Extending and Embedding the Python

Interpreter
Release 2.3.3

Guido van Rossum
Fred L. Drake, Jr., editor

December 19, 2003

PythonLabs
Email: docs@python.org

Copyright(© 2001, 2002, 2003 Python Software Foundation. All rights reserved.
Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an interpreted, object-oriented programming language. This document describes how to write modules in
C or C*++ to extend the Python interpreter with new modules. Those modules can define new functions but also
new object types and their methods. The document also describes how to embed the Python interpreter in another
application, for use as an extension language. Finally, it shows how to compile and link extension modules so that they
can be loaded dynamically (at run time) into the interpreter, if the underlying operating system supports this feature.

This document assumes basic knowledge about Python. For an informal introduction to the language;\geeithe
Tutorial. ThePython Reference Manugives a more formal definition of the language. Thehon Library Reference
documents the existing object types, functions and modules (both built-in and written in Python) that give the language
its wide application range.

For a detailed description of the whole Python/C API, see the segay#ien/C API Reference Manual

CONTENTS

Extending Python with C or C++ 1
1.1 ASimple Example. 1
1.2 Intermezzo: Errors and EXCEpPLiONS e e e 2
1.3 Backtothe Example e 4
1.4 The Module’s Method Table and Initialization Function. 4
1.5 Compilationand Linkage. 6
1.6 Calling Python Functionsfrom C e 7
1.7 Extracting Parameters in Extension Functions. 0. 8
1.8 Keyword Parameters for Extension Functions., 10
1.9 Building Arbitrary Values 11
1.10 Reference Counts. e e 12
1.11 Writing Extensionsin € L e e 16
1.12 Providing a C APIforan ExtensionModule 16
Defining New Types 21
2.1 TheBaSICS. o e 21
2.2 TypeMethods. e e 44
Building C and C++ Extensions with distutils 55
3.1 Distributing your extension modules e 56
Building C and C++ Extensions on Windows 59
4.1 A Cookbook Approach e 59
4.2 Differences BetweenUx and Windows 61
4.3 UsingDLLsInNPractice. e e e e 62
Embedding Python in Another Application 63
5.1 VeryHighLevel Embedding e 63
5.2 Beyond Very High Level Embedding: Anoverview 0...... 64
5.3 PureEmbedding 65
5.4 Extending Embedded Python 67
5.5 Embedding Pythonin€ 68
5.6 Linking Requirements. e e e 68
Reporting Bugs 69
History and License 71
B.1 History ofthe software 71
B.2 Terms and conditions for accessing or otherwise using Python 72

CHAPTER
ONE

Extending Python with C or C++

It is quite easy to add new built-in modules to Python, if you know how to program in C.&dehsion modulesan
do two things that can’t be done directly in Python: they can implement new built-in object types, and they can call C
library functions and system calls.

To support extensions, the Python API (Application Programmers Interface) defines a set of functions, macros and
variables that provide access to most aspects of the Python run-time system. The Python API is incorporated in a C
source file by including the head#ython.h"

The compilation of an extension module depends on its intended use as well as on your system setup; details are given
in later chapters.

1.1 A Simple Example

Let’s create an extension module callspam’ (the favorite food of Monty Python fans...) and let's say we want to
create a Python interface to the C library functeystem() .! This function takes a null-terminated character string
as argument and returns an integer. We want this function to be callable from Python as follows:

>>> jmport spam
>>> status = spam.system(“ls -I")

Begin by creating a filespammodule.c’. (Historically, if a module is calledspam’, the C file containing its imple-
mentation is calledspammodule.c’; if the module name is very long, likespammify ’, the module name can be just
‘spammify.c’.)

The first line of our file can be:

#include <Python.h>

which pulls in the Python API (you can add a comment describing the purpose of the module and a copyright notice if
you like). Since Python may define some pre-processor definitions which affect the standard headers on some systems,
you must includePython.h’ before any standard headers are included.

All user-visible symbols defined byython.h’ have a prefix of Py’ or ‘ PY’, except those defined in standard header
files. For convenience, and since they are used extensively by the Python intefprgteon.h" includes a few
standard header filesistdio.h> |, <string.h> |, <errno.h> , and<stdlib.h> . If the latter header file does
not exist on your system, it declares the functioraloc() ,free() andrealloc() directly.

The next thing we add to our module file is the C function that will be called when the Python expression

1An interface for this function already exists in the standard modsile— it was chosen as a simple and straightfoward example.

‘spam.system(string) ' is evaluated (we’ll see shortly how it ends up being called):

static PyObject *
spam_system(PyObject *self, PyObject *args)

{
char *command,
int sts;
if ('PyArg_ParseTuple(args, "s", &command))
return NULL;
sts = system(command);
return Py_BuildValue("i", sts);
}

There is a straightforward translation from the argument list in Python (for example, the single expligssion)
to the arguments passed to the C function. The C function always has two arguments, conventionallyatfzaned
args

Theself argument is only used when the C function implements a built-in method, not a function. In the exsatiple,
will always be aNULL pointer, since we are defining a function, not a method. (This is done so that the interpreter
doesn’t have to understand two different types of C functions.)

The args argument will be a pointer to a Python tuple object containing the arguments. Each item of the tuple
corresponds to an argument in the call's argument list. The arguments are Python objects — in order to do anything
with them in our C function we have to convert them to C values. The fun®iphrg _ParseTuple() in the

Python API checks the argument types and converts them to C values. It uses a template string to determine the
required types of the arguments as well as the types of the C variables into which to store the converted values. More
about this later.

PyArg _ParseTuple() returns true (nonzero) if all arguments have the right type and its components have been
stored in the variables whose addresses are passed. It returns false (zero) if an invalid argument list was passed. In the
latter case it also raises an appropriate exception so the calling function canNétutnmmediately (as we saw in

the example).

1.2 Intermezzo: Errors and Exceptions

An important convention throughout the Python interpreter is the following: when a function fails, it should set an
exception condition and return an error value (usuallMW@LL pointer). Exceptions are stored in a static global
variable inside the interpreter; if this variableN$JLL no exception has occurred. A second global variable stores the
“associated value” of the exception (the second argumerdise). A third variable contains the stack traceback

in case the error originated in Python code. These three variables are the C equivalents of the Python variables
sys.exc _type , sys.exc _value andsys.exc _traceback (see the section on modusgs in the Python

Library Referencp It is important to know about them to understand how errors are passed around.

The Python API defines a number of functions to set various types of exceptions.

The most common one RyErr _SetString() . Its arguments are an exception object and a C string. The excep-
tion object is usually a predefined object liIRgExc _ZeroDivisionError . The C string indicates the cause of
the error and is converted to a Python string object and stored as the “associated value” of the exception.

Another useful function i®yErr _SetFromErrno() , which only takes an exception argument and constructs the
associated value by inspection of the global varigsteo . The most general function ByErr _SetObject()
which takes two object arguments, the exception and its associated value. You don't iBedN&CREF() the
objects passed to any of these functions.

You can test non-destructively whether an exception has been sé@yfitih _Occurred() . This returns the current

2 Chapter 1. Extending Python with C or C++

exception object, oNULL if no exception has occurred. You normally don't need to BglErr _Occurred() to
see whether an error occurred in a function call, since you should be able to tell from the return value.

When a functiorf that calls another functiog detects that the latter fails should itself return an error value (usually
NULLor -1). It shouldnotcall one of thePyErr _*() functions — one has already been calledgby’s caller is

then supposed to also return an error indicatioitstoaller, agairwithoutcalling PyErr _*() , and so on — the most

detailed cause of the error was already reported by the function that first detected it. Once the error reaches the Python
interpreter's main loop, this aborts the currently executing Python code and tries to find an exception handler specified
by the Python programmer.

(There are situations where a module can actually give a more detailed error message by callingPgiother()
function, and in such cases it is fine to do so. As a general rule, however, this is not necessary, and can cause
information about the cause of the error to be lost: most operations can fail for a variety of reasons.)

To ignore an exception set by a function call that failed, the exception condition must be cleared explicitly by calling
PyErr _Clear() . The only time C code should cdyErr _Clear() s if it doesn’t want to pass the error on to

the interpreter but wants to handle it completely by itself (possibly by trying something else, or pretending nothing
went wrong).

Every failingmalloc() call must be turned into an exception — the direct callemafloc() (orrealloc())
must callPyErr _NoMemory() and return a failure indicator itself. All the object-creating functions (for example,
Pyint _FromLong()) already do this, so this note is only relevant to those whorgalloc() directly.

Also note that, with the important exceptionfyArg _ParseTuple() and friends, functions that return an integer
status usually return a positive value or zero for successrfdr failure, like UNIX system calls.

Finally, be careful to clean up garbage (by makilygg XDECREF() or Py_DECREF() calls for objects you have
already created) when you return an error indicator!

The choice of which exception to raise is entirely yours. There are predeclared C objects corresponding to all built-in
Python exceptions, such &yExc _ZeroDivisionError , which you can use directly. Of course, you should
choose exceptions wisely — don’t ugyyExc _TypeError to mean that a file couldn’t be opened (that should
probably bePyExc _IOError). If something’s wrong with the argument list, tRgArg _ParseTuple() function

usually raise®yExc _TypeError . If you have an argument whose value must be in a particular range or must satisfy
other conditionsPyExc _ValueError is appropriate.

You can also define a new exception that is unique to your module. For this, you usually declare a static object variable
at the beginning of your file:

static PyObject *SpamError;

and initialize it in your module’s initialization functionnjtspam()) with an exception object (leaving out the error
checking for now):

PyMODINIT_FUNC
initspam(void)

PyObject *m;
m = Py_InitModule("spam", SpamMethods);
SpamError = PyErr_NewException("spam.error”, NULL, NULL);

Py_INCREF(SpamError);
PyModule_AddObject(m, "error", SpamError);

1.2. Intermezzo: Errors and Exceptions 3

Note that the Python name for the exception objespam.error . ThePyErr _NewException() function may
create a class with the base class bé&irgeption (unless another class is passed in insteadWifL), described in
the Python Library Referencender “Built-in Exceptions.”

Note also that th&pamError variable retains a reference to the newly created exception class; this is intentional!
Since the exception could be removed from the module by external code, an owned reference to the class is needed to
ensure that it will not be discarded, caus®gamError to become a dangling pointer. Should it become a dangling
pointer, C code which raises the exception could cause a core dump or other unintended side effects.

We discuss the use of PyMODINIFUNC later in this sample.

1.3 Back to the Example
Going back to our example function, you should now be able to understand this statement:

if (IPyArg_ParseTuple(args, "s", &command))
return NULL,

It returnsNULL (the error indicator for functions returning object pointers) if an error is detected in the argument list,
relying on the exception set IByArg _ParseTuple() . Otherwise the string value of the argument has been copied
to the local variableommand This is a pointer assignment and you are not supposed to modify the string to which
it points (so in Standard C, the varialdemmandshould properly be declared anhst char *command).

The next statement is a call to thenlx function system() , passing it the string we just got from
PyArg _ParseTuple()

sts = system(command);

Our spam.system() function must return the value sts as a Python object. This is done using the function
Py_BuildValue() , which is something like the inverse BiyArg _ParseTuple() : it takes a format string and
an arbitrary number of C values, and returns a new Python object. More irfg oBuildValue() is given later.

return Py_BuildValue("i", sts);

In this case, it will return an integer object. (Yes, even integers are objects on the heap in Python!)

If you have a C function that returns no useful argument (a function retunoidy), the corresponding Python
function must returiNone. You need this idiom to do so:

Py_INCREF(Py_None);
return Py_None;

Py_None is the C name for the special Python objicine. It is a genuine Python object rather thaNdLL pointer,
which means “error” in most contexts, as we have seen.

1.4 The Module’s Method Table and Initialization Function

| promised to show howpam_system() is called from Python programs. First, we need to list its name and address
in a “method table:

4 Chapter 1. Extending Python with C or C++

static PyMethodDef SpamMethods[] = {

{"system", spam_system, METH_VARARGS,
"Execute a shell command."},

{NULL, NULL, 0, NULL} /* Sentinel */

Note the third entry METHVARARGS. This is a flag telling the interpreter the calling convention to be used for the
C function. It should normally always bMETH VARARGSor ‘ METHVARARGS | METHKEYWORDSa value
of 0 means that an obsolete variantyfArg _ParseTuple() is used.

When using only METHVARARGS the function should expect the Python-level parameters to be passed in as a
tuple acceptable for parsing ikyArg _ParseTuple() ; more information on this function is provided below.

TheMETHKEYWORDISt may be set in the third field if keyword arguments should be passed to the function. In this
case, the C function should accept a thiRyObject * * parameter which will be a dictionary of keywords. Use
PyArg _ParseTupleAndKeywords() to parse the arguments to such a function.

The method table must be passed to the interpreter in the module’s initialization function. The initialization function
must be namecdhit nam€) , wherenameis the name of the module, and should be the only static item
defined in the module file:

PyMODINIT_FUNC
initspam(void)

{
}

(void) Py_InitModule("spam", SpamMethods);

Note that PyMODINIT_FUNC declares the function amid return type, declares any special linkage declarations
required by the platform, and fort3- declares the function axtern "C"

When the Python program imports modwgigam for the first time,initspam() is called. (See below for com-
ments about embedding Python.) It cafg_InitModule() , which creates a “module object” (which is inserted

in the dictionarysys.modules under the key'spam"), and inserts built-in function objects into the newly cre-
ated module based upon the table (an arraPyi¥lethodDef structures) that was passed as its second argument.
Py _lInitModule() returns a pointer to the module object that it creates (which is unused here). It aborts with a
fatal error if the module could not be initialized satisfactorily, so the caller doesn’t need to check for errors.

When embedding Python, thaitspam() function is not called automatically unless there’s an entry in the
_Pylmport _lInittab table. The easiest way to handle this is to statically initialize your statically-linked mod-
ules by directly callingnitspam() after the call tdPy _Initialize() or PyMac_lInitialize()

1.4. The Module’s Method Table and Initialization Function 5

int
main(int argc, char *argv[])

{
/* Pass argv[0] to the Python interpreter */

Py_SetProgramName(argv[0]);

[* Initialize the Python interpreter. Required. */
Py_Initialize();

/* Add a static module */
initspam();

An example may be found in the fil®@émo/embed/demo.c’ in the Python source distribution.

Note: Removing entries fronsys.modules or importing compiled modules into multiple interpreters within a
process (or following dork() without an interveningexec()) can create problems for some extension mod-
ules. Extension module authors should exercise caution when initializing internal data structures. Note also that
the reload() function can be used with extension modules, and will call the module initialization function
(initspam() in the example), but will not load the module again if it was loaded from a dynamically loadable
object file (‘so’ on UNIX, “.dII' on Windows).

A more substantial example module is included in the Python source distributiMoasiés/xxmodule.c’. This file

may be used as a template or simply read as an examplendtielator.py script included in the source distribution

or Windows install provides a simple graphical user interface for declaring the functions and objects which a module
should implement, and can generate a template which can be filled in. The script lives ffodBénodulator/’
directory; see theREADME' file there for more information.

1.5 Compilation and Linkage

There are two more things to do before you can use your new extension: compiling and linking it with the Python
system. If you use dynamic loading, the details may depend on the style of dynamic loading your system uses; see
the chapters about building extension modules (chapter 3) and additional information that pertains only to building on
Windows (chapter 4) for more information about this.

If you can’t use dynamic loading, or if you want to make your module a permanent part of the Python interpreter, you
will have to change the configuration setup and rebuild the interpreter. Luckily, this is very simpheignjuist place

your file (‘spammodule.c’ for example) in the Modules/’ directory of an unpacked source distribution, add a line to

the file ‘Modules/Setup.local’ describing your file:

spam spammodule.o

and rebuild the interpreter by runningake in the toplevel directory. You can also runake in the ‘Modules/’
subdirectory, but then you must first rebuilddkefile’ there by running make Makefile’. (This is necessary each time
you change theSetup’ file.)

If your module requires additional libraries to link with, these can be listed on the line in the configuration file as well,
for instance:

spam spammodule.o -IX11

6 Chapter 1. Extending Python with C or C++

1.6 Calling Python Functions from C

So far we have concentrated on making C functions callable from Python. The reverse is also useful: calling Python
functions from C. This is especially the case for libraries that support so-called “callback” functions. If a C interface
makes use of callbacks, the equivalent Python often needs to provide a callback mechanism to the Python program-
mer; the implementation will require calling the Python callback functions from a C callback. Other uses are also
imaginable.

Fortunately, the Python interpreter is easily called recursively, and there is a standard interface to call a Python function.
(I won’t dwell on how to call the Python parser with a particular string as input — if you're interested, have a look at
the implementation of thec command line option inPython/pythonmain.c’ from the Python source code.)

Calling a Python function is easy. First, the Python program must somehow pass you the Python function object. You
should provide a function (or some other interface) to do this. When this function is called, save a pointer to the Python
function object (be careful tBy_INCREF() it!) in a global variable — or wherever you see fit. For example, the
following function might be part of a module definition:

static PyObject *my_callback = NULL;

static PyObject *
my_set_callback(PyObject *dummy, PyObject *args)

{
PyObject *result = NULL;
PyObject *temp;
if (PyArg_ParseTuple(args, "O:set_callback”, &temp)) {
if (!PyCallable_Check(temp)) {
PyErr_SetString(PyExc_TypeError, "parameter must be callable");
return NULL;
}
Py_XINCREF(temp); /* Add a reference to new callback */
Py XDECREF(my_callback); /* Dispose of previous callback */
my_callback = temp; /* Remember new callback */
/* Boilerplate to return "None" */
Py _INCREF(Py_None);
result = Py _None;
}
return result;
}

This function must be registered with the interpreter usingMBEd H VARARG$lag; this is described in section 1.4,
“The Module’s Method Table and Initialization Function.” TRgArg _ParseTuple() function and its arguments
are documented in section 1.7, “Extracting Parameters in Extension Functions.”

The macroy_XINCREF() andPy_XDECREF() increment/decrement the reference count of an object and are
safe in the presence &fULL pointers (but note thaempwill not be NULL in this context). More info on them in
section 1.10, “Reference Counts.”

Later, when it is time to call the function, you call the C functiBpEval _CallObject() . This function has

two arguments, both pointers to arbitrary Python objects: the Python function, and the argument list. The argument
list must always be a tuple object, whose length is the number of arguments. To call the Python function with no
arguments, pass an empty tuple; to call it with one argument, pass a singletorPypRuildValue() returns a

tuple when its format string consists of zero or more format codes between parentheses. For example:

1.6. Calling Python Functions from C 7

int arg;
PyObject *arglist;
PyObject *result;

arg = 123;

[* Time to call the callback */

arglist = Py_BuildValue("(i)", arg);

result = PyEval_CallObject(my_callback, arglist);
Py_DECREF(arglist);

PyEval _CallObject() returns a Python object pointer: this is the return value of the Python function.
PyEval _CallObject() is “reference-count-neutral” with respect to its arguments. In the example a new tuple
was created to serve as the argument list, whiétyisSDECREF()-ed immediately after the call.

The return value oPyEval _CallObject() is “new”: either it is a brand new object, or it is an existing object
whose reference count has been incremented. So, unless you want to save it in a global variable, you should somehow
Py_DECREF() the result, even (especially!) if you are not interested in its value.

Before you do this, however, it is important to check that the return valueNgoitL If it is, the Python function
terminated by raising an exception. If the C code that cdilgBval _CallObject() is called from Python, it

should now return an error indication to its Python caller, so the interpreter can print a stack trace, or the calling
Python code can handle the exception. If this is not possible or desirable, the exception should be cleared by calling
PyErr _Clear() . Forexample:

if (result == NULL)

return NULL; /* Pass error back */
...use result...
Py_DECREF(result);

Depending on the desired interface to the Python callback function, you may also have to provide an argument list
to PyEval _CallObject() . In some cases the argument list is also provided by the Python program, through the
same interface that specified the callback function. It can then be saved and used in the same manner as the function
object. In other cases, you may have to construct a new tuple to pass as the argument list. The simplest way to do this
is to callPy_BuildValue() . For example, if you want to pass an integral event code, you might use the following
code:

PyObject *arglist;

arglist = Py_BuildValue("(l)", eventcode);
result = PyEval_CallObject(my_callback, arglist);
Py_DECREF(arglist);
if (result == NULL)

return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF(result);

Note the placement oPy_DECREF(arglist) ' immediately after the call, before the error check! Also note that
strictly spoken this code is not complefy_BuildValue() may run out of memory, and this should be checked.

1.7 Extracting Parameters in Extension Functions

ThePyArg _ParseTuple() function is declared as follows:

8 Chapter 1. Extending Python with C or C++

int PyArg_ParseTuple(PyObject *arg, char *format, ...);

The arg argument must be a tuple object containing an argument list passed from Python to a C function. The
formatargument must be a format string, whose syntax is explainedansing arguments and building valtizsthe
Python/C API Reference Manudrhe remaining arguments must be addresses of variables whose type is determined
by the format string.

Note that whilePyArg _ParseTuple() checks that the Python arguments have the required types, it cannot check
the validity of the addresses of C variables passed to the call: if you make mistakes there, your code will probably
crash or at least overwrite random bits in memory. So be careful!

Note that any Python object references which are provided to the callGoe@vedreferences; do not decrement
their reference count!

Some example calls:

int ok;
int i, j;
long k, I;
char *s;
int size;

ok = PyArg_ParseTuple(args, ™); /* No arguments */
[* Python call: f() */

ok = PyArg_ParseTuple(args, "s", &s); /* A string */
[* Possible Python call: f('whoops!’) */

ok = PyArg_ParseTuple(args, "lIs", &k, &I, &s); /* Two longs and a string */
[* Possible Python call: f(1, 2, 'three’) */

ok = PyArg_ParseTuple(args, "(ii)s#", &i, &, &s, &size);
[* A pair of ints and a string, whose size is also returned */
[* Possible Python call: f((1, 2), 'three’) */

{
char *file;
char *mode = "r";
int bufsize = 0;
ok = PyArg_ParseTuple(args, "s|si", &file, &mode, &bufsize);
[* A string, and optionally another string and an integer */
[* Possible Python calls:
f('spam’)
fCspam’, 'w’)
f(spam’, 'wb’, 100000) */
}

1.7. Extracting Parameters in Extension Functions 9

int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple(args, "((ii)(ii))(ii)",
&left, &top, &right, &bottom, &h, &v);
/* A rectangle and a point */
[* Possible Python call:
f(((0, 0), (400, 300)), (10, 10)) */

}
{
Py _complex c;
ok = PyArg_ParseTuple(args, "D:myfunction”, &c);
[* a complex, also providing a function name for errors */
[* Possible Python call: myfunction(1+2j) */
}

1.8 Keyword Parameters for Extension Functions
ThePyArg _ParseTupleAndKeywords() function is declared as follows:

int PyArg_ParseTupleAndKeywords(PyObject *arg, PyObject *kwdict,
char *format, char *kwlist[], ...);

Thearg andformatparameters are identical to those of ByArg _ParseTuple() function. Thekwdictparameter

is the dictionary of keywords received as the third parameter from the Python runtimiewli$tgarameter is AlULL-
terminated list of strings which identify the parameters; the names are matched with the type informatifodram
from left to right. On succes®yArg _ParseTupleAndKeywords() returns true, otherwise it returns false and
raises an appropriate exception.

Note: Nested tuples cannot be parsed when using keyword arguments! Keyword parameters passed in which are not
present in th&wlist will causeTypeError to be raised.

Here is an example module which uses keywords, based on an example by Geoff PhilbitickK@hks.com):

10 Chapter 1. Extending Python with C or C++

#include "Python.h"

static PyObject *
keywdarg_parrot(PyObject *self, PyObject *args, PyObject *keywds)

{
int voltage;
char *state = "a stiff";
char *action = "voom";
char *type = "Norwegian Blue";
static char *kwlist[] = {"voltage", "state", "action", "type", NULL};
if ('PyArg_ParseTupleAndKeywords(args, keywds, "i|sss", kwlist,
&voltage, &state, &action, &type))
return NULL;
printf("-- This parrot wouldn't %s if you put %i Volts through it.\n",
action, voltage);
printf("-- Lovely plumage, the %s -- It's %s\n", type, state);
Py_INCREF(Py_None);
return Py_None;
}

static PyMethodDef keywdarg_methods[] = {
/* The cast of the function is necessary since PyCFunction values
* only take two PyObject* parameters, and keywdarg_parrot() takes
* three.
*
{"parrot", (PyCFunction)keywdarg_parrot, METH_VARARGS | METH_KEYWORDS,
"Print a lovely skit to standard output."},
{NULL, NULL, 0, NULL} [* sentinel */

void
initkeywdarg(void)
{

/* Create the module and add the functions */
Py_InitModule("keywdarg", keywdarg_methods);

}

1.9 Building Arbitrary Values

This function is the counterpart RByArg _ParseTuple() . Itis declared as follows:

PyObject *Py_BuildValue(char *format, ...);

It recognizes a set of format units similar to the ones recognizelyl®yrg _ParseTuple() , but the arguments
(which are input to the function, not output) must not be pointers, just values. It returns a new Python object, suitable
for returning from a C function called from Python.

1.9. Building Arbitrary Values 11

One difference witlPyArg _ParseTuple() : while the latter requires its first argument to be a tuple (since Python
argument lists are always represented as tuples internB§y)BuildValue() does not always build a tuple. It
builds a tuple only if its format string contains two or more format units. If the format string is empty, it rétones

if it contains exactly one format unit, it returns whatever object is described by that format unit. To force it to return a
tuple of size 0 or one, parenthesize the format string.

Examples (to the left the call, to the right the resulting Python value):

Py_BuildValue(") None
Py_BuildValue("i", 123) 123
Py_BuildValue(tiii*, 123, 456, 789) (123, 456, 789)
Py_BuildValue("s", "hello") 'hello’
Py_BuildValue("ss", "hello", "world") (hello’, 'world’)
Py_BuildValue("s#", "hello", 4) "hell
Py_BuildValue("()") 0
Py_BuildValue("(i)", 123) (123,)
Py_Buildvalue("(ii)", 123, 456) (123, 456)
Py_BuildValue("(i,i)", 123, 456) (123, 456)
Py_Buildvalue("[i,i]", 123, 456) [123, 456]

Py_BuildValue("{s:i,s:i}",

"abc", 123, "def", 456) {fabc’: 123, 'def: 456}
Py_BuildValue("((ii)(ii)) (ii)",

1, 2, 3, 4, 5, 6) (@, 2), 3, 4), (5, 6)

1.10 Reference Counts

In languages like C or €+, the programmer is responsible for dynamic allocation and deallocation of memory on the
heap. In C, this is done using the functianslloc() andfree() . In C++, the operatoreiew anddelete are
used with essentially the same meaning and we’ll restrict the following discussion to the C case.

Every block of memory allocated wittmalloc() should eventually be returned to the pool of available memory by
exactly one call tdree() . Itis important to callfree() at the right time. If a block’s address is forgotten but
free() is not called for it, the memory it occupies cannot be reused until the program terminates. This is called a
memory leakOn the other hand, if a program cditee() for a block and then continues to use the block, it creates

a conflict with re-use of the block through anothealloc() call. This is calledising freed memoryit has the same

bad consequences as referencing uninitialized data — core dumps, wrong results, mysterious crashes.

Common causes of memory leaks are unusual paths through the code. For instance, a function may allocate a block of
memory, do some calculation, and then free the block again. Now a change in the requirements for the function may
add a test to the calculation that detects an error condition and can return prematurely from the function. It's easy to
forget to free the allocated memory block when taking this premature exit, especially when it is added later to the code.
Such leaks, once introduced, often go undetected for a long time: the error exit is taken only in a small fraction of all
calls, and most modern machines have plenty of virtual memory, so the leak only becomes apparent in a long-running
process that uses the leaking function frequently. Therefore, it's important to prevent leaks from happening by having
a coding convention or strategy that minimizes this kind of errors.

Since Python makes heavy usenoélloc() andfree() , it needs a strategy to avoid memory leaks as well as the

use of freed memory. The chosen method is cakderence countingThe principle is simple: every object contains

a counter, which is incremented when a reference to the object is stored somewhere, and which is decremented when
a reference to it is deleted. When the counter reaches zero, the last reference to the object has been deleted and the
object is freed.

An alternative strategy is callemltomatic garbage collectionNfSometimes, reference counting is also referred to as
a garbage collection strategy, hence my use of “automatic” to distinguish the two.) The big advantage of automatic
garbage collection is that the user doesn’t need tdfiel) explicitly. (Another claimed advantage is an improve-

12 Chapter 1. Extending Python with C or C++

ment in speed or memory usage — this is no hard fact however.) The disadvantage is that for C, there is no truly
portable automatic garbage collector, while reference counting can be implemented portably (as long as the functions
malloc() andfree() are available — which the C Standard guarantees). Maybe some day a sufficiently portable
automatic garbage collector will be available for C. Until then, we’ll have to live with reference counts.

While Python uses the traditional reference counting implementation, it also offers a cycle detector that works to detect
reference cycles. This allows applications to not worry about creating direct or indirect circular references; these are
the weakness of garbage collection implemented using only reference counting. Reference cycles consist of objects
which contain (possibly indirect) references to themselves, so that each object in the cycle has a reference count which
is non-zero. Typical reference counting implementations are not able to reclaim the memory belonging to any objects
in a reference cycle, or referenced from the objects in the cycle, even though there are no further references to the
cycle itself.

The cycle detector is able to detect garbage cycles and can reclaim them so long as there are no finalizers implemented
in Python (__del __() methods). When there are such finalizers, the detector exposes the cycles through the
module(specifically, thegarbage variable in that module). Thgc module also exposes a way to run the detector
(thecollect() function), as well as configuration interfaces and the ability to disable the detector at runtime. The
cycle detector is considered an optional component; though it is included by default, it can be disabled at build time
using the--without-cycle-gcoption to theconfigure script on WNiX platforms (including Mac OS X) or by removing

the definition ofWITH_CYCLE_GCin the ‘pyconfig.h’ header on other platforms. If the cycle detector is disabled in

this way, thegc module will not be available.

1.10.1 Reference Counting in Python

There are two macro®y_INCREF(x) andPy_DECREF(x), which handle the incrementing and decrementing of
the reference counPy_DECREF() also frees the object when the count reaches zero. For flexibility, it doesn’t call
free() directly — rather, it makes a call through a function pointer in the objégbs object For this purpose (and
others), every object also contains a pointer to its type object.

The big question now remains: when to UBg_INCREF(x) andPy_DECREF(x)? Let's first introduce some

terms. Nobody “owns” an object; however, you camn a referencéo an object. An object’s reference count is now

defined as the number of owned references to it. The owner of a reference is responsible foPgalbitCREF()

when the reference is no longer needed. Ownership of a reference can be transferred. There are three ways to dispose
of an owned reference: pass it on, store it, or BgILDECREF(). Forgetting to dispose of an owned reference creates

a memory leak.

It is also possible tdorrow? a reference to an object. The borrower of a reference should nd®galDECREF().
The borrower must not hold on to the object longer than the owner from which it was borrowed. Using a borrowed
reference after the owner has disposed of it risks using freed memory and should be avoided coimpletely.

The advantage of borrowing over owning a reference is that you don’t need to take care of disposing of the reference
on all possible paths through the code — in other words, with a borrowed reference you don'’t run the risk of leaking
when a premature exit is taken. The disadvantage of borrowing over leaking is that there are some subtle situations
where in seemingly correct code a borrowed reference can be used after the owner from which it was borrowed has in
fact disposed of it.

A borrowed reference can be changed into an owned reference by ®RJINHCREF() . This does not affect the
status of the owner from which the reference was borrowed — it creates a new owned reference, and gives full owner
responsibilities (the new owner must dispose of the reference properly, as well as the previous owner).

2The metaphor of “borrowing” a reference is not completely correct: the owner still has a copy of the reference.
3Checking that the reference count is at leadb&s not work— the reference count itself could be in freed memory and may thus be reused
for another object!

1.10. Reference Counts 13

1.10.2 Ownership Rules

Whenever an object reference is passed into or out of a function, it is part of the function’s interface specification
whether ownership is transferred with the reference or not.

Most functions that return a reference to an object pass on ownership with the reference. In particular, all functions
whose function it is to create a new object, sucRgiit _FromLong() andPy_BuildValue() , pass ownership

to the receiver. Even if the object is not actually new, you still receive ownership of a new reference to that object. For
instancePyInt _FromLong() maintains a cache of popular values and can return a reference to a cached item.

Many functions that extract objects from other objects also transfer ownership with the reference, for in-

stance PyObject _GetAttrString() . The picture is less clear, here, however, since a few com-
mon routines are exceptionsPyTuple _Getltem() , PyList _Getltem() , PyDict _Getltem() , and
PyDict _GetltemString() all return references that you borrow from the tuple, list or dictionary.

The functionPylmport _AddModule() also returns a borrowed reference, even though it may actually create the
object it returns: this is possible because an owned reference to the object is syedriadules

When you pass an object reference into another function, in general, the function borrows the reference from you —
if it needs to store it, it will usé’y _INCREF() to become an independent owner. There are exactly two important
exceptions to this ruledPyTuple _Setltem() andPyList _Setltem() . These functions take over ownership of

the item passed to them — even if they fail! (Note tRgDict _Setltem() and friends don’t take over ownership

— they are “normal.”)

When a C function is called from Python, it borrows references to its arguments from the caller. The caller owns a
reference to the object, so the borrowed reference’s lifetime is guaranteed until the function returns. Only when such a
borrowed reference must be stored or passed on, it must be turned into an owned reference BycdNAQREF() .

The object reference returned from a C function that is called from Python must be an owned reference — ownership
is tranferred from the function to its caller.

1.10.3 Thin Ice

There are a few situations where seemingly harmless use of a borrowed reference can lead to problems. These all have
to do with implicit invocations of the interpreter, which can cause the owner of a reference to dispose of it.

The first and most important case to know about is usiggDECREF() on an unrelated object while borrowing a
reference to a list item. For instance:

void
bug(PyObject *list)
{

PyObject *item = PyList_Getltem(list, 0);

PyList_Setltem(list, 1, PyInt_FromLong(OL));
PyObject_Print(item, stdout, 0); /* BUG! */

This function first borrows a referencelist[0] , then replacefist[1] with the value0, and finally prints the
borrowed reference. Looks harmless, right? But it's not!

Let’s follow the control flow intoPyList _Setltem() . The list owns references to all its items, so when item

1 is replaced, it has to dispose of the original item 1. Now let's suppose the original item 1 was an instance of a
user-defined class, and let’s further suppose that the class definatbh __ () method. If this class instance has a
reference count of 1, disposing of it will call its del __() method.

Since it is written in Python, the_del __() method can execute arbitrary Python code. Could it perhaps do some-

14 Chapter 1. Extending Python with C or C++

thing to invalidate the referenceitem in bug() ? You bet! Assuming that the list passed ibteg() is accessible
tothe__del __() method, it could execute a statement to the effectief ‘list[0] ', and assuming this was the
last reference to that object, it would free the memory associated with it, thereby invalitetmng

The solution, once you know the source of the problem, is easy: temporarily increment the reference count. The
correct version of the function reads:

void

no_bug(PyObject *list)

{
PyObject *item = PyList_Getltem(list, 0);
Py_INCREF(item);
PyList_Setltem(list, 1, PyInt_FromLong(0OL));
PyObject_Print(item, stdout, 0);
Py_DECREF(item);

}

This is a true story. An older version of Python contained variants of this bug and someone spent a considerable
amount of time in a C debugger to figure out why hisdel __() methods would fail...

The second case of problems with a borrowed reference is a variant involving threads. Normally, multiple threads in
the Python interpreter can't get in each other's way, because there is a global lock protecting Python’s entire object
space. However, it is possible to temporarily release this lock using the RgcBEGIN_ALLOW THREADSand

to re-acquire it usindPy _END ALLOW. THREADSThis is common around blocking 1/O calls, to let other threads

use the processor while waiting for the 1/0 to complete. Obviously, the following function has the same problem as

the previous one:

void

bug(PyObject *list)

{
PyObject *item = PyList_Getltem(list, 0);
Py BEGIN_ALLOW_THREADS
...some blocking /O call...
Py_END_ALLOW_THREADS
PyObject_Print(item, stdout, 0); /* BUG! */

}

1.10.4 NULL Pointers

In general, functions that take object references as arguments do not expect you to pa¢dithgminters, and will
dump core (or cause later core dumps) if you do so. Functions that return object references generalyidtomy

to indicate that an exception occurred. The reason for not testingUht arguments is that functions often pass the
objects they receive on to other function — if each function were to testifdrl, there would be a lot of redundant
tests and the code would run more slowly.

It is better to test foNULL only at the “source:” when a pointer that may R&JLL is received, for example, from
malloc() or from a function that may raise an exception.

The macrosPy_INCREF() and Py_DECREF() do not check forNULL pointers — however, their variants
Py_XINCREF() andPy_XDECREF() do.

The macros for checking for a particular object typytype Check()) don’'t check forNULL pointers — again,
there is much code that calls several of these in a row to test an object against various different expected types, and
this would generate redundant tests. There are no variant$\with. checking.

1.10. Reference Counts 15

The C function calling mechanism guarantees that the argument list passed to C furatignsr(the examples) is
neverNULL— in fact it guarantees that it is always a tufle.

It is a severe error to ever letNUJLL pointer “escape” to the Python user.

1.11 Writing Extensions in C++

Itis possible to write extension modules i€ Some restrictions apply. If the main program (the Python interpreter)

is compiled and linked by the C compiler, global or static objects with constructors cannot be used. This is not a
problem if the main program is linked by ther€ compiler. Functions that will be called by the Python interpreter

(in particular, module initalization functions) have to be declared uskigrn "C" . It is unnecessary to enclose

the Python header files iextern "C" {...} — they use this form already if the symbal ‘cplusplus s

defined (all recent €+ compilers define this symbol).

1.12 Providing a C API for an Extension Module

Many extension modules just provide new functions and types to be used from Python, but sometimes the code in
an extension module can be useful for other extension modules. For example, an extension module could implement
a type “collection” which works like lists without order. Just like the standard Python list type has a C API which
permits extension modules to create and manipulate lists, this new collection type should have a set of C functions for
direct manipulation from other extension modules.

At first sight this seems easy: just write the functions (without declaring 8tatitc , of course), provide an appro-

priate header file, and document the C API. And in fact this would work if all extension modules were always linked
statically with the Python interpreter. When modules are used as shared libraries, however, the symbols defined in one
module may not be visible to another module. The details of visibility depend on the operating system; some systems
use one global namespace for the Python interpreter and all extension modules (Windows, for example), whereas oth-
ers require an explicit list of imported symbols at module link time (AIX is one example), or offer a choice of different
strategies (most Unices). And even if symbols are globally visible, the module whose functions one wishes to call
might not have been loaded yet!

Portability therefore requires not to make any assumptions about symbol visibility. This means that all symbols in
extension modules should be declastatic , except for the module’s initialization function, in order to avoid name
clashes with other extension modules (as discussed in section 1.4). And it means that symtlodaittia¢ accessible

from other extension modules must be exported in a different way.

Python provides a special mechanism to pass C-level information (pointers) from one extension module to another
one: CObjects. A CObject is a Python data type which stores a poirdgit ¢). CObjects can only be created

and accessed via their C API, but they can be passed around like any other Python object. In particular, they can
be assigned to a name in an extension module’s namespace. Other extension modules can then import this module,
retrieve the value of this name, and then retrieve the pointer from the CObject.

There are many ways in which CObjects can be used to export the C API of an extension module. Each name could get
its own CObiject, or all C API pointers could be stored in an array whose address is published in a CObject. And the
various tasks of storing and retrieving the pointers can be distributed in different ways between the module providing
the code and the client modules.

The following example demonstrates an approach that puts most of the burden on the writer of the exporting module,
which is appropriate for commonly used library modules. It stores all C API pointers (just one in the example!) in an
array ofvoid pointers which becomes the value of a CObject. The header file corresponding to the module provides
a macro that takes care of importing the module and retrieving its C API pointers; client modules only have to call this
macro before accessing the C API.

4These guarantees don't hold when you use the “old” style calling convention — this is still found in much existing code.

16 Chapter 1. Extending Python with C or C++

The exporting module is a modification of tlspam module from section 1.1. The functi@pam.system()

does not call the C library functiosystem() directly, but a functionPySpam_System() , which would of
course do something more complicated in reality (such as adding “spam” to every command). This function
PySpam_System() is also exported to other extension modules.

The functionPySpam_System() is a plain C function, declarestatic like everything else:

static int
PySpam_System(char *command)

{
}

return system(command);

The functionspam_system() is modified in a trivial way:

static PyObject *
spam_system(PyObject *self, PyObject *args)

char *command;
int sts;

if ('PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = PySpam_System(command);

return Py_BuildValue("i", sts);

In the beginning of the module, right after the line

#include "Python.h"

two more lines must be added:

#define SPAM_MODULE
#include "spammodule.h"

The#define is used to tell the header file that it is being included in the exporting module, not a client module.
Finally, the module’s initialization function must take care of initializing the C API pointer array:

1.12. Providing a C API for an Extension Module 17

PyMODINIT_FUNC
initspam(void)

PyObject *m;

static void *PySpam_API[PySpam_API_pointers];
PyObject *c_api_object;

m = Py_InitModule("spam", SpamMethods);

/* Initialize the C API pointer array */
PySpam_API[PySpam_System_NUM] = (void *)PySpam_System;

/* Create a CObject containing the API pointer array’'s address */
c_api_object = PyCObject_FromVoidPtr((void *)PySpam_API, NULL);

if (c_api_object != NULL)
PyModule_AddObject(m, "_C_API", c_api_object);

Note thatPySpam_API is declaredstatic ; otherwise the pointer array would disappear witspam()
terminates!

The bulk of the work is in the header filsgammodule.h’, which looks like this:

18 Chapter 1. Extending Python with C or C++

#ifndef Py_SPAMMODULE_H
#define Py_SPAMMODULE_H
#ifdef __ cplusplus

extern "C" {

#endif

/* Header file for spammodule */

/* C API functions */

#define PySpam_System_NUM 0

#define PySpam_System_RETURN int

#define PySpam_System_PROTO (char *command)

/* Total number of C API pointers */
#define PySpam_API_pointers 1

#ifdef SPAM_MODULE
/* This section is used when compiling spammodule.c */

static PySpam_System_RETURN PySpam_System PySpam_System_PROTO;

#else
/* This section is used in modules that use spammodule’'s API */

static void **PySpam_API;

#define PySpam_System \
(*(PySpam_System_RETURN (*)PySpam_System_PROTO) PySpam_API[PySpam_System_NUM)])

/* Return -1 and set exception on error, O on success. */
static int
import_spam(void)
{
PyObject *module = Pylmport_ImportModule("spam");

if (module != NULL) {
PyObject *c_api_object = PyObject_GetAttrString(module, " C_API");
if (c_api_object == NULL)
return -1;
if (PyCObject_Check(c_api_object))
PySpam_API = (void **)PyCObject_AsVoidPtr(c_api_object);
Py _DECREF(c_api_object);

}

return O;
}
#endif

#ifdef __ cplusplus
}
#endif

#endif /* !defined(Py_SPAMMODULE_H) */

All that a client module must do in order to have access to the fun&y@pam_System() s to call the function

1.12. Providing a C API for an Extension Module 19

(or rather macrojmport _spam() in its initialization function:

PyMODINIT_FUNC
initclient(void)

{
PyObject *m;
Py_InitModule("client”, ClientMethods);
if (import_spam() < 0)
return;
/* additional initialization can happen here */
}

The main disadvantage of this approach is that the §pparhmodule.h’ is rather complicated. However, the basic
structure is the same for each function that is exported, so it has to be learned only once.

Finally it should be mentioned that CObjects offer additional functionality, which is especially useful for mem-
ory allocation and deallocation of the pointer stored in a CObject. The details are describedPiiithe/C API
Reference Manuah the section CObject$ and in the implementation of CObjects (filedlude/cobject.h’ and
‘Objects/cobject.c’ in the Python source code distribution).

20 Chapter 1. Extending Python with C or C++

CHAPTER
TWO

Defining New Types

As mentioned in the last chapter, Python allows the writer of an extension module to define new types that can be
manipulated from Python code, much like strings and lists in core Python.

This is not hard; the code for all extension types follows a pattern, but there are some details that you need to understand
before you can get started.

Note: The way new types are defined changed dramatically (and for the better) in Python 2.2. This document docu-
ments how to define new types for Python 2.2 and later. If you need to support older versions of Python, you will need
to refer to older versions of this documentation.

2.1 The Basics

The Python runtime sees all Python objects as variables oRy@bject* . A PyObject is not a very magnificent

object - it just contains the refcount and a pointer to the object’s “type object”. This is where the action is; the type
object determines which (C) functions get called when, for instance, an attribute gets looked up on an object or it
is multiplied by another object. These C functions are called “type methods” to distinguish them from things like
[l.append (which we call “object methods”).

So, if you want to define a new object type, you need to create a new type object.

This sort of thing can only be explained by example, so here’s a minimal, but complete, module that defines a new
type:

#include <Python.h>

typedef struct {

PyObject_ HEAD

[* Type-specific fields go here. */
} noddy_NoddyObiject;

static PyTypeObject noddy_NoddyType = {
PyObject HEAD_INIT(NULL)
0, [*ob_size*/
"noddy.Noddy", [*tp_name*/
sizeof(noddy_NoddyObject), /*tp_basicsize*/
[*tp_itemsize*/
[*tp_dealloc*/
[*tp_print*/
[*tp_getattr*/
[*tp_setattr*/
[*tp_compare*/
[*tp_repr*/

000000 O

21

[*tp_as_number*/
[*tp_as_sequence*/
[*tp_as_mapping*/
[*tp_hash */
[*tp_call*/
[*tp_str¥/
[*tp_getattro*/
[*tp_setattro*/
[*tp_as_buffer*/
Py_TPFLAGS_DEFAULT, [*tp_flags*/
"Noddy objects", /* tp_doc */

oleleleloNoNoNa]

o

b

static PyMethodDef noddy_methods[] = {
{NULL} /* Sentinel */
b

#ifndef PyMODINIT_FUNC /* declarations for DLL import/export */
#define PyMODINIT_FUNC void

#endif

PyMODINIT_FUNC

initnoddy(void)

PyObject* m;

noddy NoddyType.tp_new = PyType_GenericNew;
if (PyType_Ready(&noddy_NoddyType) < 0)
return;

m = Py_InitModule3("noddy", noddy_methods,
"Example module that creates an extension type.");

Py_INCREF(&noddy_NoddyType);
PyModule_AddObject(m, "Noddy", (PyObject *)&noddy_NoddyType);
}

Now that’s quite a bit to take in at once, but hopefully bits will seem familiar from the last chapter.

The first bit that will be new is:

typedef struct {
PyObject HEAD
} noddy_NoddyObiject;

This is what a Noddy object will contain—in this case, nothing more than every Python object contains, namely a
refcount and a pointer to a type object. These are the fieldBybject _HEADmacro brings in. The reason for

the macro is to standardize the layout and to enable special debugging fields in debug builds. Note that there is no
semicolon after th&yObject _HEADmacro; one is included in the macro definition. Be wary of adding one by
accident; it's easy to do from habit, and your compiler might not complain, but someone else’s probably will! (On
Windows, MSVC is known to call this an error and refuse to compile the code.)

For contrast, let's take a look at the corresponding definition for standard Python integers:

22 Chapter 2. Defining New Types

typedef struct {
PyObject HEAD
l