
Documenting Python
Release 2.4

Fred L. Drake, Jr.

November 30, 2004

PythonLabs
Email: fdrake@acm.org

Abstract

The Python language has a substantial body of documentation, much of it contributed by various authors. The markup
used for the Python documentation is based on LATEX and requires a significant set of macros written specifically for
documenting Python. This document describes the macros introduced to support Python documentation and how they
should be used to support a wide range of output formats.

This document describes the document classes and special markup used in the Python documentation. Authors
may use this guide, in conjunction with the template files provided with the distribution, to create or maintain whole
documents or sections.

If you’re interested in contributing to Python’s documentation, there’s no need to learn LATEX if you’re not so
inclined; plain text contributions are more than welcome as well.

Contents

1 Introduction 2

2 Directory Structure 2

3 Style Guide 3

4 LATEX Primer 4
4.1 Syntax . 5
4.2 Hierarchical Structure . 7
4.3 Common Environments . 7

5 Document Classes 7

6 Special Markup Constructs 8
6.1 Markup for the Preamble. 8
6.2 Meta-information Markup . 8
6.3 Information Units. 8
6.4 Showing Code Examples. 10
6.5 Inline Markup . 11
6.6 Miscellaneous Text Markup. 15
6.7 Module-specific Markup. 15
6.8 Library-level Markup. 16
6.9 Table Markup. 16
6.10 Reference List Markup. 19

6.11 Index-generating Markup . 20
6.12 Grammar Production Displays. 21
6.13 Graphical Interface Components. 22

7 Processing Tools 22
7.1 External Tools . 22
7.2 Internal Tools . 23
7.3 Working on Cygwin . 24

8 Including Graphics 24

9 Future Directions 25
9.1 Structured Documentation. 25
9.2 Discussion Forums. 26

Index 27

1 Introduction

Python’s documentation has long been considered to be good for a free programming language. There are a number of
reasons for this, the most important being the early commitment of Python’s creator, Guido van Rossum, to providing
documentation on the language and its libraries, and the continuing involvement of the user community in providing
assistance for creating and maintaining documentation.

The involvement of the community takes many forms, from authoring to bug reports to just plain complaining when
the documentation could be more complete or easier to use. All of these forms of input from the community have
proved useful during the time I’ve been involved in maintaining the documentation.

This document is aimed at authors and potential authors of documentation for Python. More specifically, it is for
people contributing to the standard documentation and developing additional documents using the same tools as the
standard documents. This guide will be less useful for authors using the Python documentation tools for topics other
than Python, and less useful still for authors not using the tools at all.

The material in this guide is intended to assist authors using the Python documentation tools. It includes information
on the source distribution of the standard documentation, a discussion of the document types, reference material on the
markup defined in the document classes, a list of the external tools needed for processing documents, and reference
material on the tools provided with the documentation resources. At the end, there is also a section discussing future
directions for the Python documentation and where to turn for more information.

If your interest is in contributing to the Python documentation, but you don’t have the time or inclination to learn LATEX
and the markup structures documented here, there’s a welcoming place for you among the Python contributors as well.
Any time you feel that you can clarify existing documentation or provide documentation that’s missing, the existing
documentation team will gladly work with you to integrate your text, dealing with the markup for you. Please don’t
let the material in this document stand between the documentation and your desire to help out!

2 Directory Structure

The source distribution for the standard Python documentation contains a large number of directories. While third-
party documents do not need to be placed into this structure or need to be placed within a similar structure, it can be
helpful to know where to look for examples and tools when developing new documents using the Python documenta-
tion tools. This section describes this directory structure.

2 2 Directory Structure

The documentation sources are usually placed within the Python source distribution as the top-level directory ‘Doc/’,
but are not dependent on the Python source distribution in any way.

The ‘Doc/’ directory contains a few files and several subdirectories. The files are mostly self-explanatory, including a
‘README’ and a ‘Makefile’. The directories fall into three categories:

Document Sources
The LATEX sources for each document are placed in a separate directory. These directories are given short names
which vaguely indicate the document in each:

Directory Document Title
api/ The Python/C API
dist/ Distributing Python Modules
doc/ Documenting Python
ext/ Extending and Embedding the Python Interpreter
inst/ Installing Python Modules
lib/ Python Library Reference
mac/ Macintosh Module Reference
ref/ Python Reference Manual
tut/ Python Tutorial
whatsnew/ What’s New in Python 2.4

Format-Specific Output
Most output formats have a directory which contains a ‘Makefile’ which controls the generation of that format
and provides storage for the formatted documents. The only variations within this category are the Portable
Document Format (PDF) and PostScript versions are placed in the directories ‘paper-a4/’ and ‘paper-letter/’
(this causes all the temporary files created by LATEX to be kept in the same place for each paper size, where they
can be more easily ignored).

Directory Output Formats
html/ HTML output
info/ GNU info output
isilo/ iSilo documents (for Palm OS devices)
paper-a4/ PDF and PostScript, A4 paper
paper-letter/ PDF and PostScript, US-Letter paper

Supplemental Files
Some additional directories are used to store supplemental files used for the various processes. Directories are
included for the shared LATEX document classes, the LATEX2HTML support, template files for various document
components, and the scripts used to perform various steps in the formatting processes.

Directory Contents
commontex/ Document content shared among documents
perl/ Support for LATEX2HTML processing
templates/ Example files for source documents
texinputs/ Style implementation for LATEX
tools/ Custom processing scripts

3 Style Guide

The Python documentation should follow theApple Publications Style Guidewherever possible. This particular style
guide was selected mostly because it seems reasonable and is easy to get online.

3

Topics which are not covered in the Apple’s style guide will be discussed in this document if necessary.

Many special names are used in the Python documentation, including the names of operating systems, programming
languages, standards bodies, and the like. Many of these were assigned LATEX macros at some point in the distant past,
and these macros lived on long past their usefulness. In the current markup, most of these entities are not assigned any
special markup, but the preferred spellings are given here to aid authors in maintaining the consistency of presentation
in the Python documentation.

Other terms and words deserve special mention as well; these conventions should be used to ensure consistency
throughout the documentation:

CPU For “central processing unit.” Many style guides say this should be spelled out on the first use (and if you must
use it, do so!). For the Python documentation, this abbreviation should be avoided since there’s no reasonable
way to predict which occurance will be the first seen by the reader. It is better to use the word “processor”
instead.

POSIX The name assigned to a particular group of standards. This is always uppercase. Use the macro\POSIX to
represent this name.

Python The name of our favorite programming language is always capitalized.

Unicode The name of a character set and matching encoding. This is always written capitalized.

UNIX The name of the operating system developed at AT&T Bell Labs in the early 1970s. Use the macro\UNIX to
use this name.

4 LATEX Primer

This section is a brief introduction to LATEX concepts and syntax, to provide authors enough information to author
documents productively without having to become “TEXnicians.” This does not teach everything needed to know
about writing LATEX for Python documentation; many of the standard “environments” are not described here (though
you will learn how to mark something as an environment).

Perhaps the most important concept to keep in mind while marking up Python documentation is that while TEX is
unstructured, LATEX was designed as a layer on top of TEX which specifically supports structured markup. The Python-
specific markup is intended to extend the structure provided by standard LATEX document classes to support additional
information specific to Python.

LATEX documents contain two parts: the preamble and the body. The preamble is used to specify certain metadata about
the document itself, such as the title, the list of authors, the date, and theclassthe document belongs to. Additional
information used to control index generation and the use of bibliographic databases can also be placed in the preamble.
For most authors, the preamble can be most easily created by copying it from an existing document and modifying a
few key pieces of information.

Theclassof a document is used to place a document within a broad category of documents and set some fundamental
formatting properties. For Python documentation, two classes are used: themanual class and thehowto class. These
classes also define the additional markup used to document Python concepts and structures. Specific information about
these classes is provided in section 5, “Document Classes,” below. The first thing in the preamble is the declaration of
the document’s class.

After the class declaration, a number ofmacrosare used to provide further information about the document and setup
any additional markup that is needed. No output is generated from the preamble; it is an error to include free text in
the preamble because it would cause output.

The document body follows the preamble. This contains all the printed components of the document marked up
structurally. Generic LATEX structures include hierarchical sections, numbered and bulleted lists, and special structures
for the document abstract and indexes.

4 4 LATEX Primer

4.1 Syntax

There are some things that an author of Python documentation needs to know about LATEX syntax.

A commentis started by the “percent” character (‘%’) and continues through the end of the line and all leading whites-
pace on the following line. This is a little different from any programming language I know of, so an example is in
order:

This is text.% comment
This is more text. % another comment

Still more text.

The first non-comment character following the first comment is the letter ‘T’ on the second line; the leading whitespace
on that line is consumed as part of the first comment. This means that there is no space between the first and second
sentences, so the period and letter ‘T’ will be directly adjacent in the typeset document.

Note also that though the first non-comment character after the second comment is the letter ‘S’, there is whitespace
preceding the comment, so the two sentences are separated as expected.

A group is an enclosure for a collection of text and commands which encloses the formatting context and constrains
the scope of any changes to that context made by commands within the group. Groups can be nested hierarchically.
The formatting context includes the font and the definition of additional macros (or overrides of macros defined in
outer groups). Syntactically, groups are enclosed in braces:

{text in a group}

An alternate syntax for a group using brackets,[...] , is used by macros and environment constructors which take
optional parameters; brackets do not normally hold syntactic significance. A degenerate group, containing only one
atomic bit of content, does not need to have an explicit group, unless it is required to avoid ambiguity. Since Python
tends toward the explicit, groups are also made explicit in the documentation markup.

Groups are used only sparingly in the Python documentation, except for their use in marking parameters to macros
and environments.

A macrois usually a simple construct which is identified by name and can take some number of parameters. In normal
LATEX usage, one of these can be optional. The markup is introduced using the backslash character (‘\ ’), and the name
is given by alphabetic characters (no digits, hyphens, or underscores). Required parameters should be marked as a
group, and optional parameters should be marked using the alternate syntax for a group.

For example, a macro which takes a single parameter would appear like this:

\name{parameter}

A macro which takes an optional parameter would be typed like this when the optional parameter is given:

\name[optional]

If both optional and required parameters are to be required, it looks like this:

\name[optional]{required}

4.1 Syntax 5

A macro name may be followed by a space or newline; a space between the macro name and any parameters will be
consumed, but this usage is not practiced in the Python documentation. Such a space is still consumed if there are
no parameters to the macro, in which case inserting an empty group ({}) or explicit word space (‘\ ’) immediately
after the macro name helps to avoid running the expansion of the macro into the following text. Macros which take no
parameters but which should not be followed by a word space do not need special treatment if the following character
in the document source if not a name character (such as punctuation).

Each line of this example shows an appropriate way to write text which includes a macro which takes no parameters:

This \UNIX{} is followed by a space.
This \UNIX\ is also followed by a space.
\UNIX, followed by a comma, needs no additional markup.

An environmentis a larger construct than a macro, and can be used for things with more content than would conve-
niently fit in a macro parameter. They are primarily used when formatting parameters need to be changed before and
after a large chunk of content, but the content itself needs to be highly flexible. Code samples are presented using an
environment, and descriptions of functions, methods, and classes are also marked using environments.

Since the content of an environment is free-form and can consist of several paragraphs, they are actually marked using
a pair of macros:\begin and \end . These macros both take the name of the environment as a parameter. An
example is the environment used to mark the abstract of a document:

\begin{abstract}
This is the text of the abstract. It concisely explains what
information is found in the document.

It can consist of multiple paragraphs.
\end{abstract}

An environment can also have required and optional parameters of its own. These follow the parameter of the\begin
macro. This example shows an environment which takes a single required parameter:

\begin{datadesc}{controlnames}
A 33-element string array that contains the \ASCII{} mnemonics for
the thirty-two \ASCII{} control characters from 0 (NUL) to 0x1f
(US), in order, plus the mnemonic \samp{SP} for the space character.

\end{datadesc}

There are a number of less-used marks in LATEX which are used to enter characters which are not found inASCII or
which a considered special, oractive in TEX or LATEX. Given that these are often used adjacent to other characters,
the markup required to produce the proper character may need to be followed by a space or an empty group, or the
markup can be enclosed in a group. Some which are found in Python documentation are:

Character Markup
ˆ \textasciicircum
˜ \textasciitilde
> \textgreater
< \textless
ç \c c
ö \"o
ø \o

6 4 LATEX Primer

4.2 Hierarchical Structure

LATEX expects documents to be arranged in a conventional, hierarchical way, with chapters, sections, sub-sections,
appendixes, and the like. These are marked using macros rather than environments, probably because the end of a
section can be safely inferred when a section of equal or higher level starts.

There are six “levels” of sectioning in the document classes used for Python documentation, and the deepest two
levels1 are not used. The levels are:

Level Macro Name Notes
1 \chapter (1)
2 \section
3 \subsection
4 \subsubsection
5 \paragraph (2)
6 \subparagraph

Notes:

(1) Only used for themanual documents, as described in section 5, “Document Classes.”

(2) Not the same as a paragraph of text; nobody seems to use this.

4.3 Common Environments

LATEX provides a variety of environments even without the additional markup provided by the Python-specific docu-
ment classes introducted in the next section. The following environments are provided as part of standard LATEX and
are being used in the standard Python documentation; descriptions will be added here as time allows.

abstract
alltt
description
displaymath
document
enumerate
figure
flushleft
itemize
list
math
quotation
quote
sloppypar
verbatim

5 Document Classes

Two LATEX document classes are defined specifically for use with the Python documentation. Themanual class is for
large documents which are sectioned into chapters, and thehowto class is for smaller documents.

1The deepest levels have the highest numbers in the table.

4.2 Hierarchical Structure 7

The manual documents are larger and are used for most of the standard documents. This document class is based
on the standard LATEX report class and is formatted very much like a long technical report. ThePython Reference
Manual is a good example of amanual document, and thePython Library Referenceis a large example.

Thehowto documents are shorter, and don’t have the large structure of themanual documents. This class is based
on the standard LATEX article class and is formatted somewhat like the Linux Documentation Project’s “HOWTO”
series as done originally using the LinuxDoc software. The original intent for the document class was that it serve a
similar role as the LDP’s HOWTO series, but the applicability of the class turns out to be somewhat broader. This
class is used for “how-to” documents (this document is an example) and for shorter reference manuals for small, fairly
cohesive module libraries. Examples of the later use includeUsing Kerberos from Python, which contains reference
material for an extension package. These documents are roughly equivalent to a single chapter from a larger work.

6 Special Markup Constructs

The Python document classes define a lot of new environments and macros. This section contains the reference
material for these facilities. Documentation for “standard” LATEX constructs is not included here, though they are used
in the Python documentation.

6.1 Markup for the Preamble

\ release { ver}
Set the version number for the software described in the document.

\ setshortversion { sver}
Specify the “short” version number of the documented software to besver.

6.2 Meta-information Markup

\ sectionauthor { author}{ email}
Identifies the author of the current section.author should be the author’s name such that it can be used for
presentation (though it isn’t), andemailshould be the author’s email address. The domain name portion of the
address should be lower case.

No presentation is generated from this markup, but it is used to help keep track of contributions.

6.3 Information Units

XXX Explain terminology, or come up with something more “lay.”

There are a number of environments used to describe specific features provided by modules. Each environment
requires parameters needed to provide basic information about what is being described, and the environment content
should be the description. Most of these environments make entries in the general index (if one is being produced for
the document); if no index entry is desired, non-indexing variants are available for many of these environments. The
environments have names of the formfeaturedesc , and the non-indexing variants are namedfeaturedescni . The
available variants are explicitly included in the list below.

For each of these environments, the first parameter,name, provides the name by which the feature is accessed.

Environments which describe features of objects within a module, such as object methods or data attributes, allow an
optionaltype nameparameter. When the feature is an attribute of class instances,type nameonly needs to be given if
the class was not the most recently described class in the module; thenamevalue from the most recentclassdesc
is implied. For features of built-in or extension types, thetype namevalue should always be provided. Another special
case includes methods and members of general “protocols,” such as the formatter and writer protocols described for

8 6 Special Markup Constructs

the formatter module: these may be documented without any specific implementation classes, and will always
require thetype nameparameter to be provided.

\begin{ cfuncdesc }{ type}{ name}{ args}
\end{ cfuncdesc }

Environment used to described a C function. Thetypeshould be specified as atypedef name,struct tag,
or the name of a primitive type. If it is a pointer type, the trailing asterisk should not be preceded by a space.
nameshould be the name of the function (or function-like pre-processor macro), andargsshould give the types
and names of the parameters. The names need to be given so they may be used in the description.

\begin{ cmemberdesc }{ container}{ type}{ name}
\end{ cmemberdesc }

Description for a structure member.containershould be thetypedef name, if there is one, otherwise if should
be ‘struct tag’. The type of the member should given astype, and the name should be given asname. The
text of the description should include the range of values allowed, how the value should be interpreted, and
whether the value can be changed. References to structure members in text should use the\member macro.

\begin{ csimplemacrodesc }{ name}
\end{ csimplemacrodesc }

Documentation for a “simple” macro. Simple macros are macros which are used for code expansion,
but which do not take arguments so cannot be described as functions. This is not to be used for sim-
ple constant definitions. Examples of it’s use in the Python documentation includePyObject HEADand
Py BEGIN ALLOWTHREADS.

\begin{ ctypedesc }[tag]{ name}
\end{ ctypedesc }

Environment used to described a C type. Thenameparameter should be thetypedef name. If the type is
defined as astruct without atypedef , nameshould have the formstruct tag. namewill be added to
the index unlesstag is provided, in which casetag will be used instead.tag should not be used for atypedef
name.

\begin{ cvardesc }{ type}{ name}
\end{ cvardesc }

Description of a global C variable.typeshould be thetypedef name,struct tag, or the name of a primitive
type. If variable has a pointer type, the trailing asterisk shouldnotbe preceded by a space.

\begin{ datadesc }{ name}
\end{ datadesc }

This environment is used to document global data in a module, including both variables and values used as
“defined constants.” Class and object attributes are not documented using this environment.

\begin{ datadescni }{ name}
\end{ datadescni }

Like datadesc , but without creating any index entries.

\begin{ excclassdesc }{ name}{ constructor parameters}
\end{ excclassdesc }

Descibe an exception defined by a class.constructor parametersshould not include theself parameter or the
parentheses used in the call syntax. To describe an exception class without describing the parameters to its
constructor, use theexcdesc environment.

\begin{ excdesc }{ name}
\end{ excdesc }

Describe an exception. In the case of class exceptions, the constructor parameters are not described; use
excclassdesc to describe an exception class and its constructor.

\begin{ funcdesc }{ name}{ parameters}
\end{ funcdesc }

Describe a module-level function.parametersshould not include the parentheses used in the call syntax. Object

6.3 Information Units 9

methods are not documented using this environment. Bound object methods placed in the module namespace as
part of the public interface of the module are documented using this, as they are equivalent to normal functions
for most purposes.

The description should include information about the parameters required and how they are used (especially
whether mutable objects passed as parameters are modified), side effects, and possible exceptions. A small
example may be provided.

\begin{ funcdescni }{ name}{ parameters}
\end{ funcdescni }

Like funcdesc , but without creating any index entries.

\begin{ classdesc }{ name}{ constructor parameters}
\end{ classdesc }

Describe a class and its constructor.constructor parametersshould not include theself parameter or the paren-
theses used in the call syntax.

\begin{ classdesc* }{ name}
\end{ classdesc* }

Describe a class without describing the constructor. This can be used to describe classes that are merely con-
tainers for attributes or which should never be instantiated or subclassed by user code.

\begin{ memberdesc }[type name]{ name}
\end{ memberdesc }

Describe an object data attribute. The description should include information about the type of the data to be
expected and whether it may be changed directly.

\begin{ memberdescni }[type name]{ name}
\end{ memberdescni }

Like memberdesc , but without creating any index entries.

\begin{ methoddesc }[type name]{ name}{ parameters}
\end{ methoddesc }

Describe an object method.parametersshould not include theself parameter or the parentheses used in the call
syntax. The description should include similar information to that described forfuncdesc .

\begin{ methoddescni }[type name]{ name}{ parameters}
\end{ methoddescni }

Like methoddesc , but without creating any index entries.

6.4 Showing Code Examples

Examples of Python source code or interactive sessions are represented asverbatim environments. This environ-
ment is a standard part of LATEX. It is important to only use spaces for indentation in code examples since TEX drops
tabs instead of converting them to spaces.

Representing an interactive session requires including the prompts and output along with the Python code. No special
markup is required for interactive sessions. After the last line of input or output presented, there should not be an
“unused” primary prompt; this is an example of whatnot to do:

>>> 1 + 1
2
>>>

Within theverbatim environment, characters special to LATEX do not need to be specially marked in any way. The
entire example will be presented in a monospaced font; no attempt at “pretty-printing” is made, as the environment
must work for non-Python code and non-code displays. There should be no blank lines at the top or bottom of any

10 6 Special Markup Constructs

verbatim display.

Longer displays of verbatim text may be included by storing the example text in an external file containing only plain
text. The file may be included using the standard\verbatiminput macro; this macro takes a single argument
naming the file containing the text. For example, to include the Python source file ‘example.py’, use:

\verbatiminput{example.py}

Use of\verbatiminput allows easier use of special editing modes for the included file. The file should be placed
in the same directory as the LATEX files for the document.

The Python Documentation Special Interest Group has discussed a number of approaches to creating pretty-printed
code displays and interactive sessions; see the Doc-SIG area on the Python Web site for more information on this
topic.

6.5 Inline Markup

The macros described in this section are used to mark just about anything interesting in the document text. They may
be used in headings (though anything involving hyperlinks should be avoided there) as well as in the body text.

\ bfcode { text}
Like \code , but also makes the font bold-face.

\ cdata { name}
The name of a C-language variable.

\ cfunction { name}
The name of a C-language function.nameshould include the function name and the trailing parentheses.

\ character { char}
A character when discussing the character rather than a one-byte string value. The character will be typeset as
with \samp .

\ citetitle [url]{ title}
A title for a referenced publication. Ifurl is specified, the title will be made into a hyperlink when formatted as
HTML.

\ class { name}
A class name; a dotted name may be used.

\ code { text}
A short code fragment or literal constant value. Typically, it should not include any spaces since no quotation
marks are added.

\ constant { name}
The name of a “defined” constant. This may be a C-language#define or a Python variable that is not intended
to be changed.

\ csimplemacro { name}
The name of a “simple” macro. Simple macros are macros which are used for code expansion, but which do not
take arguments so cannot be described as functions. This is not to be used for simple constant definitions. Exam-
ples of it’s use in the Python documentation includePyObject HEADandPy BEGIN ALLOWTHREADS.

\ ctype { name}
The name of a Ctypedef or structure. For structures defined without atypedef , use\ctype{struct
struct tag} to make it clear that thestruct is required.

\ deprecated { version}{ what to do}
Declare whatever is being described as being deprecated starting with releaseversion. The text given aswhat to

6.5 Inline Markup 11

doshould recommend something to use instead. It should be complete sentences. The entire deprecation notice
will be presented as a separate paragraph; it should either preceed or succeed the description of the deprecated
feature.

\ dfn { term}
Mark the defining instance ofterm in the text. (No index entries are generated.)

\ e
Produces a backslash. This is convenient in\code , \file , and similar macros, and thealltt environment,
and is only defined there. To create a backslash in ordinary text (such as the contents of the\citetitle
macro), use the standard\textbackslash macro.

\ email { address}
An email address. Note that this isnot hyperlinked in any of the possible output formats. The domain name
portion of the address should be lower case.

\ emph{ text}
Emphasized text; this will be presented in an italic font.

\ envvar { name}
An environment variable. Index entries are generated.

\ exception { name}
The name of an exception. A dotted name may be used.

\ file { file or dir}
The name of a file or directory. In the PDF and PostScript outputs, single quotes and a font change are used
to indicate the file name, but no quotes are used in the HTML output.Warning: The \file macro cannot be
used in the content of a section title due to processing limitations.

\ filenq { file or dir}
Like \file , but single quotes are never used. This can be used in conjunction with tables if a column will only
contain file or directory names.Warning: The\filenq macro cannot be used in the content of a section title
due to processing limitations.

\ function { name}
The name of a Python function; dotted names may be used.

\ infinity
The symbol for mathematical infinity:∞. Some Web browsers are not able to render the HTML representation
of this symbol properly, but support is growing.

\ kbd { key sequence}
Mark a sequence of keystrokes. What formkey sequencetakes may depend on platform- or application-specific
conventions. When there are no relevant conventions, the names of modifier keys should be spelled out, to
improve accessibility for new users and non-native speakers. For example, anxemacskey sequence may be
marked like\kbd{C-x C-f} , but without reference to a specific application or platform, the same sequence
should be marked as\kbd{Control-x Control-f} .

\ keyword { name}
The name of a keyword in a programming language.

\ mailheader { name}
The name of an RFC 822-style mail header. This markup does not imply that the header is being used in
an email message, but can be used to refer to any header of the same “style.” This is also used for headers
defined by the various MIME specifications. The header name should be entered in the same way it would
normally be found in practice, with the camel-casing conventions being preferred where there is more than
one common usage. The colon which follows the name of the header should not be included. For example:
\mailheader{Content-Type} .

\ makevar { name}

12 6 Special Markup Constructs

The name of amakevariable.

\ manpage{ name}{ section}
A reference to a UNIX manual page.

\ member{ name}
The name of a data attribute of an object.

\ method { name}
The name of a method of an object.nameshould include the method name and the trailing parentheses. A
dotted name may be used.

\ mimetype { name}
The name of a MIME type, or a component of a MIME type (the major or minor portion, taken alone).

\ module { name}
The name of a module; a dotted name may be used. This should also be used for package names.

\ newsgroup { name}
The name of a Usenet newsgroup.

\ note { text}
An especially important bit of information about an API that a user should be aware of when using whatever bit
of API the note pertains to. This should be the last thing in the paragraph as the end of the note is not visually
marked in any way. The content oftext should be written in complete sentences and include all appropriate
punctuation.

\ pep { number}
A reference to a Python Enhancement Proposal. This generates appropriate index entries. The text ‘PEP num-
ber’ is generated; in the HTML output, this text is a hyperlink to an online copy of the specified PEP.

\ plusminus
The symbol for indicating a value that may take a positive or negative value of a specified magnitude, typically
represented by a plus sign placed over a minus sign. For example:\plusminus 3% .

\ program { name}
The name of an executable program. This may differ from the file name for the executable for some platforms.
In particular, the ‘.exe’ (or other) extension should be omitted for Windows programs.

\ programopt { option}
A command-line option to an executable program. Use this only for “short” options, and include the leading
hyphen.

\ longprogramopt { option}
A long command-line option to an executable program. This should only be used for long option names which
will be prefixed by two hyphens; the hyphens should not be provided as part ofoption.

\ refmodule [key]{ name}
Like \module , but create a hyperlink to the documentation for the named module. Note that the corresponding
\declaremodule must be in the same document. If the\declaremodule defines a module key different
from the module name, it must also be provided askeyto the\refmodule macro.

\ regexp { string}
Mark a regular expression.

\ rfc { number}
A reference to an Internet Request for Comments. This generates appropriate index entries. The text ‘RFC
number’ is generated; in the HTML output, this text is a hyperlink to an online copy of the specified RFC.

\ samp{ text}
A short code sample, but possibly longer than would be given using\code . Since quotation marks are added,
spaces are acceptable.

6.5 Inline Markup 13

\ shortversion
The “short” version number of the documented software, as specified using the\setshortversion macro
in the preamble. For Python, the short version number for a release is the first three characters of the
sys.version value. For example, versions 2.0b1 and 2.0.1 both have a short version of 2.0. This may
not apply for all packages; if\setshortversion is not used, this produces an empty expansion. See also
the\version macro.

\ strong { text}
Strongly emphasized text; this will be presented using a bold font.

\ ulink { text}{ url}
A hypertext link with a target specified by a URL, but for which the link text should not be the title of the
resource. For resources being referenced by name, use the\citetitle macro. Not all formatted versions
support arbitrary hypertext links. Note that many characters are special to LATEX and this macro does not always
do the right thing. In particular, the tilde character (‘˜ ’) is mis-handled; encoding it as a hex-sequence does
work, use ‘%7e’ in place of the tilde character.

\ url { url}
A URL (or URN). The URL will be presented as text. In the HTML and PDF formatted versions, the URL will
also be a hyperlink. This can be used when referring to external resources without specific titles; references to
resources which have titles should be marked using the\citetitle macro. See the comments about special
characters in the description of the\ulink macro for special considerations.

\ var { name}
The name of a variable or formal parameter in running text.

\ version
The version number of the described software, as specified using\release in the preamble. See also the
\shortversion macro.

\ warning { text}
An important bit of information about an API that a user should be very aware of when using whatever bit
of API the warning pertains to. This should be the last thing in the paragraph as the end of the warning is
not visually marked in any way. The content oftext should be written in complete sentences and include all
appropriate punctuation. This differs from\note in that it is recommended over\note for information
regarding security.

The following two macros are used to describe information that’s associated with changes from one release to another.
For features which are described by a single paragraph, these are typically added as separate source lines at the end
of the paragraph. When adding these to features described by multiple paragraphs, they are usually collected in a
single separate paragraph after the description. When both\versionadded and\versionchanged are used,
\versionadded should come first; the versions should be listed in chronological order. Both of these should come
before availability statements. The location should be selected so the explanation makes sense and may vary as needed.

\ versionadded [explanation]{ version}
The version of Python which added the described feature to the library or C API.explanationshould be a
brief explanation of the change consisting of a capitalized sentence fragment; a period will be appended by the
formatting process. When this applies to an entire module, it should be placed at the top of the module section
before any prose.

\ versionchanged [explanation]{ version}
The version of Python in which the named feature was changed in some way (new parameters, changed side
effects, etc.). explanationshould be abrief explanation of the change consisting of a capitalized sentence
fragment; a period will be appended by the formatting process. This should not generally be applied to modules.

14 6 Special Markup Constructs

6.6 Miscellaneous Text Markup

In addition to the inline markup, some additional “block” markup is defined to make it easier to bring attention to
various bits of text. The markup described here serves this purpose, and is intended to be used when marking one or
more paragraphs or other block constructs (such asverbatim environments).

\begin{ notice }[type]
\end{ notice }

Label some paragraphs as being worthy of additional attention from the reader. What sort of attention is war-
rented can be indicated by specifying thetypeof the notice. The only values defined fortypearenote and
warning ; these are equivalent in intent to the inline markup of the same name. Iftype is omitted,note is
used. Additional values may be defined in the future.

6.7 Module-specific Markup

The markup described in this section is used to provide information about a module being documented. A typical use
of this markup appears at the top of the section used to document a module. A typical example might look like this:

\section{\module{spam} ---
Access to the SPAM facility}

\declaremodule{extension}{spam}
\platform{Unix}

\modulesynopsis{Access to the SPAM facility of \UNIX.}
\moduleauthor{Jane Doe}{jane.doe@frobnitz.org}

Python packages — collections of modules that can be described as a unit — are documented using the same markup
as modules. The name for a module in a package should be typed in “fully qualified” form (it should include the
package name). For example, a module “foo” in package “bar” should be marked as\module{bar.foo} , and the
beginning of the reference section would appear as:

\section{\module{bar.foo} ---
Module from the \module{bar} package}

\declaremodule{extension}{bar.foo}
\modulesynopsis{Nifty module from the \module{bar} package.}
\moduleauthor{Jane Doe}{jane.doe@frobnitz.org}

Note that the name of a package is also marked using\module .

\ declaremodule [key]{ type}{ name}
Requires two parameters: module type (‘standard ’, ‘ builtin ’, ‘ extension ’, or ‘’), and the module
name. An optional parameter should be given as the basis for the module’s “key” used for linking to or refer-
encing the section. The “key” should only be given if the module’s name contains any underscores, and should
be the name with the underscores stripped. Note that thetypeparameter must be one of the values listed above
or an error will be printed. For modules which are contained in packages, the fully-qualified name should be
given asnameparameter. This should be the first thing after the\section used to introduce the module.

\ platform { specifier}
Specifies the portability of the module.specifieris a comma-separated list of keys that specify what platforms
the module is available on. The keys are short identifiers; examples that are in use include ‘IRIX ’, ‘ Mac’,
‘Windows ’, and ‘Unix ’. It is important to use a key which has already been used when applicable. This is
used to provide annotations in the Module Index and the HTML and GNU info output.

6.6 Miscellaneous Text Markup 15

\ modulesynopsis { text}
Thetext is a short, “one line” description of the module that can be used as part of the chapter introduction. This
is must be placed after\declaremodule . The synopsis is used in building the contents of the table inserted
as the\localmoduletable . No text is produced at the point of the markup.

\ moduleauthor { name}{ email}
This macro is used to encode information about who authored a module. This is currently not used to generate
output, but can be used to help determine the origin of the module.

6.8 Library-level Markup

This markup is used when describing a selection of modules. For example, theMacintosh Library Modulesdocument
uses this to help provide an overview of the modules in the collection, and many chapters in thePython Library
Referenceuse it for the same purpose.

\ localmoduletable
If a ‘ .syn’ file exists for the current chapter (or for the entire document inhowto documents), a
synopsistable is created with the contents loaded from the ‘.syn’ file.

6.9 Table Markup

There are three general-purpose table environments defined which should be used whenever possible. These environ-
ments are defined to provide tables of specific widths and some convenience for formatting. These environments are
not meant to be general replacements for the standard LATEX table environments, but can be used for an advantage
when the documents are processed using the tools for Python documentation processing. In particular, the generated
HTML looks good! There is also an advantage for the eventual conversion of the documentation to XML (see section
9, “Future Directions”).

Each environment is namedtable cols, wherecols is the number of columns in the table specified in lower-case
Roman numerals. Within each of these environments, an additional macro,\line cols, is defined, wherecolsmatches
thecolsvalue of the corresponding table environment. These are supported forcolsvalues ofii , iii , andiv . These
environments are all built on top of thetabular environment. Variants based on thelongtable environment are
also provided.

Note that all tables in the standard Python documentation use vertical lines between columns, and this must be spec-
ified in the markup for each table. A general border around the outside of the table is not used, but would be the
responsibility of the processor; the document markup should not include an exterior border.

The longtable -based variants of the table environments are formatted with extra space before and after, so should
only be used on tables which are long enough that splitting over multiple pages is reasonable; tables with fewer than
twenty rows should never by marked using the long flavors of the table environments. The header row is repeated
across the top of each part of the table.

\begin{ tableii }{ colspec}{ col1font}{ heading1}{ heading2}
\end{ tableii }

Create a two-column table using the LATEX column specifiercolspec. The column specifier should indicate
vertical bars between columns as appropriate for the specific table, but should not specify vertical bars on the
outside of the table (that is considered a stylesheet issue). Thecol1fontparameter is used as a stylistic treatment
of the first column of the table: the first column is presented as\ col1font{column1} . To avoid treating the
first column specially,col1fontmay be ‘textrm ’. The column headings are taken from the valuesheading1
andheading2.

\begin{ longtableii }...
\end{ longtableii }

Like tableii , but produces a table which may be broken across page boundaries. The parameters are the
same as fortableii .

16 6 Special Markup Constructs

\ lineii { column1}{ column2}
Create a single table row within atableii or longtableii environment. The text for the first column will
be generated by applying the macro named by thecol1fontvalue when thetableii was opened.

\begin{ tableiii }{ colspec}{ col1font}{ heading1}{ heading2}{ heading3}
\end{ tableiii }

Like the tableii environment, but with a third column. The heading for the third column is given byhead-
ing3.

\begin{ longtableiii }...
\end{ longtableiii }

Like tableiii , but produces a table which may be broken across page boundaries. The parameters are the
same as fortableiii .

\ lineiii { column1}{ column2}{ column3}
Like the\lineii macro, but with a third column. The text for the third column is given bycolumn3.

\begin{ tableiv }{ colspec}{ col1font}{ heading1}{ heading2}{ heading3}{ heading4}
\end{ tableiv }

Like the tableiii environment, but with a fourth column. The heading for the fourth column is given by
heading4.

\begin{ longtableiv }...
\end{ longtableiv }

Like tableiv , but produces a table which may be broken across page boundaries. The parameters are the
same as fortableiv .

\ lineiv { column1}{ column2}{ column3}{ column4}
Like the\lineiii macro, but with a fourth column. The text for the fourth column is given bycolumn4.

\begin{ tablev }{ colspec}{ col1font}{ heading1}{ heading2}{ heading3}{ heading4}{ heading5}
\end{ tablev }

Like thetableiv environment, but with a fifth column. The heading for the fifth column is given byheading5.

\begin{ longtablev }...
\end{ longtablev }

Like tablev , but produces a table which may be broken across page boundaries. The parameters are the same
as fortablev .

\ linev { column1}{ column2}{ column3}{ column4}{ column5}
Like the\lineiv macro, but with a fifth column. The text for the fifth column is given bycolumn5.

An additional table-like environment issynopsistable . The table generated by this environment contains two
columns, and each row is defined by an alternate definition of\modulesynopsis . This environment is not normally
used by authors, but is created by the\localmoduletable macro.

Here is a small example of a table given in the documentation for thewarnings module; markup inside the table
cells is minimal so the markup for the table itself is readily discernable. Here is the markup for the table:

6.9 Table Markup 17

\begin{tableii}{l|l}{exception}{Class}{Description}
\lineii{Warning}

{This is the base class of all warning category classes. It
is a subclass of \exception{Exception}.}

\lineii{UserWarning}
{The default category for \function{warn()}.}

\lineii{DeprecationWarning}
{Base category for warnings about deprecated features.}

\lineii{SyntaxWarning}
{Base category for warnings about dubious syntactic

features.}
\lineii{RuntimeWarning}

{Base category for warnings about dubious runtime features.}
\lineii{FutureWarning}

{Base category for warnings about constructs that will change
semantically in the future.}

\end{tableii}

Here is the resulting table:

Class Description
Warning This is the base class of all warning category classes. It is a subclass ofException .
UserWarning The default category forwarn() .
DeprecationWarning Base category for warnings about deprecated features.
SyntaxWarning Base category for warnings about dubious syntactic features.
RuntimeWarning Base category for warnings about dubious runtime features.

Note that the class names are implicitly marked using the\exception macro, since that is given as thecol1font
value for thetableii environment. To create a table using different markup for the first column, usetextrm for
thecol1fontvalue and mark each entry individually.

To add a horizontal line between vertical sections of a table, use the standard\hline macro between the rows which
should be separated:

\begin{tableii}{l|l}{constant}{Language}{Audience}
\lineii{APL}{Masochists.}
\lineii{BASIC}{First-time programmers on PC hardware.}
\lineii{C}{\UNIX{} \&\ Linux kernel developers.}

\hline
\lineii{Python}{Everyone!}

\end{tableii}

Note that not all presentation formats are capable of displaying a horizontal rule in this position. This is how the table
looks in the format you’re reading now:

Language Audience
APL Masochists.
C UNIX & Linux kernel developers.
JavaScript Web developers.
Python Everyone!

18 6 Special Markup Constructs

6.10 Reference List Markup

Many sections include a list of references to module documentation or external documents. These lists are created
using theseealso or seealso* environments. These environments define some additional macros to support
creating reference entries in a reasonable manner.

Theseealso environment is typically placed in a section just before any sub-sections. This is done to ensure that
reference links related to the section are not hidden in a subsection in the hypertext renditions of the documentation. For
the HTML output, it is shown as a “side bar,” boxed off from the main flow of the text. Theseealso* environment
is different in that it should be used when a list of references is being presented as part of the primary content; it is not
specially set off from the text.

\begin{ seealso }
\end{ seealso }

This environment creates a “See also:” heading and defines the markup used to describe individual references.

\begin{ seealso* }
\end{ seealso* }

This environment is used to create a list of references which form part of the main content. It is not given a
special header and is not set off from the main flow of the text. It provides the same additional markup used to
describe individual references.

For each of the following macros,whyshould be one or more complete sentences, starting with a capital letter (unless
it starts with an identifier, which should not be modified), and ending with the appropriate punctuation.

These macros are only defined within the content of theseealso andseealso* environments.

\ seelink { url}{ linktext}{ why}
References to specific on-line resources should be given using the\seelink macro if they don’t have a
meaningful title but there is some short description of what’s at the end of the link. Online documents which
have identifiable titles should be referenced using the\seetitle macro, using the optional parameter to that
macro to provide the URL.

\ seemodule [key]{ name}{ why}
Refer to another module.why should be a brief explanation of why the reference may be interesting. The
module name is given inname, with the link key given inkeyif necessary. In the HTML and PDF conversions,
the module name will be a hyperlink to the referred-to module.Note: The module must be documented in the
same document (the corresponding\declaremodule is required).

\ seepep { number}{ title}{ why}
Refer to an Python Enhancement Proposal (PEP).numbershould be the official number assigned by the PEP
Editor, title should be the human-readable title of the PEP as found in the official copy of the document, andwhy
should explain what’s interesting about the PEP. This should be used to refer the reader to PEPs which specify
interfaces or language features relevant to the material in the annotated section of the documentation.

\ seerfc { number}{ title}{ why}
Refer to an IETF Request for Comments (RFC). Otherwise very similar to\seepep . This should be used to
refer the reader to PEPs which specify protocols or data formats relevant to the material in the annotated section
of the documentation.

\ seetext { text}
Add arbitrary texttext to the “See also:” list. This can be used to refer to off-line materials or on-line materials
using the\url macro. This should consist of one or more complete sentences.

\ seetitle [url]{ title}{ why}
Add a reference to an external document namedtitle. If url is given, the title is made a hyperlink in the HTML
version of the documentation, and displayed below the title in the typeset versions of the documentation.

\ seeurl { url}{ why}
References to specific on-line resources should be given using the\seeurl macro if they don’t have a mean-

6.10 Reference List Markup 19

ingful title. Online documents which have identifiable titles should be referenced using the\seetitle macro,
using the optional parameter to that macro to provide the URL.

6.11 Index-generating Markup

Effective index generation for technical documents can be very difficult, especially for someone familiar with the topic
but not the creation of indexes. Much of the difficulty arises in the area of terminology: including the terms an expert
would use for a concept is not sufficient. Coming up with the terms that a novice would look up is fairly difficult for
an author who, typically, is an expert in the area she is writing on.

The truly difficult aspects of index generation are not areas with which the documentation tools can help. However,
ease of producing the index once content decisions are made is within the scope of the tools. Markup is provided which
the processing software is able to use to generate a variety of kinds of index entry with minimal effort. Additionally,
many of the environments described in section 6.3, “Information Units,” will generate appropriate entries into the
general and module indexes.

The following macro can be used to control the generation of index data, and should be used in the document preamble:

\ makemodindex
This should be used in the document preamble if a “Module Index” is desired for a document contain-
ing reference material on many modules. This causes a data filelib jobname.idx to be created from the
\declaremodule macros. This file can be processed by themakeindex program to generate a file which
can be\input into the document at the desired location of the module index.

There are a number of macros that are useful for adding index entries for particular concepts, many of which are
specific to programming languages or even Python.

\ bifuncindex { name}
Add an index entry referring to a built-in function namedname; parentheses should not be included aftername.

\ exindex { exception}
Add a reference to an exception namedexception. The exception should be class-based.

\ kwindex { keyword}
Add a reference to a language keyword (not a keyword parameter in a function or method call).

\ obindex { object type}
Add an index entry for a built-in object type.

\ opindex { operator}
Add a reference to an operator, such as ‘+’.

\ refmodindex [key]{ module}
Add an index entry for modulemodule; if modulecontains an underscore, the optional parameterkeyshould be
provided as the same string with underscores removed. An index entry “module(module)” will be generated.
This is intended for use with non-standard modules implemented in Python.

\ refexmodindex [key]{ module}
As for \refmodindex , but the index entry will be “module(extension module).” This is intended for use with
non-standard modules not implemented in Python.

\ refbimodindex [key]{ module}
As for \refmodindex , but the index entry will be “module(built-in module).” This is intended for use with
standard modules not implemented in Python.

\ refstmodindex [key]{ module}
As for \refmodindex , but the index entry will be “module(standard module).” This is intended for use with
standard modules implemented in Python.

\ stindex { statement}

20 6 Special Markup Constructs

Add an index entry for a statement type, such asprint or try /finally .

XXX Need better examples of difference from\kwindex .

Additional macros are provided which are useful for conveniently creating general index entries which should appear
at many places in the index by rotating a list of words. These are simple macros that simply use\index to build
some number of index entries. Index entries build using these macros contain both primary and secondary text.

\ indexii { word1}{ word2}
Build two index entries. This is exactly equivalent to using\index{ word1! word2} and
\index{ word2! word1} .

\ indexiii { word1}{ word2}{ word3}
Build three index entries. This is exactly equivalent to using\index{ word1! word2 word3} ,
\index{ word2! word3, word1} , and\index{ word3! word1 word2} .

\ indexiv { word1}{ word2}{ word3}{ word4}
Build four index entries. This is exactly equivalent to using\index{ word1! word2 word3
word4} , \index{ word2! word3 word4, word1} , \index{ word3! word4, word1 word2} , and
\index{ word4! word1 word2 word3} .

6.12 Grammar Production Displays

Special markup is available for displaying the productions of a formal grammar. The markup is simple and does not
attempt to model all aspects of BNF (or any derived forms), but provides enough to allow context-free grammars to be
displayed in a way that causes uses of a symbol to be rendered as hyperlinks to the definition of the symbol. There is
one environment and a pair of macros:

\begin{ productionlist }[language]
\end{ productionlist }

This environment is used to enclose a group of productions. The two macros are only defined within this
environment. If a document descibes more than one language, the optional parameterlanguageshould be used
to distinguish productions between languages. The value of the parameter should be a short name that can be
used as part of a filename; colons or other characters that can’t be used in filename across platforms should be
included.

\ production { name}{ definition}
A production rule in the grammar. The rule defines the symbolnameto bedefinition. nameshould not contain
any markup, and the use of hyphens in a document which supports more than one grammar is undefined.def-
inition may contain\token macros and any additional content needed to describe the grammatical model of
symbol. Only one\production may be used to define a symbol — multiple definitions are not allowed.

\ token { name}
The name of a symbol defined by a\production macro, used in thedefinitionof a symbol. Where possible,
this will be rendered as a hyperlink to the definition of the symbolname.

Note that the entire grammar does not need to be defined in a singleproductionlist environment; any number
of groupings may be used to describe the grammar. Every use of the\token must correspond to a\production .

The following is an example taken from thePython Reference Manual:

6.12 Grammar Production Displays 21

\begin{productionlist}
\production{identifier}

{(\token{letter}|"_") (\token{letter} | \token{digit} | "_")*}
\production{letter}

{\token{lowercase} | \token{uppercase}}
\production{lowercase}

{"a"..."z"}
\production{uppercase}

{"A"..."Z"}
\production{digit}

{"0"..."9"}
\end{productionlist}

6.13 Graphical Interface Components

The components of graphical interfaces will be assigned markup, but most of the specifics have not been determined.

\ guilabel { label}
Labels presented as part of an interactive user interface should be marked using\guilabel . This includes
labels from text-based interfaces such as those created usingcurses or other text-based libraries. Any label
used in the interface should be marked with this macro, including button labels, window titles, field names,
menu and menu selection names, and even values in selection lists.

\ menuselection { menupath}
Menu selections should be marked using a combination of\menuselection and \sub . This macro is
used to mark a complete sequence of menu selections, including selecting submenus and choosing a specific
operation, or any subsequence of such a sequence. The names of individual selections should be separated by
occurances of\sub .

For example, to mark the selection “Start > Programs”, use this markup:

\menuselection{Start \sub Programs}

When including a selection that includes some trailing indicator, such as the ellipsis some operating systems use
to indicate that the command opens a dialog, the indicator should be omitted from the selection name.

Individual selection names within the\menuselection should not be marked using\guilabel since
that’s implied by using\menuselection .

\ sub
Separator for menu selections that include multiple levels. This macro is only defined within the context of the
\menuselection macro.

7 Processing Tools

7.1 External Tools

Many tools are needed to be able to process the Python documentation if all supported formats are required. This
section lists the tools used and when each is required. Consult the ‘Doc/README’ file to see if there are specific
version requirements for any of these.

dvips This program is a typical part of TEX installations. It is used to generate PostScript from the “device indepen-
dent” ‘.dvi’ files. It is needed for the conversion to PostScript.

22 7 Processing Tools

emacs Emacs is the kitchen sink of programmers’ editors, and a damn fine kitchen sink it is. It also comes with some
of the processing needed to support the proper menu structures for Texinfo documents when an info conversion
is desired. This is needed for the info conversion. Usingxemacsinstead of FSFemacsmay lead to instability
in the conversion, but that’s because nobody seems to maintain the Emacs Texinfo code in a portable manner.

latex LATEX is a large and extensible macro package by Leslie Lamport, based on TEX, a world-class typesetter by
Donald Knuth. It is used for the conversion to PostScript, and is needed for the HTML conversion as well
(LATEX2HTML requires one of the intermediate files it creates).

latex2html Probably the longest Perl script anyone ever attempted to maintain. This converts LATEX documents to
HTML documents, and does a pretty reasonable job. It is required for the conversions to HTML and GNU info.

lynx This is a text-mode Web browser which includes an HTML-to-plain text conversion. This is used to convert
howto documents to text.

make Just about any version should work for the standard documents, but GNUmake is required for the experimental
processes in ‘Doc/tools/sgmlconv/’, at least while they’re experimental. This is not required for running the
mkhowto script.

makeindex This is a standard program for converting LATEX index data to a formatted index; it should be included
with all LATEX installations. It is needed for the PDF and PostScript conversions.

makeinfo GNU makeinfo is used to convert Texinfo documents to GNU info files. Since Texinfo is used as an
intermediate format in the info conversion, this program is needed in that conversion.

pdflatex pdfTEX is a relatively new variant of TEX, and is used to generate the PDF version of the manuals. It is
typically installed as part of most of the large TEX distributions.pdflatex is pdfTEX using the LATEX format.

perl Perl is required for LATEX2HTML and one of the scripts used to post-process LATEX2HTML output, as well as the
HTML-to-Texinfo conversion. This is required for the HTML and GNU info conversions.

python Python is used for many of the scripts in the ‘Doc/tools/’ directory; it is required for all conversions. This
shouldn’t be a problem if you’re interested in writing documentation for Python!

7.2 Internal Tools

This section describes the various scripts that are used to implement various stages of document processing or to
orchestrate entire build sequences. Most of these tools are only useful in the context of building the standard docu-
mentation, but some are more general.

mkhowto This is the primary script used to format third-party documents. It contains all the logic needed to “get it
right.” The proper way to use this script is to make a symbolic link to it or run it in place; the actual script file
must be stored as part of the documentation source tree, though it may be used to format documents outside the
tree. Usemkhowto --help for a list of command line options.

mkhowto can be used for bothhowto andmanual class documents. It is usually a good idea to always use the
latest version of this tool rather than a version from an older source release of Python. It can be used to generate
DVI, HTML, PDF, PostScript, and plain text documents. The GNU info and iSilo formats will be supported by
this script in some future version.

Use the--help option on this script’s command line to get a summary of options for this script.

XXX Need more here.

7.2 Internal Tools 23

7.3 Working on Cygwin

Installing the required tools under Cygwin under Cygwin can be a little tedious, if only because many packages are
more difficult to install under Cygwin.

Using the Cygwin installer, make sure your Cygwin installation includes Perl, Python, and the TEX packages. Perl and
Python are located underInterpreters in the installer. The TEX packages are located in theText section; installing
thetetex-beta , texmf , texmf-base , andtexmf-extra ensures that all the required packages are available.
(There may be a more minimal set, but I’ve not spent time trying to minimize the installation.)

The netpbm package is used by LATEX2HTML, andmustbe installed before LATEX2HTML can be successfully installed,
even though they will never be used for most Python documentation. References to download locations are located in
thenetpbm README. Install according to the instructions.

LATEX2HTML can be installed from the source archive, but only after munging one of the files in the distribution. Edit
the file ‘L2hos.pm’ in the top level of the unpacked distribution; near the bottom of the file, change the text$ˆO with
the text’unix’ . Proceed using this command to build and install the software:

% ./configure && make install

You should now be able to build at least the DVI, HTML, PDF, and PostScript versions of the formatted documentation.

8 Including Graphics

The standard documentation included with Python makes no use of diagrams or images; this is intentional. The
outside tools used to format the documentation have not always been suited to working with graphics. As the tools
have evolved and been improved by their maintainers, support for graphics has improved.

The internal tools, starting with themkhowto script, do not provide any direct support for graphics. However,
mkhowto will not interfere with graphics support in the external tools.

Experience using graphics together with these tools and thehowto andmanual document classes is not extensive,
but has been known to work. The basic approach is this:

1. Create the image or graphic using your favorite application.

2. Convert the image to a format supported by the conversion to your desired output format. If you want to
generate HTML or PostScript, you can convert the image or graphic to encapsulated PostScript (a ‘.eps’ file);
LATEX2HTML can convert that to a ‘.gif’ file; it may be possible to provide a ‘.gif’ file directly. If you want
to generate PDF, you need to provide an “encapsulated” PDF file. This can be generated from encapsulated
PostScript using theepstopdftool provided with the teTEX distribution on Linux and UNIX .

3. In your document, add this line to “import” the general graphics support packagegraphicx :

\usepackage{graphicx}

4. Where you want to include your graphic or image, include markup similar to this:

\begin{figure}
\centering
\includegraphics[width=5in]{myimage}
\caption{Description of my image}

\end{figure}

24 8 Including Graphics

In particular, note for the\includegraphics macro that no file extension is provided. If you’re only
interested in one target format, you can include the extension of the appropriate input file, but to allow support
for multiple formats, omitting the extension makes life easier.

5. Runmkhowto normally.

If you’re working on systems which support some sort ofmake facility, you can use that to ensure the intermediate
graphic formats are kept up to date. This example shows a ‘Makefile’ used to format a document containing a diagram
created using thedia application:

default: pdf
all: html pdf ps

html: mydoc/mydoc.html
pdf: mydoc.pdf
ps: mydoc.ps

mydoc/mydoc.html: mydoc.tex mygraphic.eps
mkhowto --html $<

mydoc.pdf: mydoc.tex mygraphic.pdf
mkhowto --pdf $<

mydoc.ps: mydoc.tex mygraphic.eps
mkhowto --postscript $<

.SUFFIXES: .dia .eps .pdf

.dia.eps:
dia --nosplash --export $@ $<

.eps.pdf:
epstopdf $<

9 Future Directions

The history of the Python documentation is full of changes, most of which have been fairly small and evolutionary.
There has been a great deal of discussion about making large changes in the markup languages and tools used to
process the documentation. This section deals with the nature of the changes and what appears to be the most likely
path of future development.

9.1 Structured Documentation

Most of the small changes to the LATEX markup have been made with an eye to divorcing the markup from the pre-
sentation, making both a bit more maintainable. Over the course of 1998, a large number of changes were made with
exactly this in mind; previously, changes had been made but in a less systematic manner and with more concern for
not needing to update the existing content. The result has been a highly structured and semantically loaded markup
language implemented in LATEX. With almost no basic TEX or LATEX markup in use, however, the markup syntax is
about the only evidence of LATEX in the actual document sources.

One side effect of this is that while we’ve been able to use standard “engines” for manipulating the documents, such
as LATEX and LATEX2HTML, most of the actual transformations have been created specifically for Python. The LATEX

25

document classes and LATEX2HTML support are both complete implementations of the specific markup designed for
these documents.

Combining highly customized markup with the somewhat esoteric systems used to process the documents leads us to
ask some questions: Can we do this more easily? and, Can we do this better? After a great deal of discussion with
the community, we have determined that actively pursuing modern structured documentation systems is worth some
investment of time.

There appear to be two real contenders in this arena: the Standard General Markup Language (SGML), and the Ex-
tensible Markup Language (XML). Both of these standards have advantages and disadvantages, and many advantages
are shared.

SGML offers advantages which may appeal most to authors, especially those using ordinary text editors. There are
also additional abilities to define content models. A number of high-quality tools with demonstrated maturity are
available, but most are not free; for those which are, portability issues remain a problem.

The advantages of XML include the availability of a large number of evolving tools. Unfortunately, many of the
associated standards are still evolving, and the tools will have to follow along. This means that developing a robust
tool set that uses more than the basic XML 1.0 recommendation is not possible in the short term. The promised
availability of a wide variety of high-quality tools which support some of the most important related standards is not
immediate. Many tools are likely to be free, and the portability issues of those which are, are not expected to be
significant.

It turns out that converting to an XML or SGML system holds promise for translators as well; how much can be done to
ease the burden on translators remains to be seen, and may have some impact on the schema and specific technologies
used.

XXX Eventual migration to XML.

The documentation will be moved to XML in the future, and tools are being written which will convert the documen-
tation from the current format to something close to a finished version, to the extent that the desired information is
already present in the documentation. Some XSLT stylesheets have been started for presenting a preliminary XML
version as HTML, but the results are fairly rough.

The timeframe for the conversion is not clear since there doesn’t seem to be much time available to work on this, but
the appearant benefits are growing more substantial at a moderately rapid pace.

9.2 Discussion Forums

Discussion of the future of the Python documentation and related topics takes place in the Documentation Special
Interest Group, or “Doc-SIG.” Information on the group, including mailing list archives and subscription information,
is available athttp://www.python.org/sigs/doc-sig/. The SIG is open to all interested parties.

Comments and bug reports on the standard documents should be sent todocs@python.org. This may include comments
about formatting, content, grammatical and spelling errors, or this document. You can also send comments on this
document directly to the author atfdrake@acm.org.

26 9 Future Directions

Index

B
bfcode , 11
bifuncindex , 20

C
cdata , 11
cfuncdesc environment, 9
cfunction , 11
character , 11
citetitle , 11
class , 11
classdesc environment, 10
classdesc* environment, 10
cmemberdesc environment, 9
code , 11
constant , 11
csimplemacro , 11
csimplemacrodesc environment, 9
ctype , 11
ctypedesc environment, 9
cvardesc environment, 9

D
datadesc environment, 9
datadescni environment, 9
declaremodule , 15
deprecated , 11
dfn , 12

E
e, 12
email , 12
emph, 12
environments

cfuncdesc , 9
classdesc , 10
classdesc* , 10
cmemberdesc , 9
csimplemacrodesc , 9
ctypedesc , 9
cvardesc , 9
datadesc , 9
datadescni , 9
excclassdesc , 9
excdesc , 9
funcdesc , 9
funcdescni , 10
longtableii , 16
longtableiii , 17
longtableiv , 17

longtablev , 17
memberdesc , 10
memberdescni , 10
methoddesc , 10
methoddescni , 10
notice , 15
productionlist , 21
seealso , 19
seealso* , 19
tableii , 16
tableiii , 17
tableiv , 17
tablev , 17

envvar , 12
excclassdesc environment, 9
excdesc environment, 9
exception , 12
exindex , 20

F
file , 12
filenq , 12
funcdesc environment, 9
funcdescni environment, 10
function , 12

G
guilabel , 22

I
indexii , 21
indexiii , 21
indexiv , 21
infinity , 12

K
kbd , 12
keyword , 12
kwindex , 20

L
lineii , 17
lineiii , 17
lineiv , 17
linev , 17
localmoduletable , 16
longprogramopt , 13
longtableii environment, 16
longtableiii environment, 17
longtableiv environment, 17
longtablev environment, 17

27

M
mailheader , 12
makemodindex , 20
makevar , 12
manpage, 13
member, 13
memberdesc environment, 10
memberdescni environment, 10
menuselection , 22
method , 13
methoddesc environment, 10
methoddescni environment, 10
mimetype , 13
module , 13
moduleauthor , 16
modulesynopsis , 16

N
newsgroup , 13
note , 13
notice environment, 15

O
obindex , 20
opindex , 20

P
packages, 15
pep , 13
platform , 15
plusminus , 13
production , 21
productionlist environment, 21
program , 13
programopt , 13

R
refbimodindex , 20
refexmodindex , 20
refmodindex , 20
refmodule , 13
refstmodindex , 20
regexp , 13
release , 8
RFC

RFC 822, 12
rfc , 13

S
samp, 13
sectionauthor , 8
seealso environment, 19
seealso* environment, 19

seelink , 19
seemodule , 19
seepep , 19
seerfc , 19
seetext , 19
seetitle , 19
seeurl , 19
setshortversion , 8
shortversion , 13
stindex , 20
strong , 14
sub , 22

T
tableii environment, 16
tableiii environment, 17
tableiv environment, 17
tablev environment, 17
token , 21

U
ulink , 14
url , 14

V
var , 14
version , 14
versionadded , 14
versionchanged , 14

W
warning , 14

28 Index

	1 Introduction
	2 Directory Structure
	3 Style Guide
	4 Primer
	4.1 Syntax
	4.2 Hierarchical Structure
	4.3 Common Environments

	5 Document Classes
	6 Special Markup Constructs
	6.1 Markup for the Preamble
	6.2 Meta-information Markup
	6.3 Information Units
	6.4 Showing Code Examples
	6.5 Inline Markup
	6.6 Miscellaneous Text Markup
	6.7 Module-specific Markup
	6.8 Library-level Markup
	6.9 Table Markup
	6.10 Reference List Markup
	6.11 Index-generating Markup
	6.12 Grammar Production Displays
	6.13 Graphical Interface Components

	7 Processing Tools
	7.1 External Tools
	7.2 Internal Tools
	7.3 Working on Cygwin

	8 Including Graphics
	9 Future Directions
	9.1 Structured Documentation
	9.2 Discussion Forums

	Index

