then type(a).__dict__[’x’] , and continuing
through the base classes oftype(a) excluding metaclasses.

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on
which descriptor methods were defined and how they were called. Note that descriptors are only invoked for new style
objects or classes (ones that subclassobject() or type()).

The starting point for descriptor invocation is a binding,a.x . How the arguments are assembled depends ona:

Direct Call The simplest and least common call is when user code directly invokes a descriptor method:
x.__get__(a) .

Instance Binding If binding to a new-style object instance,a.x is transformed into the call:
type(a).__dict__[’x’].__get__(a, type(a)) .

Class Binding If binding to a new-style class, A.x is transformed into the call:
A.__dict__[’x’].__get__(None, A) .

Super Binding If a is an instance of super , then the binding super(B, obj).m() searches
obj.__class__.__mro__ for the base classA immediately precedingB and then invokes the de-
scriptor with the call:A.__dict__[’m’].__get__(obj, A) .

For instance bindings, the precedence of descriptor invocation depends on the which descriptor methods are de-
fined. Normally, data descriptors define both__get__() and__set__() , while non-data descriptors have just
the__get__() method. Data descriptors always override a redefinition in an instance dictionary. In contrast, non-
data descriptors can be overridden by instances.2

Python methods (includingstaticmethod() andclassmethod()) are implemented as non-data descriptors.
Accordingly, instances can redefine and override methods. This allows individual instances to acquire behaviors that
differ from other instances of the same class.

Theproperty() function is implemented as a data descriptor. Accordingly, instances cannot override the behavior
of a property.

__slots__

By default, instances of both old and new-style classes have a dictionary for attribute storage. This wastes space for
objects having very few instance variables. The space consumption can become acute when creating large numbers of
instances.

The default can be overridden by defining__slots__in a new-style class definition. The__slots__declaration takes a
sequence of instance variables and reserves just enough space in each instance to hold a value for each variable. Space
is saved because__dict__is not created for each instance.

2 A descriptor can define any combination of__get__() , __set__() and __delete__() . If it does not define__get__() , then
accessing the attribute even on an instance will return the descriptor object itself. If the descriptor defines__set__() and/or__delete__() ,
it is a data descriptor; if it defines neither, it is a non-data descriptor.

28 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

__slots__
This class variable can be assigned a string, iterable, or sequence of strings with variable names used by in-
stances. If defined in a new-style class,__slots__reserves space for the declared variables and prevents the
automatic creation of__dict__and__weakref__for each instance. New in version 2.2.

Notes on using__slots__

• When inheriting from a class without__slots__, the__dict__attribute of that class will always be accessible, so
a__slots__definition in the subclass is meaningless.

• Without a__dict__variable, instances cannot be assigned new variables not listed in the__slots__definition.
Attempts to assign to an unlisted variable name raisesAttributeError . If dynamic assignment of new
variables is desired, then add’__dict__’ to the sequence of strings in the__slots__declaration. Changed in
version 2.3: Previously, adding’__dict__’ to the__slots__declaration would not enable the assignment of
new attributes not specifically listed in the sequence of instance variable names.

• Without a__weakref__variable for each instance, classes defining__slots__do not support weak references
to its instances. If weak reference support is needed, then add’__weakref__’ to the sequence of strings
in the __slots__declaration. Changed in version 2.3: Previously, adding’__weakref__’ to the__slots__
declaration would not enable support for weak references.

• __slots__are implemented at the class level by creating descriptors (Implementing Descriptors) for each variable
name. As a result, class attributes cannot be used to set default values for instance variables defined by__slots__;
otherwise, the class attribute would overwrite the descriptor assignment.

• If a class defines a slot also defined in a base class, the instance variable defined by the base class slot is
inaccessible (except by retrieving its descriptor directly from the base class). This renders the meaning of the
program undefined. In the future, a check may be added to prevent this.

• The action of a__slots__declaration is limited to the class where it is defined. As a result, subclasses will have
a__dict__unless they also define__slots__.

• Nonempty__slots__does not work for classes derived from “variable-length” built-in types such aslong , str
andtuple .

• Any non-string iterable may be assigned to__slots__. Mappings may also be used; however, in the future,
special meaning may be assigned to the values corresponding to each key.

• __class__assignment works only if both classes have the same__slots__. Changed in version 2.6: Previously,
__class__assignment raised an error if either new or old class had__slots__.

3.4.3 Customizing class creation

By default, new-style classes are constructed usingtype() . A class definition is read into a separate namespace and
the value of class name is bound to the result oftype(name, bases, dict) .

When the class definition is read, if__metaclass__is defined then the callable assigned to it will be called instead of
type() . This allows classes or functions to be written which monitor or alter the class creation process:

• Modifying the class dictionary prior to the class being created.

• Returning an instance of another class – essentially performing the role of a factory function.

These steps will have to be performed in the metaclass’s__new__() method –type.__new__() can then be
called from this method to create a class with different properties. This example adds a new element to the class
dictionary before creating the class:

class metacls (type):
def __new__ (mcs, name, bases, dict):

dict [’ foo ’] = ’ metacls was here ’
return type . __new__(mcs, name, bases, dict)

3.4. Special method names 29

The Python Language Reference, Release 2.6.2

You can of course also override other class methods (or add new methods); for example defining a custom
__call__() method in the metaclass allows custom behavior when the class is called, e.g. not always creating
a new instance.

__metaclass__
This variable can be any callable accepting arguments forname, bases , anddict . Upon class creation, the
callable is used instead of the built-intype() . New in version 2.2.

The appropriate metaclass is determined by the following precedence rules:

• If dict[’__metaclass__’] exists, it is used.

• Otherwise, if there is at least one base class, its metaclass is used (this looks for a__class__attribute first and if
not found, uses its type).

• Otherwise, if a global variable named __metaclass__ exists, it is used.

• Otherwise, the old-style, classic metaclass (types.ClassType) is used.

The potential uses for metaclasses are boundless. Some ideas that have been explored including logging, interface
checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource lock-
ing/synchronization.

3.4.4 Emulating callable objects

__call__ (self, [args...])
Called when the instance is “called” as a function; if this method is defined,x(arg1, arg2, ...) is a

shorthand forx.__call__(arg1, arg2, ...) .

3.4.5 Emulating container types

The following methods can be defined to implement container objects. Containers usually are sequences (such as
lists or tuples) or mappings (like dictionaries), but can represent other containers as well. The first set of methods
is used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence, the allowable
keys should be the integersk for which 0 <= k < N whereN is the length of the sequence, or slice objects, which
define a range of items. (For backwards compatibility, the method__getslice__() (see below) can also be de-
fined to handle simple, but not extended slices.) It is also recommended that mappings provide the methodskeys() ,
values() , items() , has_key() , get() , clear() , setdefault() , iterkeys() , itervalues() ,
iteritems() , pop() , popitem() , copy() , andupdate() behaving similar to those for Python’s standard
dictionary objects. TheUserDict module provides aDictMixin class to help create those methods from a base
set of__getitem__() , __setitem__() , __delitem__() , andkeys() . Mutable sequences should pro-
vide methodsappend() , count() , index() , extend() , insert() , pop() , remove() , reverse() and
sort() , like Python standard list objects. Finally, sequence types should implement addition (meaning concatena-
tion) and multiplication (meaning repetition) by defining the methods__add__() , __radd__() , __iadd__() ,
__mul__() , __rmul__() and__imul__() described below; they should not define__coerce__() or other
numerical operators. It is recommended that both mappings and sequences implement the__contains__()
method to allow efficient use of thein operator; for mappings,in should be equivalent ofhas_key() ; for se-
quences, it should search through the values. It is further recommended that both mappings and sequences implement
the__iter__() method to allow efficient iteration through the container; for mappings,__iter__() should be
the same asiterkeys() ; for sequences, it should iterate through the values.

__len__ (self)
Called to implement the built-in functionlen() . Should return the length of the object, an integer>= 0.

Also, an object that doesn’t define a__nonzero__() method and whose__len__() method returns zero
is considered to be false in a Boolean context.

30 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

__getitem__ (self, key)
Called to implement evaluation ofself[key] . For sequence types, the accepted keys should be integers and
slice objects. Note that the special interpretation of negative indexes (if the class wishes to emulate a sequence
type) is up to the__getitem__() method. Ifkey is of an inappropriate type,TypeError may be raised;
if of a value outside the set of indexes for the sequence (after any special interpretation of negative values),
IndexError should be raised. For mapping types, ifkeyis missing (not in the container),KeyError should
be raised.

Note: for loops expect that anIndexError will be raised for illegal indexes to allow proper detection of
the end of the sequence.

__setitem__ (self, key, value)
Called to implement assignment toself[key] . Same note as for__getitem__() . This should only be
implemented for mappings if the objects support changes to the values for keys, or if new keys can be added, or
for sequences if elements can be replaced. The same exceptions should be raised for improperkeyvalues as for
the__getitem__() method.

__delitem__ (self, key)
Called to implement deletion ofself[key] . Same note as for__getitem__() . This should only be
implemented for mappings if the objects support removal of keys, or for sequences if elements can be removed
from the sequence. The same exceptions should be raised for improperkeyvalues as for the__getitem__()
method.

__iter__ (self)
This method is called when an iterator is required for a container. This method should return a new iterator
object that can iterate over all the objects in the container. For mappings, it should iterate over the keys of the
container, and should also be made available as the methoditerkeys() .

Iterator objects also need to implement this method; they are required to return themselves. For more information
on iterator objects, seeIterator Types(in The Python Library Reference).

__reversed__ (self)
Called (if present) by thereversed() builtin to implement reverse iteration. It should return a new iterator
object that iterates over all the objects in the container in reverse order.

If the __reversed__() method is not provided, thereversed() builtin will fall back to using the se-
quence protocol (__len__() and __getitem__()). Objects that support the sequence protocol should
only provide__reversed__() if they can provide an implementation that is more efficient than the one
provided byreversed() . New in version 2.6.

The membership test operators (in and not in) are normally implemented as an iteration through a sequence.
However, container objects can supply the following special method with a more efficient implementation, which also
does not require the object be a sequence.

__contains__ (self, item)
Called to implement membership test operators. Should return true ifitem is in self, false otherwise. For
mapping objects, this should consider the keys of the mapping rather than the values or the key-item pairs.

3.4.6 Additional methods for emulation of sequence types

The following optional methods can be defined to further emulate sequence objects. Immutable sequences methods
should at most only define__getslice__() ; mutable sequences might define all three methods.

__getslice__ (self, i, j)
Deprecated since version 2.0: Support slice objects as parameters to the__getitem__() method. (However,
built-in types in CPython currently still implement__getslice__() . Therefore, you have to override it in
derived classes when implementing slicing.) Called to implement evaluation ofself[i:j] . The returned
object should be of the same type asself. Note that missingi or j in the slice expression are replaced by zero

3.4. Special method names 31

The Python Language Reference, Release 2.6.2

or sys.maxint , respectively. If negative indexes are used in the slice, the length of the sequence is added
to that index. If the instance does not implement the__len__() method, anAttributeError is raised.
No guarantee is made that indexes adjusted this way are not still negative. Indexes which are greater than the
length of the sequence are not modified. If no__getslice__() is found, a slice object is created instead,
and passed to__getitem__() instead.

__setslice__ (self, i, j, sequence)
Called to implement assignment toself[i:j] . Same notes fori andj as for__getslice__() .

This method is deprecated. If no__setslice__() is found, or for extended slicing of the form
self[i:j:k] , a slice object is created, and passed to__setitem__() , instead of__setslice__()
being called.

__delslice__ (self, i, j)
Called to implement deletion ofself[i:j] . Same notes fori andj as for__getslice__() . This method
is deprecated. If no__delslice__() is found, or for extended slicing of the formself[i:j:k] , a slice
object is created, and passed to__delitem__() , instead of__delslice__() being called.

Notice that these methods are only invoked when a single slice with a single colon is used, and the slice method is avail-
able. For slice operations involving extended slice notation, or in absence of the slice methods,__getitem__() ,
__setitem__() or __delitem__() is called with a slice object as argument.

The following example demonstrate how to make your program or module compatible with earlier versions of Python
(assuming that methods__getitem__() , __setitem__() and__delitem__() support slice objects as ar-
guments):

class MyClass :
. . .
def __getitem__ (self , index):

. . .
def __setitem__ (self , index, value):

. . .
def __delitem__ (self , index):

. . .

if sys . version_info < (2, 0):
They won’t be defined if version is at least 2.0 final

def __getslice__ (self , i, j):
return self [max(0, i): max(0, j):]

def __setslice__ (self , i, j, seq):
self [max(0, i): max(0, j):] = seq

def __delslice__ (self , i, j):
del self [max(0, i): max(0, j):]

. . .

Note the calls tomax() ; these are necessary because of the handling of negative indices before the__*slice__()
methods are called. When negative indexes are used, the__*item__() methods receive them as provided, but the
__*slice__() methods get a “cooked” form of the index values. For each negative index value, the length of
the sequence is added to the index before calling the method (which may still result in a negative index); this is the
customary handling of negative indexes by the built-in sequence types, and the__*item__() methods are expected
to do this as well. However, since they should already be doing that, negative indexes cannot be passed in; they must
be constrained to the bounds of the sequence before being passed to the__*item__() methods. Callingmax(0,
i) conveniently returns the proper value.

32 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

3.4.7 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations that are not
supported by the particular kind of number implemented (e.g., bitwise operations for non-integral numbers) should be
left undefined.

__add__ (self, other)
__sub__ (self, other)
__mul__ (self, other)
__floordiv__ (self, other)
__mod__(self, other)
__divmod__ (self, other)
__pow__ (self, other, [modulo])
__lshift__ (self, other)
__rshift__ (self, other)
__and__ (self, other)
__xor__ (self, other)
__or__ (self, other)

These methods are called to implement the binary arithmetic operations (+, - , * , // , %, divmod() , pow() ,
** , <<, >>, &, ^ , |). For instance, to evaluate the expressionx + y , wherex is an instance of a class that has
an__add__() method,x.__add__(y) is called. The__divmod__() method should be the equivalent to
using__floordiv__() and__mod__() ; it should not be related to__truediv__() (described below).
Note that__pow__() should be defined to accept an optional third argument if the ternary version of the
built-in pow() function is to be supported.

If one of those methods does not support the operation with the supplied arguments, it should return
NotImplemented .

__div__ (self, other)
__truediv__ (self, other)

The division operator (/) is implemented by these methods. The__truediv__() method is used when
__future__.division is in effect, otherwise__div__() is used. If only one of these two methods is
defined, the object will not support division in the alternate context;TypeError will be raised instead.

__radd__ (self, other)
__rsub__ (self, other)
__rmul__ (self, other)
__rdiv__ (self, other)
__rtruediv__ (self, other)
__rfloordiv__ (self, other)
__rmod__ (self, other)
__rdivmod__ (self, other)
__rpow__ (self, other)
__rlshift__ (self, other)
__rrshift__ (self, other)
__rand__ (self, other)
__rxor__ (self, other)
__ror__ (self, other)

These methods are called to implement the binary arithmetic operations (+, - , * , / , %, divmod() , pow() ,
** , <<, >>, &, ^ , |) with reflected (swapped) operands. These functions are only called if the left operand
does not support the corresponding operation and the operands are of different types.3 For instance,
to evaluate the expressionx - y , where y is an instance of a class that has an__rsub__() method,
y.__rsub__(x) is called if x.__sub__(y) returnsNotImplemented. Note that ternarypow() will
not try calling__rpow__() (the coercion rules would become too complicated).

3 For operands of the same type, it is assumed that if the non-reflected method (such as__add__()) fails the operation is not supported, which
is why the reflected method is not called.

3.4. Special method names 33

The Python Language Reference, Release 2.6.2

Note: If the right operand’s type is a subclass of the left operand’s type and that subclass provides the re-
flected method for the operation, this method will be called before the left operand’s non-reflected method. This
behavior allows subclasses to override their ancestors’ operations.

__iadd__ (self, other)
__isub__ (self, other)
__imul__ (self, other)
__idiv__ (self, other)
__itruediv__ (self, other)
__ifloordiv__ (self, other)
__imod__ (self, other)
__ipow__ (self, other, [modulo])
__ilshift__ (self, other)
__irshift__ (self, other)
__iand__ (self, other)
__ixor__ (self, other)
__ior__ (self, other)

These methods are called to implement the augmented arithmetic assignments (+=, -= , *= , /= , //= , %=, **= ,
<<=, >>=, &=, ^= , |=). These methods should attempt to do the operation in-place (modifyingself) and return
the result (which could be, but does not have to be,self). If a specific method is not defined, the augmented
assignment falls back to the normal methods. For instance, to execute the statementx += y , wherex is an
instance of a class that has an__iadd__() method,x.__iadd__(y) is called. Ifx is an instance of a class
that does not define a__iadd__() method,x.__add__(y) andy.__radd__(x) are considered, as with
the evaluation ofx + y .

__neg__ (self)
__pos__ (self)
__abs__ (self)
__invert__ (self)

Called to implement the unary arithmetic operations (- , +, abs() and~).

__complex__ (self)
__int__ (self)
__long__ (self)
__float__ (self)

Called to implement the built-in functionscomplex() , int() , long() , andfloat() . Should return a
value of the appropriate type.

__oct__ (self)
__hex__ (self)

Called to implement the built-in functionsoct() andhex() . Should return a string value.

__index__ (self)
Called to implementoperator.index() . Also called whenever Python needs an integer object (such as in
slicing). Must return an integer (int or long). New in version 2.5.

__coerce__ (self, other)
Called to implement “mixed-mode” numeric arithmetic. Should either return a 2-tuple containingself andother
converted to a common numeric type, orNone if conversion is impossible. When the common type would be
the type ofother , it is sufficient to returnNone, since the interpreter will also ask the other object to attempt
a coercion (but sometimes, if the implementation of the other type cannot be changed, it is useful to do the
conversion to the other type here). A return value ofNotImplemented is equivalent to returningNone.

34 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

3.4.8 Coercion rules

This section used to document the rules for coercion. As the language has evolved, the coercion rules have become
hard to document precisely; documenting what one version of one particular implementation does is undesirable.
Instead, here are some informal guidelines regarding coercion. In Python 3.0, coercion will not be supported.

• If the left operand of a % operator is a string or Unicode object, no coercion takes place and the string formatting
operation is invoked instead.

• It is no longer recommended to define a coercion operation. Mixed-mode operations on types that don’t define
coercion pass the original arguments to the operation.

• New-style classes (those derived fromobject) never invoke the__coerce__() method in response to a
binary operator; the only time__coerce__() is invoked is when the built-in functioncoerce() is called.

• For most intents and purposes, an operator that returnsNotImplemented is treated the same as one that is
not implemented at all.

• Below, __op__() and__rop__() are used to signify the generic method names corresponding to an op-
erator; __iop__() is used for the corresponding in-place operator. For example, for the operator ‘+‘,
__add__() and__radd__() are used for the left and right variant of the binary operator, and__iadd__()
for the in-place variant.

• For objectsx andy, first x.__op__(y) is tried. If this is not implemented or returnsNotImplemented ,
y.__rop__(x) is tried. If this is also not implemented or returnsNotImplemented , a TypeError
exception is raised. But see the following exception:

• Exception to the previous item: if the left operand is an instance of a built-in type or a new-style class, and
the right operand is an instance of a proper subclass of that type or class and overrides the base’s__rop__()
method, the right operand’s__rop__() method is triedbeforethe left operand’s__op__() method.

This is done so that a subclass can completely override binary operators. Otherwise, the left operand’s
__op__() method would always accept the right operand: when an instance of a given class is expected,
an instance of a subclass of that class is always acceptable.

• When either operand type defines a coercion, this coercion is called before that type’s__op__() or
__rop__() method is called, but no sooner. If the coercion returns an object of a different type for the
operand whose coercion is invoked, part of the process is redone using the new object.

• When an in-place operator (like ‘+=‘) is used, if the left operand implements__iop__() , it is invoked without
any coercion. When the operation falls back to__op__() and/or__rop__() , the normal coercion rules
apply.

• In x + y , if x is a sequence that implements sequence concatenation, sequence concatenation is invoked.

• In x * y , if one operator is a sequence that implements sequence repetition, and the other is an integer (int
or long), sequence repetition is invoked.

• Rich comparisons (implemented by methods__eq__() and so on) never use coercion. Three-way comparison
(implemented by__cmp__()) does use coercion under the same conditions as other binary operations use it.

• In the current implementation, the built-in numeric typesint , long andfloat do not use coercion; the type
complex however does use coercion for binary operators and rich comparisons, despite the above rules. The
difference can become apparent when subclassing these types. Over time, the typecomplex may be fixed
to avoid coercion. All these types implement a__coerce__() method, for use by the built-incoerce()
function.

3.4. Special method names 35

The Python Language Reference, Release 2.6.2

3.4.9 With Statement Context Managers

New in version 2.5. Acontext manageris an object that defines the runtime context to be established when executing
a with statement. The context manager handles the entry into, and the exit from, the desired runtime context for
the execution of the block of code. Context managers are normally invoked using thewith statement (described in
sectionThe with statement), but can also be used by directly invoking their methods. Typical uses of context managers
include saving and restoring various kinds of global state, locking and unlocking resources, closing opened files, etc.

For more information on context managers, seeContext Manager Types(in The Python Library Reference).

__enter__ (self)
Enter the runtime context related to this object. Thewith statement will bind this method’s return value to the
target(s) specified in theas clause of the statement, if any.

__exit__ (self, exc_type, exc_value, traceback)
Exit the runtime context related to this object. The parameters describe the exception that caused the context to
be exited. If the context was exited without an exception, all three arguments will beNone.

If an exception is supplied, and the method wishes to suppress the exception (i.e., prevent it from being prop-
agated), it should return a true value. Otherwise, the exception will be processed normally upon exit from this
method.

Note that__exit__() methods should not reraise the passed-in exception; this is the caller’s responsibility.

See Also:

PEP 0343- The “with” statement The specification, background, and examples for the Pythonwith statement.

3.4.10 Special method lookup for old-style classes

For old-style classes, special methods are always looked up in exactly the same way as any other method or attribute.
This is the case regardless of whether the method is being looked up explicitly as inx.__getitem__(i) or im-
plicitly as inx[i] .

This behaviour means that special methods may exhibit different behaviour for different instances of a single old-style
class if the appropriate special attributes are set differently:

>>> class C:
... pass
...
>>> c1 = C()
>>> c2 = C()
>>> c1 . __len__ = lambda : 5
>>> c2 . __len__ = lambda : 9
>>> len (c1)
5
>>> len (c2)
9

3.4.11 Special method lookup for new-style classes

For new-style classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an
object’s type, not in the object’s instance dictionary. That behaviour is the reason why the following code raises an
exception (unlike the equivalent example with old-style classes):

>>> class C(object):
... pass

36 Chapter 3. Data model

http://www.python.org/dev/peps/pep-0343

The Python Language Reference, Release 2.6.2

...
>>> c = C()
>>> c. __len__ = lambda : 5
>>> len (c)
Traceback (most recent call last):

File "<stdin>" , line 1, in <module>
TypeError : object of type ’C’ has no len()

The rationale behind this behaviour lies with a number of special methods such as__hash__() and__repr__()
that are implemented by all objects, including type objects. If the implicit lookup of these methods used the conven-
tional lookup process, they would fail when invoked on the type object itself:

>>> 1 . __hash__() == hash (1)
True
>>> int . __hash__() == hash (int)
Traceback (most recent call last):

File "<stdin>" , line 1, in <module>
TypeError : descriptor ’__hash__’ of ’int’ object needs an argument

Incorrectly attempting to invoke an unbound method of a class in this way is sometimes referred to as ‘metaclass
confusion’, and is avoided by bypassing the instance when looking up special methods:

>>> type (1) . __hash__(1) == hash (1)
True
>>> type (int) . __hash__(int) == hash (int)
True

In addition to bypassing any instance attributes in the interest of correctness, implicit special method lookup generally
also bypasses the__getattribute__() method even of the object’s metaclass:

>>> class Meta (type):
... def __getattribute__ (* args):
... print " Metaclass getattribute invoked "
... return type . __getattribute__(* args)
...
>>> class C(object):
... __metaclass__ = Meta
... def __len__ (self):
... return 10
... def __getattribute__ (* args):
... print " Class getattribute invoked "
... return object . __getattribute__(* args)
...
>>> c = C()
>>> c. __len__() # Explicit lookup via instance
Class getattribute invoked
10
>>> type (c) . __len__(c) # Explicit lookup via type
Metaclass getattribute invoked
10
>>> len (c) # Implicit lookup
10

Bypassing the__getattribute__() machinery in this fashion provides significant scope for speed optimisations
within the interpreter, at the cost of some flexibility in the handling of special methods (the special methodmustbe set
on the class object itself in order to be consistently invoked by the interpreter).

3.4. Special method names 37

The Python Language Reference, Release 2.6.2

38 Chapter 3. Data model

CHAPTER

FOUR

EXECUTION MODEL

4.1 Naming and binding

Namesrefer to objects. Names are introduced by name binding operations. Each occurrence of a name in the program
text refers to thebinding of that name established in the innermost function block containing the use. Ablock is a
piece of Python program text that is executed as a unit. The following are blocks: a module, a function body, and
a class definition. Each command typed interactively is a block. A script file (a file given as standard input to the
interpreter or specified on the interpreter command line the first argument) is a code block. A script command (a
command specified on the interpreter command line with the ‘-c‘ option) is a code block. The file read by the built-in
functionexecfile() is a code block. The string argument passed to the built-in functioneval() and to theexec
statement is a code block. The expression read and evaluated by the built-in functioninput() is a code block. A
code block is executed in anexecution frame. A frame contains some administrative information (used for debugging)
and determines where and how execution continues after the code block’s execution has completed. Ascopedefines
the visibility of a name within a block. If a local variable is defined in a block, its scope includes that block. If
the definition occurs in a function block, the scope extends to any blocks contained within the defining one, unless a
contained block introduces a different binding for the name. The scope of names defined in a class block is limited to
the class block; it does not extend to the code blocks of methods – this includes generator expressions since they are
implemented using a function scope. This means that the following will fail:

class A:
a = 42
b = list (a + i for i in range (10))

When a name is used in a code block, it is resolved using the nearest enclosing scope. The set of all such scopes
visible to a code block is called the block’senvironment. If a name is bound in a block, it is a local variable of that
block. If a name is bound at the module level, it is a global variable. (The variables of the module code block are
local and global.) If a variable is used in a code block but not defined there, it is afree variable. When a name is
not found at all, aNameError exception is raised. If the name refers to a local variable that has not been bound, a
UnboundLocalError exception is raised.UnboundLocalError is a subclass ofNameError . The following
constructs bind names: formal parameters to functions,import statements, class and function definitions (these bind
the class or function name in the defining block), and targets that are identifiers if occurring in an assignment,for loop
header, in the second position of anexcept clause header or afteras in a with statement. Theimport statement
of the formfrom ... import * binds all names defined in the imported module, except those beginning with
an underscore. This form may only be used at the module level.

A target occurring in adel statement is also considered bound for this purpose (though the actual semantics are to
unbind the name). It is illegal to unbind a name that is referenced by an enclosing scope; the compiler will report a
SyntaxError .

Each assignment or import statement occurs within a block defined by a class or function definition or at the module
level (the top-level code block).

39

The Python Language Reference, Release 2.6.2

If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated as
references to the current block. This can lead to errors when a name is used within a block before it is bound. This rule
is subtle. Python lacks declarations and allows name binding operations to occur anywhere within a code block. The
local variables of a code block can be determined by scanning the entire text of the block for name binding operations.

If the global statement occurs within a block, all uses of the name specified in the statement refer to the binding
of that name in the top-level namespace. Names are resolved in the top-level namespace by searching the global
namespace, i.e. the namespace of the module containing the code block, and the builtin namespace, the namespace
of the module__builtin__ . The global namespace is searched first. If the name is not found there, the builtin
namespace is searched. The global statement must precede all uses of the name. The built-in namespace associated
with the execution of a code block is actually found by looking up the name__builtins__ in its global namespace;
this should be a dictionary or a module (in the latter case the module’s dictionary is used). By default, when in the
__main__ module,__builtins__ is the built-in module__builtin__ (note: no ‘s’); when in any other
module,__builtins__ is an alias for the dictionary of the__builtin__ module itself.__builtins__ can
be set to a user-created dictionary to create a weak form of restricted execution.

Note: Users should not touch__builtins__ ; it is strictly an implementation detail. Users wanting to override
values in the built-in namespace shouldimport the__builtin__ (no ‘s’) module and modify its attributes appro-
priately. The namespace for a module is automatically created the first time a module is imported. The main module
for a script is always called__main__ .

The global statement has the same scope as a name binding operation in the same block. If the nearest enclosing scope
for a free variable contains a global statement, the free variable is treated as a global.

A class definition is an executable statement that may use and define names. These references follow the normal
rules for name resolution. The namespace of the class definition becomes the attribute dictionary of the class. Names
defined at the class scope are not visible in methods.

4.1.1 Interaction with dynamic features

There are several cases where Python statements are illegal when used in conjunction with nested scopes that contain
free variables.

If a variable is referenced in an enclosing scope, it is illegal to delete the name. An error will be reported at compile
time.

If the wild card form of import —import * — is used in a function and the function contains or is a nested block
with free variables, the compiler will raise aSyntaxError .

If exec is used in a function and the function contains or is a nested block with free variables, the compiler will raise
aSyntaxError unless the exec explicitly specifies the local namespace for theexec . (In other words,exec obj
would be illegal, butexec obj in ns would be legal.)

Theeval() , execfile() , andinput() functions and theexec statement do not have access to the full envi-
ronment for resolving names. Names may be resolved in the local and global namespaces of the caller. Free variables
are not resolved in the nearest enclosing namespace, but in the global namespace.1 The exec statement and the
eval() andexecfile() functions have optional arguments to override the global and local namespace. If only
one namespace is specified, it is used for both.

4.2 Exceptions

Exceptions are a means of breaking out of the normal flow of control of a code block in order to handle errors or
other exceptional conditions. An exception israisedat the point where the error is detected; it may behandledby

1 This limitation occurs because the code that is executed by these operations is not available at the time the module is compiled.

40 Chapter 4. Execution model

The Python Language Reference, Release 2.6.2

the surrounding code block or by any code block that directly or indirectly invoked the code block where the error
occurred.

The Python interpreter raises an exception when it detects a run-time error (such as division by zero). A Python
program can also explicitly raise an exception with theraise statement. Exception handlers are specified with the
try ... except statement. Thefinally clause of such a statement can be used to specify cleanup code which does
not handle the exception, but is executed whether an exception occurred or not in the preceding code. Python uses
the “termination” model of error handling: an exception handler can find out what happened and continue execution
at an outer level, but it cannot repair the cause of the error and retry the failing operation (except by re-entering the
offending piece of code from the top). When an exception is not handled at all, the interpreter terminates execution
of the program, or returns to its interactive main loop. In either case, it prints a stack backtrace, except when the
exception isSystemExit .

Exceptions are identified by class instances. Theexcept clause is selected depending on the class of the instance: it
must reference the class of the instance or a base class thereof. The instance can be received by the handler and can
carry additional information about the exceptional condition.

Exceptions can also be identified by strings, in which case theexcept clause is selected by object identity. An
arbitrary value can be raised along with the identifying string which can be passed to the handler.

Note: Messages to exceptions are not part of the Python API. Their contents may change from one version of
Python to the next without warning and should not be relied on by code which will run under multiple versions of the
interpreter.

See also the description of thetry statement in sectionThe try statementandraise statement in sectionThe raise
statement.

4.2. Exceptions 41

The Python Language Reference, Release 2.6.2

42 Chapter 4. Execution model

CHAPTER

FIVE

EXPRESSIONS

This chapter explains the meaning of the elements of expressions in Python.Syntax Notes:In this and the following
chapters, extended BNF notation will be used to describe syntax, not lexical analysis. When (one alternative of) a
syntax rule has the form

name ::= othername

and no semantics are given, the semantics of this form ofname are the same as forothername .

5.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase “the numeric arguments are converted to a common
type,” the arguments are coerced using the coercion rules listed atCoercion rules. If both arguments are standard
numeric types, the following coercions are applied:

• If either argument is a complex number, the other is converted to complex;

• otherwise, if either argument is a floating point number, the other is converted to floating point;

• otherwise, if either argument is a long integer, the other is converted to long integer;

• otherwise, both must be plain integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string left argument to the ‘%’ operator). Extensions can
define their own coercions.

5.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in
reverse quotes or in parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms
is:

atom ::= identifier | literal | enclosure
enclosure ::= parenth_form | list_display

| generator_expression | dict_display
| string_conversion | yield_atom

5.2.1 Identifiers (Names)

An identifier occurring as an atom is a name. See sectionIdentifiers and keywordsfor lexical definition and section
Naming and bindingfor documentation of naming and binding. When the name is bound to an object, evaluation

43

The Python Language Reference, Release 2.6.2

of the atom yields that object. When a name is not bound, an attempt to evaluate it raises aNameError exception.
Private name mangling: When an identifier that textually occurs in a class definition begins with two or more

underscore characters and does not end in two or more underscores, it is considered aprivate nameof that class.
Private names are transformed to a longer form before code is generated for them. The transformation inserts the class
name in front of the name, with leading underscores removed, and a single underscore inserted in front of the class
name. For example, the identifier__spam occurring in a class namedHamwill be transformed to_Ham__spam.
This transformation is independent of the syntactical context in which the identifier is used. If the transformed name
is extremely long (longer than 255 characters), implementation defined truncation may happen. If the class name
consists only of underscores, no transformation is done.

5.2.2 Literals

Python supports string literals and various numeric literals:

literal ::= stringliteral | integer | longinteger
| floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, integer, long integer, floating point number, complex
number) with the given value. The value may be approximated in the case of floating point and imaginary (complex)
literals. See sectionLiterals for details. All literals correspond to immutable data types, and hence the object’s identity
is less important than its value. Multiple evaluations of literals with the same value (either the same occurrence in the
program text or a different occurrence) may obtain the same object or a different object with the same value.

5.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth_form ::= “(” [expression_list] “)”

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma,
it yields a tuple; otherwise, it yields the single expression that makes up the expression list. An empty pair of
parentheses yields an empty tuple object. Since tuples are immutable, the rules for literals apply (i.e., two occurrences
of the empty tuple may or may not yield the same object). Note that tuples are not formed by the parentheses, but
rather by use of the comma operator. The exception is the empty tuple, for which parenthesesare required — allowing
unparenthesized “nothing” in expressions would cause ambiguities and allow common typos to pass uncaught.

5.2.4 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

list_display ::= “[” [expression_list | list_comprehension] “]”
list_comprehension ::= expression list_for
list_for ::= “for” target_list “in” old_expression_list [list_iter]
old_expression_list ::= old_expression [(“,” old_expression)+ [”,”]]
list_iter ::= list_for | list_if
list_if ::= “if” old_expression [list_iter]

A list display yields a new list object. Its contents are specified by providing either a list of expressions or a list
comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right
and placed into the list object in that order. When a list comprehension is supplied, it consists of a single expression
followed by at least onefor clause and zero or morefor or if clauses. In this case, the elements of the new list
are those that would be produced by considering each of thefor or if clauses a block, nesting from left to right, and
evaluating the expression to produce a list element each time the innermost block is reached1.

1 In Python 2.3 and later releases, a list comprehension “leaks” the control variables of eachfor it contains into the containing scope. However,

44 Chapter 5. Expressions

The Python Language Reference, Release 2.6.2

5.2.5 Generator expressions

A generator expression is a compact generator notation in parentheses:

generator_expression ::= “(” expression genexpr_for “)”
genexpr_for ::= “for” target_list “in” or_test [genexpr_iter]
genexpr_iter ::= genexpr_for | genexpr_if
genexpr_if ::= “if” old_expression [genexpr_iter]

A generator expression yields a new generator object. It consists of a single expression followed by at least onefor
clause and zero or morefor or if clauses. The iterating values of the new generator are those that would be produced
by considering each of thefor or if clauses a block, nesting from left to right, and evaluating the expression to yield
a value that is reached the innermost block for each iteration.

Variables used in the generator expression are evaluated lazily in a separate scope when thenext() method is called
for the generator object (in the same fashion as for normal generators). However, thein expression of the leftmost
for clause is immediately evaluated in the current scope so that an error produced by it can be seen before any other
possible error in the code that handles the generator expression. Subsequentfor andif clauses cannot be evaluated
immediately since they may depend on the previousfor loop. For example:(x*y for x in range(10) for
y in bar(x)) .

The parentheses can be omitted on calls with only one argument. See sectionCalls for the detail.

5.2.6 Dictionary displays

A dictionary display is a possibly empty series of key/datum pairs enclosed in curly braces:

dict_display ::= “{” [key_datum_list] “}”
key_datum_list ::= key_datum (“,” key_datum)* [”,”]
key_datum ::= expression “:” expression

A dictionary display yields a new dictionary object.

The key/datum pairs are evaluated from left to right to define the entries of the dictionary: each key object is used as a
key into the dictionary to store the corresponding datum. Restrictions on the types of the key values are listed earlier
in sectionThe standard type hierarchy. (To summarize, the key type should behashable, which excludes all mutable
objects.) Clashes between duplicate keys are not detected; the last datum (textually rightmost in the display) stored
for a given key value prevails.

5.2.7 String conversions

A string conversion is an expression list enclosed in reverse (a.k.a. backward) quotes:

string_conversion ::= “”’ expression_list “”’

A string conversion evaluates the contained expression list and converts the resulting object into a string according to
rules specific to its type.

If the object is a string, a number,None, or a tuple, list or dictionary containing only objects whose type is one of
these, the resulting string is a valid Python expression which can be passed to the built-in functioneval() to yield
an expression with the same value (or an approximation, if floating point numbers are involved).

(In particular, converting a string adds quotes around it and converts “funny” characters to escape sequences that are
safe to print.) Recursive objects (for example, lists or dictionaries that contain a reference to themselves, directly or
indirectly) use... to indicate a recursive reference, and the result cannot be passed toeval() to get an equal value
(SyntaxError will be raised instead). The built-in functionrepr() performs exactly the same conversion in its

this behavior is deprecated, and relying on it will not work in Python 3.0

5.2. Atoms 45

The Python Language Reference, Release 2.6.2

argument as enclosing it in parentheses and reverse quotes does. The built-in functionstr() performs a similar but
more user-friendly conversion.

5.2.8 Yield expressions

yield_atom ::= “(” yield_expression “)”
yield_expression ::= “yield” [expression_list]

New in version 2.5. Theyield expression is only used when defining a generator function, and can only be used
in the body of a function definition. Using ayield expression in a function definition is sufficient to cause that
definition to create a generator function instead of a normal function.

When a generator function is called, it returns an iterator known as a generator. That generator then controls the execu-
tion of a generator function. The execution starts when one of the generator’s methods is called. At that time, the execu-
tion proceeds to the firstyield expression, where it is suspended again, returning the value ofexpression_list
to generator’s caller. By suspended we mean that all local state is retained, including the current bindings of local
variables, the instruction pointer, and the internal evaluation stack. When the execution is resumed by calling one of
the generator’s methods, the function can proceed exactly as if theyield expression was just another external call.
The value of theyield expression after resuming depends on the method which resumed the execution. All of this
makes generator functions quite similar to coroutines; they yield multiple times, they have more than one entry point
and their execution can be suspended. The only difference is that a generator function cannot control where should the
execution continue after it yields; the control is always transfered to the generator’s caller. The following generator’s
methods can be used to control the execution of a generator function:

next ()
Starts the execution of a generator function or resumes it at the last executedyield expression. When a
generator function is resumed with anext() method, the currentyield expression always evaluates toNone.
The execution then continues to the nextyield expression, where the generator is suspended again, and the
value of theexpression_list is returned tonext() ‘s caller. If the generator exits without yielding
another value, aStopIteration exception is raised.

send (value)
Resumes the execution and “sends” a value into the generator function. Thevalue argument becomes the
result of the currentyield expression. Thesend() method returns the next value yielded by the generator, or
raisesStopIteration if the generator exits without yielding another value. Whensend() is called to start
the generator, it must be called withNone as the argument, because there is noyield expression that could
receive the value.

throw (type, [value, [traceback]])
Raises an exception of typetype at the point where generator was paused, and returns the next value yielded
by the generator function. If the generator exits without yielding another value, aStopIteration exception
is raised. If the generator function does not catch the passed-in exception, or raises a different exception, then
that exception propagates to the caller.

close ()
Raises aGeneratorExit at the point where the generator function was paused. If the generator function then
raisesStopIteration (by exiting normally, or due to already being closed) orGeneratorExit (by not
catching the exception), close returns to its caller. If the generator yields a value, aRuntimeError is raised.
If the generator raises any other exception, it is propagated to the caller.close() does nothing if the generator
has already exited due to an exception or normal exit.

Here is a simple example that demonstrates the behavior of generators and generator functions:

>>> def echo (value =None):
... print " Execution starts when ’ next() ’ is called for the first time. "
... try :
... while True :

46 Chapter 5. Expressions

The Python Language Reference, Release 2.6.2

... try :

... value = (yield value)

... except Exception , e:

... value = e

... finally :

... print " Don’ t forget to clean up when ’ close() ’ is called. "

...
>>> generator = echo(1)
>>> print generator . next()
Execution starts when ’next()’ is called for the first time.
1
>>> print generator . next()
None
>>> print generator . send(2)
2
>>> generator . throw(TypeError , " spam")
TypeError(’spam’,)
>>> generator . close()
Don’t forget to clean up when ’close()’ is called.

See Also:

PEP 0342- Coroutines via Enhanced GeneratorsThe proposal to enhance the API and syntax of generators, mak-
ing them usable as simple coroutines.

5.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary ::= atom | attributeref | subscription | slicing | call

5.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref ::= primary “.” identifier

The primary must evaluate to an object of a type that supports attribute references, e.g., a module, list, or an instance.
This object is then asked to produce the attribute whose name is the identifier. If this attribute is not available, the
exceptionAttributeError is raised. Otherwise, the type and value of the object produced is determined by the
object. Multiple evaluations of the same attribute reference may yield different objects.

5.3.2 Subscriptions

A subscription selects an item of a sequence (string, tuple or list) or mapping (dictionary) object:

subscription ::= primary “[” expression_list “]”

The primary must evaluate to an object of a sequence or mapping type.

If the primary is a mapping, the expression list must evaluate to an object whose value is one of the keys of the
mapping, and the subscription selects the value in the mapping that corresponds to that key. (The expression list is a
tuple except if it has exactly one item.)

5.3. Primaries 47

http://www.python.org/dev/peps/pep-0342

The Python Language Reference, Release 2.6.2

If the primary is a sequence, the expression (list) must evaluate to a plain integer. If this value is negative, the length of
the sequence is added to it (so that, e.g.,x[-1] selects the last item ofx .) The resulting value must be a nonnegative
integer less than the number of items in the sequence, and the subscription selects the item whose index is that value
(counting from zero). A string’s items are characters. A character is not a separate data type but a string of exactly
one character.

5.3.3 Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as expressions
or as targets in assignment ordel statements. The syntax for a slicing:

slicing ::= simple_slicing | extended_slicing
simple_slicing ::= primary “[” short_slice “]”
extended_slicing ::= primary “[” slice_list “]”
slice_list ::= slice_item (“,” slice_item)* [”,”]
slice_item ::= expression | proper_slice | ellipsis
proper_slice ::= short_slice | long_slice
short_slice ::= [lower_bound] “:” [upper_bound]
long_slice ::= short_slice “:” [stride]
lower_bound ::= expression
upper_bound ::= expression
stride ::= expression
ellipsis ::= “...”

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so
any subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated by
defining that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this is
the case if the slice list contains no proper slice nor ellipses). Similarly, when the slice list has exactly one short slice
and no trailing comma, the interpretation as a simple slicing takes priority over that as an extended slicing.

The semantics for a simple slicing are as follows. The primary must evaluate to a sequence object. The lower and upper
bound expressions, if present, must evaluate to plain integers; defaults are zero and thesys.maxint , respectively. If
either bound is negative, the sequence’s length is added to it. The slicing now selects all items with indexk such that
i <= k < j wherei andj are the specified lower and upper bounds. This may be an empty sequence. It is not an
error if i or j lie outside the range of valid indexes (such items don’t exist so they aren’t selected). The semantics for
an extended slicing are as follows. The primary must evaluate to a mapping object, and it is indexed with a key that is
constructed from the slice list, as follows. If the slice list contains at least one comma, the key is a tuple containing the
conversion of the slice items; otherwise, the conversion of the lone slice item is the key. The conversion of a slice item
that is an expression is that expression. The conversion of an ellipsis slice item is the built-inEllipsis object. The
conversion of a proper slice is a slice object (see sectionThe standard type hierarchy) whosestart , stop andstep
attributes are the values of the expressions given as lower bound, upper bound and stride, respectively, substituting
None for missing expressions.

5.3.4 Calls

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

48 Chapter 5. Expressions

The Python Language Reference, Release 2.6.2

call ::= primary “(” [argument_list [”,”]
| expression genexpr_for] “)”

argument_list ::= positional_arguments [”,” keyword_arguments]
[”,” “*” expression] [”,” keyword_arguments]
[”,” “**” expression]
| keyword_arguments [”,” “*” expression]
[”,” “**” expression]
| “*” expression [”,” “*” expression] [”,” “**” expression]
| “**” expression

positional_arguments ::= expression (“,” expression)*
keyword_arguments ::= keyword_item (“,” keyword_item)*
keyword_item ::= identifier “=” expression

A trailing comma may be present after the positional and keyword arguments but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects,
class objects, methods of class instances, and certain class instances themselves are callable; extensions may define
additional callable object types). All argument expressions are evaluated before the call is attempted. Please refer to
sectionFunction definitionsfor the syntax of formal parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled
slots is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots. Next,
for each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the same as
the first formal parameter name, the first slot is used, and so on). If the slot is already filled, aTypeError exception
is raised. Otherwise, the value of the argument is placed in the slot, filling it (even if the expression isNone, it fills the
slot). When all arguments have been processed, the slots that are still unfilled are filled with the corresponding default
value from the function definition. (Default values are calculated, once, when the function is defined; thus, a mutable
object such as a list or dictionary used as default value will be shared by all calls that don’t specify an argument value
for the corresponding slot; this should usually be avoided.) If there are any unfilled slots for which no default value is
specified, aTypeError exception is raised. Otherwise, the list of filled slots is used as the argument list for the call.

Note: An implementation may provide builtin functions whose positional parameters do not have names, even if they
are ‘named’ for the purpose of documentation, and which therefore cannot be supplied by keyword. In CPython, this
is the case for functions implemented in C that usePyArg_ParseTuple() to parse their arguments.

If there are more positional arguments than there are formal parameter slots, aTypeError exception is raised, unless
a formal parameter using the syntax*identifier is present; in this case, that formal parameter receives a tuple
containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, aTypeError exception is raised, unless a
formal parameter using the syntax**identifier is present; in this case, that formal parameter receives a dictionary
containing the excess keyword arguments (using the keywords as keys and the argument values as corresponding
values), or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax*expression appears in the function call,expression must evaluate to a sequence. Elements from
this sequence are treated as if they were additional positional arguments; if there are positional argumentsx1,..., xN,
andexpression evaluates to a sequencey1, ...,yM, this is equivalent to a call with M+N positional argumentsx1,
...,xN, y1, ...,yM.

A consequence of this is that although the*expression syntax may appearafter some keyword arguments, it is
processedbeforethe keyword arguments (and the**expression argument, if any – see below). So:

>>> def f (a, b):
... print a, b
...
>>> f(b =1, * (2,))
2 1
>>> f(a =1, * (2,))

5.3. Primaries 49

The Python Language Reference, Release 2.6.2

Traceback (most recent call last):
File "<stdin>" , line 1, in ?

TypeError : f() got multiple values for keyword argument ’a’
>>> f(1, * (2,))
1 2

It is unusual for both keyword arguments and the*expression syntax to be used in the same call, so in practice
this confusion does not arise.

If the syntax**expression appears in the function call,expression must evaluate to a mapping, the contents
of which are treated as additional keyword arguments. In the case of a keyword appearing in bothexpression and
as an explicit keyword argument, aTypeError exception is raised.

Formal parameters using the syntax*identifier or **identifier cannot be used as positional argument
slots or as keyword argument names. Formal parameters using the syntax(sublist) cannot be used as keyword
argument names; the outermost sublist corresponds to a single unnamed argument slot, and the argument value is
assigned to the sublist using the usual tuple assignment rules after all other parameter processing is done.

A call always returns some value, possiblyNone, unless it raises an exception. How this value is computed depends
on the type of the callable object.

If it is—

a user-defined function: The code block for the function is executed, passing it the argument list. The first thing
the code block will do is bind the formal parameters to the arguments; this is described in sectionFunction
definitions. When the code block executes areturn statement, this specifies the return value of the function
call.

a built-in function or method: The result is up to the interpreter; seeBuilt-in Functions(in The Python Library
Reference) for the descriptions of built-in functions and methods.

a class object: A new instance of that class is returned.

a class instance method:The corresponding user-defined function is called, with an argument list that is one longer
than the argument list of the call: the instance becomes the first argument.

a class instance:The class must define a__call__() method; the effect is then the same as if that method was
called.

5.4 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators on its
right. The syntax is:

power ::= primary [”**” u_expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left (this
does not constrain the evaluation order for the operands):-1**2 results in-1 .

The power operator has the same semantics as the built-inpow() function, when called with two arguments: it yields
its left argument raised to the power of its right argument. The numeric arguments are first converted to a common
type. The result type is that of the arguments after coercion.

With mixed operand types, the coercion rules for binary arithmetic operators apply. For int and long int operands,
the result has the same type as the operands (after coercion) unless the second argument is negative; in that case, all
arguments are converted to float and a float result is delivered. For example,10**2 returns100 , but10**-2 returns
0.01 . (This last feature was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types
and the second argument was negative, an exception was raised).

50 Chapter 5. Expressions

The Python Language Reference, Release 2.6.2

Raising0.0 to a negative power results in aZeroDivisionError . Raising a negative number to a fractional
power results in aValueError .

5.5 Unary arithmetic and bitwise operations

All unary arithmetic and bitwise operations have the same priority:

u_expr ::= power | “-” u_expr | “+” u_expr | “~” u_expr

The unary- (minus) operator yields the negation of its numeric argument. The unary+ (plus) operator yields its
numeric argument unchanged. The unary~ (invert) operator yields the bitwise inversion of its plain or long integer
argument. The bitwise inversion ofx is defined as-(x+1) . It only applies to integral numbers. In all three cases, if
the argument does not have the proper type, aTypeError exception is raised.

5.6 Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also apply to
certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative operators
and one for additive operators:

m_expr ::= u_expr | m_expr “*” u_expr | m_expr “//” u_expr | m_expr “/” u_expr
| m_expr “%” u_expr

a_expr ::= m_expr | a_expr “+” m_expr | a_expr “-” m_expr

The * (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or
one argument must be an integer (plain or long) and the other must be a sequence. In the former case, the numbers
are converted to a common type and then multiplied together. In the latter case, sequence repetition is performed;
a negative repetition factor yields an empty sequence. The/ (division) and// (floor division) operators yield the
quotient of their arguments. The numeric arguments are first converted to a common type. Plain or long integer division
yields an integer of the same type; the result is that of mathematical division with the ‘floor’ function applied to the
result. Division by zero raises theZeroDivisionError exception. The%(modulo) operator yields the remainder
from the division of the first argument by the second. The numeric arguments are first converted to a common type.
A zero right argument raises theZeroDivisionError exception. The arguments may be floating point numbers,
e.g.,3.14%0.7 equals0.34 (since3.14 equals4*0.7 + 0.34 .) The modulo operator always yields a result
with the same sign as its second operand (or zero); the absolute value of the result is strictly smaller than the absolute
value of the second operand2.

The integer division and modulo operators are connected by the following identity:x == (x/y)*y + (x%y) .
Integer division and modulo are also connected with the built-in functiondivmod() : divmod(x, y) == (x/y,
x%y) . These identities don’t hold for floating point numbers; there similar identities hold approximately wherex/y
is replaced byfloor(x/y) or floor(x/y) - 1 3.

In addition to performing the modulo operation on numbers, the%operator is also overloaded by string and unicode
objects to perform string formatting (also known as interpolation). The syntax for string formatting is described in
the Python Library Reference, sectionString Formatting Operations(in The Python Library Reference). Deprecated
since version 2.3: The floor division operator, the modulo operator, and thedivmod() function are no longer defined
for complex numbers. Instead, convert to a floating point number using theabs() function if appropriate. The+

2 While abs(x%y) < abs(y) is true mathematically, for floats it may not be true numerically due to roundoff. For example, and assuming
a platform on which a Python float is an IEEE 754 double-precision number, in order that-1e-100 % 1e100 have the same sign as1e100 , the
computed result is-1e-100 + 1e100 , which is numerically exactly equal to1e100 . Functionfmod() in themath module returns a result
whose sign matches the sign of the first argument instead, and so returns-1e-100 in this case. Which approach is more appropriate depends on
the application.

3 If x is very close to an exact integer multiple of y, it’s possible forfloor(x/y) to be one larger than(x-x%y)/y due to rounding. In such
cases, Python returns the latter result, in order to preserve thatdivmod(x,y)[0] * y + x % y be very close tox .

5.5. Unary arithmetic and bitwise operations 51

The Python Language Reference, Release 2.6.2

(addition) operator yields the sum of its arguments. The arguments must either both be numbers or both sequences of
the same type. In the former case, the numbers are converted to a common type and then added together. In the latter
case, the sequences are concatenated. The- (subtraction) operator yields the difference of its arguments. The numeric
arguments are first converted to a common type.

5.7 Shifting operations

The shifting operations have lower priority than the arithmetic operations:

shift_expr ::= a_expr | shift_expr (“<<” | “>>”) a_expr

These operators accept plain or long integers as arguments. The arguments are converted to a common type. They
shift the first argument to the left or right by the number of bits given by the second argument. A right shift byn bits
is defined as division bypow(2, n) . A left shift by n bits is defined as multiplication withpow(2, n) . Negative
shift counts raise aValueError exception.

5.8 Binary bitwise operations

Each of the three bitwise operations has a different priority level:

and_expr ::= shift_expr | and_expr “&” shift_expr
xor_expr ::= and_expr | xor_expr “^” and_expr
or_expr ::= xor_expr | or_expr “|” xor_expr

The & operator yields the bitwise AND of its arguments, which must be plain or long integers. The arguments are
converted to a common type. The^ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be
plain or long integers. The arguments are converted to a common type. The| operator yields the bitwise (inclusive)
OR of its arguments, which must be plain or long integers. The arguments are converted to a common type.

5.9 Comparisons

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic,
shifting or bitwise operation. Also unlike C, expressions likea < b < c have the interpretation that is conventional
in mathematics:

comparison ::= or_expr (comp_operator or_expr)*
comp_operator ::= “<” | “>” | “==” | “>=” | “<=” | “<>” | “!=”

| “is” [”not”] | [”not”] “in”

Comparisons yield boolean values:True or False . Comparisons can be chained arbitrarily, e.g.,x < y <= z is
equivalent tox < y and y <= z , except thaty is evaluated only once (but in both casesz is not evaluated at all
whenx < y is found to be false).

Formally, if a, b, c, ..., y, z are expressions andop1, op2, ..., opN are comparison operators, thena op1 b op2 c
... y opN z is equivalent toa op1 b and b op2 c and ... y opN z , except that each expression
is evaluated at most once.

Note thata op1 b op2 c doesn’t imply any kind of comparison betweena andc, so that, e.g.,x < y > z is
perfectly legal (though perhaps not pretty).

The forms<> and!= are equivalent; for consistency with C,!= is preferred; where!= is mentioned below<> is also
accepted. The<> spelling is considered obsolescent.

52 Chapter 5. Expressions

The Python Language Reference, Release 2.6.2

The operators<, >, ==, >=, <=, and != compare the values of two objects. The objects need not have the same
type. If both are numbers, they are converted to a common type. Otherwise, objects of different typesalwayscompare
unequal, and are ordered consistently but arbitrarily. You can control comparison behavior of objects of non-builtin
types by defining a__cmp__ method or rich comparison methods like__gt__ , described in sectionSpecial method
names.

(This unusual definition of comparison was used to simplify the definition of operations like sorting and thein and
not in operators. In the future, the comparison rules for objects of different types are likely to change.)

Comparison of objects of the same type depends on the type:

• Numbers are compared arithmetically.

• Strings are compared lexicographically using the numeric equivalents (the result of the built-in functionord())
of their characters. Unicode and 8-bit strings are fully interoperable in this behavior.4

• Tuples and lists are compared lexicographically using comparison of corresponding elements. This means that
to compare equal, each element must compare equal and the two sequences must be of the same type and have
the same length.

If not equal, the sequences are ordered the same as their first differing elements. For example,cmp([1,2,x],
[1,2,y]) returns the same ascmp(x,y) . If the corresponding element does not exist, the shorter sequence
is ordered first (for example,[1,2] < [1,2,3]).

• Mappings (dictionaries) compare equal if and only if their sorted (key, value) lists compare equal.5 Outcomes
other than equality are resolved consistently, but are not otherwise defined.6

• Most other objects of builtin types compare unequal unless they are the same object; the choice whether one
object is considered smaller or larger than another one is made arbitrarily but consistently within one execution
of a program.

The operatorsin andnot in test for collection membership.x in s evaluates to true ifx is a member of the
collections, and false otherwise.x not in s returns the negation ofx in s . The collection membership test
has traditionally been bound to sequences; an object is a member of a collection if the collection is a sequence and
contains an element equal to that object. However, it make sense for many other object types to support membership
tests without being a sequence. In particular, dictionaries (for keys) and sets support membership testing.

For the list and tuple types,x in y is true if and only if there exists an indexi such thatx == y[i] is true.

For the Unicode and string types,x in y is true if and only ifx is a substring ofy. An equivalent test isy.find(x)
!= -1 . Note, x and y need not be the same type; consequently,u’ab’ in ’abc’ will return True . Empty
strings are always considered to be a substring of any other string, so"" in "abc" will return True . Changed
in version 2.3: Previously,x was required to be a string of length1. For user-defined classes which define the
__contains__() method,x in y is true if and only ify.__contains__(x) is true.

For user-defined classes which do not define__contains__() and do define__getitem__() , x in y is true
if and only if there is a non-negative integer indexi such thatx == y[i] , and all lower integer indices do not raise
IndexError exception. (If any other exception is raised, it is as ifin raised that exception). The operatornot
in is defined to have the inverse true value ofin . The operatorsis andis not test for object identity:x is y
is true if and only ifx andy are the same object.x is not y yields the inverse truth value.7

4 While comparisons between unicode strings make sense at the byte level, they may be counter-intuitive to users. For example, the strings
u"\u00C7" andu"\u0043\u0327" compare differently, even though they both represent the same unicode character (LATIN CAPTITAL
LETTER C WITH CEDILLA). To compare strings in a human recognizable way, compare usingunicodedata.normalize() .

5 The implementation computes this efficiently, without constructing lists or sorting.
6 Earlier versions of Python used lexicographic comparison of the sorted (key, value) lists, but this was very expensive for the common case of

comparing for equality. An even earlier version of Python compared dictionaries by identity only, but this caused surprises because people expected
to be able to test a dictionary for emptiness by comparing it to{} .

7 Due to automatic garbage-collection, free lists, and the dynamic nature of descriptors, you may notice seemingly unusual behaviour in certain
uses of theis operator, like those involving comparisons between instance methods, or constants. Check their documentation for more info.

5.9. Comparisons 53

The Python Language Reference, Release 2.6.2

5.10 Boolean operations

Boolean operations have the lowest priority of all Python operations:

expression ::= conditional_expression | lambda_form
old_expression ::= or_test | old_lambda_form
conditional_expression ::= or_test [”if” or_test “else” expression]
or_test ::= and_test | or_test “or” and_test
and_test ::= not_test | and_test “and” not_test
not_test ::= comparison | “not” not_test

In the context of Boolean operations, and also when expressions are used by control flow statements, the follow-
ing values are interpreted as false:False , None, numeric zero of all types, and empty strings and containers
(including strings, tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. (See the
__nonzero__() special method for a way to change this.) The operatornot yieldsTrue if its argument is false,
False otherwise.

The expressionx if C else y first evaluatesC (not x); if C is true, x is evaluated and its value is returned;
otherwise,y is evaluated and its value is returned. New in version 2.5. The expressionx and y first evaluatesx; if
x is false, its value is returned; otherwise,y is evaluated and the resulting value is returned. The expressionx or y
first evaluatesx; if x is true, its value is returned; otherwise,y is evaluated and the resulting value is returned.

(Note that neitherand nor or restrict the value and type they return toFalse andTrue , but rather return the last
evaluated argument. This is sometimes useful, e.g., ifs is a string that should be replaced by a default value if it is
empty, the expressions or ’foo’ yields the desired value. Becausenot has to invent a value anyway, it does not
bother to return a value of the same type as its argument, so e.g.,not ’foo’ yieldsFalse , not ” .)

5.11 Lambdas

lambda_form ::= “lambda” [parameter_list]: expression
old_lambda_form ::= “lambda” [parameter_list]: old_expression

Lambda forms (lambda expressions) have the same syntactic position as expressions. They are a shorthand to cre-
ate anonymous functions; the expressionlambda arguments: expression yields a function object. The
unnamed object behaves like a function object defined with

def name(arguments):
return expression

See sectionFunction definitionsfor the syntax of parameter lists. Note that functions created with lambda forms
cannot contain statements.

5.12 Expression lists

expression_list ::= expression (“,” expression)* [”,”]

An expression list containing at least one comma yields a tuple. The length of the tuple is the number of expressions
in the list. The expressions are evaluated from left to right. The trailing comma is required only to create a single
tuple (a.k.a. asingleton); it is optional in all other cases. A single expression without a trailing comma doesn’t create a
tuple, but rather yields the value of that expression. (To create an empty tuple, use an empty pair of parentheses:() .)

54 Chapter 5. Expressions

The Python Language Reference, Release 2.6.2

5.13 Evaluation order

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is
evaluated before the left-hand side.

In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

expr1, expr2, expr3, expr4
(expr1, expr2, expr3, expr4)
{expr1: expr2, expr3: expr4}
expr1 + expr2 * (expr3 - expr4)
expr1(expr2, expr3, * expr4, * * expr5)
expr3, expr4 = expr1, expr2

5.14 Summary

The following table summarizes the operator precedences in Python, from lowest precedence (least binding) to highest
precedence (most binding). Operators in the same box have the same precedence. Unless the syntax is explicitly given,
operators are binary. Operators in the same box group left to right (except for comparisons, including tests, which all
have the same precedence and chain from left to right — see sectionComparisons— and exponentiation, which
groups from right to left).

Operator Description
lambda Lambda expression
or Boolean OR
and Boolean AND
not x Boolean NOT
in , not in , is , is not , <, <=, >, >=, <>,
!= , ==

Comparisons, including membership tests and identity tests,

| Bitwise OR
^ Bitwise XOR
& Bitwise AND
<<, >> Shifts
+, - Addition and subtraction
* , / , // , % Multiplication, division, remainder
+x , -x , ~x Positive, negative, bitwise NOT
** Exponentiation8

x[index] , x[index:index] ,
x(arguments...) , x.attribute

Subscription, slicing, call, attribute reference

(expressions...) ,
[expressions...] ,
{key:datum...} ,
‘expressions...‘

Binding or tuple display, list display, dictionary display, string
conversion

8The power operator** binds less tightly than an arithmetic or bitwise unary operator on its right, that is,2**-1 is 0.5 .

5.13. Evaluation order 55

The Python Language Reference, Release 2.6.2

56 Chapter 5. Expressions

CHAPTER

SIX

SIMPLE STATEMENTS

Simple statements are comprised within a single logical line. Several simple statements may occur on a single line
separated by semicolons. The syntax for simple statements is:

simple_stmt ::= expression_stmt
| assert_stmt
| assignment_stmt
| augmented_assignment_stmt
| pass_stmt
| del_stmt
| print_stmt
| return_stmt
| yield_stmt
| raise_stmt
| break_stmt
| continue_stmt
| import_stmt
| global_stmt
| exec_stmt

6.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure (a
function that returns no meaningful result; in Python, procedures return the valueNone). Other uses of expression
statements are allowed and occasionally useful. The syntax for an expression statement is:

expression_stmt ::= expression_list

An expression statement evaluates the expression list (which may be a single expression). In interactive mode, if the
value is notNone, it is converted to a string using the built-inrepr() function and the resulting string is written to
standard output (see sectionThe print statement) on a line by itself. (Expression statements yieldingNone are not
written, so that procedure calls do not cause any output.)

6.2 Assignment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

57

The Python Language Reference, Release 2.6.2

assignment_stmt ::= (target_list “=”)+ (expression_list | yield_expression)
target_list ::= target (“,” target)* [”,”]
target ::= identifier

| “(” target_list “)”
| “[” target_list “]”
| attributeref
| subscription
| slicing

(See sectionPrimariesfor the syntax definitions for the last three symbols.) An assignment statement evaluates the
expression list (remember that this can be a single expression or a comma-separated list, the latter yielding a tuple)
and assigns the single resulting object to each of the target lists, from left to right. Assignment is defined recursively
depending on the form of the target (list). When a target is part of a mutable object (an attribute reference, subscription
or slicing), the mutable object must ultimately perform the assignment and decide about its validity, and may raise an
exception if the assignment is unacceptable. The rules observed by various types and the exceptions raised are given
with the definition of the object types (see sectionThe standard type hierarchy). Assignment of an object to a target
list is recursively defined as follows.

• If the target list is a single target: The object is assigned to that target.

• If the target list is a comma-separated list of targets: The object must be an iterable with the same number of
items as there are targets in the target list, and the items are assigned, from left to right, to the corresponding
targets. (This rule is relaxed as of Python 1.5; in earlier versions, the object had to be a tuple. Since strings are
sequences, an assignment likea, b = "xy" is now legal as long as the string has the right length.)

Assignment of an object to a single target is recursively defined as follows.

• If the target is an identifier (name):

– If the name does not occur in aglobal statement in the current code block: the name is bound to the
object in the current local namespace.

– Otherwise: the name is bound to the object in the current global namespace.

The name is rebound if it was already bound. This may cause the reference count for the object previously
bound to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be
called.

• If the target is a target list enclosed in parentheses or in square brackets: The object must be an iterable with the
same number of items as there are targets in the target list, and its items are assigned, from left to right, to the
corresponding targets.

• If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an
object with assignable attributes; if this is not the case,TypeError is raised. That object is then asked to assign
the assigned object to the given attribute; if it cannot perform the assignment, it raises an exception (usually but
not necessarilyAttributeError).

• If the target is a subscription: The primary expression in the reference is evaluated. It should yield either
a mutable sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript
expression is evaluated. If the primary is a mutable sequence object (such as a list), the subscript must yield a
plain integer. If it is negative, the sequence’s length is added to it. The resulting value must be a nonnegative
integer less than the sequence’s length, and the sequence is asked to assign the assigned object to its item with
that index. If the index is out of range,IndexError is raised (assignment to a subscripted sequence cannot
add new items to a list). If the primary is a mapping object (such as a dictionary), the subscript must have a
type compatible with the mapping’s key type, and the mapping is then asked to create a key/datum pair which
maps the subscript to the assigned object. This can either replace an existing key/value pair with the same key
value, or insert a new key/value pair (if no key with the same value existed).

58 Chapter 6. Simple statements

The Python Language Reference, Release 2.6.2

• If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence
object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and
upper bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length.
The bounds should evaluate to (small) integers. If either bound is negative, the sequence’s length is added to it.
The resulting bounds are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence
object is asked to replace the slice with the items of the assigned sequence. The length of the slice may be
different from the length of the assigned sequence, thus changing the length of the target sequence, if the object
allows it.

(In the current implementation, the syntax for targets is taken to be the same as for expressions, and invalid syntax is
rejected during the code generation phase, causing less detailed error messages.)

WARNING: Although the definition of assignment implies that overlaps between the left-hand side and the right-
hand side are ‘safe’ (for examplea, b = b, a swaps two variables), overlapswithin the collection of assigned-to
variables are not safe! For instance, the following program prints[0, 2] :

x = [0, 1]
i = 0
i, x[i] = 1, 2
print x

6.2.1 Augmented assignment statements

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

augmented_assignment_stmt ::= augtarget augop (expression_list | yield_expression)
augtarget ::= identifier | attributeref | subscription | slicing
augop ::= “+=” | “-=” | “*=” | “/=” | “//=” | “%=” | “**=”

| “>>=” | “<<=” | “&=” | “^=” | “|=”

(See sectionPrimariesfor the syntax definitions for the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking)
and the expression list, performs the binary operation specific to the type of assignment on the two operands, and
assigns the result to the original target. The target is only evaluated once.

An augmented assignment expression likex += 1 can be rewritten asx = x + 1 to achieve a similar, but not
exactly equal effect. In the augmented version,x is only evaluated once. Also, when possible, the actual operation is
performedin-place, meaning that rather than creating a new object and assigning that to the target, the old object is
modified instead.

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented
assignment statements is handled the same way as normal assignments. Similarly, with the exception of the possiblein-
placebehavior, the binary operation performed by augmented assignment is the same as the normal binary operations.

For targets which are attribute references, the initial value is retrieved with agetattr() and the result is assigned
with a setattr() . Notice that the two methods do not necessarily refer to the same variable. Whengetattr()
refers to a class variable,setattr() still writes to an instance variable. For example:

class A:
x = 3 # class variable

a = A()
a. x += 1 # writes a.x as 4 leaving A.x as 3

6.2. Assignment statements 59

The Python Language Reference, Release 2.6.2

6.3 The assert statement

Assert statements are a convenient way to insert debugging assertions into a program:

assert_stmt ::= “assert” expression [”,” expression]

The simple form,assert expression , is equivalent to

if __debug__:
if not expression: raise AssertionError

The extended form,assert expression1, expression2 , is equivalent to

if __debug__:
if not expression1: raise AssertionError , expression2

These equivalences assume that__debug__ andAssertionError refer to the built-in variables with those names.
In the current implementation, the built-in variable__debug__ is True under normal circumstances,False when
optimization is requested (command line option -O). The current code generator emits no code for an assert state-
ment when optimization is requested at compile time. Note that it is unnecessary to include the source code for the
expression that failed in the error message; it will be displayed as part of the stack trace.

Assignments to__debug__ are illegal. The value for the built-in variable is determined when the interpreter starts.

6.4 The pass statement

pass_stmt ::= “pass”

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a statement is
required syntactically, but no code needs to be executed, for example:

def f (arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

6.5 The del statement

del_stmt ::= “del” target_list

Deletion is recursively defined very similar to the way assignment is defined. Rather that spelling it out in full details,
here are some hints.

Deletion of a target list recursively deletes each target, from left to right. Deletion of a name removes the binding of
that name from the local or global namespace, depending on whether the name occurs in aglobal statement in the
same code block. If the name is unbound, aNameError exception will be raised. It is illegal to delete a name from
the local namespace if it occurs as a free variable in a nested block. Deletion of attribute references, subscriptions
and slicings is passed to the primary object involved; deletion of a slicing is in general equivalent to assignment of an
empty slice of the right type (but even this is determined by the sliced object).

6.6 The print statement

print_stmt ::= “print” ([expression (“,” expression)* [”,”]]
| “>>” expression [(“,” expression)+ [”,”]])

60 Chapter 6. Simple statements

The Python Language Reference, Release 2.6.2

print evaluates each expression in turn and writes the resulting object to standard output (see below). If an object is
not a string, it is first converted to a string using the rules for string conversions. The (resulting or original) string is
then written. A space is written before each object is (converted and) written, unless the output system believes it is
positioned at the beginning of a line. This is the case (1) when no characters have yet been written to standard output,
(2) when the last character written to standard output is a whitespace character except’ ’ , or (3) when the last write
operation on standard output was not aprint statement. (In some cases it may be functional to write an empty string
to standard output for this reason.)

Note: Objects which act like file objects but which are not the built-in file objects often do not properly emulate this
aspect of the file object’s behavior, so it is best not to rely on this. A’\n’ character is written at the end, unless
theprint statement ends with a comma. This is the only action if the statement contains just the keywordprint .
Standard output is defined as the file object namedstdout in the built-in modulesys . If no such object exists, or

if it does not have awrite() method, aRuntimeError exception is raised.print also has an extended form,
defined by the second portion of the syntax described above. This form is sometimes referred to as “print chevron.”
In this form, the first expression after the>> must evaluate to a “file-like” object, specifically an object that has a
write() method as described above. With this extended form, the subsequent expressions are printed to this file
object. If the first expression evaluates toNone, thensys.stdout is used as the file for output.

6.7 The return statement

return_stmt ::= “return” [expression_list]

return may only occur syntactically nested in a function definition, not within a nested class definition.

If an expression list is present, it is evaluated, elseNone is substituted.

return leaves the current function call with the expression list (orNone) as return value. Whenreturn passes
control out of atry statement with afinally clause, thatfinally clause is executed before really leaving the
function.

In a generator function, thereturn statement is not allowed to include anexpression_list . In that context, a
barereturn indicates that the generator is done and will causeStopIteration to be raised.

6.8 The yield statement

yield_stmt ::= yield_expression

Theyield statement is only used when defining a generator function, and is only used in the body of the generator
function. Using ayield statement in a function definition is sufficient to cause that definition to create a generator
function instead of a normal function.

When a generator function is called, it returns an iterator known as a generator iterator, or more commonly, a generator.
The body of the generator function is executed by calling the generator’snext() method repeatedly until it raises an
exception.

When ayield statement is executed, the state of the generator is frozen and the value ofexpression_list is
returned tonext() ‘s caller. By “frozen” we mean that all local state is retained, including the current bindings of
local variables, the instruction pointer, and the internal evaluation stack: enough information is saved so that the next
timenext() is invoked, the function can proceed exactly as if theyield statement were just another external call.

As of Python version 2.5, theyield statement is now allowed in thetry clause of atry ... finally construct. If
the generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage collected),
the generator-iterator’sclose() method will be called, allowing any pendingfinally clauses to execute.

6.7. The return statement 61

The Python Language Reference, Release 2.6.2

Note: In Python 2.2, theyield statement was only allowed when thegenerators feature has been enabled. This
__future__ import statement was used to enable the feature:

from __future__ import generators

See Also:

PEP 0255- Simple Generators The proposal for adding generators and theyield statement to Python.

PEP 0342- Coroutines via Enhanced GeneratorsThe proposal that, among other generator enhancements, pro-
posed allowingyield to appear inside atry ... finally block.

6.9 The raise statement

raise_stmt ::= “raise” [expression [”,” expression [”,” expression]]]

If no expressions are present,raise re-raises the last exception that was active in the current scope. If no exception
is active in the current scope, aTypeError exception is raised indicating that this is an error (if running under IDLE,
aQueue.Empty exception is raised instead).

Otherwise,raise evaluates the expressions to get three objects, usingNone as the value of omitted expressions. The
first two objects are used to determine thetypeandvalueof the exception.

If the first object is an instance, the type of the exception is the class of the instance, the instance itself is the value,
and the second object must beNone.

If the first object is a class, it becomes the type of the exception. The second object is used to determine the exception
value: If it is an instance of the class, the instance becomes the exception value. If the second object is a tuple, it is
used as the argument list for the class constructor; if it isNone, an empty argument list is used, and any other object
is treated as a single argument to the constructor. The instance so created by calling the constructor is used as the
exception value. If a third object is present and notNone, it must be a traceback object (see sectionThe standard
type hierarchy), and it is substituted instead of the current location as the place where the exception occurred. If the
third object is present and not a traceback object orNone, a TypeError exception is raised. The three-expression
form of raise is useful to re-raise an exception transparently in an except clause, butraise with no expressions
should be preferred if the exception to be re-raised was the most recently active exception in the current scope.

Additional information on exceptions can be found in sectionExceptions, and information about handling exceptions
is in sectionThe try statement.

6.10 The break statement

break_stmt ::= “break”

break may only occur syntactically nested in afor or while loop, but not nested in a function or class definition
within that loop. It terminates the nearest enclosing loop, skipping the optionalelse clause if the loop has one. If
a for loop is terminated bybreak , the loop control target keeps its current value. Whenbreak passes control out
of a try statement with afinally clause, thatfinally clause is executed before really leaving the loop.

6.11 The continue statement

continue_stmt ::= “continue”

continue may only occur syntactically nested in afor or while loop, but not nested in a function or class
definition orfinally clause within that loop. It continues with the next cycle of the nearest enclosing loop.

62 Chapter 6. Simple statements

http://www.python.org/dev/peps/pep-0255
http://www.python.org/dev/peps/pep-0342

The Python Language Reference, Release 2.6.2

Whencontinue passes control out of atry statement with afinally clause, thatfinally clause is executed
before really starting the next loop cycle.

6.12 The import statement

import_stmt ::= “import” module [”as” name] (“,” module [”as” name])*
| “from” relative_module “import” identifier [”as” name]
(“,” identifier [”as” name])*
| “from” relative_module “import” “(” identifier [”as” name]
(“,” identifier [”as” name])* [”,”] “)”
| “from” module “import” “*”

module ::= (identifier “.”)* identifier
relative_module ::= “.”* module | “.”+
name ::= identifier

Import statements are executed in two steps: (1) find a module, and initialize it if necessary; (2) define a name or
names in the local namespace (of the scope where theimport statement occurs). The statement comes in two forms
differing on whether it uses thefrom keyword. The first form (withoutfrom) repeats these steps for each identifier in
the list. The form withfrom performs step (1) once, and then performs step (2) repeatedly. To understand how step (1)
occurs, one must first understand how Python handles hierarchical naming of modules. To help organize modules and
provide a hierarchy in naming, Python has a concept of packages. A package can contain other packages and modules
while modules cannot contain other modules or packages. From a file system perspective, packages are directories
and modules are files. The originalspecification for packagesis still available to read, although minor details have
changed since the writing of that document. Once the name of the module is known (unless otherwise specified, the
term “module” will refer to both packages and modules), searching for the module or package can begin. The first
place checked issys.modules , the cache of all modules that have been imported previously. If the module is found
there then it is used in step (2) of import. If the module is not found in the cache, thensys.meta_path is searched
(the specification forsys.meta_path can be found inPEP 302). The object is a list offinder objects which are
queried in order as to whether they know how to load the module by calling theirfind_module() method with
the name of the module. If the module happens to be contained within a package (as denoted by the existence of
a dot in the name), then a second argument tofind_module() is given as the value of the__path__ attribute
from the parent package (everything up to the last dot in the name of the module being imported). If a finder can
find the module it returns aloader (discussed later) or returnsNone. If none of the finders onsys.meta_path
are able to find the module then some implicitly defined finders are queried. Implementations of Python vary in what
implicit meta path finders are defined. The one they all do define, though, is one that handlessys.path_hooks ,
sys.path_importer_cache , andsys.path .

The implicit finder searches for the requested module in the “paths” specified in one of two places (“paths” do not
have to be file system paths). If the module being imported is supposed to be contained within a package then the
second argument passed tofind_module() , __path__ on the parent package, is used as the source of paths. If
the module is not contained in a package thensys.path is used as the source of paths.

Once the source of paths is chosen it is iterated over to find a finder that can handle that path. The dict at
sys.path_importer_cache caches finders for paths and is checked for a finder. If the path does not have a finder
cached thensys.path_hooks is searched by calling each object in the list with a single argument of the path, re-
turning a finder or raisesImportError . If a finder is returned then it is cached insys.path_importer_cache
and then used for that path entry. If no finder can be found but the path exists then a value ofNone is stored in
sys.path_importer_cache to signify that an implicit, file-based finder that handles modules stored as individ-
ual files should be used for that path. If the path does not exist then a finder which always returnsNone is placed
in the cache for the path. If no finder can find the module thenImportError is raised. Otherwise some finder
returned a loader whoseload_module() method is called with the name of the module to load (seePEP 302for
the original definition of loaders). A loader has several responsibilities to perform on a module it loads. First, if the
module already exists insys.modules (a possibility if the loader is called outside of the import machinery) then

6.12. The import statement 63

http://www.python.org/doc/essays/packages.html
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302

The Python Language Reference, Release 2.6.2

it is to use that module for initialization and not a new module. But if the module does not exist insys.modules
then it is to be added to that dict before initialization begins. If an error occurs during loading of the module and
it was added tosys.modules it is to be removed from the dict. If an error occurs but the module was already in
sys.modules it is left in the dict. The loader must set several attributes on the module.__name__ is to be set
to the name of the module.__file__ is to be the “path” to the file unless the module is built-in (and thus listed in
sys.builtin_module_names) in which case the attribute is not set. If what is being imported is a package then
__path__ is to be set to a list of paths to be searched when looking for modules and packages contained within the
package being imported.__package__ is optional but should be set to the name of package that contains the mod-
ule or package (the empty string is used for module not contained in a package).__loader__ is also optional but
should be set to the loader object that is loading the module. If an error occurs during loading then the loader raises
ImportError if some other exception is not already being propagated. Otherwise the loader returns the module that
was loaded and initialized.

When step (1) finishes without raising an exception, step (2) can begin.

The first form ofimport statement binds the module name in the local namespace to the module object, and then
goes on to import the next identifier, if any. If the module name is followed byas , the name followingas is used as
the local name for the module. Thefrom form does not bind the module name: it goes through the list of identifiers,
looks each one of them up in the module found in step (1), and binds the name in the local namespace to the object
thus found. As with the first form ofimport , an alternate local name can be supplied by specifying “as localname”.
If a name is not found,ImportError is raised. If the list of identifiers is replaced by a star (’*’), all public names
defined in the module are bound in the local namespace of theimport statement.. Thepublic namesdefined by a
module are determined by checking the module’s namespace for a variable named__all__ ; if defined, it must be
a sequence of strings which are names defined or imported by that module. The names given in__all__ are all
considered public and are required to exist. If__all__ is not defined, the set of public names includes all names
found in the module’s namespace which do not begin with an underscore character (’_’). __all__ should contain
the entire public API. It is intended to avoid accidentally exporting items that are not part of the API (such as library
modules which were imported and used within the module).

Thefrom form with * may only occur in a module scope. If the wild card form of import —import * — is used in
a function and the function contains or is a nested block with free variables, the compiler will raise aSyntaxError .
When specifying what module to import you do not have to specify the absolute name of the module. When a module
or package is contained within another package it is possible to make a relative import within the same top package
without having to mention the package name. By using leading dots in the specified module or package afterfrom
you can specify how high to traverse up the current package hierarchy without specifying exact names. One leading dot
means the current package where the module making the import exists. Two dots means up one package level. Three
dots is up two levels, etc. So if you executefrom . import mod from a module in thepkg package then you
will end up importingpkg.mod . If you executefrom ..subpkg2 imprt mod from within pkg.subpkg1
you will import pkg.subpkg2.mod . The specification for relative imports is contained withinPEP 328. The built-
in function __import__() is provided to support applications that determine which modules need to be loaded
dynamically; refer toBuilt-in Functions(in The Python Library Reference) for additional information.

6.12.1 Future statements

A future statementis a directive to the compiler that a particular module should be compiled using syntax or semantics
that will be available in a specified future release of Python. The future statement is intended to ease migration to
future versions of Python that introduce incompatible changes to the language. It allows use of the new features on a
per-module basis before the release in which the feature becomes standard.

future_statement ::= “from” “__future__” “import” feature [”as” name]
(“,” feature [”as” name])*
| “from” “__future__” “import” “(” feature [”as” name]
(“,” feature [”as” name])* [”,”] “)”

feature ::= identifier
name ::= identifier

64 Chapter 6. Simple statements

http://www.python.org/dev/peps/pep-0328

The Python Language Reference, Release 2.6.2

A future statement must appear near the top of the module. The only lines that can appear before a future statement
are:

• the module docstring (if any),

• comments,

• blank lines, and

• other future statements.

The features recognized by Python 2.6 areunicode_literals , print_function , absolute_import ,
division , generators , nested_scopes and with_statement . generators , with_statement ,
nested_scopes are redundant in Python version 2.6 and above because they are always enabled.

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs
are often implemented by generating different code. It may even be the case that a new feature introduces new incom-
patible syntax (such as a new reserved word), in which case the compiler may need to parse the module differently.
Such decisions cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error if
a future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard module__future__ ,
described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

Note that there is nothing special about the statement:

import __future__ [as name]

That is not a future statement; it’s an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by anexec statement or calls to the builtin functionscompile() andexecfile() that occur
in a moduleMcontaining a future statement will, by default, use the new syntax or semantics associated with the
future statement. This can, starting with Python 2.2 be controlled by optional arguments tocompile() — see the
documentation of that function for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session. If an
interpreter is started with the-i option, is passed a script name to execute, and the script includes a future statement,
it will be in effect in the interactive session started after the script is executed.

See Also:

PEP 236- Back to the __future__ The original proposal for the __future__ mechanism.

6.13 The global statement

global_stmt ::= “global” identifier (“,” identifier)*

Theglobal statement is a declaration which holds for the entire current code block. It means that the listed identifiers
are to be interpreted as globals. It would be impossible to assign to a global variable withoutglobal , although free
variables may refer to globals without being declared global.

Names listed in aglobal statement must not be used in the same code block textually preceding thatglobal
statement.

Names listed in aglobal statement must not be defined as formal parameters or in afor loop control target,class
definition, function definition, orimport statement.

6.13. The global statement 65

http://www.python.org/dev/peps/pep-0236

The Python Language Reference, Release 2.6.2

(The current implementation does not enforce the latter two restrictions, but programs should not abuse this freedom,
as future implementations may enforce them or silently change the meaning of the program.)Programmer’s note:
theglobal is a directive to the parser. It applies only to code parsed at the same time as theglobal statement. In
particular, aglobal statement contained in anexec statement does not affect the code blockcontainingtheexec
statement, and code contained in anexec statement is unaffected byglobal statements in the code containing the
exec statement. The same applies to theeval() , execfile() andcompile() functions.

6.14 The exec statement

exec_stmt ::= “exec” or_expr [”in” expression [”,” expression]]

This statement supports dynamic execution of Python code. The first expression should evaluate to either a string, an
open file object, or a code object. If it is a string, the string is parsed as a suite of Python statements which is then
executed (unless a syntax error occurs).1 If it is an open file, the file is parsed until EOF and executed. If it is a code
object, it is simply executed. In all cases, the code that’s executed is expected to be valid as file input (see sectionFile
input). Be aware that thereturn andyield statements may not be used outside of function definitions even within
the context of code passed to theexec statement.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only the first expression
after in is specified, it should be a dictionary, which will be used for both the global and the local variables. If
two expressions are given, they are used for the global and local variables, respectively. If provided,locals can be
any mapping object. Changed in version 2.4: Formerly,locals was required to be a dictionary. As a side effect, an
implementation may insert additional keys into the dictionaries given besides those corresponding to variable names
set by the executed code. For example, the current implementation may add a reference to the dictionary of the
built-in module__builtin__ under the key__builtins__ (!). Programmer’s hints: dynamic evaluation of
expressions is supported by the built-in functioneval() . The built-in functionsglobals() andlocals() return
the current global and local dictionary, respectively, which may be useful to pass around for use byexec .

1 Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use universal
newline mode to convert Windows or Mac-style newlines.

66 Chapter 6. Simple statements

CHAPTER

SEVEN

COMPOUND STATEMENTS

Compound statements contain (groups of) other statements; they affect or control the execution of those other state-
ments in some way. In general, compound statements span multiple lines, although in simple incarnations a whole
compound statement may be contained in one line.

The if , while andfor statements implement traditional control flow constructs.try specifies exception handlers
and/or cleanup code for a group of statements. Function and class definitions are also syntactically compound state-
ments. Compound statements consist of one or more ‘clauses.’ A clause consists of a header and a ‘suite.’ The
clause headers of a particular compound statement are all at the same indentation level. Each clause header begins
with a uniquely identifying keyword and ends with a colon. A suite is a group of statements controlled by a clause.
A suite can be one or more semicolon-separated simple statements on the same line as the header, following the
header’s colon, or it can be one or more indented statements on subsequent lines. Only the latter form of suite can
contain nested compound statements; the following is illegal, mostly because it wouldn’t be clear to whichif clause
a followingelse clause would belong:

if test1: if test2: print x

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either all or
none of theprint statements are executed:

if x < y < z: print x; print y; print z

Summarizing:

compound_stmt ::= if_stmt
| while_stmt
| for_stmt
| try_stmt
| with_stmt
| funcdef
| classdef
| decorated

suite ::= stmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT
statement ::= stmt_list NEWLINE | compound_stmt
stmt_list ::= simple_stmt (“;” simple_stmt)* [”;”]

Note that statements always end in aNEWLINEpossibly followed by aDEDENT. Also note that optional continuation
clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the ‘danglingelse ‘
problem is solved in Python by requiring nestedif statements to be indented).

The formatting of the grammar rules in the following sections places each clause on a separate line for clarity.

67

The Python Language Reference, Release 2.6.2

7.1 The if statement

The if statement is used for conditional execution:

if_stmt ::= “if” expression “:” suite
(“elif” expression “:” suite)*
[”else” “:” suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true (see section
Boolean operationsfor the definition of true and false); then that suite is executed (and no other part of theif
statement is executed or evaluated). If all expressions are false, the suite of theelse clause, if present, is executed.

7.2 The while statement

Thewhile statement is used for repeated execution as long as an expression is true:

while_stmt ::= “while” expression “:” suite
[”else” “:” suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false (which may be
the first time it is tested) the suite of theelse clause, if present, is executed and the loop terminates. Abreak
statement executed in the first suite terminates the loop without executing theelse clause’s suite. Acontinue
statement executed in the first suite skips the rest of the suite and goes back to testing the expression.

7.3 The for statement

The for statement is used to iterate over the elements of a sequence (such as a string, tuple or list) or other iterable
object:

for_stmt ::= “for” target_list “in” expression_list “:” suite
[”else” “:” suite]

The expression list is evaluated once; it should yield an iterable object. An iterator is created for the result of the
expression_list . The suite is then executed once for each item provided by the iterator, in the order of ascending
indices. Each item in turn is assigned to the target list using the standard rules for assignments, and then the suite is
executed. When the items are exhausted (which is immediately when the sequence is empty), the suite in theelse
clause, if present, is executed, and the loop terminates. Abreak statement executed in the first suite terminates the
loop without executing theelse clause’s suite. Acontinue statement executed in the first suite skips the rest of
the suite and continues with the next item, or with theelse clause if there was no next item.

The suite may assign to the variable(s) in the target list; this does not affect the next item assigned to it. The target
list is not deleted when the loop is finished, but if the sequence is empty, it will not have been assigned to at all by
the loop. Hint: the built-in functionrange() returns a sequence of integers suitable to emulate the effect of Pascal’s
for i := a to b do ; e.g.,range(3) returns the list[0, 1, 2] .

Note: There is a subtlety when the sequence is being modified by the loop (this can only occur for mutable sequences,
i.e. lists). An internal counter is used to keep track of which item is used next, and this is incremented on each iteration.
When this counter has reached the length of the sequence the loop terminates. This means that if the suite deletes the
current (or a previous) item from the sequence, the next item will be skipped (since it gets the index of the current
item which has already been treated). Likewise, if the suite inserts an item in the sequence before the current item, the
current item will be treated again the next time through the loop. This can lead to nasty bugs that can be avoided by
making a temporary copy using a slice of the whole sequence, e.g.,

for x in a[:]:
if x < 0: a . remove(x)

68 Chapter 7. Compound statements

The Python Language Reference, Release 2.6.2

7.4 The try statement

Thetry statement specifies exception handlers and/or cleanup code for a group of statements:

try_stmt ::= try1_stmt | try2_stmt
try1_stmt ::= “try” “:” suite

(“except” [expression [(“as” | “,”) target]] “:” suite)+
[”else” “:” suite]
[”finally” “:” suite]

try2_stmt ::= “try” “:” suite
“finally” “:” suite

Changed in version 2.5: In previous versions of Python,try ...except ...finally did not work.try ...except had
to be nested intry ...finally . Theexcept clause(s) specify one or more exception handlers. When no exception
occurs in thetry clause, no exception handler is executed. When an exception occurs in thetry suite, a search
for an exception handler is started. This search inspects the except clauses in turn until one is found that matches
the exception. An expression-less except clause, if present, must be last; it matches any exception. For an except
clause with an expression, that expression is evaluated, and the clause matches the exception if the resulting object
is “compatible” with the exception. An object is compatible with an exception if it is the class or a base class of
the exception object, a tuple containing an item compatible with the exception, or, in the (deprecated) case of string
exceptions, is the raised string itself (note that the object identities must match, i.e. it must be the same string object,
not just a string with the same value).

If no except clause matches the exception, the search for an exception handler continues in the surrounding code and
on the invocation stack.1

If the evaluation of an expression in the header of an except clause raises an exception, the original search for a handler
is canceled and a search starts for the new exception in the surrounding code and on the call stack (it is treated as if
the entiretry statement raised the exception).

When a matching except clause is found, the exception is assigned to the target specified in that except clause, if
present, and the except clause’s suite is executed. All except clauses must have an executable block. When the end of
this block is reached, execution continues normally after the entire try statement. (This means that if two nested han-
dlers exist for the same exception, and the exception occurs in the try clause of the inner handler, the outer handler will
not handle the exception.) Before an except clause’s suite is executed, details about the exception are assigned to three
variables in thesys module:sys.exc_type receives the object identifying the exception;sys.exc_value re-
ceives the exception’s parameter;sys.exc_traceback receives a traceback object (see sectionThe standard type
hierarchy) identifying the point in the program where the exception occurred. These details are also available through
the sys.exc_info() function, which returns a tuple(exc_type, exc_value, exc_traceback) . Use
of the corresponding variables is deprecated in favor of this function, since their use is unsafe in a threaded program.
As of Python 1.5, the variables are restored to their previous values (before the call) when returning from a function
that handled an exception. The optionalelse clause is executed if and when control flows off the end of thetry
clause.2 Exceptions in theelse clause are not handled by the precedingexcept clauses. Iffinally is present,
it specifies a ‘cleanup’ handler. Thetry clause is executed, including anyexcept andelse clauses. If an ex-
ception occurs in any of the clauses and is not handled, the exception is temporarily saved. Thefinally clause is
executed. If there is a saved exception, it is re-raised at the end of thefinally clause. If thefinally clause raises
another exception or executes areturn or break statement, the saved exception is lost. The exception information
is not available to the program during execution of thefinally clause. When areturn , break or continue
statement is executed in thetry suite of atry ...finally statement, thefinally clause is also executed ‘on
the way out.’ Acontinue statement is illegal in thefinally clause. (The reason is a problem with the current
implementation — this restriction may be lifted in the future).

Additional information on exceptions can be found in sectionExceptions, and information on using theraise state-
ment to generate exceptions may be found in sectionThe raise statement.

1 The exception is propagated to the invocation stack only if there is nofinally clause that negates the exception.
2 Currently, control “flows off the end” except in the case of an exception or the execution of areturn , continue , or break statement.

7.4. The try statement 69

The Python Language Reference, Release 2.6.2

7.5 The with statement

New in version 2.5. Thewith statement is used to wrap the execution of a block with methods defined by a context
manager (see sectionWith Statement Context Managers). This allows commontry ...except ...finally usage
patterns to be encapsulated for convenient reuse.

with_stmt ::= “with” expression [”as” target] “:” suite

The execution of thewith statement proceeds as follows:

1. The context expression is evaluated to obtain a context manager.

2. The context manager’s__enter__() method is invoked.

3. If a target was included in thewith statement, the return value from__enter__() is assigned to it.

Note: The with statement guarantees that if the__enter__() method returns without an error, then
__exit__() will always be called. Thus, if an error occurs during the assignment to the target list, it will be
treated the same as an error occurring within the suite would be. See step 5 below.

4. The suite is executed.

5. The context manager’s__exit__() method is invoked. If an exception caused the suite to be exited, its type,
value, and traceback are passed as arguments to__exit__() . Otherwise, threeNone arguments are supplied.

If the suite was exited due to an exception, and the return value from the__exit__() method was false, the
exception is reraised. If the return value was true, the exception is suppressed, and execution continues with the
statement following thewith statement.

If the suite was exited for any reason other than an exception, the return value from__exit__() is ignored,
and execution proceeds at the normal location for the kind of exit that was taken.

Note: In Python 2.5, thewith statement is only allowed when thewith_statement feature has been enabled. It
is always enabled in Python 2.6.

See Also:

PEP 0343- The “with” statement The specification, background, and examples for the Pythonwith statement.

7.6 Function definitions

A function definition defines a user-defined function object (see sectionThe standard type hierarchy):

decorated ::= decorators (classdef | funcdef)
decorators ::= decorator+
decorator ::= “@” dotted_name [”(” [argument_list [”,”]] “)”] NEWLINE
funcdef ::= “def” funcname “(” [parameter_list] “)” “:” suite
dotted_name ::= identifier (“.” identifier)*
parameter_list ::= (defparameter “,”)*

(“*” identifier [, “**” identifier]
| “**” identifier
| defparameter [”,”])

defparameter ::= parameter [”=” expression]
sublist ::= parameter (“,” parameter)* [”,”]
parameter ::= identifier | “(” sublist “)”
funcname ::= identifier

70 Chapter 7. Compound statements

http://www.python.org/dev/peps/pep-0343

The Python Language Reference, Release 2.6.2

A function definition is an executable statement. Its execution binds the function name in the current local namespace
to a function object (a wrapper around the executable code for the function). This function object contains a reference
to the current global namespace as the global namespace to be used when the function is called.

The function definition does not execute the function body; this gets executed only when the function is called.3

A function definition may be wrapped by one or moredecoratorexpressions. Decorator expressions are evaluated
when the function is defined, in the scope that contains the function definition. The result must be a callable, which
is invoked with the function object as the only argument. The returned value is bound to the function name instead of
the function object. Multiple decorators are applied in nested fashion. For example, the following code:

@f1(arg)
@f2
def func (): pass

is equivalent to:

def func (): pass
func = f1(arg)(f2(func))

When one or more top-level parameters have the formparameter= expression, the function is said to have “default
parameter values.” For a parameter with a default value, the corresponding argument may be omitted from a call, in
which case the parameter’s default value is substituted. If a parameter has a default value, all following parameters
must also have a default value — this is a syntactic restriction that is not expressed by the grammar.

Default parameter values are evaluated when the function definition is executed.This means that the expression
is evaluated once, when the function is defined, and that that same “pre-computed” value is used for each call. This
is especially important to understand when a default parameter is a mutable object, such as a list or a dictionary: if
the function modifies the object (e.g. by appending an item to a list), the default value is in effect modified. This is
generally not what was intended. A way around this is to useNone as the default, and explicitly test for it in the body
of the function, e.g.:

def whats_on_the_telly (penguin =None):
if penguin is None:

penguin = []
penguin . append(" property of the zoo ")
return penguin

Function call semantics are described in more detail in sectionCalls. A function call always assigns values to all
parameters mentioned in the parameter list, either from position arguments, from keyword arguments, or from default
values. If the form “*identifier ” is present, it is initialized to a tuple receiving any excess positional parameters,
defaulting to the empty tuple. If the form “**identifier ” is present, it is initialized to a new dictionary receiving
any excess keyword arguments, defaulting to a new empty dictionary. It is also possible to create anonymous
functions (functions not bound to a name), for immediate use in expressions. This uses lambda forms, described in
sectionLambdas. Note that the lambda form is merely a shorthand for a simplified function definition; a function
defined in a “def ” statement can be passed around or assigned to another name just like a function defined by a
lambda form. The “def ” form is actually more powerful since it allows the execution of multiple statements.

Programmer’s note: Functions are first-class objects. A “def ” form executed inside a function definition defines a
local function that can be returned or passed around. Free variables used in the nested function can access the local
variables of the function containing the def. See sectionNaming and bindingfor details.

7.7 Class definitions

A class definition defines a class object (see sectionThe standard type hierarchy):

3 A string literal appearing as the first statement in the function body is transformed into the function’s__doc__ attribute and therefore the
function’sdocstring.

7.7. Class definitions 71

The Python Language Reference, Release 2.6.2

classdef ::= “class” classname [inheritance] “:” suite
inheritance ::= “(” [expression_list] “)”
classname ::= identifier

A class definition is an executable statement. It first evaluates the inheritance list, if present. Each item in the inher-
itance list should evaluate to a class object or class type which allows subclassing. The class’s suite is then executed
in a new execution frame (see sectionNaming and binding), using a newly created local namespace and the original
global namespace. (Usually, the suite contains only function definitions.) When the class’s suite finishes execution, its
execution frame is discarded but its local namespace is saved.4 A class object is then created using the inheritance list
for the base classes and the saved local namespace for the attribute dictionary. The class name is bound to this class
object in the original local namespace.

Programmer’s note: Variables defined in the class definition are class variables; they are shared by all instances. To
create instance variables, they can be set in a method withself.name = value . Both class and instance variables
are accessible through the notation “self.name “, and an instance variable hides a class variable with the same name
when accessed in this way. Class variables can be used as defaults for instance variables, but using mutable values
there can lead to unexpected results. Fornew-style classes, descriptors can be used to create instance variables with
different implementation details.

Class definitions, like function definitions, may be wrapped by one or moredecoratorexpressions. The evaluation
rules for the decorator expressions are the same as for functions. The result must be a class object, which is then bound
to the class name.

4 A string literal appearing as the first statement in the class body is transformed into the namespace’s__doc__ item and therefore the class’s
docstring.

72 Chapter 7. Compound statements

CHAPTER

EIGHT

TOP-LEVEL COMPONENTS

The Python interpreter can get its input from a number of sources: from a script passed to it as standard input or as
program argument, typed in interactively, from a module source file, etc. This chapter gives the syntax used in these
cases.

8.1 Complete Python programs

While a language specification need not prescribe how the language interpreter is invoked, it is useful to have a notion
of a complete Python program. A complete Python program is executed in a minimally initialized environment: all
built-in and standard modules are available, but none have been initialized, except forsys (various system services),
__builtin__ (built-in functions, exceptions andNone) and__main__ . The latter is used to provide the local and
global namespace for execution of the complete program.

The syntax for a complete Python program is that for file input, described in the next section. The interpreter may also
be invoked in interactive mode; in this case, it does not read and execute a complete program but reads and executes
one statement (possibly compound) at a time. The initial environment is identical to that of a complete program;
each statement is executed in the namespace of__main__ . Under Unix, a complete program can be passed to the
interpreter in three forms: with the-c stringcommand line option, as a file passed as the first command line argument,
or as standard input. If the file or standard input is a tty device, the interpreter enters interactive mode; otherwise, it
executes the file as a complete program.

8.2 File input

All input read from non-interactive files has the same form:

file_input ::= (NEWLINE | statement)*

This syntax is used in the following situations:

• when parsing a complete Python program (from a file or from a string);

• when parsing a module;

• when parsing a string passed to theexec statement;

8.3 Interactive input

Input in interactive mode is parsed using the following grammar:

73

The Python Language Reference, Release 2.6.2

interactive_input ::= [stmt_list] NEWLINE | compound_stmt NEWLINE

Note that a (top-level) compound statement must be followed by a blank line in interactive mode; this is needed to
help the parser detect the end of the input.

8.4 Expression input

There are two forms of expression input. Both ignore leading whitespace. The string argument toeval() must have
the following form:

eval_input ::= expression_list NEWLINE*

The input line read byinput() must have the following form:

input_input ::= expression_list NEWLINE

Note: to read ‘raw’ input line without interpretation, you can use the built-in functionraw_input() or the
readline() method of file objects.

74 Chapter 8. Top-level components

CHAPTER

NINE

FULL GRAMMAR SPECIFICATION

This is the full Python grammar, as it is read by the parser generator and used to parse Python source files:

Grammar for Python

Note: Changing the grammar specified in this file will most likely
require corresponding changes in the parser module
(../Modules/parsermodule.c). If you can’t make the changes to
that module yourself, please co-ordinate the required changes
with someone who can; ask around on python-dev for help. Fred
Drake <fdrake@acm.org> will probably be listening there.

NOTE WELL: You should also follow all the steps listed in PEP 306,
"How to Change Python’s Grammar"

Commands for Kees Blom’s railroad program
#diagram:token NAME
#diagram:token NUMBER
#diagram:token STRING
#diagram:token NEWLINE
#diagram:token ENDMARKER
#diagram:token INDENT
#diagram:output\input python.bla
#diagram:token DEDENT
#diagram:output\textwidth 20.04cm\oddsidemargin 0.0cm\evensidemargin 0.0cm
#diagram:rules

Start symbols for the grammar:
single_input is a single interactive statement;
file_input is a module or sequence of commands read from an input file;
eval_input is the input for the eval() and input() functions.
NB: compound_stmt in single_input is followed by extra NEWLINE!
single_input: NEWLINE | simple_stmt | compound_stmt NEWLINE
file_input: (NEWLINE | stmt)* ENDMARKER
eval_input: testlist NEWLINE* ENDMARKER

decorator: ’@’ dotted_name [’(’ [arglist] ’)’] NEWLINE
decorators: decorator+
decorated: decorators (classdef | funcdef)
funcdef: ’def’ NAME parameters ’:’ suite
parameters: ’(’ [varargslist] ’)’

75

The Python Language Reference, Release 2.6.2

varargslist: ((fpdef [’=’ test] ’,’)*
(’*’ NAME [’,’ ’**’ NAME] | ’**’ NAME) |
fpdef [’=’ test] (’,’ fpdef [’=’ test])* [’,’])

fpdef: NAME | ’(’ fplist ’)’
fplist: fpdef (’,’ fpdef)* [’,’]

stmt: simple_stmt | compound_stmt
simple_stmt: small_stmt (’;’ small_stmt)* [’;’] NEWLINE
small_stmt: (expr_stmt | print_stmt | del_stmt | pass_stmt | flow_stmt |

import_stmt | global_stmt | exec_stmt | assert_stmt)
expr_stmt: testlist (augassign (yield_expr|testlist) |

(’=’ (yield_expr|testlist))*)
augassign: (’+=’ | ’-=’ | ’*=’ | ’/=’ | ’%=’ | ’&=’ | ’|=’ | ’^=’ |

’<<=’ | ’>>=’ | ’**=’ | ’//=’)
For normal assignments, additional restrictions enforced by the interpreter
print_stmt: ’print’ ([test (’,’ test)* [’,’]] |

’>>’ test [(’,’ test)+ [’,’]])
del_stmt: ’del’ exprlist
pass_stmt: ’pass’
flow_stmt: break_stmt | continue_stmt | return_stmt | raise_stmt | yield_stmt
break_stmt: ’break’
continue_stmt: ’continue’
return_stmt: ’return’ [testlist]
yield_stmt: yield_expr
raise_stmt: ’raise’ [test [’,’ test [’,’ test]]]
import_stmt: import_name | import_from
import_name: ’import’ dotted_as_names
import_from: (’from’ (’.’* dotted_name | ’.’+)

’import’ (’*’ | ’(’ import_as_names ’)’ | import_as_names))
import_as_name: NAME [’as’ NAME]
dotted_as_name: dotted_name [’as’ NAME]
import_as_names: import_as_name (’,’ import_as_name)* [’,’]
dotted_as_names: dotted_as_name (’,’ dotted_as_name)*
dotted_name: NAME (’.’ NAME)*
global_stmt: ’global’ NAME (’,’ NAME)*
exec_stmt: ’exec’ expr [’in’ test [’,’ test]]
assert_stmt: ’assert’ test [’,’ test]

compound_stmt: if_stmt | while_stmt | for_stmt | try_stmt | with_stmt | funcdef | classdef | decorated
if_stmt: ’if’ test ’:’ suite (’elif’ test ’:’ suite)* [’else’ ’:’ suite]
while_stmt: ’while’ test ’:’ suite [’else’ ’:’ suite]
for_stmt: ’for’ exprlist ’in’ testlist ’:’ suite [’else’ ’:’ suite]
try_stmt: (’try’ ’:’ suite

((except_clause ’:’ suite)+
[’else’ ’:’ suite]
[’finally’ ’:’ suite] |

’finally’ ’:’ suite))
with_stmt: ’with’ test [with_var] ’:’ suite
with_var: ’as’ expr
NB compile.c makes sure that the default except clause is last
except_clause: ’except’ [test [(’as’ | ’,’) test]]
suite: simple_stmt | NEWLINE INDENT stmt+ DEDENT

Backward compatibility cruft to support:

76 Chapter 9. Full Grammar specification

The Python Language Reference, Release 2.6.2

[x for x in lambda: True, lambda: False if x()]
even while also allowing:
lambda x: 5 if x else 2
(But not a mix of the two)
testlist_safe: old_test [(’,’ old_test)+ [’,’]]
old_test: or_test | old_lambdef
old_lambdef: ’lambda’ [varargslist] ’:’ old_test

test: or_test [’if’ or_test ’else’ test] | lambdef
or_test: and_test (’or’ and_test)*
and_test: not_test (’and’ not_test)*
not_test: ’not’ not_test | comparison
comparison: expr (comp_op expr)*
comp_op: ’<’|’>’|’==’|’>=’|’<=’|’<>’|’!=’|’in’|’not’ ’in’|’is’|’is’ ’not’
expr: xor_expr (’|’ xor_expr)*
xor_expr: and_expr (’^’ and_expr)*
and_expr: shift_expr (’&’ shift_expr)*
shift_expr: arith_expr ((’<<’|’>>’) arith_expr)*
arith_expr: term ((’+’|’-’) term)*
term: factor ((’*’|’/’|’%’|’//’) factor)*
factor: (’+’|’-’|’~’) factor | power
power: atom trailer* [’**’ factor]
atom: (’(’ [yield_expr|testlist_gexp] ’)’ |

’[’ [listmaker] ’]’ |
’{’ [dictmaker] ’}’ |
’‘’ testlist1 ’‘’ |
NAME | NUMBER | STRING+)

listmaker: test (list_for | (’,’ test)* [’,’])
testlist_gexp: test (gen_for | (’,’ test)* [’,’])
lambdef: ’lambda’ [varargslist] ’:’ test
trailer: ’(’ [arglist] ’)’ | ’[’ subscriptlist ’]’ | ’.’ NAME
subscriptlist: subscript (’,’ subscript)* [’,’]
subscript: ’.’ ’.’ ’.’ | test | [test] ’:’ [test] [sliceop]
sliceop: ’:’ [test]
exprlist: expr (’,’ expr)* [’,’]
testlist: test (’,’ test)* [’,’]
dictmaker: test ’:’ test (’,’ test ’:’ test)* [’,’]

classdef: ’class’ NAME [’(’ [testlist] ’)’] ’:’ suite

arglist: (argument ’,’)* (argument [’,’]
|’*’ test (’,’ argument)* [’,’ ’**’ test]
|’**’ test)

argument: test [gen_for] | test ’=’ test # Really [keyword ’=’] test

list_iter: list_for | list_if
list_for: ’for’ exprlist ’in’ testlist_safe [list_iter]
list_if: ’if’ old_test [list_iter]

gen_iter: gen_for | gen_if
gen_for: ’for’ exprlist ’in’ or_test [gen_iter]
gen_if: ’if’ old_test [gen_iter]

testlist1: test (’,’ test)*

77

The Python Language Reference, Release 2.6.2

not used in grammar, but may appear in "node" passed from Parser to Compiler
encoding_decl: NAME

yield_expr: ’yield’ [testlist]

78 Chapter 9. Full Grammar specification

APPENDIX

A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed inter-
actively in the interpreter.

... The default Python prompt of the interactive shell when entering code for an indented code block or within a
pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilites which
can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library aslib2to3 ; a standalone entry point is provided as
Tools/scripts/2to3 . See2to3 - Automated Python 2 to 3 code translation(in The Python Library Refer-
ence).

abstract base classAbstract Base Classes (abbreviated ABCs) complementduck-typingby providing a way to define
interfaces when other techniques likehasattr() would be clumsy. Python comes with many builtin ABCs
for data structures (in thecollections module), numbers (in thenumbers module), and streams (in theio
module). You can create your own ABC with theabc module.

argument A value passed to a function or method, assigned to a named local variable in the function body. A function
or method may have both positional arguments and keyword arguments in its definition. Positional and keyword
arguments may be variable-length:* accepts or passes (if in the function definition or call) several positional
arguments in a list, while** does the same for keyword arguments in a dictionary.

Any expression may be used within the argument list, and the evaluated value is passed to the local variable.

attribute A value associated with an object which is referenced by name using dotted expressions. For example, if
an objecto has an attributea it would be referenced aso.a.

BDFL Benevolent Dictator For Life, a.k.a.Guido van Rossum, Python’s creator.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the inter-
preter. The bytecode is also cached in.pyc and.pyo files so that executing the same file is faster the second
time (recompilation from source to bytecode can be avoided). This “intermediate language” is said to run on a
virtual machinethat executes the machine code corresponding to each bytecode.

class A template for creating user-defined objects. Class definitions normally contain method definitions which oper-
ate on instances of the class.

classic classAny class which does not inherit fromobject . Seenew-style class. Classic classes will be removed in
Python 3.0.

coercion The implicit conversion of an instance of one type to another during an operation which involves two argu-
ments of the same type. For example,int(3.15) converts the floating point number to the integer3, but in
3+4.5 , each argument is of a different type (one int, one float), and both must be converted to the same type be-
fore they can be added or it will raise aTypeError . Coercion between two operands can be performed with the
coerce builtin function; thus,3+4.5 is equivalent to callingoperator.add(*coerce(3, 4.5)) and

79

http://www.python.org/~guido/

The Python Language Reference, Release 2.6.2

results inoperator.add(3.0, 4.5) . Without coercion, all arguments of even compatible types would
have to be normalized to the same value by the programmer, e.g.,float(3)+4.5 rather than just3+4.5 .

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of
a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root
of -1), often writteni in mathematics orj in engineering. Python has builtin support for complex numbers,
which are written with this latter notation; the imaginary part is written with aj suffix, e.g.,3+1j . To get
access to complex equivalents of themath module, usecmath . Use of complex numbers is a fairly advanced
mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in awith statement by defining__enter__()
and__exit__() methods. SeePEP 343.

CPython The canonical implementation of the Python programming language. The term “CPython” is used in con-
texts when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the@wrapper
syntax. Common examples for decorators areclassmethod() andstaticmethod() .

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equiva-
lent:

def f (. . .):
. . .

f = staticmethod (f)

@staticmethod
def f (. . .):

. . .

Seethe documentation for function definitionfor more about decorators.

descriptor Any new-styleobject which defines the methods__get__() , __set__() , or__delete__() . When
a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using
a.bto get, set or delete an attribute looks up the object namedb in the class dictionary fora, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

For more information about descriptors’ methods, seeImplementing Descriptors.

dictionary An associative array, where arbitrary keys are mapped to values. The use ofdict closely resembles that
for list , but the keys can be any object with a__hash__() function, not just integers. Called a hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the__doc__ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing A pythonic programming style which determines an object’s type by inspection of its method or attribute
signature rather than by explicit relationship to some type object (“If it looks like a duck and quacks like a duck,
it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its
flexibility by allowing polymorphic substitution. Duck-typing avoids tests usingtype() or isinstance() .
(Note, however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employs
hasattr() tests orEAFPprogramming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of manytry andexcept statements. The technique contrasts with theLBYLstyle common
to many other languages such as C.

80 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0343

The Python Language Reference, Release 2.6.2

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are alsostatements
which cannot be used as expressions, such asprint or if . Assignments are also statements, not expressions.

extension moduleA module written in C or C++, using Python’s C API to interact with the core and with user code.

finder An object that tries to find theloader for a module. It must implement a method namedfind_module() .
SeePEP 302for details.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. See alsoargumentandmethod.

__future__ A pseudo module which programmers can use to enable new language features which are not compatible
with the current interpreter. For example, the expression11/4 currently evaluates to2. If the module in which
it is executed had enabledtrue divisionby executing:

from __future__ import division

the expression11/4 would evaluate to2.75 . By importing the__future__ module and evaluating its
variables, you can see when a new feature was first added to the language and when it will become the default:

>>> import __future__
>>> __future__ . division
_Feature((2, 2, 0, ’alpha’, 2), (3, 0, 0, ’alpha’, 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator A function which returns an iterator. It looks like a normal function except that values are returned to the
caller using ayield statement instead of areturn statement. Generator functions often contain one or more
for or while loops whichyield elements back to the caller. The function execution is stopped at theyield
keyword (returning the result) and is resumed there when the next element is requested by calling thenext()
method of the returned iterator.

generator expressionAn expression that returns a generator. It looks like a normal expression followed by afor
expression defining a loop variable, range, and an optionalif expression. The combined expression generates
values for an enclosing function:

>>> sum(i * i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

GIL Seeglobal interpreter lock.

global interpreter lock The lock used by Python threads to assure that only one thread executes in theCPython
virtual machineat a time. This simplifies the CPython implementation by assuring that no two processes can
access the same memory at the same time. Locking the entire interpreter makes it easier for the interpreter
to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor machines. Efforts
have been made in the past to create a “free-threaded” interpreter (one which locks shared data at a much finer
granularity), but so far none have been successful because performance suffered in the common single-processor
case.

hashable An object ishashableif it has a hash value which never changes during its lifetime (it needs a__hash__()
method), and can be compared to other objects (it needs an__eq__() or __cmp__() method). Hashable
objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionar-
ies) are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal,
and their hash value is theirid() .

81

http://www.python.org/dev/peps/pep-0302

The Python Language Reference, Release 2.6.2

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment which
ships with the standard distribution of Python. Good for beginners, it also serves as clear example code for those
wanting to implement a moderately sophisticated, multi-platform GUI application.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the expression11/4 currently eval-
uates to2 in contrast to the2.75 returned by float division. Also calledfloor division. When dividing two
integers the outcome will always be another integer (having the floor function applied to it). However, if one of
the operands is another numeric type (such as afloat), the result will be coerced (seecoercion) to a common
type. For example, an integer divided by a float will result in a float value, possibly with a decimal fraction.
Integer division can be forced by using the// operator instead of the/ operator. See also__future__.

importer An object that both finds and loads a module; both afinderandloaderobject.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the in-
terpreter prompt, immediately execute them and see their results. Just launchpython with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or
inspect modules and packages (rememberhelp(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry
because of the presence of the bytecode compiler. This means that source files can be run directly without explic-
itly creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. See alsointeractive.

iterable A container object capable of returning its members one at a time. Examples of iterables include all sequence
types (such aslist , str , andtuple) and some non-sequence types likedict andfile and objects of any
classes you define with an__iter__() or __getitem__() method. Iterables can be used in afor loop
and in many other places where a sequence is needed (zip() , map() , ...). When an iterable object is passed
as an argument to the builtin functioniter() , it returns an iterator for the object. This iterator is good for one
pass over the set of values. When using iterables, it is usually not necessary to calliter() or deal with iterator
objects yourself. Thefor statement does that automatically for you, creating a temporary unnamed variable to
hold the iterator for the duration of the loop. See alsoiterator, sequence, andgenerator.

iterator An object representing a stream of data. Repeated calls to the iterator’snext() method return successive
items in the stream. When no more data are available aStopIteration exception is raised instead. At this
point, the iterator object is exhausted and any further calls to itsnext() method just raiseStopIteration
again. Iterators are required to have an__iter__() method that returns the iterator object itself so every
iterator is also iterable and may be used in most places where other iterables are accepted. One notable exception
is code which attempts multiple iteration passes. A container object (such as alist) produces a fresh new
iterator each time you pass it to theiter() function or use it in afor loop. Attempting this with an iterator
will just return the same exhausted iterator object used in the previous iteration pass, making it appear like an
empty container.

More information can be found inIterator Types(in The Python Library Reference).

keyword argument Arguments which are preceded with avariable_name= in the call. The variable name des-
ignates the local name in the function to which the value is assigned.** is used to accept or pass a dictionary
of keyword arguments. Seeargument.

lambda An anonymous inline function consisting of a singleexpressionwhich is evaluated when the function is
called. The syntax to create a lambda function islambda [arguments]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with theEAFPapproach and is characterized by the presence of manyif statements.

list A built-in Pythonsequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements are O(1).

82 Appendix A. Glossary

The Python Language Reference, Release 2.6.2

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the
results.result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates a list of
strings containing even hex numbers (0x..) in the range from 0 to 255. Theif clause is optional. If omitted, all
elements inrange(256) are processed.

loader An object that loads a module. It must define a method namedload_module() . A loader is typically
returned by afinder. SeePEP 302for details.

mapping A container object (such asdict) which supports arbitrary key lookups using the special method
__getitem__() .

metaclassThe class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

More information can be found inCustomizing class creation.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its firstargument(which is usually calledself). Seefunctionandnested
scope.

mutable Mutable objects can change their value but keep theirid() . See alsoimmutable.

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for example,
time.localtime() returns a tuple-like object where theyear is accessible either with an index such as
t[0] or with a named attribute liket.tm_year).

A named tuple can be a built-in type such astime.struct_time , or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple() . The latter approach automatically provides extra features such as a self-
documenting representation likeEmployee(name=’jones’, title=’programmer’) .

namespaceThe place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and builtin namespaces as well as nested namespaces in objects (in methods). Namespaces support mod-
ularity by preventing naming conflicts. For instance, the functions__builtin__.open() andos.open()
are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear
which module implements a function. For instance, writingrandom.seed() or itertools.izip()
makes it clear that those functions are implemented by therandom anditertools modules, respectively.

nested scopeThe ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read
and write in the innermost scope. Likewise, global variables read and write to the global namespace.

new-style classAny class which inherits fromobject . This includes all built-in types likelist and dict .
Only new-style classes can use Python’s newer, versatile features like__slots__ , descriptors, properties,
and__getattribute__() .

More information can be found inNew-style and classic classes.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

positional argument The arguments assigned to local names inside a function or method, determined by the order
in which they were given in the call.* is used to either accept multiple positional arguments (when in the
definition), or pass several arguments as a list to a function. Seeargument.

83

http://www.python.org/dev/peps/pep-0302

The Python Language Reference, Release 2.6.2

Python 3000 Nickname for the next major Python version, 3.0 (coined long ago when the release of version 3 was
something in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather
than implementing code using concepts common to other languages. For example, a common idiom in Python
is to loop over all elements of an iterable using afor statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range (len (food)):
print food[i]

As opposed to the cleaner, Pythonic method:

for piece in food:
print piece

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of theCPython
implementation. Thesys module defines agetrefcount() function that programmers can call to return
the reference count for a particular object.

__slots__A declaration inside anew-style classthat saves memory by pre-declaring space for instance attributes and
eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best
reserved for rare cases where there are large numbers of instances in a memory-critical application.

sequenceAn iterablewhich supports efficient element access using integer indices via the__getitem__() special
method and defines alen() method that returns the length of the sequence. Some built-in sequence types are
list , str , tuple , andunicode . Note thatdict also supports__getitem__() and__len__() , but
is considered a mapping rather than a sequence because the lookups use arbitraryimmutablekeys rather than
integers.

slice An object usually containing a portion of asequence. A slice is created using the subscript notation,
[] with colons between numbers when several are given, such as invariable_name[1:3:5] . The
bracket (subscript) notation usesslice objects internally (or in older versions,__getslice__() and
__setslice__()).

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addition.
Such methods have names starting and ending with double underscores. Special methods are documented in
Special method names.

statement A statement is part of a suite (a “block” of code). A statement is either anexpressionor a one of several
constructs with a keyword, such asif , while or print .

triple-quoted string A string which is bound by three instances of either a quotation mark (“) or an apostrophe
(‘). While they don’t provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they can
span multiple lines without the use of the continuation character, making them especially useful when writing
docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its__class__ attribute or can be retrieved withtype(obj) .

virtual machine A computer defined entirely in software. Python’s virtual machine executes thebytecodeemitted by
the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing “import this ” at the interactive prompt.

84 Appendix A. Glossary

APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated fromreStructuredTextsources bySphinx, a document processor specifically written
for the Python documentation.

Development of the documentation and its toolchain takes place on thedocs@python.orgmailing list. We’re always
looking for volunteers wanting to help with the docs, so feel free to send a mail there!

Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;

• theDocutilsproject for creating reStructuredText and the Docutils suite;

• Fredrik Lundh for hisAlternative Python Referenceproject from which Sphinx got many good ideas.

SeeReporting Bugs in Pythonfor information how to report bugs in this documentation, or Python itself.

B.1 Contributors to the Python Documentation

This section lists people who have contributed in some way to the Python documentation. It is probably not complete
– if you feel that you or anyone else should be on this list, please let us know (send email todocs@python.org), and
we’ll be glad to correct the problem.

Aahz, Michael Abbott, Steve Alexander, Jim Ahlstrom, Fred Allen, A. Amoroso, Pehr Anderson, Oliver Andrich,
Heidi Annexstad, Jesús Cea Avión, Daniel Barclay, Chris Barker, Don Bashford, Anthony Baxter, Alexander Be-
lopolsky, Bennett Benson, Jonathan Black, Robin Boerdijk, Michal Bozon, Aaron Brancotti, Georg Brandl, Keith
Briggs, Ian Bruntlett, Lee Busby, Lorenzo M. Catucci, Carl Cerecke, Mauro Cicognini, Gilles Civario, Mike Clark-
son, Steve Clift, Dave Cole, Matthew Cowles, Jeremy Craven, Andrew Dalke, Ben Darnell, L. Peter Deutsch, Robert
Donohue, Fred L. Drake, Jr., Josip Dzolonga, Jeff Epler, Michael Ernst, Blame Andy Eskilsson, Carey Evans, Martijn
Faassen, Carl Feynman, Dan Finnie, Hernán Martínez Foffani, Stefan Franke, Jim Fulton, Peter Funk, Lele Gaifax,
Matthew Gallagher, Gabriel Genellina, Ben Gertzfield, Nadim Ghaznavi, Jonathan Giddy, Shelley Gooch, Nathaniel
Gray, Grant Griffin, Thomas Guettler, Anders Hammarquist, Mark Hammond, Harald Hanche-Olsen, Manus Hand,
Gerhard Häring, Travis B. Hartwell, Tim Hatch, Janko Hauser, Thomas Heller, Bernhard Herzog, Magnus L. Hetland,
Konrad Hinsen, Stefan Hoffmeister, Albert Hofkamp, Gregor Hoffleit, Steve Holden, Thomas Holenstein, Gerrit Holl,
Rob Hooft, Brian Hooper, Randall Hopper, Michael Hudson, Eric Huss, Jeremy Hylton, Roger Irwin, Jack Jansen,
Philip H. Jensen, Pedro Diaz Jimenez, Kent Johnson, Lucas de Jonge, Andreas Jung, Robert Kern, Jim Kerr, Jan
Kim, Greg Kochanski, Guido Kollerie, Peter A. Koren, Daniel Kozan, Andrew M. Kuchling, Dave Kuhlman, Erno
Kuusela, Thomas Lamb, Detlef Lannert, Piers Lauder, Glyph Lefkowitz, Robert Lehmann, Marc-André Lemburg,
Ross Light, Ulf A. Lindgren, Everett Lipman, Mirko Liss, Martin von Löwis, Fredrik Lundh, Jeff MacDonald, John
Machin, Andrew MacIntyre, Vladimir Marangozov, Vincent Marchetti, Laura Matson, Daniel May, Rebecca Mc-
Creary, Doug Mennella, Paolo Milani, Skip Montanaro, Paul Moore, Ross Moore, Sjoerd Mullender, Dale Nagata,
Ng Pheng Siong, Koray Oner, Tomas Oppelstrup, Denis S. Otkidach, Zooko O’Whielacronx, Shriphani Palakodety,
William Park, Joonas Paalasmaa, Harri Pasanen, Bo Peng, Tim Peters, Benjamin Peterson, Christopher Petrilli, Justin

85

http://docutils.sf.net/rst.html
mailto:docs@python.org
http://docutils.sf.net/
http://effbot.org/zone/pyref.htm
mailto:docs@python.org

The Python Language Reference, Release 2.6.2

D. Pettit, Chris Phoenix, François Pinard, Paul Prescod, Eric S. Raymond, Edward K. Ream, Sean Reifschneider,
Bernhard Reiter, Armin Rigo, Wes Rishel, Armin Ronacher, Jim Roskind, Guido van Rossum, Donald Wallace Rouse
II, Mark Russell, Nick Russo, Chris Ryland, Constantina S., Hugh Sasse, Bob Savage, Scott Schram, Neil Scheme-
nauer, Barry Scott, Joakim Sernbrant, Justin Sheehy, Charlie Shepherd, Michael Simcich, Ionel Simionescu, Michael
Sloan, Gregory P. Smith, Roy Smith, Clay Spence, Nicholas Spies, Tage Stabell-Kulo, Frank Stajano, Anthony Starks,
Greg Stein, Peter Stoehr, Mark Summerfield, Reuben Sumner, Kalle Svensson, Jim Tittsler, David Turner, Ville Vainio,
Martijn Vries, Charles G. Waldman, Greg Ward, Barry Warsaw, Corran Webster, Glyn Webster, Bob Weiner, Eddy
Welbourne, Jeff Wheeler, Mats Wichmann, Gerry Wiener, Timothy Wild, Collin Winter, Blake Winton, Dan Wolfe,
Steven Work, Thomas Wouters, Ka-Ping Yee, Rory Yorke, Moshe Zadka, Milan Zamazal, Cheng Zhang.

It is only with the input and contributions of the Python community that Python has such wonderful documentation –
Thank You!

86 Appendix B. About these documents

APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see
http://www.zope.com/). In 2001, the Python Software Foundation (PSF, seehttp://www.python.org/psf/) was formed,
a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a spon-
soring member of the PSF.

All Python releases are Open Source (seehttp://www.opensource.org/for the Open Source Definition). Historically,
most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-2003 PSF yes
2.3 2.2.2 2002-2003 PSF yes
2.3.1 2.3 2002-2003 PSF yes
2.3.2 2.3.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
2.3.4 2.3.3 2004 PSF yes
2.3.5 2.3.4 2005 PSF yes
2.4 2.3 2004 PSF yes

Continued on next page

87

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

The Python Language Reference, Release 2.6.2

Table C.1 – continued from previous page
2.4.1 2.4 2005 PSF yes
2.4.2 2.4.1 2005 PSF yes
2.4.3 2.4.2 2006 PSF yes
2.4.4 2.4.3 2006 PSF yes
2.5 2.4 2006 PSF yes
2.5.1 2.5 2007 PSF yes
2.5.2 2.5.1 2008 PSF yes
2.5.3 2.5.2 2008 PSF yes
2.6 2.5 2008 PSF yes
2.6.1 2.6 2008 PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.6.2

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or Or-
ganization (“Licensee”) accessing and otherwise using Python 2.6.2 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.6.2 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2009 Python Software
Foundation; All Rights Reserved” are retained in Python 2.6.2 alone or in any derivative version prepared by
Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.6.2 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 2.6.2.

4. PSF is making Python 2.6.2 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 2.6.2 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.6.2 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 2.6.2, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint
venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

8. By copying, installing or otherwise using Python 2.6.2, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

88 Appendix C. History and License

The Python Language Reference, Release 2.6.2

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0 BEOPEN PYTHON OPEN SOURCE LICENSE
AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,
Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee
a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-
fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.htmlmay be used according to the permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an office
at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Licensee”)
accessing and otherwise using Python 1.6.1 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided, however, that
CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyright © 1995-2001 Corporation for
National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement, Licensee may substitute the
following text (omitting the quotes): “Python 1.6.1 is made available subject to the terms and conditions in
CNRI’s License Agreement. This Agreement together with Python 1.6.1 may be located on the Internet using
the following unique, persistent identifier (known as a handle): 1895.22/1013. This Agreement may also be
obtained from a proxy server on the Internet using the following URL:http://hdl.handle.net/1895.22/1013.”

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,

C.2. Terms and conditions for accessing or otherwise using Python 89

http://www.pythonlabs.com/logos.html
http://hdl.handle.net/1895.22/1013

The Python Language Reference, Release 2.6.2

CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, including
without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply, by the
law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstanding the
foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable material that
was previously distributed under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or with respect to Paragraphs 4, 5,
and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between CNRI and Licensee. This License Agreement does not grant
permission to use CNRI trademarks or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python 1.6.1,
Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 Copyright © 1991 - 1995, Stichting
Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated
in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download fromhttp://www.math.keio.ac.jp/ matu-
moto/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)

90 Appendix C. History and License

http://www.math.keio.ac.jp/

The Python Language Reference, Release 2.6.2

or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

C.3.2 Sockets

The socket module uses the functions,getaddrinfo() , andgetnameinfo() , which are coded in separate
source files from the WIDE Project,http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors

C.3. Licenses and Acknowledgements for Incorporated Software 91

http://www.wide.ad.jp/

The Python Language Reference, Release 2.6.2

may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ‘‘AS IS’’ AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for thefpectl module includes the following notice:

/ Copyright (c) 1996. \

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |

\ endorsement purposes. /

92 Appendix C. History and License

The Python Language Reference, Release 2.6.2

C.3.4 MD5 message digest algorithm

The source code for themd5module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided ’as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5);

added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 lpd Original version.

C.3.5 Asynchronous socket services

Theasynchat andasyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

C.3. Licenses and Acknowledgements for Incorporated Software 93

The Python Language Reference, Release 2.6.2

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie management

TheCookie module contains the following notice:

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.7 Profiling

Theprofile andpstats modules contain the following notice:

Copyright 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind

Permission to use, copy, modify, and distribute this Python software

94 Appendix C. History and License

The Python Language Reference, Release 2.6.2

and its associated documentation for any purpose (subject to the
restriction in the following sentence) without fee is hereby granted,
provided that the above copyright notice appears in all copies, and
that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of InfoSeek not be used in
advertising or publicity pertaining to distribution of the software
without specific, written prior permission. This permission is
explicitly restricted to the copying and modification of the software
to remain in Python, compiled Python, or other languages (such as C)
wherein the modified or derived code is exclusively imported into a
Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.8 Execution tracing

Thetrace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O’Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3. Licenses and Acknowledgements for Incorporated Software 95

The Python Language Reference, Release 2.6.2

C.3.9 UUencode and UUdecode functions

Theuu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with python standard

C.3.10 XML Remote Procedure Calls

Thexmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY

96 Appendix C. History and License

The Python Language Reference, Release 2.6.2

DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.11 test_epoll

Thetest_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.12 Select kqueue

Theselect and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

C.3. Licenses and Acknowledgements for Incorporated Software 97

The Python Language Reference, Release 2.6.2

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

98 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2008 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

SeeHistory and Licensefor complete license and permissions information.

99

The Python Language Reference, Release 2.6.2

100 Appendix D. Copyright

INDEX

Symbols
*

statement,71
**

statement,71
..., 79
__abs__() (object method),34
__add__() (object method),33
__all__ (optional module attribute),64
__and__() (object method),33
__bases__ (class attribute),21
__builtin__

module,66, 73
__builtins__,66
__call__() (object method),30, 50
__class__ (instance attribute),21
__cmp__() (object method),26
__coerce__() (object method),34
__complex__() (object method),34
__contains__() (object method),31
__debug__,60
__del__() (object method),24
__delattr__() (object method),27
__delete__() (object method),27
__delitem__() (object method),31
__delslice__() (object method),32
__dict__ (class attribute),21
__dict__ (function attribute),19
__dict__ (instance attribute),21, 27
__dict__ (module attribute),20
__div__() (object method),33
__divmod__() (object method),33
__doc__ (class attribute),21
__doc__ (function attribute),19
__doc__ (method attribute),19
__doc__ (module attribute),20
__enter__() (object method),36
__eq__() (object method),25
__exit__() (object method),36
__file__,64
__file__ (module attribute),20

__float__() (object method),34
__floordiv__() (object method),33
__future__,81
__ge__() (object method),25
__get__() (object method),27
__getattr__() (object method),26
__getattribute__() (object method),27
__getitem__() (mapping object method),24
__getitem__() (object method),30
__getslice__() (object method),31
__gt__() (object method),25
__hash__() (object method),26
__hex__() (object method),34
__iadd__() (object method),34
__iand__() (object method),34
__idiv__() (object method),34
__ifloordiv__() (object method),34
__ilshift__() (object method),34
__imod__() (object method),34
__import__

built-in function,64
__imul__() (object method),34
__index__() (object method),34
__init__() (object method),20, 24
__int__() (object method),34
__invert__() (object method),34
__ior__() (object method),34
__ipow__() (object method),34
__irshift__() (object method),34
__isub__() (object method),34
__iter__() (object method),31
__itruediv__() (object method),34
__ixor__() (object method),34
__le__() (object method),25
__len__() (mapping object method),26
__len__() (object method),30
__loader__,64
__long__() (object method),34
__lshift__() (object method),33
__lt__() (object method),25
__main__

module,40, 73

101

The Python Language Reference, Release 2.6.2

__metaclass__ (built-in variable),30
__mod__() (object method),33
__module__ (class attribute),21
__module__ (function attribute),19
__module__ (method attribute),19
__mul__() (object method),33
__name__,64
__name__ (class attribute),21
__name__ (function attribute),19
__name__ (method attribute),19
__name__ (module attribute),20
__ne__() (object method),25
__neg__() (object method),34
__new__() (object method),24
__nonzero__() (object method),26, 30
__oct__() (object method),34
__or__() (object method),33
__package__,64
__path__,63, 64
__pos__() (object method),34
__pow__() (object method),33
__radd__() (object method),33
__rand__() (object method),33
__rcmp__() (object method),26
__rdiv__() (object method),33
__rdivmod__() (object method),33
__repr__() (object method),25
__reversed__() (object method),31
__rfloordiv__() (object method),33
__rlshift__() (object method),33
__rmod__() (object method),33
__rmul__() (object method),33
__ror__() (object method),33
__rpow__() (object method),33
__rrshift__() (object method),33
__rshift__() (object method),33
__rsub__() (object method),33
__rtruediv__() (object method),33
__rxor__() (object method),33
__set__() (object method),27
__setattr__() (object method),27
__setitem__() (object method),31
__setslice__() (object method),32
__slots__,84
__slots__ (built-in variable),28
__str__() (object method),25
__sub__() (object method),33
__truediv__() (object method),33
__unicode__() (object method),26
__xor__() (object method),33
>>>, 79
2to3,79

A
abs

built-in function,34
abstract base class,79
addition,51
and

bitwise,52
operator,54

anonymous
function,54

argument,79
function,18

arithmetic
conversion,43
operation, binary,51
operation, unary,51

array
module,18

ASCII, 4, 9, 10, 13, 17
assert

statement,60
AssertionError

exception,60
assertions

debugging,60
assignment

attribute,57, 58
augmented,59
class attribute,21
class instance attribute,21
slicing,58
statement,17, 57
subscription,58
target list,58

atom,43
attribute,16, 79

assignment,57, 58
assignment, class,21
assignment, class instance,21
class,21
class instance,21
deletion,60
generic special,16
reference,47
special,16

AttributeError
exception,47

augmented
assignment,59

B
back-quotes,25, 45
backslash character,6
backward

102 Index

The Python Language Reference, Release 2.6.2

quotes,25, 45
BDFL, 79
binary

arithmetic operation,51
bitwise operation,52

binary literal,11
binding

global name,65
name,39, 57, 63, 64, 70, 71

bitwise
and,52
operation, binary,52
operation, unary,51
or, 52
xor, 52

blank line,7
block,39

code,39
BNF, 4, 43
Boolean

object,16
operation,54

break
statement,62, 68, 69

bsddb
module,18

built-in
method,20

built-in function
__import__,64
abs,34
call, 50
chr,17
cmp,26
compile,66
complex,34
divmod,33
eval,66, 74
execfile,66
float,34
globals,66
hash,26
hex,34
id, 15
input,74
int, 34
len,17, 18, 30
locals,66
long,34
object,20, 50
oct,34
open,21
ord,17
pow,33

range,68
raw_input,74
repr,25, 45, 57
slice,22
str,25, 45
type,15
unichr,17
unicode,17, 26

built-in method
call, 50
object,20, 50

byte,17
bytecode,21, 79

C
C, 9

language,16, 17, 20, 52
call, 48

built-in function,50
built-in method,50
class instance,50
class object,20, 21, 50
function,18, 50
instance,30, 50
method,50
procedure,57
user-defined function,50

callable
object,18, 48

chaining
comparisons,52

character,17, 48
character set,17
chr

built-in function,17
class,79

attribute,21
attribute assignment,21
classic,23
constructor,24
definition,61, 71
instance,21
name,71
new-style,23
object,20, 21, 50, 71
old-style,23
statement,71

class instance
attribute,21
attribute assignment,21
call, 50
object,20, 21, 50

class object
call, 20, 21, 50

Index 103

The Python Language Reference, Release 2.6.2

classic class,79
clause,67
close() (generator method),46
cmp

built-in function,26
co_argcount (code object attribute),22
co_cellvars (code object attribute),22
co_code (code object attribute),22
co_consts (code object attribute),22
co_filename (code object attribute),22
co_firstlineno (code object attribute),22
co_flags (code object attribute),22
co_freevars (code object attribute),22
co_lnotab (code object attribute),22
co_name (code object attribute),22
co_names (code object attribute),22
co_nlocals (code object attribute),22
co_stacksize (code object attribute),22
co_varnames (code object attribute),22
code

block,39
object,21

coercion,79
comma,44

trailing, 54, 61
command line,73
comment,6
comparison,52

string,17
comparisons,25, 26

chaining,52
compile

built-in function,66
complex

built-in function,34
literal, 11
number,17
object,17

complex number,80
compound

statement,67
comprehensions

list, 44
Conditional

expression,54
constant,9
constructor

class,24
container,15, 21
context manager,36, 80
continue

statement,62, 68, 69
conversion

arithmetic,43

string,25, 45, 57
coroutine,46
CPython,80

D
dangling

else,67
data,15

type,16
type, immutable,44

datum,45
dbm

module,18
debugging

assertions,60
decimal literal,11
decorator,80
DEDENT token,7, 67
def

statement,70
default

parameter value,71
definition

class,61, 71
function,61, 70

del
statement,17, 24, 60

delete,17
deletion

attribute,60
target,60
target list,60

delimiters,12
descriptor,80
destructor,24, 58
dictionary,80

display,45
object,18, 21, 26, 45, 47, 58

display
dictionary,45
list, 44
tuple,44

division,51
divmod

built-in function,33
docstring,71, 80
documentation string,22
duck-typing,80

E
EAFP,80
EBCDIC,17
elif

keyword,68

104 Index

The Python Language Reference, Release 2.6.2

Ellipsis
object,16

else
dangling,67
keyword,62, 68, 69

empty
list, 44
tuple,17, 44

encodings,6
environment,39
error handling,40
errors,40
escape sequence,9
eval

built-in function,66, 74
evaluation

order,55
exc_info (in module sys),22
exc_traceback (in module sys),22, 69
exc_type (in module sys),69
exc_value (in module sys),69
except

keyword,69
exception,40, 62

AssertionError,60
AttributeError,47
GeneratorExit,46
handler,22
ImportError,63, 64
NameError,43
raising,62
RuntimeError,61
StopIteration,46, 61
TypeError,51
ValueError,52
ZeroDivisionError,51

exception handler,40
exclusive

or, 52
exec

statement,66
execfile

built-in function,66
execution

frame,39, 71
restricted,40
stack,22

execution model,39
expression,43, 80

Conditional,54
generator,45
lambda,54
list, 54, 57, 58
statement,57

yield, 46
extended

slicing,48
extended print statement,61
extended slicing,17
extension

module,16
extension module,81

F
f_back (frame attribute),22
f_builtins (frame attribute),22
f_code (frame attribute),22
f_exc_traceback (frame attribute),22
f_exc_type (frame attribute),22
f_exc_value (frame attribute),22
f_globals (frame attribute),22
f_lasti (frame attribute),22
f_lineno (frame attribute),22
f_locals (frame attribute),22
f_restricted (frame attribute),22
f_trace (frame attribute),22
False,16
file

object,21, 74
finally

keyword,61, 62, 69
find_module

finder,63
finder,63, 81

find_module,63
float

built-in function,34
floating point

number,17
object,17

floating point literal,11
for

statement,62, 68
form

lambda,54, 71
frame

execution,39, 71
object,22

free
variable,39, 60

from
keyword,63
statement,39

frozenset
object,18

func_closure (function attribute),19
func_code (function attribute),19
func_defaults (function attribute),19

Index 105

The Python Language Reference, Release 2.6.2

func_dict (function attribute),19
func_doc (function attribute),19
func_globals (function attribute),19
function,81

anonymous,54
argument,18
call, 18, 50
call, user-defined,50
definition,61, 70
generator,46, 61
name,70
object,18, 20, 50, 70
user-defined,18

future
statement,64

G
garbage collection,15, 81
gdbm

module,18
generator,81

expression,45
function,20, 46, 61
iterator,20, 61
object,22, 45, 46

generator expression,81
GeneratorExit

exception,46
generic

special attribute,16
GIL, 81
global

name binding,65
namespace,19
statement,58, 60, 65

global interpreter lock,81
globals

built-in function,66
grammar,4
grouping,7

H
handle an exception,40
handler

exception,22
hash

built-in function,26
hash character,6
hashable,81
hex

built-in function,34
hexadecimal literal,11
hierarchy

type,16

I
id

built-in function,15
identifier,8, 43
identity

test,53
identity of an object,15
IDLE, 81
if

statement,68
im_class (method attribute),19
im_func (method attribute),19
im_self (method attribute),19
imaginary literal,11
immutable,82

data type,44
object,17, 44, 45

immutable object,15
immutable sequence

object,17
immutable types

subclassing,24
import

statement,20, 63
importer,82
ImportError

exception,63, 64
in

keyword,68
operator,53

inclusive
or, 52

INDENT token,7
indentation,7
index operation,17
indices() (slice method),23
inheritance,71
input,74

built-in function,74
raw,74

instance
call, 30, 50
class,21
object,20, 21, 50

int
built-in function,34

integer,17
object,16
representation,16

integer division,82
integer literal,11
interactive,82
interactive mode,73
internal type,21

106 Index

The Python Language Reference, Release 2.6.2

interpreted,82
interpreter,73
inversion,51
invocation,18
is

operator,53
is not

operator,53
item

sequence,47
string,48

item selection,17
iterable,82
iterator,82

J
Java

language,17

K
key,45
key/datum pair,45
keyword,8

elif, 68
else,62, 68, 69
except,69
finally, 61, 62, 69
from, 63
in, 68
yield, 46

keyword argument,82

L
lambda,82

expression,54
form, 54, 71

language
C, 16, 17, 20, 52
Java,17
Pascal,68

last_traceback (in module sys),22
LBYL, 82
leading whitespace,7
len

built-in function,17, 18, 30
lexical analysis,5
lexical definitions,4
line continuation,6
line joining,5, 6
line structure,5
list, 82

assignment, target,58
comprehensions,44
deletion target,60

display,44
empty,44
expression,54, 57, 58
object,18, 44, 47, 48, 58
target,58, 68

list comprehension,82
literal, 9, 44
load_module

loader,63
loader,63, 83

load_module,63
locals

built-in function,66
logical line,5
long

built-in function,34
long integer

object,16
long integer literal,11
loop

over mutable sequence,68
statement,62, 68

loop control
target,62

M
makefile() (socket method),21
mangling

name,44
mapping,83

object,18, 21, 47, 58
membership

test,53
metaclass,83
method,83

built-in, 20
call, 50
object,19, 20, 50
user-defined,19

minus,51
module

__builtin__,66, 73
__main__,40, 73
array,18
bsddb,18
dbm,18
extension,16
gdbm,18
importing,63
namespace,20
object,20, 47
sys,61, 69, 73

modulo,51
multiplication,51

Index 107

The Python Language Reference, Release 2.6.2

mutable,83
object,17, 57, 58

mutable object,15
mutable sequence

loop over,68
object,17

N
name,8, 39, 43

binding,39, 57, 63, 64, 70, 71
binding, global,65
class,71
function,70
mangling,44
rebinding,57
unbinding,60

named tuple,83
NameError

exception,43
NameError (built-in exception),39
names

private,44
namespace,39, 83

global,19
module,20

negation,51
nested scope,83
new-style class,83
newline

suppression,61
NEWLINE token,5, 67
next() (generator method),46
None

object,16, 57
not

operator,54
not in

operator,53
notation,4
NotImplemented

object,16
null

operation,60
number,11

complex,17
floating point,17

numeric
object,16, 21

numeric literal,11

O
object,15, 83

Boolean,16
built-in function,20, 50

built-in method,20, 50
callable,18, 48
class,20, 21, 50, 71
class instance,20, 21, 50
code,21
complex,17
dictionary,18, 21, 26, 45, 47, 58
Ellipsis,16
file, 21, 74
floating point,17
frame,22
frozenset,18
function,18, 20, 50, 70
generator,22, 45, 46
immutable,17, 44, 45
immutable sequence,17
instance,20, 21, 50
integer,16
list, 18, 44, 47, 48, 58
long integer,16
mapping,18, 21, 47, 58
method,19, 20, 50
module,20, 47
mutable,17, 57, 58
mutable sequence,17
None,16, 57
NotImplemented,16
numeric,16, 21
plain integer,16
recursive,45
sequence,17, 21, 47, 48, 53, 58, 68
set,18
set type,18
slice,31
string,17, 47, 48
traceback,22, 62, 69
tuple,17, 47, 48, 54
unicode,17
user-defined function,18, 50, 70
user-defined method,19

oct
built-in function,34

octal literal,11
open

built-in function,21
operation

binary arithmetic,51
binary bitwise,52
Boolean,54
null, 60
shifting,52
unary arithmetic,51
unary bitwise,51

operator

108 Index

The Python Language Reference, Release 2.6.2

and,54
in, 53
is, 53
is not,53
not,54
not in,53
or, 54
overloading,24
precedence,55

operators,12
or

bitwise,52
exclusive,52
inclusive,52
operator,54

ord
built-in function,17

order
evaluation,55

output,57, 61
standard,57, 61

OverflowError (built-in exception),16
overloading

operator,24

P
package,63
parameter

value, default,71
parenthesized form,44
parser,5
Pascal

language,68
pass

statement,60
physical line,5, 6, 9
plain integer

object,16
plain integer literal,11
plus,51
popen() (in module os),21
positional argument,83
pow

built-in function,33
precedence

operator,55
primary,47
print

statement,25, 60
private

names,44
procedure

call, 57
program,73

Python 3000,83
Python Enhancement Proposals

PEP 0255,62
PEP 0342,47, 62
PEP 0343,36, 70
PEP 236,65
PEP 302,63, 81, 83
PEP 328,64
PEP 343,80

Pythonic,84

Q
quotes

backward,25, 45
reverse,25, 45

R
raise

statement,62
raise an exception,40
raising

exception,62
range

built-in function,68
raw input,74
raw string,9
raw_input

built-in function,74
readline() (file method),74
rebinding

name,57
recursive

object,45
reference

attribute,47
reference count,84
reference counting,15
relative

import,64
repr

built-in function,25, 45, 57
representation

integer,16
reserved word,8
restricted

execution,40
return

statement,61, 69
reverse

quotes,25, 45
RuntimeError

exception,61

Index 109

The Python Language Reference, Release 2.6.2

S
scope,39
send() (generator method),46
sequence,84

item,47
object,17, 21, 47, 48, 53, 58, 68

set
object,18

set type
object,18

shifting
operation,52

simple
statement,57

singleton
tuple,17

slice,48, 84
built-in function,22
object,31

slicing,17, 48
assignment,58
extended,48

source character set,6
space,7
special

attribute,16
attribute, generic,16

special method,84
stack

execution,22
trace,22

standard
output,57, 61

Standard C,9
standard input,73
start (slice object attribute),23, 48
statement,71, 84

*, 71
**, 71
assert,60
assignment,17, 57
assignment, augmented,59
break,62, 68, 69
class,71
compound,67
continue,62, 68, 69
def,70
del,17, 24, 60
exec,66
expression,57
for, 62, 68
from, 39
future,64
global,58, 60, 65

if, 68
import,20, 63
loop,62, 68
pass,60
print, 25, 60
raise,62
return,61, 69
simple,57
try, 22, 69
while, 62, 68
with, 36, 70
yield, 61

statement grouping,7
stderr (in module sys),21
stdin (in module sys),21
stdio,21
stdout (in module sys),21, 61
step (slice object attribute),23, 48
stop (slice object attribute),23, 48
StopIteration

exception,46, 61
str

built-in function,25, 45
string

comparison,17
conversion,25, 45, 57
item,48
object,17, 47, 48
Unicode,9

string literal,9
subclassing

immutable types,24
subscription,17, 18, 47

assignment,58
subtraction,52
suite,67
suppression

newline,61
syntax,4, 43
sys

module,61, 69, 73
sys.exc_info,22
sys.exc_traceback,22
sys.last_traceback,22
sys.meta_path,63
sys.modules,63
sys.path,63
sys.path_hooks,63
sys.path_importer_cache,63
sys.stderr,21
sys.stdin,21
sys.stdout,21
SystemExit (built-in exception),41

110 Index

The Python Language Reference, Release 2.6.2

T
tab,7
target,58

deletion,60
list, 58, 68
list assignment,58
list, deletion,60
loop control,62

tb_frame (traceback attribute),22
tb_lasti (traceback attribute),22
tb_lineno (traceback attribute),22
tb_next (traceback attribute),22
termination model,41
test

identity,53
membership,53

throw() (generator method),46
token,5
trace

stack,22
traceback

object,22, 62, 69
trailing

comma,54, 61
triple-quoted string,9, 84
True,16
try

statement,22, 69
tuple

display,44
empty,17, 44
object,17, 47, 48, 54
singleton,17

type,16, 84
built-in function,15
data,16
hierarchy,16
immutable data,44

type of an object,15
TypeError

exception,51
types, internal,21

U
unary

arithmetic operation,51
bitwise operation,51

unbinding
name,60

UnboundLocalError,39
unichr

built-in function,17
Unicode,17
unicode

built-in function,17, 26
object,17

Unicode Consortium,9
UNIX, 73
unreachable object,15
unrecognized escape sequence,10
user-defined

function,18
function call,50
method,19

user-defined function
object,18, 50, 70

user-defined method
object,19

V
value

default parameter,71
value of an object,15
ValueError

exception,52
values

writing, 57, 61
variable

free,39, 60
virtual machine,84

W
while

statement,62, 68
whitespace,7
with

statement,36, 70
writing

values,57, 61

X
xor

bitwise,52

Y
yield

expression,46
keyword,46
statement,61

Z
Zen of Python,84
ZeroDivisionError

exception,51

Index 111

	Introduction
	Alternate Implementations
	Notation

	Lexical analysis
	Line structure
	Other tokens
	Identifiers and keywords
	Literals
	Operators
	Delimiters

	Data model
	Objects, values and types
	The standard type hierarchy
	New-style and classic classes
	Special method names

	Execution model
	Naming and binding
	Exceptions

	Expressions
	Arithmetic conversions
	Atoms
	Primaries
	The power operator
	Unary arithmetic and bitwise operations
	Binary arithmetic operations
	Shifting operations
	Binary bitwise operations
	Comparisons
	Boolean operations
	Lambdas
	Expression lists
	Evaluation order
	Summary

	Simple statements
	Expression statements
	Assignment statements
	The assert statement
	The pass statement
	The del statement
	The print statement
	The return statement
	The yield statement
	The raise statement
	The break statement
	The continue statement
	The import statement
	The global statement
	The exec statement

	Compound statements
	The if statement
	The while statement
	The for statement
	The try statement
	The with statement
	Function definitions
	Class definitions

	Top-level components
	Complete Python programs
	File input
	Interactive input
	Expression input

	Full Grammar specification
	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

