
What’s New in Python 2.4
Release 1.01

A.M. Kuchling

October 18, 2006

Python Software Foundation
Email: amk@amk.ca

Contents

1 PEP 218: Built-In Set Objects 2

2 PEP 237: Unifying Long Integers and Integers 3

3 PEP 289: Generator Expressions 3

4 PEP 292: Simpler String Substitutions 4

5 PEP 318: Decorators for Functions and Methods 5

6 PEP 322: Reverse Iteration 7

7 PEP 324: New subprocess Module 7

8 PEP 327: Decimal Data Type 8
8.1 Why is Decimal needed? . 9
8.2 The Decimal type . 9
8.3 The Context type . 11

9 PEP 328: Multi-line Imports 12

10 PEP 331: Locale-Independent Float/String Conversions 13

11 Other Language Changes 13
11.1 Optimizations . 16

12 New, Improved, and Deprecated Modules 16
12.1 cookielib . 21
12.2 doctest . 21

13 Build and C API Changes 23
13.1 Port-Specific Changes . 24

14 Porting to Python 2.4 24

15 Acknowledgements 25

This article explains the new features in Python 2.4, released in December 2004.

Python 2.4 is a medium-sized release. It doesn’t introduce as many changes as the radical Python 2.2, but introduces
more features than the conservative 2.3 release. The most significant new language features are function decorators
and generator expressions; most other changes are to the standard library.

According to the CVS change logs, there were 481 patches applied and 502 bugs fixed between Python 2.3 and 2.4.
Both figures are likely to be underestimates.

This article doesn’t attempt to provide a complete specification of every single new feature, but instead provides a
brief introduction to each feature. For full details, you should refer to the documentation for Python 2.4, such as the
Python Library Reference and the Python Reference Manual. Often you will be referred to the PEP for a particular
new feature for explanations of the implementation and design rationale.

1 PEP 218: Built-In Set Objects

Python 2.3 introduced the sets module. C implementations of set data types have now been added to the Python core
as two new built-in types, set(iterable) and frozenset(iterable). They provide high speed operations for mem-
bership testing, for eliminating duplicates from sequences, and for mathematical operations like unions, intersections,
differences, and symmetric differences.

>>> a = set(’abracadabra’) # form a set from a string
>>> ’z’ in a # fast membership testing
False
>>> a # unique letters in a
set([’a’, ’r’, ’b’, ’c’, ’d’])
>>> ’’.join(a) # convert back into a string
’arbcd’

>>> b = set(’alacazam’) # form a second set
>>> a - b # letters in a but not in b
set([’r’, ’d’, ’b’])
>>> a | b # letters in either a or b
set([’a’, ’c’, ’r’, ’d’, ’b’, ’m’, ’z’, ’l’])
>>> a & b # letters in both a and b
set([’a’, ’c’])
>>> a ˆ b # letters in a or b but not both
set([’r’, ’d’, ’b’, ’m’, ’z’, ’l’])

>>> a.add(’z’) # add a new element
>>> a.update(’wxy’) # add multiple new elements
>>> a
set([’a’, ’c’, ’b’, ’d’, ’r’, ’w’, ’y’, ’x’, ’z’])
>>> a.remove(’x’) # take one element out
>>> a
set([’a’, ’c’, ’b’, ’d’, ’r’, ’w’, ’y’, ’z’])

The frozenset type is an immutable version of set. Since it is immutable and hashable, it may be used as a
dictionary key or as a member of another set.

The sets module remains in the standard library, and may be useful if you wish to subclass the Set or
ImmutableSet classes. There are currently no plans to deprecate the module.

See Also:

PEP 218, “Adding a Built-In Set Object Type”
Originally proposed by Greg Wilson and ultimately implemented by Raymond Hettinger.

2 1 PEP 218: Built-In Set Objects

../lib/lib.html
../ref/ref.html

2 PEP 237: Unifying Long Integers and Integers

The lengthy transition process for this PEP, begun in Python 2.2, takes another step forward in Python 2.4. In 2.3, cer-
tain integer operations that would behave differently after int/long unification triggered FutureWarning warnings
and returned values limited to 32 or 64 bits (depending on your platform). In 2.4, these expressions no longer produce
a warning and instead produce a different result that’s usually a long integer.

The problematic expressions are primarily left shifts and lengthy hexadecimal and octal constants. For example, 2
<< 32 results in a warning in 2.3, evaluating to 0 on 32-bit platforms. In Python 2.4, this expression now returns the
correct answer, 8589934592.

See Also:

PEP 237, “Unifying Long Integers and Integers”
Original PEP written by Moshe Zadka and GvR. The changes for 2.4 were implemented by Kalle Svensson.

3 PEP 289: Generator Expressions

The iterator feature introduced in Python 2.2 and the itertools module make it easier to write programs that loop
through large data sets without having the entire data set in memory at one time. List comprehensions don’t fit into this
picture very well because they produce a Python list object containing all of the items. This unavoidably pulls all of the
objects into memory, which can be a problem if your data set is very large. When trying to write a functionally-styled
program, it would be natural to write something like:

links = [link for link in get_all_links() if not link.followed]
for link in links:

...

instead of

for link in get_all_links():
if link.followed:

continue
...

The first form is more concise and perhaps more readable, but if you’re dealing with a large number of link objects
you’d have to write the second form to avoid having all link objects in memory at the same time.

Generator expressions work similarly to list comprehensions but don’t materialize the entire list; instead they create a
generator that will return elements one by one. The above example could be written as:

links = (link for link in get_all_links() if not link.followed)
for link in links:

...

Generator expressions always have to be written inside parentheses, as in the above example. The parentheses sig-
nalling a function call also count, so if you want to create a iterator that will be immediately passed to a function you
could write:

3

print sum(obj.count for obj in list_all_objects())

Generator expressions differ from list comprehensions in various small ways. Most notably, the loop variable (obj
in the above example) is not accessible outside of the generator expression. List comprehensions leave the variable
assigned to its last value; future versions of Python will change this, making list comprehensions match generator
expressions in this respect.

See Also:

PEP 289, “Generator Expressions”
Proposed by Raymond Hettinger and implemented by Jiwon Seo with early efforts steered by Hye-Shik Chang.

4 PEP 292: Simpler String Substitutions

Some new classes in the standard library provide an alternative mechanism for substituting variables into strings; this
style of substitution may be better for applications where untrained users need to edit templates.

The usual way of substituting variables by name is the % operator:

>>> ’%(page)i: %(title)s’ % {’page’:2, ’title’: ’The Best of Times’}
’2: The Best of Times’

When writing the template string, it can be easy to forget the ‘i’ or ‘s’ after the closing parenthesis. This isn’t a
big problem if the template is in a Python module, because you run the code, get an “Unsupported format character”
ValueError, and fix the problem. However, consider an application such as Mailman where template strings
or translations are being edited by users who aren’t aware of the Python language. The format string’s syntax is
complicated to explain to such users, and if they make a mistake, it’s difficult to provide helpful feedback to them.

PEP 292 adds a Template class to the string module that uses ‘$’ to indicate a substitution. Template is a
subclass of the built-in Unicode type, so the result is always a Unicode string:

>>> import string
>>> t = string.Template(’$page: $title’)
>>> t.substitute({’page’:2, ’title’: ’The Best of Times’})
u’2: The Best of Times’

If a key is missing from the dictionary, the substitute method will raise a KeyError. There’s also a
safe substitute method that ignores missing keys:

>>> t = string.SafeTemplate(’$page: $title’)
>>> t.safe_substitute({’page’:3})
u’3: $title’

See Also:

PEP 292, “Simpler String Substitutions”
Written and implemented by Barry Warsaw.

4 4 PEP 292: Simpler String Substitutions

5 PEP 318: Decorators for Functions and Methods

Python 2.2 extended Python’s object model by adding static methods and class methods, but it didn’t extend Python’s
syntax to provide any new way of defining static or class methods. Instead, you had to write a def statement in the
usual way, and pass the resulting method to a staticmethod() or classmethod() function that would wrap
up the function as a method of the new type. Your code would look like this:

class C:
def meth (cls):

...

meth = classmethod(meth) # Rebind name to wrapped-up class method

If the method was very long, it would be easy to miss or forget the classmethod() invocation after the function
body.

The intention was always to add some syntax to make such definitions more readable, but at the time of 2.2’s release
a good syntax was not obvious. Today a good syntax still isn’t obvious but users are asking for easier access to the
feature; a new syntactic feature has been added to meet this need.

The new feature is called “function decorators”. The name comes from the idea that classmethod,
staticmethod, and friends are storing additional information on a function object; they’re decorating functions
with more details.

The notation borrows from Java and uses the ‘@’ character as an indicator. Using the new syntax, the example above
would be written:

class C:

@classmethod
def meth (cls):

...

The @classmethod is shorthand for the meth=classmethod(meth) assignment. More generally, if you have
the following:

@A @B @C
def f ():

...

It’s equivalent to the following pre-decorator code:

def f(): ...
f = A(B(C(f)))

Decorators must come on the line before a function definition, and can’t be on the same line, meaning that @A def
f(): ... is illegal. You can only decorate function definitions, either at the module level or inside a class; you
can’t decorate class definitions.

A decorator is just a function that takes the function to be decorated as an argument and returns either the same function
or some new callable thing. It’s easy to write your own decorators. The following simple example just sets an attribute

5

on the function object:

>>> def deco(func):
... func.attr = ’decorated’
... return func
...
>>> @deco
... def f(): pass
...
>>> f
<function f at 0x402ef0d4>
>>> f.attr
’decorated’
>>>

As a slightly more realistic example, the following decorator checks that the supplied argument is an integer:

def require_int (func):
def wrapper (arg):

assert isinstance(arg, int)
return func(arg)

return wrapper

@require_int
def p1 (arg):

print arg

@require_int
def p2(arg):

print arg*2

An example in PEP 318 contains a fancier version of this idea that lets you both specify the required type and check
the returned type.

Decorator functions can take arguments. If arguments are supplied, your decorator function is called with only those
arguments and must return a new decorator function; this function must take a single function and return a function,
as previously described. In other words, @A @B @C(args) becomes:

def f(): ...
_deco = C(args)
f = A(B(_deco(f)))

Getting this right can be slightly brain-bending, but it’s not too difficult.

A small related change makes the func name attribute of functions writable. This attribute is used to display function
names in tracebacks, so decorators should change the name of any new function that’s constructed and returned.

See Also:

PEP 318, “Decorators for Functions, Methods and Classes”
Written by Kevin D. Smith, Jim Jewett, and Skip Montanaro. Several people wrote patches implementing
function decorators, but the one that was actually checked in was patch #979728, written by Mark Russell.

6 5 PEP 318: Decorators for Functions and Methods

6 PEP 322: Reverse Iteration

A new built-in function, reversed(seq), takes a sequence and returns an iterator that loops over the elements of
the sequence in reverse order.

>>> for i in reversed(xrange(1,4)):
... print i
...
3
2
1

Compared to extended slicing, such as range(1,4)[::-1], reversed() is easier to read, runs faster, and uses
substantially less memory.

Note that reversed() only accepts sequences, not arbitrary iterators. If you want to reverse an iterator, first convert
it to a list with list().

>>> input = open(’/etc/passwd’, ’r’)
>>> for line in reversed(list(input)):
... print line
...
root:*:0:0:System Administrator:/var/root:/bin/tcsh
...

See Also:

PEP 322, “Reverse Iteration”
Written and implemented by Raymond Hettinger.

7 PEP 324: New subprocess Module

The standard library provides a number of ways to execute a subprocess, offering different features and different
levels of complexity. os.system(command) is easy to use, but slow (it runs a shell process which executes the
command) and dangerous (you have to be careful about escaping the shell’s metacharacters). The popen2 module
offers classes that can capture standard output and standard error from the subprocess, but the naming is confusing.
The subprocess module cleans this up, providing a unified interface that offers all the features you might need.

Instead of popen2’s collection of classes, subprocess contains a single class called Popen whose constructor
supports a number of different keyword arguments.

class Popen(args, bufsize=0, executable=None,
stdin=None, stdout=None, stderr=None,
preexec_fn=None, close_fds=False, shell=False,
cwd=None, env=None, universal_newlines=False,
startupinfo=None, creationflags=0):

args is commonly a sequence of strings that will be the arguments to the program executed as the subprocess. (If
the shell argument is true, args can be a string which will then be passed on to the shell for interpretation, just as
os.system() does.)

stdin, stdout, and stderr specify what the subprocess’s input, output, and error streams will be. You can provide a file
object or a file descriptor, or you can use the constant subprocess.PIPE to create a pipe between the subprocess

7

and the parent.

The constructor has a number of handy options:

� close fds requests that all file descriptors be closed before running the subprocess.

� cwd specifies the working directory in which the subprocess will be executed (defaulting to whatever the parent’s
working directory is).

� env is a dictionary specifying environment variables.

� preexec fn is a function that gets called before the child is started.

� universal newlines opens the child’s input and output using Python’s universal newline feature.

Once you’ve created the Popen instance, you can call its wait() method to pause until the subprocess has exited,
poll() to check if it’s exited without pausing, or communicate(data) to send the string data to the subprocess’s
standard input. communicate(data) then reads any data that the subprocess has sent to its standard output or
standard error, returning a tuple (stdout data, stderr data).

call() is a shortcut that passes its arguments along to the Popen constructor, waits for the command to complete,
and returns the status code of the subprocess. It can serve as a safer analog to os.system():

sts = subprocess.call([’dpkg’, ’-i’, ’/tmp/new-package.deb’])
if sts == 0:

Success
...

else:
dpkg returned an error
...

The command is invoked without use of the shell. If you really do want to use the shell, you can add shell=True
as a keyword argument and provide a string instead of a sequence:

sts = subprocess.call(’dpkg -i /tmp/new-package.deb’, shell=True)

The PEP takes various examples of shell and Python code and shows how they’d be translated into Python code that
uses subprocess. Reading this section of the PEP is highly recommended.

See Also:

PEP 324, “subprocess - New process module”
Written and implemented by Peter Åstrand, with assistance from Fredrik Lundh and others.

8 PEP 327: Decimal Data Type

Python has always supported floating-point (FP) numbers, based on the underlying C double type, as a data type.
However, while most programming languages provide a floating-point type, many people (even programmers) are
unaware that floating-point numbers don’t represent certain decimal fractions accurately. The new Decimal type can
represent these fractions accurately, up to a user-specified precision limit.

8 8 PEP 327: Decimal Data Type

8.1 Why is Decimal needed?

The limitations arise from the representation used for floating-point numbers. FP numbers are made up of three
components:

� The sign, which is positive or negative.

� The mantissa, which is a single-digit binary number followed by a fractional part. For example, 1.01 in base-2
notation is 1 + 0/2 + 1/4, or 1.25 in decimal notation.

� The exponent, which tells where the decimal point is located in the number represented.

For example, the number 1.25 has positive sign, a mantissa value of 1.01 (in binary), and an exponent of 0 (the decimal
point doesn’t need to be shifted). The number 5 has the same sign and mantissa, but the exponent is 2 because the
mantissa is multiplied by 4 (2 to the power of the exponent 2); 1.25 * 4 equals 5.

Modern systems usually provide floating-point support that conforms to a standard called IEEE 754. C’s double
type is usually implemented as a 64-bit IEEE 754 number, which uses 52 bits of space for the mantissa. This means
that numbers can only be specified to 52 bits of precision. If you’re trying to represent numbers whose expansion
repeats endlessly, the expansion is cut off after 52 bits. Unfortunately, most software needs to produce output in
base 10, and common fractions in base 10 are often repeating decimals in binary. For example, 1.1 decimal is binary
1.0001100110011 ...; .1 = 1/16 + 1/32 + 1/256 plus an infinite number of additional terms. IEEE 754 has to
chop off that infinitely repeated decimal after 52 digits, so the representation is slightly inaccurate.

Sometimes you can see this inaccuracy when the number is printed:

>>> 1.1
1.1000000000000001

The inaccuracy isn’t always visible when you print the number because the FP-to-decimal-string conversion is pro-
vided by the C library, and most C libraries try to produce sensible output. Even if it’s not displayed, however, the
inaccuracy is still there and subsequent operations can magnify the error.

For many applications this doesn’t matter. If I’m plotting points and displaying them on my monitor, the difference
between 1.1 and 1.1000000000000001 is too small to be visible. Reports often limit output to a certain number of
decimal places, and if you round the number to two or three or even eight decimal places, the error is never apparent.
However, for applications where it does matter, it’s a lot of work to implement your own custom arithmetic routines.

Hence, the Decimal type was created.

8.2 The Decimal type

A new module, decimal, was added to Python’s standard library. It contains two classes, Decimal and Context.
Decimal instances represent numbers, and Context instances are used to wrap up various settings such as the
precision and default rounding mode.

Decimal instances are immutable, like regular Python integers and FP numbers; once it’s been created, you can’t
change the value an instance represents. Decimal instances can be created from integers or strings:

>>> import decimal
>>> decimal.Decimal(1972)
Decimal("1972")
>>> decimal.Decimal("1.1")
Decimal("1.1")

8.1 Why is Decimal needed? 9

You can also provide tuples containing the sign, the mantissa represented as a tuple of decimal digits, and the exponent:

>>> decimal.Decimal((1, (1, 4, 7, 5), -2))
Decimal("-14.75")

Cautionary note: the sign bit is a Boolean value, so 0 is positive and 1 is negative.

Converting from floating-point numbers poses a bit of a problem: should the FP number representing 1.1 turn into the
decimal number for exactly 1.1, or for 1.1 plus whatever inaccuracies are introduced? The decision was to dodge the
issue and leave such a conversion out of the API. Instead, you should convert the floating-point number into a string
using the desired precision and pass the string to the Decimal constructor:

>>> f = 1.1
>>> decimal.Decimal(str(f))
Decimal("1.1")
>>> decimal.Decimal(’%.12f’ % f)
Decimal("1.100000000000")

Once you have Decimal instances, you can perform the usual mathematical operations on them. One limitation:
exponentiation requires an integer exponent:

>>> a = decimal.Decimal(’35.72’)
>>> b = decimal.Decimal(’1.73’)
>>> a+b
Decimal("37.45")
>>> a-b
Decimal("33.99")
>>> a*b
Decimal("61.7956")
>>> a/b
Decimal("20.64739884393063583815028902")
>>> a ** 2
Decimal("1275.9184")
>>> a**b
Traceback (most recent call last):
...

decimal.InvalidOperation: x ** (non-integer)

You can combine Decimal instances with integers, but not with floating-point numbers:

>>> a + 4
Decimal("39.72")
>>> a + 4.5
Traceback (most recent call last):
...

TypeError: You can interact Decimal only with int, long or Decimal data types.
>>>

Decimal numbers can be used with the math and cmath modules, but note that they’ll be immediately converted to
floating-point numbers before the operation is performed, resulting in a possible loss of precision and accuracy. You’ll
also get back a regular floating-point number and not a Decimal.

10 8 PEP 327: Decimal Data Type

>>> import math, cmath
>>> d = decimal.Decimal(’123456789012.345’)
>>> math.sqrt(d)
351364.18288201344
>>> cmath.sqrt(-d)
351364.18288201344j

Decimal instances have a sqrt() method that returns a Decimal, but if you need other things such as trigono-
metric functions you’ll have to implement them.

>>> d.sqrt()
Decimal("351364.1828820134592177245001")

8.3 The Context type

Instances of the Context class encapsulate several settings for decimal operations:

� prec is the precision, the number of decimal places.

� rounding specifies the rounding mode. The decimal module has constants for the various possibilities:
ROUND DOWN, ROUND CEILING, ROUND HALF EVEN, and various others.

� traps is a dictionary specifying what happens on encountering certain error conditions: either an exception
is raised or a value is returned. Some examples of error conditions are division by zero, loss of precision, and
overflow.

There’s a thread-local default context available by calling getcontext(); you can change the properties of this
context to alter the default precision, rounding, or trap handling. The following example shows the effect of changing
the precision of the default context:

>>> decimal.getcontext().prec
28
>>> decimal.Decimal(1) / decimal.Decimal(7)
Decimal("0.1428571428571428571428571429")
>>> decimal.getcontext().prec = 9
>>> decimal.Decimal(1) / decimal.Decimal(7)
Decimal("0.142857143")

The default action for error conditions is selectable; the module can either return a special value such as infinity or
not-a-number, or exceptions can be raised:

>>> decimal.Decimal(1) / decimal.Decimal(0)
Traceback (most recent call last):
...

decimal.DivisionByZero: x / 0
>>> decimal.getcontext().traps[decimal.DivisionByZero] = False
>>> decimal.Decimal(1) / decimal.Decimal(0)
Decimal("Infinity")
>>>

8.3 The Context type 11

The Context instance also has various methods for formatting numbers such as to eng string() and
to sci string().

For more information, see the documentation for the decimal module, which includes a quick-start tutorial and a
reference.

See Also:

PEP 327, “Decimal Data Type”
Written by Facundo Batista and implemented by Facundo Batista, Eric Price, Raymond Hettinger, Aahz, and
Tim Peters.

http://research.microsoft.com/˜hollasch/cgindex/coding/ieeefloat.html
A more detailed overview of the IEEE-754 representation.

http://www.lahey.com/float.htm
The article uses Fortran code to illustrate many of the problems that floating-point inaccuracy can cause.

http://www2.hursley.ibm.com/decimal/
A description of a decimal-based representation. This representation is being proposed as a standard, and
underlies the new Python decimal type. Much of this material was written by Mike Cowlishaw, designer of the
Rexx language.

9 PEP 328: Multi-line Imports

One language change is a small syntactic tweak aimed at making it easier to import many names from a module. In
a from module import names statement, names is a sequence of names separated by commas. If the sequence is
very long, you can either write multiple imports from the same module, or you can use backslashes to escape the line
endings like this:

from SimpleXMLRPCServer import SimpleXMLRPCServer,\
SimpleXMLRPCRequestHandler,\
CGIXMLRPCRequestHandler,\
resolve_dotted_attribute

The syntactic change in Python 2.4 simply allows putting the names within parentheses. Python ignores newlines
within a parenthesized expression, so the backslashes are no longer needed:

from SimpleXMLRPCServer import (SimpleXMLRPCServer,
SimpleXMLRPCRequestHandler,
CGIXMLRPCRequestHandler,
resolve_dotted_attribute)

The PEP also proposes that all import statements be absolute imports, with a leading ‘.’ character to indicate a
relative import. This part of the PEP was not implemented for Python 2.4, but was completed for Python 2.5.

See Also:

PEP 328, “Imports: Multi-Line and Absolute/Relative”
Written by Aahz. Multi-line imports were implemented by Dima Dorfman.

12 9 PEP 328: Multi-line Imports

http://research.microsoft.com/global let OT1	extasciitilde unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {global mathchardef accent@spacefactor spacefactor }accent 126 egroup spacefactor accent@spacefactor OT1	extasciitilde hollasch/cgindex/coding/ieeefloat.html
http://www.lahey.com/float.htm
http://www2.hursley.ibm.com/decimal/

10 PEP 331: Locale-Independent Float/String Conversions

The locale modules lets Python software select various conversions and display conventions that are localized to
a particular country or language. However, the module was careful to not change the numeric locale because various
functions in Python’s implementation required that the numeric locale remain set to the ’C’ locale. Often this was
because the code was using the C library’s atof() function.

Not setting the numeric locale caused trouble for extensions that used third-party C libraries, however, because they
wouldn’t have the correct locale set. The motivating example was GTK+, whose user interface widgets weren’t
displaying numbers in the current locale.

The solution described in the PEP is to add three new functions to the Python API that perform ASCII-only conver-
sions, ignoring the locale setting:

� PyOS ascii strtod(str, ptr) and PyOS ascii atof(str, ptr) both convert a string to a C
double.

� PyOS ascii formatd(buffer, buf len, format, d) converts a double to an ASCII string.

The code for these functions came from the GLib library (http://developer.gnome.org/arch/gtk/glib.html), whose devel-
opers kindly relicensed the relevant functions and donated them to the Python Software Foundation. The locale
module can now change the numeric locale, letting extensions such as GTK+ produce the correct results.

See Also:

PEP 331, “Locale-Independent Float/String Conversions”
Written by Christian R. Reis, and implemented by Gustavo Carneiro.

11 Other Language Changes

Here are all of the changes that Python 2.4 makes to the core Python language.

� Decorators for functions and methods were added (PEP 318).

� Built-in set and frozenset types were added (PEP 218). Other new built-ins include the reversed(seq)
function (PEP 322).

� Generator expressions were added (PEP 289).

� Certain numeric expressions no longer return values restricted to 32 or 64 bits (PEP 237).

� You can now put parentheses around the list of names in a from module import names statement (PEP
328).

� The dict.update() method now accepts the same argument forms as the dict constructor. This includes
any mapping, any iterable of key/value pairs, and keyword arguments. (Contributed by Raymond Hettinger.)

� The string methods ljust(), rjust(), and center() now take an optional argument for specifying a fill
character other than a space. (Contributed by Raymond Hettinger.)

� Strings also gained an rsplit() method that works like the split() method but splits from the end of the
string.

>>> ’www.python.org’.split(’.’, 1)
[’www’, ’python.org’]
’www.python.org’.rsplit(’.’, 1)
[’www.python’, ’org’]

13

http://developer.gnome.org/arch/gtk/glib.html

� Three keyword parameters, cmp, key, and reverse, were added to the sort() method of lists. These parameters
make some common usages of sort() simpler. All of these parameters are optional.

For the cmp parameter, the value should be a comparison function that takes two parameters and returns -1, 0,
or +1 depending on how the parameters compare. This function will then be used to sort the list. Previously this
was the only parameter that could be provided to sort().

key should be a single-parameter function that takes a list element and returns a comparison key for the element.
The list is then sorted using the comparison keys. The following example sorts a list case-insensitively:

>>> L = [’A’, ’b’, ’c’, ’D’]
>>> L.sort() # Case-sensitive sort
>>> L
[’A’, ’D’, ’b’, ’c’]
>>> # Using ’key’ parameter to sort list
>>> L.sort(key=lambda x: x.lower())
>>> L
[’A’, ’b’, ’c’, ’D’]
>>> # Old-fashioned way
>>> L.sort(cmp=lambda x,y: cmp(x.lower(), y.lower()))
>>> L
[’A’, ’b’, ’c’, ’D’]

The last example, which uses the cmp parameter, is the old way to perform a case-insensitive sort. It works but
is slower than using a key parameter. Using key calls lower() method once for each element in the list while
using cmp will call it twice for each comparison, so using key saves on invocations of the lower() method.

For simple key functions and comparison functions, it is often possible to avoid a lambda expression by using
an unbound method instead. For example, the above case-insensitive sort is best written as:

>>> L.sort(key=str.lower)
>>> L
[’A’, ’b’, ’c’, ’D’]

Finally, the reverse parameter takes a Boolean value. If the value is true, the list will be sorted into reverse order.
Instead of L.sort() ; L.reverse(), you can now write L.sort(reverse=True).

The results of sorting are now guaranteed to be stable. This means that two entries with equal keys will be
returned in the same order as they were input. For example, you can sort a list of people by name, and then sort
the list by age, resulting in a list sorted by age where people with the same age are in name-sorted order.

(All changes to sort() contributed by Raymond Hettinger.)

� There is a new built-in function sorted(iterable) that works like the in-place list.sort() method but
can be used in expressions. The differences are:

– the input may be any iterable;

– a newly formed copy is sorted, leaving the original intact; and

– the expression returns the new sorted copy

14 11 Other Language Changes

>>> L = [9,7,8,3,2,4,1,6,5]
>>> [10+i for i in sorted(L)] # usable in a list comprehension
[11, 12, 13, 14, 15, 16, 17, 18, 19]
>>> L # original is left unchanged
[9,7,8,3,2,4,1,6,5]
>>> sorted(’Monty Python’) # any iterable may be an input
[’ ’, ’M’, ’P’, ’h’, ’n’, ’n’, ’o’, ’o’, ’t’, ’t’, ’y’, ’y’]

>>> # List the contents of a dict sorted by key values
>>> colormap = dict(red=1, blue=2, green=3, black=4, yellow=5)
>>> for k, v in sorted(colormap.iteritems()):
... print k, v
...
black 4
blue 2
green 3
red 1
yellow 5

(Contributed by Raymond Hettinger.)

� Integer operations will no longer trigger an OverflowWarning. The OverflowWarning warning will
disappear in Python 2.5.

� The interpreter gained a new switch, -m, that takes a name, searches for the corresponding module on
sys.path, and runs the module as a script. For example, you can now run the Python profiler with python
-m profile. (Contributed by Nick Coghlan.)

� The eval(expr, globals, locals) and execfile(filename, globals, locals) functions and the exec
statement now accept any mapping type for the locals parameter. Previously this had to be a regular Python
dictionary. (Contributed by Raymond Hettinger.)

� The zip() built-in function and itertools.izip() now return an empty list if called with no arguments.
Previously they raised a TypeError exception. This makes them more suitable for use with variable length
argument lists:

>>> def transpose(array):
... return zip(*array)
...
>>> transpose([(1,2,3), (4,5,6)])
[(1, 4), (2, 5), (3, 6)]
>>> transpose([])
[]

(Contributed by Raymond Hettinger.)

� Encountering a failure while importing a module no longer leaves a partially-initialized module object in
sys.modules. The incomplete module object left behind would fool further imports of the same module
into succeeding, leading to confusing errors. (Fixed by Tim Peters.)

� None is now a constant; code that binds a new value to the name ‘None’ is now a syntax error. (Contributed by
Raymond Hettinger.)

15

11.1 Optimizations

� The inner loops for list and tuple slicing were optimized and now run about one-third faster. The inner loops
for dictionaries were also optimized, resulting in performance boosts for keys(), values(), items(),
iterkeys(), itervalues(), and iteritems(). (Contributed by Raymond Hettinger.)

� The machinery for growing and shrinking lists was optimized for speed and for space efficiency. Appending
and popping from lists now runs faster due to more efficient code paths and less frequent use of the underlying
system realloc(). List comprehensions also benefit. list.extend() was also optimized and no longer
converts its argument into a temporary list before extending the base list. (Contributed by Raymond Hettinger.)

� list(), tuple(), map(), filter(), and zip() now run several times faster with non-sequence argu-
ments that supply a len () method. (Contributed by Raymond Hettinger.)

� The methods list. getitem (), dict. getitem (), and dict. contains () are are
now implemented as method descriptor objects rather than wrapper descriptor objects. This
form of access doubles their performance and makes them more suitable for use as arguments to functionals:
‘map(mydict. getitem , keylist)’. (Contributed by Raymond Hettinger.)

� Added a new opcode, LIST APPEND, that simplifies the generated bytecode for list comprehensions and
speeds them up by about a third. (Contributed by Raymond Hettinger.)

� The peephole bytecode optimizer has been improved to produce shorter, faster bytecode; remarkably, the result-
ing bytecode is more readable. (Enhanced by Raymond Hettinger.)

� String concatenations in statements of the form s = s + "abc" and s += "abc" are now performed more
efficiently in certain circumstances. This optimization won’t be present in other Python implementations such
as Jython, so you shouldn’t rely on it; using the join() method of strings is still recommended when you want
to efficiently glue a large number of strings together. (Contributed by Armin Rigo.)

The net result of the 2.4 optimizations is that Python 2.4 runs the pystone benchmark around 5% faster than Python
2.3 and 35% faster than Python 2.2. (pystone is not a particularly good benchmark, but it’s the most commonly used
measurement of Python’s performance. Your own applications may show greater or smaller benefits from Python 2.4.)

12 New, Improved, and Deprecated Modules

As usual, Python’s standard library received a number of enhancements and bug fixes. Here’s a partial list of the most
notable changes, sorted alphabetically by module name. Consult the ‘Misc/NEWS’ file in the source tree for a more
complete list of changes, or look through the CVS logs for all the details.

� The asyncore module’s loop() function now has a count parameter that lets you perform a limited number
of passes through the polling loop. The default is still to loop forever.

� The base64 module now has more complete RFC 3548 support for Base64, Base32, and Base16 encoding and
decoding, including optional case folding and optional alternative alphabets. (Contributed by Barry Warsaw.)

� The bisect module now has an underlying C implementation for improved performance. (Contributed by
Dmitry Vasiliev.)

� The CJKCodecs collections of East Asian codecs, maintained by Hye-Shik Chang, was integrated into 2.4. The
new encodings are:

– Chinese (PRC): gb2312, gbk, gb18030, big5hkscs, hz

– Chinese (ROC): big5, cp950

16 12 New, Improved, and Deprecated Modules

– Japanese: cp932, euc-jis-2004, euc-jp, euc-jisx0213, iso-2022-jp, iso-2022-jp-1, iso-2022-jp-2, iso-2022-
jp-3, iso-2022-jp-ext, iso-2022-jp-2004, shift-jis, shift-jisx0213, shift-jis-2004

– Korean: cp949, euc-kr, johab, iso-2022-kr

� Some other new encodings were added: HP Roman8, ISO 8859-11, ISO 8859-16, PCTP-154, and TIS-620.

� The UTF-8 and UTF-16 codecs now cope better with receiving partial input. Previously the StreamReader
class would try to read more data, making it impossible to resume decoding from the stream. The read()
method will now return as much data as it can and future calls will resume decoding where previous ones left
off. (Implemented by Walter Dörwald.)

� There is a new collections module for various specialized collection datatypes. Currently it contains just
one type, deque, a double-ended queue that supports efficiently adding and removing elements from either
end:

>>> from collections import deque
>>> d = deque(’ghi’) # make a new deque with three items
>>> d.append(’j’) # add a new entry to the right side
>>> d.appendleft(’f’) # add a new entry to the left side
>>> d # show the representation of the deque
deque([’f’, ’g’, ’h’, ’i’, ’j’])
>>> d.pop() # return and remove the rightmost item
’j’
>>> d.popleft() # return and remove the leftmost item
’f’
>>> list(d) # list the contents of the deque
[’g’, ’h’, ’i’]
>>> ’h’ in d # search the deque
True

Several modules, such as the Queue and threading modules, now take advantage of
collections.deque for improved performance. (Contributed by Raymond Hettinger.)

� The ConfigParser classes have been enhanced slightly. The read() method now returns a list of the files
that were successfully parsed, and the set() method raises TypeError if passed a value argument that isn’t
a string. (Contributed by John Belmonte and David Goodger.)

� The curses module now supports the ncurses extension use default colors(). On platforms where
the terminal supports transparency, this makes it possible to use a transparent background. (Contributed by Jörg
Lehmann.)

� The difflib module now includes an HtmlDiff class that creates an HTML table showing a side by side
comparison of two versions of a text. (Contributed by Dan Gass.)

� The email package was updated to version 3.0, which dropped various deprecated APIs and removes support
for Python versions earlier than 2.3. The 3.0 version of the package uses a new incremental parser for MIME
messages, available in the email.FeedParser module. The new parser doesn’t require reading the entire
message into memory, and doesn’t throw exceptions if a message is malformed; instead it records any problems
in the defect attribute of the message. (Developed by Anthony Baxter, Barry Warsaw, Thomas Wouters, and
others.)

� The heapq module has been converted to C. The resulting tenfold improvement in speed makes the module
suitable for handling high volumes of data. In addition, the module has two new functions nlargest() and
nsmallest() that use heaps to find the N largest or smallest values in a dataset without the expense of a full
sort. (Contributed by Raymond Hettinger.)

� The httplib module now contains constants for HTTP status codes defined in various HTTP-related RFC
documents. Constants have names such as OK, CREATED, CONTINUE, and MOVED PERMANENTLY; use
pydoc to get a full list. (Contributed by Andrew Eland.)

17

� The imaplib module now supports IMAP’s THREAD command (contributed by Yves Dionne) and new
deleteacl() and myrights() methods (contributed by Arnaud Mazin).

� The itertools module gained a groupby(iterable[, func]) function. iterable is something that can be
iterated over to return a stream of elements, and the optional func parameter is a function that takes an element
and returns a key value; if omitted, the key is simply the element itself. groupby() then groups the elements
into subsequences which have matching values of the key, and returns a series of 2-tuples containing the key
value and an iterator over the subsequence.

Here’s an example to make this clearer. The key function simply returns whether a number is even or odd, so
the result of groupby() is to return consecutive runs of odd or even numbers.

>>> import itertools
>>> L = [2, 4, 6, 7, 8, 9, 11, 12, 14]
>>> for key_val, it in itertools.groupby(L, lambda x: x % 2):
... print key_val, list(it)
...
0 [2, 4, 6]
1 [7]
0 [8]
1 [9, 11]
0 [12, 14]
>>>

groupby() is typically used with sorted input. The logic for groupby() is similar to the UNIX uniq filter
which makes it handy for eliminating, counting, or identifying duplicate elements:

>>> word = ’abracadabra’
>>> letters = sorted(word) # Turn string into a sorted list of letters
>>> letters
[’a’, ’a’, ’a’, ’a’, ’a’, ’b’, ’b’, ’c’, ’d’, ’r’, ’r’]
>>> for k, g in itertools.groupby(letters):
... print k, list(g)
...
a [’a’, ’a’, ’a’, ’a’, ’a’]
b [’b’, ’b’]
c [’c’]
d [’d’]
r [’r’, ’r’]
>>> # List unique letters
>>> [k for k, g in groupby(letters)]
[’a’, ’b’, ’c’, ’d’, ’r’]
>>> # Count letter occurrences
>>> [(k, len(list(g))) for k, g in groupby(letters)]
[(’a’, 5), (’b’, 2), (’c’, 1), (’d’, 1), (’r’, 2)]

(Contributed by Hye-Shik Chang.)

� itertools also gained a function named tee(iterator, N) that returns N independent iterators that repli-
cate iterator. If N is omitted, the default is 2.

18 12 New, Improved, and Deprecated Modules

>>> L = [1,2,3]
>>> i1, i2 = itertools.tee(L)
>>> i1,i2
(<itertools.tee object at 0x402c2080>, <itertools.tee object at 0x402c2090>)
>>> list(i1) # Run the first iterator to exhaustion
[1, 2, 3]
>>> list(i2) # Run the second iterator to exhaustion
[1, 2, 3]
>

Note that tee() has to keep copies of the values returned by the iterator; in the worst case, it may need to
keep all of them. This should therefore be used carefully if the leading iterator can run far ahead of the trailing
iterator in a long stream of inputs. If the separation is large, then you might as well use list() instead.
When the iterators track closely with one another, tee() is ideal. Possible applications include bookmarking,
windowing, or lookahead iterators. (Contributed by Raymond Hettinger.)

� A number of functions were added to the locale module, such as bind textdomain codeset() to
specify a particular encoding and a family of l*gettext() functions that return messages in the chosen
encoding. (Contributed by Gustavo Niemeyer.)

� Some keyword arguments were added to the logging package’s basicConfig function to simplify log
configuration. The default behavior is to log messages to standard error, but various keyword arguments can be
specified to log to a particular file, change the logging format, or set the logging level. For example:

import logging
logging.basicConfig(filename=’/var/log/application.log’,

level=0, # Log all messages
format=’%(levelname):%(process):%(thread):%(message)’)

Other additions to the logging package include a log(level, msg) convenience method, as well as a
TimedRotatingFileHandler class that rotates its log files at a timed interval. The module already had
RotatingFileHandler, which rotated logs once the file exceeded a certain size. Both classes derive from
a new BaseRotatingHandler class that can be used to implement other rotating handlers.

(Changes implemented by Vinay Sajip.)

� The marshal module now shares interned strings on unpacking a data structure. This may shrink the size of
certain pickle strings, but the primary effect is to make ‘.pyc’ files significantly smaller. (Contributed by Martin
von Loewis.)

� The nntplib module’s NNTP class gained description() and descriptions() methods to retrieve
newsgroup descriptions for a single group or for a range of groups. (Contributed by Jürgen A. Erhard.)

� Two new functions were added to the operator module, attrgetter(attr) and itemgetter(index).
Both functions return callables that take a single argument and return the corresponding attribute or item; these
callables make excellent data extractors when used with map() or sorted(). For example:

>>> L = [(’c’, 2), (’d’, 1), (’a’, 4), (’b’, 3)]
>>> map(operator.itemgetter(0), L)
[’c’, ’d’, ’a’, ’b’]
>>> map(operator.itemgetter(1), L)
[2, 1, 4, 3]
>>> sorted(L, key=operator.itemgetter(1)) # Sort list by second tuple item
[(’d’, 1), (’c’, 2), (’b’, 3), (’a’, 4)]

(Contributed by Raymond Hettinger.)

19

� The optparse module was updated in various ways. The module now passes its messages through
gettext.gettext(), making it possible to internationalize Optik’s help and error messages. Help mes-
sages for options can now include the string ’%default’, which will be replaced by the option’s default
value. (Contributed by Greg Ward.)

� The long-term plan is to deprecate the rfc822 module in some future Python release in favor of the email
package. To this end, the email.Utils.formatdate() function has been changed to make it usable as a
replacement for rfc822.formatdate(). You may want to write new e-mail processing code with this in
mind. (Change implemented by Anthony Baxter.)

� A new urandom(n) function was added to the os module, returning a string containing n bytes of random
data. This function provides access to platform-specific sources of randomness such as ‘/dev/urandom’ on Linux
or the Windows CryptoAPI. (Contributed by Trevor Perrin.)

� Another new function: os.path.lexists(path) returns true if the file specified by path exists, whether or
not it’s a symbolic link. This differs from the existing os.path.exists(path) function, which returns false
if path is a symlink that points to a destination that doesn’t exist. (Contributed by Beni Cherniavsky.)

� A new getsid() function was added to the posix module that underlies the os module. (Contributed by J.
Raynor.)

� The poplib module now supports POP over SSL. (Contributed by Hector Urtubia.)

� The profile module can now profile C extension functions. (Contributed by Nick Bastin.)

� The random module has a new method called getrandbits(N) that returns a long integer N bits in length.
The existing randrange() method now uses getrandbits() where appropriate, making generation of
arbitrarily large random numbers more efficient. (Contributed by Raymond Hettinger.)

� The regular expression language accepted by the re module was extended with simple conditional expres-
sions, written as d(?(group)A|B)c. group is either a numeric group ID or a group name defined with
d(?P<group>...)cearlier in the expression. If the specified group matched, the regular expression pattern A
will be tested against the string; if the group didn’t match, the pattern B will be used instead. (Contributed by
Gustavo Niemeyer.)

� The re module is also no longer recursive, thanks to a massive amount of work by Gustavo Niemeyer. In a
recursive regular expression engine, certain patterns result in a large amount of C stack space being consumed,
and it was possible to overflow the stack. For example, if you matched a 30000-byte string of ‘a’ characters
against the expression d(a|b)+c, one stack frame was consumed per character. Python 2.3 tried to check for
stack overflow and raise a RuntimeError exception, but certain patterns could sidestep the checking and if
you were unlucky Python could segfault. Python 2.4’s regular expression engine can match this pattern without
problems.

� A new socketpair() function, returning a pair of connected sockets, was added to the socket module.
(Contributed by Dave Cole.)

� The sys.exitfunc() function has been deprecated. Code should be using the existing atexit module,
which correctly handles calling multiple exit functions. Eventually sys.exitfunc() will become a purely
internal interface, accessed only by atexit.

� The tarfile module now generates GNU-format tar files by default. (Contributed by Lars Gustaebel.)

� The threading module now has an elegantly simple way to support thread-local data. The module contains
a local class whose attribute values are local to different threads.

20 12 New, Improved, and Deprecated Modules

import threading

data = threading.local()
data.number = 42
data.url = (’www.python.org’, 80)

Other threads can assign and retrieve their own values for the number and url attributes. You can subclass
local to initialize attributes or to add methods. (Contributed by Jim Fulton.)

� The timeit module now automatically disables periodic garbarge collection during the timing loop. This
change makes consecutive timings more comparable. (Contributed by Raymond Hettinger.)

� The weakref module now supports a wider variety of objects including Python functions, class instances,
sets, frozensets, deques, arrays, files, sockets, and regular expression pattern objects. (Contributed by Raymond
Hettinger.)

� The xmlrpclib module now supports a multi-call extension for transmitting multiple XML-RPC calls in a
single HTTP operation. (Contributed by Brian Quinlan.)

� The mpz, rotor, and xreadlines modules have been removed.

12.1 cookielib

The cookielib library supports client-side handling for HTTP cookies, mirroring the Cookiemodule’s server-side
cookie support. Cookies are stored in cookie jars; the library transparently stores cookies offered by the web server in
the cookie jar, and fetches the cookie from the jar when connecting to the server. As in web browsers, policy objects
control whether cookies are accepted or not.

In order to store cookies across sessions, two implementations of cookie jars are provided: one that stores cookies in
the Netscape format so applications can use the Mozilla or Lynx cookie files, and one that stores cookies in the same
format as the Perl libwww library.

urllib2 has been changed to interact with cookielib: HTTPCookieProcessor manages a cookie jar that is
used when accessing URLs.

This module was contributed by John J. Lee.

12.2 doctest

The doctest module underwent considerable refactoring thanks to Edward Loper and Tim Peters. Testing can still
be as simple as running doctest.testmod(), but the refactorings allow customizing the module’s operation in
various ways

The new DocTestFinder class extracts the tests from a given object’s docstrings:

12.1 cookielib 21

def f (x, y):
""">>> f(2,2)

4
>>> f(3,2)
6

"""
return x*y

finder = doctest.DocTestFinder()

Get list of DocTest instances
tests = finder.find(f)

The new DocTestRunner class then runs individual tests and can produce a summary of the results:

runner = doctest.DocTestRunner()
for t in tests:

tried, failed = runner.run(t)

runner.summarize(verbose=1)

The above example produces the following output:

1 items passed all tests:
2 tests in f

2 tests in 1 items.
2 passed and 0 failed.
Test passed.

DocTestRunner uses an instance of the OutputChecker class to compare the expected output with the actual
output. This class takes a number of different flags that customize its behaviour; ambitious users can also write a
completely new subclass of OutputChecker.

The default output checker provides a number of handy features. For example, with the doctest.ELLIPSIS option
flag, an ellipsis (‘...’) in the expected output matches any substring, making it easier to accommodate outputs that
vary in minor ways:

def o (n):
""">>> o(1)

<__main__.C instance at 0x...>
>>>
"""

Another special string, ‘<BLANKLINE>’, matches a blank line:

22 12 New, Improved, and Deprecated Modules

def p (n):
""">>> p(1)

<BLANKLINE>
>>>
"""

Another new capability is producing a diff-style display of the output by specifying the doctest.REPORT UDIFF
(unified diffs), doctest.REPORT CDIFF (context diffs), or doctest.REPORT NDIFF (delta-style) option
flags. For example:

def g (n):
""">>> g(4)

here
is
a
lengthy
>>>"""

L = ’here is a rather lengthy list of words’.split()
for word in L[:n]:

print word

Running the above function’s tests with doctest.REPORT UDIFF specified, you get the following output:

**
File ‘‘t.py’’, line 15, in g
Failed example:

g(4)
Differences (unified diff with -expected +actual):

@@ -2,3 +2,3 @@
is
a
-lengthy
+rather

**

13 Build and C API Changes

Some of the changes to Python’s build process and to the C API are:

� Three new convenience macros were added for common return values from extension functions:
Py RETURN NONE, Py RETURN TRUE, and Py RETURN FALSE. (Contributed by Brett Cannon.)

� Another new macro, Py CLEAR(obj), decreases the reference count of obj and sets obj to the null pointer.
(Contributed by Jim Fulton.)

� A new function, PyTuple Pack(N, obj1, obj2, ..., objN), constructs tuples from a variable length
argument list of Python objects. (Contributed by Raymond Hettinger.)

� A new function, PyDict Contains(d, k), implements fast dictionary lookups without masking excep-
tions raised during the look-up process. (Contributed by Raymond Hettinger.)

23

� The Py IS NAN(X) macro returns 1 if its float or double argument X is a NaN. (Contributed by Tim Peters.)

� C code can avoid unnecessary locking by using the new PyEval ThreadsInitialized() function to
tell if any thread operations have been performed. If this function returns false, no lock operations are needed.
(Contributed by Nick Coghlan.)

� A new function, PyArg VaParseTupleAndKeywords(), is the same as
PyArg ParseTupleAndKeywords() but takes a va list instead of a number of arguments.
(Contributed by Greg Chapman.)

� A new method flag, METH COEXISTS, allows a function defined in slots to co-exist with a PyCFunction
having the same name. This can halve the access time for a method such as set. contains (). (Con-
tributed by Raymond Hettinger.)

� Python can now be built with additional profiling for the interpreter itself, intended as an aid to people developing
the Python core. Providing --enable-profiling to the configure script will let you profile the interpreter with
gprof, and providing the --with-tsc switch enables profiling using the Pentium’s Time-Stamp-Counter register.
Note that the --with-tsc switch is slightly misnamed, because the profiling feature also works on the PowerPC
platform, though that processor architecture doesn’t call that register “the TSC register”. (Contributed by Jeremy
Hylton.)

� The tracebackobject type has been renamed to PyTracebackObject.

13.1 Port-Specific Changes

� The Windows port now builds under MSVC++ 7.1 as well as version 6. (Contributed by Martin von Loewis.)

14 Porting to Python 2.4

This section lists previously described changes that may require changes to your code:

� Left shifts and hexadecimal/octal constants that are too large no longer trigger a FutureWarning and return
a value limited to 32 or 64 bits; instead they return a long integer.

� Integer operations will no longer trigger an OverflowWarning. The OverflowWarning warning will
disappear in Python 2.5.

� The zip() built-in function and itertools.izip() now return an empty list instead of raising a
TypeError exception if called with no arguments.

� dircache.listdir() now passes exceptions to the caller instead of returning empty lists.

� LexicalHandler.startDTD() used to receive the public and system IDs in the wrong order. This has
been corrected; applications relying on the wrong order need to be fixed.

� fcntl.ioctl now warns if the mutate argument is omitted and relevant.

� The tarfile module now generates GNU-format tar files by default.

� Encountering a failure while importing a module no longer leaves a partially-initialized module object in
sys.modules.

� None is now a constant; code that binds a new value to the name ‘None’ is now a syntax error.

24 14 Porting to Python 2.4

15 Acknowledgements

The author would like to thank the following people for offering suggestions, corrections and assistance with various
drafts of this article: Koray Can, Hye-Shik Chang, Michael Dyck, Raymond Hettinger, Brian Hurt, Hamish Lawson,
Fredrik Lundh.

25

	1 PEP 218: Built-In Set Objects
	2 PEP 237: Unifying Long Integers and Integers
	3 PEP 289: Generator Expressions
	4 PEP 292: Simpler String Substitutions
	5 PEP 318: Decorators for Functions and Methods
	6 PEP 322: Reverse Iteration
	7 PEP 324: New subprocess Module
	8 PEP 327: Decimal Data Type
	8.1 Why is Decimal needed?
	8.2 The Decimal type
	8.3 The Context type

	9 PEP 328: Multi-line Imports
	10 PEP 331: Locale-Independent Float/String Conversions
	11 Other Language Changes
	11.1 Optimizations

	12 New, Improved, and Deprecated Modules
	12.1 cookielib
	12.2 doctest

	13 Build and C API Changes
	13.1 Port-Specific Changes

	14 Porting to Python 2.4
	15 Acknowledgements

