
Python Tutorial
Release 2.1

Guido van Rossum

Fred L. Drake, Jr., editor

April 15, 2001

PythonLabs
E-mail: python-docs@python.org

Copyright c© 2001 Python Software Foundation. All rights reserved.
Copyright c© 2000 BeOpen.com. All rights reserved.
Copyright c© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright c© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

BEOPEN.COM TERMS AND CONDITIONS FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (�BeOpen�), having an o�ce at 160 Saratoga
Avenue, Santa Clara, CA 95051, and the Individual or Organization (�Licensee�) accessing and otherwise
using this software in source or binary form and its associated documentation (�the Software�).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants
Licensee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the Software, alone or in any
derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an �AS IS� basis. BEOPEN MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE
OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.
6. This License Agreement shall be governed by and interpreted in all respects by the law of the State

of California, excluding con�ict of law provisions. Nothing in this License Agreement shall be deemed
to create any relationship of agency, partnership, or joint venture between BeOpen and Licensee. This
License Agreement does not grant permission to use BeOpen trademarks or trade names in a trademark
sense to endorse or promote products or services of Licensee, or any third party. As an exception, the
�BeOpen Python� logos available at http://www.pythonlabs.com/logos.html may be used according to the
permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

CNRI OPEN SOURCE GPL-COMPATIBLE LICENSE AGREEMENT
Python 1.6.1 is made available subject to the terms and conditions in CNRI's License Agreement. This Agreement
together with Python 1.6.1 may be located on the Internet using the following unique, persistent identi�er (known
as a handle): 1895.22/1013. This Agreement may also be obtained from a proxy server on the Internet using the
following URL: http://hdl.handle.net/1895.22/1013 .

CWI PERMISSIONS STATEMENT AND DISCLAIMER
Copyright c© 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that the name of Stichting Mathema-
tisch Centrum or CWI not be used in advertising or publicity pertaining to distribution of the software without
speci�c, written prior permission.
STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDI-
RECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

Abstract

Python is an easy to learn, powerful programming language. It has e�cient high-level data structures and
a simple but e�ective approach to object-oriented programming. Python's elegant syntax and dynamic
typing, together with its interpreted nature, make it an ideal language for scripting and rapid application
development in many areas on most platforms.
The Python interpreter and the extensive standard library are freely available in source or binary form
for all major platforms from the Python web site, http://www.python.org , and can be freely distributed.
The same site also contains distributions of and pointers to many free third party Python modules,
programs and tools, and additional documentation.
The Python interpreter is easily extended with new functions and data types implemented in C or C ++
(or other languages callable from C). Python is also suitable as an extension language for customizable
applications.
This tutorial introduces the reader informally to the basic concepts and features of the Python language
and system. It helps to have a Python interpreter handy for hands-on experience, but all examples are
self-contained, so the tutorial can be read o�-line as well.
For a description of standard objects and modules, see the Python Library Reference document. The
Python Reference Manual gives a more formal de�nition of the language. To write extensions in C or
C++, read Extending and Embedding the Python Interpreter and Python/C API Reference . There are
also several books covering Python in depth.
This tutorial does not attempt to be comprehensive and cover every single feature, or even every com-
monly used feature. Instead, it introduces many of Python's most noteworthy features, and will give
you a good idea of the language's �avor and style. After reading it, you will be able to read and write
Python modules and programs, and you will be ready to learn more about the various Python library
modules described in the Python Library Reference .

CONTENTS

1 Whetting Your Appetite 1
1.1 Where From Here . 2

2 Using the Python Interpreter 3
2.1 Invoking the Interpreter . 3
2.2 The Interpreter and Its Environment . 4

3 An Informal Introduction to Python 7
3.1 Using Python as a Calculator . 7
3.2 First Steps Towards Programming . 15

4 More Control Flow Tools 17
4.1 if Statements . 17
4.2 for Statements . 17
4.3 The range() Function . 18
4.4 break and continue Statements, and else Clauses on Loops 18
4.5 pass Statements . 19
4.6 De�ning Functions . 19
4.7 More on De�ning Functions . 21

5 Data Structures 25
5.1 More on Lists . 25
5.2 The del statement . 29
5.3 Tuples and Sequences . 29
5.4 Dictionaries . 30
5.5 More on Conditions . 31
5.6 Comparing Sequences and Other Types . 31

6 Modules 33
6.1 More on Modules . 34
6.2 Standard Modules . 35
6.3 The dir() Function . 36
6.4 Packages . 37

7 Input and Output 41
7.1 Fancier Output Formatting . 41
7.2 Reading and Writing Files . 43

8 Errors and Exceptions 47
8.1 Syntax Errors . 47
8.2 Exceptions . 47
8.3 Handling Exceptions . 48
8.4 Raising Exceptions . 50
8.5 User-de�ned Exceptions . 50

i

8.6 De�ning Clean-up Actions . 50

9 Classes 53
9.1 A Word About Terminology . 53
9.2 Python Scopes and Name Spaces . 54
9.3 A First Look at Classes . 55
9.4 Random Remarks . 57
9.5 Inheritance . 58
9.6 Private Variables . 60
9.7 Odds and Ends . 60

10 What Now? 63

A Interactive Input Editing and History Substitution 65
A.1 Line Editing . 65
A.2 History Substitution . 65
A.3 Key Bindings . 65
A.4 Commentary . 66

ii

CHAPTER

ONE

Whetting Your Appetite

If you ever wrote a large shell script, you probably know this feeling: you'd love to add yet another
feature, but it's already so slow, and so big, and so complicated; or the feature involves a system call
or other function that is only accessible from C . . . Usually the problem at hand isn't serious enough
to warrant rewriting the script in C; perhaps the problem requires variable-length strings or other data
types (like sorted lists of �le names) that are easy in the shell but lots of work to implement in C, or
perhaps you're not su�ciently familiar with C.
Another situation: perhaps you have to work with several C libraries, and the usual C
write/compile/test/re-compile cycle is too slow. You need to develop software more quickly. Possi-
bly perhaps you've written a program that could use an extension language, and you don't want to
design a language, write and debug an interpreter for it, then tie it into your application.
In such cases, Python may be just the language for you. Python is simple to use, but it is a real
programming language, o�ering much more structure and support for large programs than the shell has.
On the other hand, it also o�ers much more error checking than C, and, being a very-high-level language ,
it has high-level data types built in, such as �exible arrays and dictionaries that would cost you days
to implement e�ciently in C. Because of its more general data types Python is applicable to a much
larger problem domain than Awk or even Perl, yet many things are at least as easy in Python as in those
languages.
Python allows you to split up your program in modules that can be reused in other Python programs. It
comes with a large collection of standard modules that you can use as the basis of your programs � or
as examples to start learning to program in Python. There are also built-in modules that provide things
like �le I/O, system calls, sockets, and even interfaces to GUI toolkits like Tk.
Python is an interpreted language, which can save you considerable time during program development
because no compilation and linking is necessary. The interpreter can be used interactively, which makes
it easy to experiment with features of the language, to write throw-away programs, or to test functions
during bottom-up program development. It is also a handy desk calculator.
Python allows writing very compact and readable programs. Programs written in Python are typically
much shorter than equivalent C or C++ programs, for several reasons:

• the high-level data types allow you to express complex operations in a single statement;

• statement grouping is done by indentation instead of begin/end brackets;

• no variable or argument declarations are necessary.

Python is extensible: if you know how to program in C it is easy to add a new built-in function or module
to the interpreter, either to perform critical operations at maximum speed, or to link Python programs
to libraries that may only be available in binary form (such as a vendor-speci�c graphics library). Once
you are really hooked, you can link the Python interpreter into an application written in C and use it as
an extension or command language for that application.
By the way, the language is named after the BBC show �Monty Python's Flying Circus� and has nothing
to do with nasty reptiles. Making references to Monty Python skits in documentation is not only allowed,
it is encouraged!

1

1.1 Where From Here

Now that you are all excited about Python, you'll want to examine it in some more detail. Since the
best way to learn a language is using it, you are invited here to do so.
In the next chapter, the mechanics of using the interpreter are explained. This is rather mundane
information, but essential for trying out the examples shown later.
The rest of the tutorial introduces various features of the Python language and system through examples,
beginning with simple expressions, statements and data types, through functions and modules, and �nally
touching upon advanced concepts like exceptions and user-de�ned classes.

2 Chapter 1. Whetting Your Appetite

CHAPTER

TWO

Using the Python Interpreter

2.1 Invoking the Interpreter

The Python interpreter is usually installed as ` /usr/local/bin/python ' on those machines where it is avail-
able; putting `/usr/local/bin' in your Unix shell's search path makes it possible to start it by typing the
command

python

to the shell. Since the choice of the directory where the interpreter lives is an installation option, other
places are possible; check with your local Python guru or system administrator. (E.g., ` /usr/local/python '
is a popular alternative location.)
Typing an end-of-�le character (Control-D on Unix, Control-Z on DOS or Windows) at the primary
prompt causes the interpreter to exit with a zero exit status. If that doesn't work, you can exit the
interpreter by typing the following commands: ` import sys; sys.exit() '.
The interpreter's line-editing features usually aren't very sophisticated. On Unix, whoever installed
the interpreter may have enabled support for the GNU readline library, which adds more elaborate
interactive editing and history features. Perhaps the quickest check to see whether command line editing
is supported is typing Control-P to the �rst Python prompt you get. If it beeps, you have command
line editing; see Appendix A for an introduction to the keys. If nothing appears to happen, or if ^P is
echoed, command line editing isn't available; you'll only be able to use backspace to remove characters
from the current line.
The interpreter operates somewhat like the Unix shell: when called with standard input connected to
a tty device, it reads and executes commands interactively; when called with a �le name argument or
with a �le as standard input, it reads and executes a script from that �le.
A third way of starting the interpreter is `python -c command [arg] ...', which executes the state-
ment(s) in command , analogous to the shell's -c option. Since Python statements often contain spaces
or other characters that are special to the shell, it is best to quote command in its entirety with double
quotes.
Note that there is a di�erence between ` python file' and `python <file'. In the latter case, input
requests from the program, such as calls to input() and raw_input(), are satis�ed from �le. Since this
�le has already been read until the end by the parser before the program starts executing, the program
will encounter end-of-�le immediately. In the former case (which is usually what you want) they are
satis�ed from whatever �le or device is connected to standard input of the Python interpreter.
When a script �le is used, it is sometimes useful to be able to run the script and enter interactive mode
afterwards. This can be done by passing -i before the script. (This does not work if the script is read
from standard input, for the same reason as explained in the previous paragraph.)

3

2.1.1 Argument Passing

When known to the interpreter, the script name and additional arguments thereafter are passed to the
script in the variable sys.argv, which is a list of strings. Its length is at least one; when no script and no
arguments are given, sys.argv[0] is an empty string. When the script name is given as '-' (meaning
standard input), sys.argv[0] is set to '-'. When -c command is used, sys.argv[0] is set to '-c'.
Options found after -c command are not consumed by the Python interpreter's option processing but
left in sys.argv for the command to handle.

2.1.2 Interactive Mode

When commands are read from a tty, the interpreter is said to be in interactive mode . In this mode it
prompts for the next command with the primary prompt , usually three greater-than signs (` >>> '); for
continuation lines it prompts with the secondary prompt , by default three dots (`... '). The interpreter
prints a welcome message stating its version number and a copyright notice before printing the �rst
prompt, e.g.:

python
Python 1.5.2b2 (#1, Feb 28 1999, 00:02:06) [GCC 2.8.1] on sunos5
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>>

Continuation lines are needed when entering a multi-line construct. As an example, take a look at this
if statement:

>>> the_world_is_flat = 1
>>> if the_world_is_flat:
... print "Be careful not to fall off!"
...
Be careful not to fall off!

2.2 The Interpreter and Its Environment

2.2.1 Error Handling

When an error occurs, the interpreter prints an error message and a stack trace. In interactive mode, it
then returns to the primary prompt; when input came from a �le, it exits with a nonzero exit status after
printing the stack trace. (Exceptions handled by an except clause in a try statement are not errors in
this context.) Some errors are unconditionally fatal and cause an exit with a nonzero exit; this applies
to internal inconsistencies and some cases of running out of memory. All error messages are written to
the standard error stream; normal output from the executed commands is written to standard output.
Typing the interrupt character (usually Control-C or DEL) to the primary or secondary prompt cancels
the input and returns to the primary prompt. 1 Typing an interrupt while a command is executing raises
the KeyboardInterrupt exception, which may be handled by a try statement.

2.2.2 Executable Python Scripts

On BSD'ish Unix systems, Python scripts can be made directly executable, like shell scripts, by putting
the line

1A problem with the GNU Readline package may prevent this.

4 Chapter 2. Using the Python Interpreter

#! /usr/bin/env python

(assuming that the interpreter is on the user's PATH) at the beginning of the script and giving the �le
an executable mode. The `#!' must be the �rst two characters of the �le. Note that the hash, or pound,
character, `#', is used to start a comment in Python.

2.2.3 The Interactive Startup File

When you use Python interactively, it is frequently handy to have some standard commands executed ev-
ery time the interpreter is started. You can do this by setting an environment variable named PYTHON-
STARTUP to the name of a �le containing your start-up commands. This is similar to the ` .pro�le' feature
of the Unix shells.
This �le is only read in interactive sessions, not when Python reads commands from a script, and not
when `/dev/tty' is given as the explicit source of commands (which otherwise behaves like an interactive
session). It is executed in the same namespace where interactive commands are executed, so that objects
that it de�nes or imports can be used without quali�cation in the interactive session. You can also
change the prompts sys.ps1 and sys.ps2 in this �le.
If you want to read an additional start-up �le from the current directory, you can program this in the
global start-up �le, e.g. `if os.path.isfile('.pythonrc.py'): execfile('.pythonrc.py') '. If you
want to use the startup �le in a script, you must do this explicitly in the script:

import os
filename = os.environ.get('PYTHONSTARTUP')
if filename and os.path.isfile(filename):

execfile(filename)

2.2. The Interpreter and Its Environment 5

6

CHAPTER

THREE

An Informal Introduction to Python

In the following examples, input and output are distinguished by the presence or absence of prompts
(`>>> ' and `... '): to repeat the example, you must type everything after the prompt, when the prompt
appears; lines that do not begin with a prompt are output from the interpreter. Note that a secondary
prompt on a line by itself in an example means you must type a blank line; this is used to end a multi-line
command.
Many of the examples in this manual, even those entered at the interactive prompt, include comments.
Comments in Python start with the hash character, ` #', and extend to the end of the physical line. A
comment may appear at the start of a line or following whitespace or code, but not within a string literal.
A hash character within a string literal is just a hash character.
Some examples:

this is the first comment
SPAM = 1 # and this is the second comment

... and now a third!
STRING = "# This is not a comment."

3.1 Using Python as a Calculator

Let's try some simple Python commands. Start the interpreter and wait for the primary prompt, ` >>> '.
(It shouldn't take long.)

3.1.1 Numbers

The interpreter acts as a simple calculator: you can type an expression at it and it will write the value.
Expression syntax is straightforward: the operators +, -, * and / work just like in most other languages
(for example, Pascal or C); parentheses can be used for grouping. For example:

7

>>> 2+2
4
>>> # This is a comment
... 2+2
4
>>> 2+2 # and a comment on the same line as code
4
>>> (50-5*6)/4
5
>>> # Integer division returns the floor:
... 7/3
2
>>> 7/-3
-3

Like in C, the equal sign (`=') is used to assign a value to a variable. The value of an assignment is not
written:

>>> width = 20
>>> height = 5*9
>>> width * height
900

A value can be assigned to several variables simultaneously:

>>> x = y = z = 0 # Zero x, y and z
>>> x
0
>>> y
0
>>> z
0

There is full support for �oating point; operators with mixed type operands convert the integer operand
to �oating point:

>>> 4 * 2.5 / 3.3
3.0303030303
>>> 7.0 / 2
3.5

Complex numbers are also supported; imaginary numbers are written with a su�x of ` j' or `J'. Complex
numbers with a nonzero real component are written as ` (real+imagj)', or can be created with the
`complex(real, imag)' function.

8 Chapter 3. An Informal Introduction to Python

>>> 1j * 1J
(-1+0j)
>>> 1j * complex(0,1)
(-1+0j)
>>> 3+1j*3
(3+3j)
>>> (3+1j)*3
(9+3j)
>>> (1+2j)/(1+1j)
(1.5+0.5j)

Complex numbers are always represented as two �oating point numbers, the real and imaginary part.
To extract these parts from a complex number z , use z.real and z.imag.

>>> a=1.5+0.5j
>>> a.real
1.5
>>> a.imag
0.5

The conversion functions to �oating point and integer (float(), int() and long()) don't work for
complex numbers � there is no one correct way to convert a complex number to a real number. Use
abs(z) to get its magnitude (as a �oat) or z.real to get its real part.

>>> a=1.5+0.5j
>>> float(a)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: can't convert complex to float; use e.g. abs(z)
>>> a.real
1.5
>>> abs(a)
1.58113883008

In interactive mode, the last printed expression is assigned to the variable _. This means that when you
are using Python as a desk calculator, it is somewhat easier to continue calculations, for example:

>>> tax = 17.5 / 100
>>> price = 3.50
>>> price * tax
0.61249999999999993
>>> price + _
4.1124999999999998
>>> round(_, 2)
4.1100000000000003

This variable should be treated as read-only by the user. Don't explicitly assign a value to it � you
would create an independent local variable with the same name masking the built-in variable with its
magic behavior.

3.1.2 Strings

Besides numbers, Python can also manipulate strings, which can be expressed in several ways. They can
be enclosed in single quotes or double quotes:

3.1. Using Python as a Calculator 9

>>> 'spam eggs'
'spam eggs'
>>> 'doesn\'t'
"doesn't"
>>> "doesn't"
"doesn't"
>>> '"Yes," he said.'
'"Yes," he said.'
>>> "\"Yes,\" he said."
'"Yes," he said.'
>>> '"Isn\'t," she said.'
'"Isn\'t," she said.'

String literals can span multiple lines in several ways. Newlines can be escaped with backslashes, e.g.:
hello = "This is a rather long string containing\n\
several lines of text just as you would do in C.\n\

Note that whitespace at the beginning of the line is\
significant.\n"

print hello

which would print the following:
This is a rather long string containing
several lines of text just as you would do in C.

Note that whitespace at the beginning of the line is significant.

Or, strings can be surrounded in a pair of matching triple-quotes: """ or �'. End of lines do not need
to be escaped when using triple-quotes, but they will be included in the string.

print """
Usage: thingy [OPTIONS]

-h Display this usage message
-H hostname Hostname to connect to

"""

produces the following output:
Usage: thingy [OPTIONS]

-h Display this usage message
-H hostname Hostname to connect to

The interpreter prints the result of string operations in the same way as they are typed for input: inside
quotes, and with quotes and other funny characters escaped by backslashes, to show the precise value.
The string is enclosed in double quotes if the string contains a single quote and no double quotes, else it's
enclosed in single quotes. (The print statement, described later, can be used to write strings without
quotes or escapes.)
Strings can be concatenated (glued together) with the + operator, and repeated with *:

>>> word = 'Help' + 'A'
>>> word
'HelpA'
>>> '<' + word*5 + '>'
'<HelpAHelpAHelpAHelpAHelpA>'

Two string literals next to each other are automatically concatenated; the �rst line above could also

10 Chapter 3. An Informal Introduction to Python

have been written `word = 'Help' 'A' '; this only works with two literals, not with arbitrary string
expressions:

>>> import string
>>> 'str' 'ing' # <- This is ok
'string'
>>> string.strip('str') + 'ing' # <- This is ok
'string'
>>> string.strip('str') 'ing' # <- This is invalid

File "<stdin>", line 1
string.strip('str') 'ing'

^
SyntaxError: invalid syntax

Strings can be subscripted (indexed); like in C, the �rst character of a string has subscript (index) 0.
There is no separate character type; a character is simply a string of size one. Like in Icon, substrings
can be speci�ed with the slice notation: two indices separated by a colon.

>>> word[4]
'A'
>>> word[0:2]
'He'
>>> word[2:4]
'lp'

Unlike a C string, Python strings cannot be changed. Assigning to an indexed position in the string
results in an error:

>>> word[0] = 'x'
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: object doesn't support item assignment
>>> word[:1] = 'Splat'
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: object doesn't support slice assignment

However, creating a new string with the combined content is easy and e�cient:

>>> 'x' + word[1:]
'xelpA'
>>> 'Splat' + word[4]
'SplatA'

Slice indices have useful defaults; an omitted �rst index defaults to zero, an omitted second index defaults
to the size of the string being sliced.

>>> word[:2] # The first two characters
'He'
>>> word[2:] # All but the first two characters
'lpA'

Here's a useful invariant of slice operations: s[:i] + s[i:] equals s.

3.1. Using Python as a Calculator 11

>>> word[:2] + word[2:]
'HelpA'
>>> word[:3] + word[3:]
'HelpA'

Degenerate slice indices are handled gracefully: an index that is too large is replaced by the string size,
an upper bound smaller than the lower bound returns an empty string.

>>> word[1:100]
'elpA'
>>> word[10:]
''
>>> word[2:1]
''

Indices may be negative numbers, to start counting from the right. For example:
>>> word[-1] # The last character
'A'
>>> word[-2] # The last-but-one character
'p'
>>> word[-2:] # The last two characters
'pA'
>>> word[:-2] # All but the last two characters
'Hel'

But note that -0 is really the same as 0, so it does not count from the right!
>>> word[-0] # (since -0 equals 0)
'H'

Out-of-range negative slice indices are truncated, but don't try this for single-element (non-slice) indices:
>>> word[-100:]
'HelpA'
>>> word[-10] # error
Traceback (most recent call last):

File "<stdin>", line 1
IndexError: string index out of range

The best way to remember how slices work is to think of the indices as pointing between characters, with
the left edge of the �rst character numbered 0. Then the right edge of the last character of a string of n
characters has index n , for example:

+---+---+---+---+---+
| H | e | l | p | A |
+---+---+---+---+---+
0 1 2 3 4 5

-5 -4 -3 -2 -1

The �rst row of numbers gives the position of the indices 0...5 in the string; the second row gives the
corresponding negative indices. The slice from i to j consists of all characters between the edges labeled
i and j , respectively.
For non-negative indices, the length of a slice is the di�erence of the indices, if both are within bounds,
e.g., the length of word[1:3] is 2.
The built-in function len() returns the length of a string:

12 Chapter 3. An Informal Introduction to Python

>>> s = 'supercalifragilisticexpialidocious'
>>> len(s)
34

3.1.3 Unicode Strings

Starting with Python 2.0 a new data type for storing text data is available to the programmer: the
Unicode object. It can be used to store and manipulate Unicode data (see http://www.unicode.org) and
integrates well with the existing string objects providing auto-conversions where necessary.
Unicode has the advantage of providing one ordinal for every character in every script used in modern
and ancient texts. Previously, there were only 256 possible ordinals for script characters and texts were
typically bound to a code page which mapped the ordinals to script characters. This lead to very much
confusion especially with respect to internationalization (usually written as ` i18n' � `i' + 18 characters
+ `n') of software. Unicode solves these problems by de�ning one code page for all scripts.
Creating Unicode strings in Python is just as simple as creating normal strings:

>>> u'Hello World !'
u'Hello World !'

The small `u' in front of the quote indicates that an Unicode string is supposed to be created. If you want
to include special characters in the string, you can do so by using the Python Unicode-Escape encoding.
The following example shows how:

>>> u'Hello\u0020World !'
u'Hello World !'

The escape sequence \u0020 indicates to insert the Unicode character with the ordinal value 0x0020 (the
space character) at the given position.
Other characters are interpreted by using their respective ordinal values directly as Unicode ordinals. If
you have literal strings in the standard Latin-1 encoding that is used in many Western countries, you
will �nd it convenient that the lower 256 characters of Unicode are the same as the 256 characters of
Latin-1.
For experts, there is also a raw mode just like the one for normal strings. You have to pre�x the opening
quote with 'ur' to have Python use the Raw-Unicode-Escape encoding. It will only apply the above
\uXXXX conversion if there is an uneven number of backslashes in front of the small 'u'.

>>> ur'Hello\u0020World !'
u'Hello World !'
>>> ur'Hello\\u0020World !'
u'Hello\\\\u0020World !'

The raw mode is most useful when you have to enter lots of backslashes e.g. in regular expressions.
Apart from these standard encodings, Python provides a whole set of other ways of creating Unicode
strings on the basis of a known encoding.
The built-in function unicode() provides access to all registered Unicode codecs (COders and DE-
Coders). Some of the more well known encodings which these codecs can convert are Latin-1, ASCII,
UTF-8, and UTF-16. The latter two are variable-length encodings that store each Unicode character in
one or more bytes. The default encoding is normally set to ASCII, which passes through characters in
the range 0 to 127 and rejects any other characters with an error. When a Unicode string is printed,

3.1. Using Python as a Calculator 13

written to a �le, or converted with str(), conversion takes place using this default encoding.
>>> u"abc"
u'abc'
>>> str(u"abc")
'abc'
>>> u"äöü"
u'\xe4\xf6\xfc'
>>> str(u"äöü")
Traceback (most recent call last):

File "<stdin>", line 1, in ?
UnicodeError: ASCII encoding error: ordinal not in range(128)

To convert a Unicode string into an 8-bit string using a speci�c encoding, Unicode objects provide an
encode() method that takes one argument, the name of the encoding. Lowercase names for encodings
are preferred.

>>> u"äöü".encode('utf-8')
'\xc3\xa4\xc3\xb6\xc3\xbc'

If you have data in a speci�c encoding and want to produce a corresponding Unicode string from it, you
can use the unicode() function with the encoding name as the second argument.

>>> unicode('\xc3\xa4\xc3\xb6\xc3\xbc', 'utf-8')
u'\xe4\xf6\xfc'

3.1.4 Lists

Python knows a number of compound data types, used to group together other values. The most versatile
is the list, which can be written as a list of comma-separated values (items) between square brackets.
List items need not all have the same type.

>>> a = ['spam', 'eggs', 100, 1234]
>>> a
['spam', 'eggs', 100, 1234]

Like string indices, list indices start at 0, and lists can be sliced, concatenated and so on:

>>> a[0]
'spam'
>>> a[3]
1234
>>> a[-2]
100
>>> a[1:-1]
['eggs', 100]
>>> a[:2] + ['bacon', 2*2]
['spam', 'eggs', 'bacon', 4]
>>> 3*a[:3] + ['Boe!']
['spam', 'eggs', 100, 'spam', 'eggs', 100, 'spam', 'eggs', 100, 'Boe!']

Unlike strings, which are immutable, it is possible to change individual elements of a list:

14 Chapter 3. An Informal Introduction to Python

>>> a
['spam', 'eggs', 100, 1234]
>>> a[2] = a[2] + 23
>>> a
['spam', 'eggs', 123, 1234]

Assignment to slices is also possible, and this can even change the size of the list:

>>> # Replace some items:
... a[0:2] = [1, 12]
>>> a
[1, 12, 123, 1234]
>>> # Remove some:
... a[0:2] = []
>>> a
[123, 1234]
>>> # Insert some:
... a[1:1] = ['bletch', 'xyzzy']
>>> a
[123, 'bletch', 'xyzzy', 1234]
>>> a[:0] = a # Insert (a copy of) itself at the beginning
>>> a
[123, 'bletch', 'xyzzy', 1234, 123, 'bletch', 'xyzzy', 1234]

The built-in function len() also applies to lists:

>>> len(a)
8

It is possible to nest lists (create lists containing other lists), for example:

>>> q = [2, 3]
>>> p = [1, q, 4]
>>> len(p)
3
>>> p[1]
[2, 3]
>>> p[1][0]
2
>>> p[1].append('xtra') # See section 5.1
>>> p
[1, [2, 3, 'xtra'], 4]
>>> q
[2, 3, 'xtra']

Note that in the last example, p[1] and q really refer to the same object! We'll come back to object
semantics later.

3.2 First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two and two together. For instance,
we can write an initial sub-sequence of the Fibonacci series as follows:

3.2. First Steps Towards Programming 15

>>> # Fibonacci series:
... # the sum of two elements defines the next
... a, b = 0, 1
>>> while b < 10:
... print b
... a, b = b, a+b
...
1
1
2
3
5
8

This example introduces several new features.

• The �rst line contains a multiple assignment : the variables a and b simultaneously get the new
values 0 and 1. On the last line this is used again, demonstrating that the expressions on the
right-hand side are all evaluated �rst before any of the assignments take place. The right-hand
side expressions are evaluated from the left to the right.

• The while loop executes as long as the condition (here: b < 10) remains true. In Python, like in
C, any non-zero integer value is true; zero is false. The condition may also be a string or list value,
in fact any sequence; anything with a non-zero length is true, empty sequences are false. The test
used in the example is a simple comparison. The standard comparison operators are written the
same as in C: < (less than), > (greater than), == (equal to), <= (less than or equal to), >= (greater
than or equal to) and != (not equal to).

• The body of the loop is indented: indentation is Python's way of grouping statements. Python does
not (yet!) provide an intelligent input line editing facility, so you have to type a tab or space(s)
for each indented line. In practice you will prepare more complicated input for Python with a
text editor; most text editors have an auto-indent facility. When a compound statement is entered
interactively, it must be followed by a blank line to indicate completion (since the parser cannot
guess when you have typed the last line). Note that each line within a basic block must be indented
by the same amount.

• The print statement writes the value of the expression(s) it is given. It di�ers from just writing
the expression you want to write (as we did earlier in the calculator examples) in the way it handles
multiple expressions and strings. Strings are printed without quotes, and a space is inserted between
items, so you can format things nicely, like this:

>>> i = 256*256
>>> print 'The value of i is', i
The value of i is 65536

A trailing comma avoids the newline after the output:

>>> a, b = 0, 1
>>> while b < 1000:
... print b,
... a, b = b, a+b
...
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

Note that the interpreter inserts a newline before it prints the next prompt if the last line was not
completed.

16 Chapter 3. An Informal Introduction to Python

CHAPTER

FOUR

More Control Flow Tools

Besides the while statement just introduced, Python knows the usual control �ow statements known
from other languages, with some twists.

4.1 if Statements

Perhaps the most well-known statement type is the if statement. For example:

>>> x = int(raw_input("Please enter a number: "))
>>> if x < 0:
... x = 0
... print 'Negative changed to zero'
... elif x == 0:
... print 'Zero'
... elif x == 1:
... print 'Single'
... else:
... print 'More'
...

There can be zero or more elif parts, and the else part is optional. The keyword `elif' is short for
`else if', and is useful to avoid excessive indentation. An if . . . elif . . . elif . . . sequence is a substitute
for the switch or case statements found in other languages.

4.2 for Statements

The for statement in Python di�ers a bit from what you may be used to in C or Pascal. Rather than
always iterating over an arithmetic progression of numbers (like in Pascal), or giving the user the ability
to de�ne both the iteration step and halting condition (as C), Python's for statement iterates over the
items of any sequence (e.g., a list or a string), in the order that they appear in the sequence. For example
(no pun intended):

>>> # Measure some strings:
... a = ['cat', 'window', 'defenestrate']
>>> for x in a:
... print x, len(x)
...
cat 3
window 6
defenestrate 12

17

It is not safe to modify the sequence being iterated over in the loop (this can only happen for mutable
sequence types, i.e., lists). If you need to modify the list you are iterating over, e.g., duplicate selected
items, you must iterate over a copy. The slice notation makes this particularly convenient:

>>> for x in a[:]: # make a slice copy of the entire list
... if len(x) > 6: a.insert(0, x)
...
>>> a
['defenestrate', 'cat', 'window', 'defenestrate']

4.3 The range() Function

If you do need to iterate over a sequence of numbers, the built-in function range() comes in handy. It
generates lists containing arithmetic progressions, e.g.:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The given end point is never part of the generated list; range(10) generates a list of 10 values, exactly
the legal indices for items of a sequence of length 10. It is possible to let the range start at another
number, or to specify a di�erent increment (even negative; sometimes this is called the `step'):

>>> range(5, 10)
[5, 6, 7, 8, 9]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(-10, -100, -30)
[-10, -40, -70]

To iterate over the indices of a sequence, combine range() and len() as follows:

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
... print i, a[i]
...
0 Mary
1 had
2 a
3 little
4 lamb

4.4 break and continue Statements, and else Clauses on Loops

The break statement, like in C, breaks out of the smallest enclosing for or while loop.
The continue statement, also borrowed from C, continues with the next iteration of the loop.
Loop statements may have an else clause; it is executed when the loop terminates through exhaustion of
the list (with for) or when the condition becomes false (with while), but not when the loop is terminated
by a break statement. This is exempli�ed by the following loop, which searches for prime numbers:

18 Chapter 4. More Control Flow Tools

>>> for n in range(2, 10):
... for x in range(2, n):
... if n % x == 0:
... print n, 'equals', x, '*', n/x
... break
... else:
... print n, 'is a prime number'
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3

4.5 pass Statements

The pass statement does nothing. It can be used when a statement is required syntactically but the
program requires no action. For example:

>>> while 1:
... pass # Busy-wait for keyboard interrupt
...

4.6 De�ning Functions

We can create a function that writes the Fibonacci series to an arbitrary boundary:

>>> def fib(n): # write Fibonacci series up to n
... "Print a Fibonacci series up to n"
... a, b = 0, 1
... while b < n:
... print b,
... a, b = b, a+b
...
>>> # Now call the function we just defined:
... fib(2000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

The keyword def introduces a function de�nition. It must be followed by the function name and the
parenthesized list of formal parameters. The statements that form the body of the function start at the
next line, and must be indented. The �rst statement of the function body can optionally be a string
literal; this string literal is the function's documentation string, or docstring.
There are tools which use docstrings to automatically produce online or printed documentation, or to
let the user interactively browse through code; it's good practice to include docstrings in code that you
write, so try to make a habit of it.
The execution of a function introduces a new symbol table used for the local variables of the function.
More precisely, all variable assignments in a function store the value in the local symbol table; whereas
variable references �rst look in the local symbol table, then in the global symbol table, and then in the

4.5. pass Statements 19

table of built-in names. Thus, global variables cannot be directly assigned a value within a function
(unless named in a global statement), although they may be referenced.
The actual parameters (arguments) to a function call are introduced in the local symbol table of the
called function when it is called; thus, arguments are passed using call by value (where the value is always
an object reference, not the value of the object). 1 When a function calls another function, a new local
symbol table is created for that call.
A function de�nition introduces the function name in the current symbol table. The value of the function
name has a type that is recognized by the interpreter as a user-de�ned function. This value can be
assigned to another name which can then also be used as a function. This serves as a general renaming
mechanism:

>>> fib
<function object at 10042ed0>
>>> f = fib
>>> f(100)
1 1 2 3 5 8 13 21 34 55 89

You might object that fib is not a function but a procedure. In Python, like in C, procedures are just
functions that don't return a value. In fact, technically speaking, procedures do return a value, albeit a
rather boring one. This value is called None (it's a built-in name). Writing the value None is normally
suppressed by the interpreter if it would be the only value written. You can see it if you really want to:

>>> print fib(0)
None

It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of
printing it:

>>> def fib2(n): # return Fibonacci series up to n
... "Return a list containing the Fibonacci series up to n"
... result = []
... a, b = 0, 1
... while b < n:
... result.append(b) # see below
... a, b = b, a+b
... return result
...
>>> f100 = fib2(100) # call it
>>> f100 # write the result
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

• The return statement returns with a value from a function. return without an expression argu-
ment returns None. Falling o� the end of a procedure also returns None.

• The statement result.append(b) calls a method of the list object result. A method is a function
that `belongs' to an object and is named obj.methodname , where obj is some object (this may
be an expression), and methodname is the name of a method that is de�ned by the object's type.
Di�erent types de�ne di�erent methods. Methods of di�erent types may have the same name
without causing ambiguity. (It is possible to de�ne your own object types and methods, using
classes, as discussed later in this tutorial.) The method append() shown in the example, is de�ned

1Actually, call by object reference would be a better description, since if a mutable object is passed, the caller will see
any changes the callee makes to it (e.g., items inserted into a list).

20 Chapter 4. More Control Flow Tools

for list objects; it adds a new element at the end of the list. In this example it is equivalent to
`result = result + [b] ', but more e�cient.

4.7 More on De�ning Functions

It is also possible to de�ne functions with a variable number of arguments. There are three forms, which
can be combined.

4.7.1 Default Argument Values

The most useful form is to specify a default value for one or more arguments. This creates a function
that can be called with fewer arguments than it is de�ned, e.g.

def ask_ok(prompt, retries=4, complaint='Yes or no, please!'):
while 1:

ok = raw_input(prompt)
if ok in ('y', 'ye', 'yes'): return 1
if ok in ('n', 'no', 'nop', 'nope'): return 0
retries = retries - 1
if retries < 0: raise IOError, 'refusenik user'
print complaint

This function can be called either like this: ask_ok('Do you really want to quit?') or like this:
ask_ok('OK to overwrite the file?', 2) .
The default values are evaluated at the point of function de�nition in the de�ning scope, so that e.g.

i = 5
def f(arg = i): print arg
i = 6
f()

will print 5.
Important warning: The default value is evaluated only once. This makes a di�erence when the
default is a mutable object such as a list or dictionary. For example, the following function accumulates
the arguments passed to it on subsequent calls:

def f(a, l = []):
l.append(a)
return l

print f(1)
print f(2)
print f(3)

This will print
[1]
[1, 2]
[1, 2, 3]

If you don't want the default to be shared between subsequent calls, you can write the function like this
instead:

4.7. More on De�ning Functions 21

def f(a, l = None):
if l is None:

l = []
l.append(a)
return l

4.7.2 Keyword Arguments

Functions can also be called using keyword arguments of the form ` keyword = value '. For instance, the
following function:

def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):
print "-- This parrot wouldn't", action,
print "if you put", voltage, "Volts through it."
print "-- Lovely plumage, the", type
print "-- It's", state, "!"

could be called in any of the following ways:

parrot(1000)
parrot(action = 'VOOOOOM', voltage = 1000000)
parrot('a thousand', state = 'pushing up the daisies')
parrot('a million', 'bereft of life', 'jump')

but the following calls would all be invalid:

parrot() # required argument missing
parrot(voltage=5.0, 'dead') # non-keyword argument following keyword
parrot(110, voltage=220) # duplicate value for argument
parrot(actor='John Cleese') # unknown keyword

In general, an argument list must have any positional arguments followed by any keyword arguments,
where the keywords must be chosen from the formal parameter names. It's not important whether a
formal parameter has a default value or not. No argument may receive a value more than once � formal
parameter names corresponding to positional arguments cannot be used as keywords in the same calls.
Here's an example that fails due to this restriction:

>>> def function(a):
... pass
...
>>> function(0, a=0)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: keyword parameter redefined

When a �nal formal parameter of the form **name is present, it receives a dictionary containing all key-
word arguments whose keyword doesn't correspond to a formal parameter. This may be combined with a
formal parameter of the form *name (described in the next subsection) which receives a tuple containing
the positional arguments beyond the formal parameter list. (*name must occur before **name .) For
example, if we de�ne a function like this:

22 Chapter 4. More Control Flow Tools

def cheeseshop(kind, *arguments, **keywords):
print "-- Do you have any", kind, '?'
print "-- I'm sorry, we're all out of", kind
for arg in arguments: print arg
print '-'*40
for kw in keywords.keys(): print kw, ':', keywords[kw]

It could be called like this:
cheeseshop('Limburger', "It's very runny, sir.",

"It's really very, VERY runny, sir.",
client='John Cleese',
shopkeeper='Michael Palin',
sketch='Cheese Shop Sketch')

and of course it would print:
-- Do you have any Limburger ?
-- I'm sorry, we're all out of Limburger
It's very runny, sir.
It's really very, VERY runny, sir.
--
client : John Cleese
shopkeeper : Michael Palin
sketch : Cheese Shop Sketch

4.7.3 Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can be called with an arbitrary
number of arguments. These arguments will be wrapped up in a tuple. Before the variable number of
arguments, zero or more normal arguments may occur.

def fprintf(file, format, *args):
file.write(format % args)

4.7.4 Lambda Forms

By popular demand, a few features commonly found in functional programming languages and Lisp have
been added to Python. With the lambda keyword, small anonymous functions can be created. Here's a
function that returns the sum of its two arguments: ` lambda a, b: a+b '. Lambda forms can be used
wherever function objects are required. They are syntactically restricted to a single expression. Seman-
tically, they are just syntactic sugar for a normal function de�nition. Like nested function de�nitions,
lambda forms cannot reference variables from the containing scope, but this can be overcome through
the judicious use of default argument values, e.g.

>>> def make_incrementor(n):
... return lambda x, incr=n: x+incr
...
>>> f = make_incrementor(42)
>>> f(0)
42
>>> f(1)
43
>>>

4.7. More on De�ning Functions 23

4.7.5 Documentation Strings

There are emerging conventions about the content and formatting of documentation strings.
The �rst line should always be a short, concise summary of the object's purpose. For brevity, it should
not explicitly state the object's name or type, since these are available by other means (except if the
name happens to be a verb describing a function's operation). This line should begin with a capital
letter and end with a period.
If there are more lines in the documentation string, the second line should be blank, visually separating
the summary from the rest of the description. The following lines should be one or more paragraphs
describing the object's calling conventions, its side e�ects, etc.
The Python parser does not strip indentation from multi-line string literals in Python, so tools that
process documentation have to strip indentation if desired. This is done using the following convention.
The �rst non-blank line after the �rst line of the string determines the amount of indentation for the
entire documentation string. (We can't use the �rst line since it is generally adjacent to the string's
opening quotes so its indentation is not apparent in the string literal.) Whitespace �equivalent� to this
indentation is then stripped from the start of all lines of the string. Lines that are indented less should
not occur, but if they occur all their leading whitespace should be stripped. Equivalence of whitespace
should be tested after expansion of tabs (to 8 spaces, normally).
Here is an example of a multi-line docstring:

>>> def my_function():
... """Do nothing, but document it.
...
... No, really, it doesn't do anything.
... """
... pass
...
>>> print my_function.__doc__
Do nothing, but document it.

No, really, it doesn't do anything.

24 Chapter 4. More Control Flow Tools

CHAPTER

FIVE

Data Structures

This chapter describes some things you've learned about already in more detail, and adds some new
things as well.

5.1 More on Lists

The list data type has some more methods. Here are all of the methods of list objects:

append(x) Add an item to the end of the list; equivalent to a[len(a):] = [x] .

extend(L) Extend the list by appending all the items in the given list; equivalent to a[len(a):] = L .

insert(i, x) Insert an item at a given position. The �rst argument is the index of the element before
which to insert, so a.insert(0, x) inserts at the front of the list, and a.insert(len(a), x) is
equivalent to a.append(x).

remove(x) Remove the �rst item from the list whose value is x. It is an error if there is no such item.

pop([i]) Remove the item at the given position in the list, and return it. If no index is speci�ed,
a.pop() returns the last item in the list. The item is also removed from the list.

index(x) Return the index in the list of the �rst item whose value is x. It is an error if there is no such
item.

count(x) Return the number of times x appears in the list.

sort() Sort the items of the list, in place.

reverse() Reverse the elements of the list, in place.

An example that uses most of the list methods:

25

>>> a = [66.6, 333, 333, 1, 1234.5]
>>> print a.count(333), a.count(66.6), a.count('x')
2 1 0
>>> a.insert(2, -1)
>>> a.append(333)
>>> a
[66.6, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)
1
>>> a.remove(333)
>>> a
[66.6, -1, 333, 1, 1234.5, 333]
>>> a.reverse()
>>> a
[333, 1234.5, 1, 333, -1, 66.6]
>>> a.sort()
>>> a
[-1, 1, 66.6, 333, 333, 1234.5]

5.1.1 Using Lists as Stacks

The list methods make it very easy to use a list as a stack, where the last element added is the �rst
element retrieved (�last-in, �rst-out�). To add an item to the top of the stack, use append(). To retrieve
an item from the top of the stack, use pop() without an explicit index. For example:

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack
[3, 4, 5, 6]
>>> stack.pop()
6
>>> stack.pop()
5
>>> stack
[3, 4]

5.1.2 Using Lists as Queues

You can also use a list conveniently as a queue, where the �rst element added is the �rst element retrieved
(��rst-in, �rst-out�). To add an item to the back of the queue, use append(). To retrieve an item from
the front of the queue, use pop() with 0 as the index. For example:

26 Chapter 5. Data Structures

>>> queue = ["Eric", "John", "Michael"]
>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.pop(0)
'Eric'
>>> queue.pop(0)
'John'
>>> queue
['Michael', 'Terry', 'Graham']

5.1.3 Functional Programming Tools

There are three built-in functions that are very useful when used with lists: filter(), map(), and
reduce().
`filter(function, sequence)' returns a sequence (of the same type, if possible) consisting of those items
from the sequence for which function(item) is true. For example, to compute some primes:

>>> def f(x): return x % 2 != 0 and x % 3 != 0
...
>>> filter(f, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]

`map(function, sequence)' calls function(item) for each of the sequence's items and returns a list of the
return values. For example, to compute some cubes:

>>> def cube(x): return x*x*x
...
>>> map(cube, range(1, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

More than one sequence may be passed; the function must then have as many arguments as there
are sequences and is called with the corresponding item from each sequence (or None if some sequence
is shorter than another). If None is passed for the function, a function returning its argument(s) is
substituted.
Combining these two special cases, we see that ` map(None, list1 , list2)' is a convenient way of turning
a pair of lists into a list of pairs. For example:

>>> seq = range(8)
>>> def square(x): return x*x
...
>>> map(None, seq, map(square, seq))
[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25), (6, 36), (7, 49)]

`reduce(func, sequence)' returns a single value constructed by calling the binary function func on the
�rst two items of the sequence, then on the result and the next item, and so on. For example, to compute
the sum of the numbers 1 through 10:

5.1. More on Lists 27

>>> def add(x,y): return x+y
...
>>> reduce(add, range(1, 11))
55

If there's only one item in the sequence, its value is returned; if the sequence is empty, an exception is
raised.
A third argument can be passed to indicate the starting value. In this case the starting value is returned
for an empty sequence, and the function is �rst applied to the starting value and the �rst sequence item,
then to the result and the next item, and so on. For example,

>>> def sum(seq):
... def add(x,y): return x+y
... return reduce(add, seq, 0)
...
>>> sum(range(1, 11))
55
>>> sum([])
0

5.1.4 List Comprehensions

List comprehensions provide a concise way to create lists without resorting to use of map(), filter()
and/or lambda. The resulting list de�nition tends often to be clearer than lists built using those con-
structs. Each list comprehension consists of an expression following by a for clause, then zero or more
for or if clauses. The result will be a list resulting from evaluating the expression in the context of the
for and if clauses which follow it. If the expression would evaluate to a tuple, it must be parenthesized.

>>> freshfruit = [' banana', ' loganberry ', 'passion fruit ']
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]
>>> [3*x for x in vec if x > 3]
[12, 18]
>>> [3*x for x in vec if x < 2]
[]
>>> [{x: x**2} for x in vec]
[{2: 4}, {4: 16}, {6: 36}]
>>> [[x,x**2] for x in vec]
[[2, 4], [4, 16], [6, 36]]
>>> [x, x**2 for x in vec] # error - parens required for tuples

File "<stdin>", line 1
[x, x**2 for x in vec]

^
SyntaxError: invalid syntax
>>> [(x, x**2) for x in vec]
[(2, 4), (4, 16), (6, 36)]
>>> vec1 = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [x*y for x in vec1 for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vec1 for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]

28 Chapter 5. Data Structures

5.2 The del statement

There is a way to remove an item from a list given its index instead of its value: the del statement. This
can also be used to remove slices from a list (which we did earlier by assignment of an empty list to the
slice). For example:

>>> a
[-1, 1, 66.6, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.6, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.6, 1234.5]

del can also be used to delete entire variables:

>>> del a

Referencing the name a hereafter is an error (at least until another value is assigned to it). We'll �nd
other uses for del later.

5.3 Tuples and Sequences

We saw that lists and strings have many common properties, e.g., indexing and slicing operations. They
are two examples of sequence data types. Since Python is an evolving language, other sequence data
types may be added. There is also another standard sequence data type: the tuple.
A tuple consists of a number of values separated by commas, for instance:

>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))

As you see, on output tuples are alway enclosed in parentheses, so that nested tuples are interpreted
correctly; they may be input with or without surrounding parentheses, although often parentheses are
necessary anyway (if the tuple is part of a larger expression).
Tuples have many uses, e.g., (x, y) coordinate pairs, employee records from a database, etc. Tuples, like
strings, are immutable: it is not possible to assign to the individual items of a tuple (you can simulate
much of the same e�ect with slicing and concatenation, though). It is also possible to create tuples which
contain mutable objects, such as lists.
A special problem is the construction of tuples containing 0 or 1 items: the syntax has some extra quirks
to accommodate these. Empty tuples are constructed by an empty pair of parentheses; a tuple with one
item is constructed by following a value with a comma (it is not su�cient to enclose a single value in
parentheses). Ugly, but e�ective. For example:

5.2. The del statement 29

>>> empty = ()
>>> singleton = 'hello', # <-- note trailing comma
>>> len(empty)
0
>>> len(singleton)
1
>>> singleton
('hello',)

The statement t = 12345, 54321, 'hello!' is an example of tuple packing: the values 12345, 54321
and 'hello!' are packed together in a tuple. The reverse operation is also possible, e.g.:

>>> x, y, z = t

This is called, appropriately enough, sequence unpacking. Sequence unpacking requires that the list of
variables on the left have the same number of elements as the length of the sequence. Note that multiple
assignment is really just a combination of tuple packing and sequence unpacking!
There is a small bit of asymmetry here: packing multiple values always creates a tuple, and unpacking
works for any sequence.

5.4 Dictionaries

Another useful data type built into Python is the dictionary. Dictionaries are sometimes found in other
languages as �associative memories� or �associative arrays�. Unlike sequences, which are indexed by
a range of numbers, dictionaries are indexed by keys, which can be any immutable type; strings and
numbers can always be keys. Tuples can be used as keys if they contain only strings, numbers, or tuples;
if a tuple contains any mutable object either directly or indirectly, it cannot be used as a key. You can't
use lists as keys, since lists can be modi�ed in place using their append() and extend() methods, as
well as slice and indexed assignments.
It is best to think of a dictionary as an unordered set of key: value pairs, with the requirement that the
keys are unique (within one dictionary). A pair of braces creates an empty dictionary: {}. Placing a
comma-separated list of key:value pairs within the braces adds initial key:value pairs to the dictionary;
this is also the way dictionaries are written on output.
The main operations on a dictionary are storing a value with some key and extracting the value given the
key. It is also possible to delete a key:value pair with del. If you store using a key that is already in use,
the old value associated with that key is forgotten. It is an error to extract a value using a non-existent
key.
The keys() method of a dictionary object returns a list of all the keys used in the dictionary, in random
order (if you want it sorted, just apply the sort() method to the list of keys). To check whether a single
key is in the dictionary, use the has_key() method of the dictionary.
Here is a small example using a dictionary:

30 Chapter 5. Data Structures

>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> tel.keys()
['guido', 'irv', 'jack']
>>> tel.has_key('guido')
1

5.5 More on Conditions

The conditions used in while and if statements above can contain other operators besides comparisons.
The comparison operators in and not in check whether a value occurs (does not occur) in a sequence.
The operators is and is not compare whether two objects are really the same object; this only matters
for mutable objects like lists. All comparison operators have the same priority, which is lower than that
of all numerical operators.
Comparisons can be chained: e.g., a < b == c tests whether a is less than b and moreover b equals c.
Comparisons may be combined by the Boolean operators and and or, and the outcome of a comparison
(or of any other Boolean expression) may be negated with not. These all have lower priorities than
comparison operators again; between them, not has the highest priority, and or the lowest, so that A
and not B or C is equivalent to (A and (not B)) or C . Of course, parentheses can be used to express
the desired composition.
The Boolean operators and and or are so-called shortcut operators: their arguments are evaluated from
left to right, and evaluation stops as soon as the outcome is determined. E.g., if A and C are true but
B is false, A and B and C does not evaluate the expression C. In general, the return value of a shortcut
operator, when used as a general value and not as a Boolean, is the last evaluated argument.
It is possible to assign the result of a comparison or other Boolean expression to a variable. For example,

>>> string1, string2, string3 = '', 'Trondheim', 'Hammer Dance'
>>> non_null = string1 or string2 or string3
>>> non_null
'Trondheim'

Note that in Python, unlike C, assignment cannot occur inside expressions. C programmers may grumble
about this, but it avoids a common class of problems encountered in C programs: typing = in an expression
when == was intended.

5.6 Comparing Sequences and Other Types

Sequence objects may be compared to other objects with the same sequence type. The comparison
uses lexicographical ordering: �rst the �rst two items are compared, and if they di�er this determines
the outcome of the comparison; if they are equal, the next two items are compared, and so on, until
either sequence is exhausted. If two items to be compared are themselves sequences of the same type,
the lexicographical comparison is carried out recursively. If all items of two sequences compare equal,
the sequences are considered equal. If one sequence is an initial sub-sequence of the other, the shorter

5.5. More on Conditions 31

sequence is the smaller one. Lexicographical ordering for strings uses the ascii ordering for individual
characters. Some examples of comparisons between sequences with the same types:

(1, 2, 3) < (1, 2, 4)
[1, 2, 3] < [1, 2, 4]
'ABC' < 'C' < 'Pascal' < 'Python'
(1, 2, 3, 4) < (1, 2, 4)
(1, 2) < (1, 2, -1)
(1, 2, 3) == (1.0, 2.0, 3.0)
(1, 2, ('aa', 'ab')) < (1, 2, ('abc', 'a'), 4)

Note that comparing objects of di�erent types is legal. The outcome is deterministic but arbitrary: the
types are ordered by their name. Thus, a list is always smaller than a string, a string is always smaller
than a tuple, etc. Mixed numeric types are compared according to their numeric value, so 0 equals 0.0,
etc.1

1The rules for comparing objects of di�erent types should not be relied upon; they may change in a future version of
the language.

32 Chapter 5. Data Structures

CHAPTER

SIX

Modules

If you quit from the Python interpreter and enter it again, the de�nitions you have made (functions and
variables) are lost. Therefore, if you want to write a somewhat longer program, you are better o� using
a text editor to prepare the input for the interpreter and running it with that �le as input instead. This
is known as creating a script. As your program gets longer, you may want to split it into several �les for
easier maintenance. You may also want to use a handy function that you've written in several programs
without copying its de�nition into each program.
To support this, Python has a way to put de�nitions in a �le and use them in a script or in an interactive
instance of the interpreter. Such a �le is called a module; de�nitions from a module can be imported into
other modules or into the main module (the collection of variables that you have access to in a script
executed at the top level and in calculator mode).
A module is a �le containing Python de�nitions and statements. The �le name is the module name with
the su�x `.py' appended. Within a module, the module's name (as a string) is available as the value of
the global variable __name__. For instance, use your favorite text editor to create a �le called ` �bo.py' in
the current directory with the following contents:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
a, b = 0, 1
while b < n:

print b,
a, b = b, a+b

def fib2(n): # return Fibonacci series up to n
result = []
a, b = 0, 1
while b < n:

result.append(b)
a, b = b, a+b

return result

Now enter the Python interpreter and import this module with the following command:
>>> import fibo

This does not enter the names of the functions de�ned in fibo directly in the current symbol table; it
only enters the module name fibo there. Using the module name you can access the functions:

33

>>> fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo.__name__
'fibo'

If you intend to use a function often you can assign it to a local name:

>>> fib = fibo.fib
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

6.1 More on Modules

A module can contain executable statements as well as function de�nitions. These statements are in-
tended to initialize the module. They are executed only the �rst time the module is imported somewhere. 1

Each module has its own private symbol table, which is used as the global symbol table by all functions
de�ned in the module. Thus, the author of a module can use global variables in the module without
worrying about accidental clashes with a user's global variables. On the other hand, if you know what
you are doing you can touch a module's global variables with the same notation used to refer to its
functions, modname.itemname .
Modules can import other modules. It is customary but not required to place all import statements at
the beginning of a module (or script, for that matter). The imported module names are placed in the
importing module's global symbol table.
There is a variant of the import statement that imports names from a module directly into the importing
module's symbol table. For example:

>>> from fibo import fib, fib2
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the local symbol table
(so in the example, fibo is not de�ned).
There is even a variant to import all names that a module de�nes:

>>> from fibo import *
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore (_).

6.1.1 The Module Search Path

When a module named spam is imported, the interpreter searches for a �le named ` spam.py' in the current
directory, and then in the list of directories speci�ed by the environment variable PYTHONPATH. This
has the same syntax as the shell variable PATH, i.e., a list of directory names. When PYTHONPATH

1In fact function de�nitions are also `statements' that are `executed'; the execution enters the function name in the
module's global symbol table.

34 Chapter 6. Modules

is not set, or when the �le is not found there, the search continues in an installation-dependent default
path; on Unix, this is usually `.:/usr/local/lib/python '.
Actually, modules are searched in the list of directories given by the variable sys.path which is initial-
ized from the directory containing the input script (or the current directory), PYTHONPATH and the
installation-dependent default. This allows Python programs that know what they're doing to modify
or replace the module search path. See the section on Standard Modules later.

6.1.2 �Compiled� Python �les

As an important speed-up of the start-up time for short programs that use a lot of standard modules,
if a �le called `spam.pyc' exists in the directory where ` spam.py' is found, this is assumed to contain an
already-�byte-compiled� version of the module spam. The modi�cation time of the version of ` spam.py'
used to create `spam.pyc' is recorded in `spam.pyc', and the `.pyc' �le is ignored if these don't match.
Normally, you don't need to do anything to create the ` spam.pyc' �le. Whenever `spam.py' is successfully
compiled, an attempt is made to write the compiled version to ` spam.pyc'. It is not an error if this attempt
fails; if for any reason the �le is not written completely, the resulting ` spam.pyc' �le will be recognized as
invalid and thus ignored later. The contents of the ` spam.pyc' �le are platform independent, so a Python
module directory can be shared by machines of di�erent architectures.
Some tips for experts:

• When the Python interpreter is invoked with the -O �ag, optimized code is generated and stored
in `.pyo' �les. The optimizer currently doesn't help much; it only removes assert statements and
SET_LINENO instructions. When -O is used, all bytecode is optimized; .pyc �les are ignored and
.py �les are compiled to optimized bytecode.

• Passing two -O �ags to the Python interpreter (-OO) will cause the bytecode compiler to perform
optimizations that could in some rare cases result in malfunctioning programs. Currently only
__doc__ strings are removed from the bytecode, resulting in more compact ` .pyo' �les. Since some
programs may rely on having these available, you should only use this option if you know what
you're doing.

• A program doesn't run any faster when it is read from a ` .pyc' or `.pyo' �le than when it is read
from a `.py' �le; the only thing that's faster about ` .pyc' or `.pyo' �les is the speed with which they
are loaded.

• When a script is run by giving its name on the command line, the bytecode for the script is never
written to a `.pyc' or `.pyo' �le. Thus, the startup time of a script may be reduced by moving most
of its code to a module and having a small bootstrap script that imports that module. It is also
possible to name a `.pyc' or `.pyo' �le directly on the command line.

• It is possible to have a �le called ` spam.pyc' (or `spam.pyo' when -O is used) without a �le `spam.py'
for the same module. This can be used to distribute a library of Python code in a form that is
moderately hard to reverse engineer.

• The module compileall can create `.pyc' �les (or `.pyo' �les when -O is used) for all modules in a
directory.

6.2 Standard Modules

Python comes with a library of standard modules, described in a separate document, the Python Library
Reference (�Library Reference� hereafter). Some modules are built into the interpreter; these provide
access to operations that are not part of the core of the language but are nevertheless built in, either
for e�ciency or to provide access to operating system primitives such as system calls. The set of such
modules is a con�guration option; e.g., the amoeba module is only provided on systems that somehow
support Amoeba primitives. One particular module deserves some attention: sys, which is built into

6.2. Standard Modules 35

every Python interpreter. The variables sys.ps1 and sys.ps2 de�ne the strings used as primary and
secondary prompts:

>>> import sys
>>> sys.ps1
'>>> '
>>> sys.ps2
'... '
>>> sys.ps1 = 'C> '
C> print 'Yuck!'
Yuck!
C>

These two variables are only de�ned if the interpreter is in interactive mode.
The variable sys.path is a list of strings that determine the interpreter's search path for modules. It
is initialized to a default path taken from the environment variable PYTHONPATH, or from a built-in
default if PYTHONPATH is not set. You can modify it using standard list operations, e.g.:

>>> import sys
>>> sys.path.append('/ufs/guido/lib/python')

6.3 The dir() Function

The built-in function dir() is used to �nd out which names a module de�nes. It returns a sorted list of
strings:

>>> import fibo, sys
>>> dir(fibo)
['__name__', 'fib', 'fib2']
>>> dir(sys)
['__name__', 'argv', 'builtin_module_names', 'copyright', 'exit',
'maxint', 'modules', 'path', 'ps1', 'ps2', 'setprofile', 'settrace',
'stderr', 'stdin', 'stdout', 'version']

Without arguments, dir() lists the names you have de�ned currently:

>>> a = [1, 2, 3, 4, 5]
>>> import fibo, sys
>>> fib = fibo.fib
>>> dir()
['__name__', 'a', 'fib', 'fibo', 'sys']

Note that it lists all types of names: variables, modules, functions, etc.
dir() does not list the names of built-in functions and variables. If you want a list of those, they are
de�ned in the standard module __builtin__:

36 Chapter 6. Modules

>>> import __builtin__
>>> dir(__builtin__)
['AccessError', 'AttributeError', 'ConflictError', 'EOFError', 'IOError',
'ImportError', 'IndexError', 'KeyError', 'KeyboardInterrupt',
'MemoryError', 'NameError', 'None', 'OverflowError', 'RuntimeError',
'SyntaxError', 'SystemError', 'SystemExit', 'TypeError', 'ValueError',
'ZeroDivisionError', '__name__', 'abs', 'apply', 'chr', 'cmp', 'coerce',
'compile', 'dir', 'divmod', 'eval', 'execfile', 'filter', 'float',
'getattr', 'hasattr', 'hash', 'hex', 'id', 'input', 'int', 'len', 'long',
'map', 'max', 'min', 'oct', 'open', 'ord', 'pow', 'range', 'raw_input',
'reduce', 'reload', 'repr', 'round', 'setattr', 'str', 'type', 'xrange']

6.4 Packages

Packages are a way of structuring Python's module namespace by using �dotted module names�. For
example, the module name A.B designates a submodule named `B' in a package named `A'. Just like the
use of modules saves the authors of di�erent modules from having to worry about each other's global
variable names, the use of dotted module names saves the authors of multi-module packages like NumPy
or the Python Imaging Library from having to worry about each other's module names.
Suppose you want to design a collection of modules (a �package�) for the uniform handling of sound �les
and sound data. There are many di�erent sound �le formats (usually recognized by their extension,
e.g. `.wav', `.ai� ', `.au'), so you may need to create and maintain a growing collection of modules for the
conversion between the various �le formats. There are also many di�erent operations you might want to
perform on sound data (e.g. mixing, adding echo, applying an equalizer function, creating an arti�cial
stereo e�ect), so in addition you will be writing a never-ending stream of modules to perform these
operations. Here's a possible structure for your package (expressed in terms of a hierarchical �lesystem):

Sound/ Top-level package
__init__.py Initialize the sound package
Formats/ Subpackage for file format conversions

__init__.py
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py
...

Effects/ Subpackage for sound effects
__init__.py
echo.py
surround.py
reverse.py
...

Filters/ Subpackage for filters
__init__.py
equalizer.py
vocoder.py
karaoke.py
...

The `__init__.py ' �les are required to make Python treat the directories as containing packages; this is
done to prevent directories with a common name, such as ` string', from unintentionally hiding valid
modules that occur later on the module search path. In the simplest case, ` __init__.py ' can just be
an empty �le, but it can also execute initialization code for the package or set the __all__ variable,

6.4. Packages 37

described later.
Users of the package can import individual modules from the package, for example:

import Sound.Effects.echo

This loads the submodule Sound.Effects.echo . It must be referenced with its full name, e.g.
Sound.Effects.echo.echofilter(input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:
from Sound.Effects import echo

This also loads the submodule echo, and makes it available without its package pre�x, so it can be used
as follows:

echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:
from Sound.Effects.echo import echofilter

Again, this loads the submodule echo, but this makes its function echofilter() directly available:

echofilter(input, output, delay=0.7, atten=4)

Note that when using from package import item , the item can be either a submodule (or subpackage)
of the package, or some other name de�ned in the package, like a function, class or variable. The import
statement �rst tests whether the item is de�ned in the package; if not, it assumes it is a module and
attempts to load it. If it fails to �nd it, an ImportError exception is raised.
Contrarily, when using syntax like import item.subitem.subsubitem , each item except for the last must
be a package; the last item can be a module or a package but can't be a class or function or variable
de�ned in the previous item.

6.4.1 Importing * From a Package

Now what happens when the user writes from Sound.Effects import * ? Ideally, one would hope
that this somehow goes out to the �lesystem, �nds which submodules are present in the package, and
imports them all. Unfortunately, this operation does not work very well on Mac and Windows platforms,
where the �lesystem does not always have accurate information about the case of a �lename! On these
platforms, there is no guaranteed way to know whether a �le ` ECHO.PY' should be imported as a module
echo, Echo or ECHO. (For example, Windows 95 has the annoying practice of showing all �le names with
a capitalized �rst letter.) The DOS 8+3 �lename restriction adds another interesting problem for long
module names.
The only solution is for the package author to provide an explicit index of the package. The import
statement uses the following convention: if a package's ` __init__.py ' code de�nes a list named __all__,
it is taken to be the list of module names that should be imported when from package import * is
encountered. It is up to the package author to keep this list up-to-date when a new version of the
package is released. Package authors may also decide not to support it, if they don't see a use for
importing * from their package. For example, the �le ` Sounds/E�ects/__init__.py ' could contain the
following code:

38 Chapter 6. Modules

__all__ = ["echo", "surround", "reverse"]

This would mean that from Sound.Effects import * would import the three named submodules of
the Sound package.
If __all__ is not de�ned, the statement from Sound.Effects import * does not import all submod-
ules from the package Sound.Effects into the current namespace; it only ensures that the package
Sound.Effects has been imported (possibly running its initialization code, ` __init__.py ') and then im-
ports whatever names are de�ned in the package. This includes any names de�ned (and submodules
explicitly loaded) by `__init__.py '. It also includes any submodules of the package that were explicitly
loaded by previous import statements, e.g.

import Sound.Effects.echo
import Sound.Effects.surround
from Sound.Effects import *

In this example, the echo and surround modules are imported in the current namespace because they
are de�ned in the Sound.Effects package when the from...import statement is executed. (This also
works when __all__ is de�ned.)
Note that in general the practicing of importing * from a module or package is frowned upon, since it
often causes poorly readable code. However, it is okay to use it to save typing in interactive sessions,
and certain modules are designed to export only names that follow certain patterns.
Remember, there is nothing wrong with using from Package import specific_submodule ! In fact,
this is the recommended notation unless the importing module needs to use submodules with the same
name from di�erent packages.

6.4.2 Intra-package References

The submodules often need to refer to each other. For example, the surround module might use the echo
module. In fact, such references are so common that the import statement �rst looks in the containing
package before looking in the standard module search path. Thus, the surround module can simply use
import echo or from echo import echofilter . If the imported module is not found in the current
package (the package of which the current module is a submodule), the import statement looks for a
top-level module with the given name.
When packages are structured into subpackages (as with the Sound package in the example), there's no
shortcut to refer to submodules of sibling packages - the full name of the subpackage must be used. For
example, if the module Sound.Filters.vocoder needs to use the echo module in the Sound.Effects
package, it can use from Sound.Effects import echo .

6.4. Packages 39

40

CHAPTER

SEVEN

Input and Output

There are several ways to present the output of a program; data can be printed in a human-readable
form, or written to a �le for future use. This chapter will discuss some of the possibilities.

7.1 Fancier Output Formatting

So far we've encountered two ways of writing values: expression statements and the print statement.
(A third way is using the write() method of �le objects; the standard output �le can be referenced as
sys.stdout. See the Library Reference for more information on this.)
Often you'll want more control over the formatting of your output than simply printing space-separated
values. There are two ways to format your output; the �rst way is to do all the string handling yourself;
using string slicing and concatenation operations you can create any lay-out you can imagine. The
standard module string contains some useful operations for padding strings to a given column width;
these will be discussed shortly. The second way is to use the % operator with a string as the left argument.
The % operator interprets the left argument much like a sprintf()-style format string to be applied to
the right argument, and returns the string resulting from this formatting operation.
One question remains, of course: how do you convert values to strings? Luckily, Python has a way to
convert any value to a string: pass it to the repr() function, or just write the value between reverse
quotes (�). Some examples:

>>> x = 10 * 3.14
>>> y = 200*200
>>> s = 'The value of x is ' + `x` + ', and y is ' + `y` + '...'
>>> print s
The value of x is 31.4, and y is 40000...
>>> # Reverse quotes work on other types besides numbers:
... p = [x, y]
>>> ps = repr(p)
>>> ps
'[31.400000000000002, 40000]'
>>> # Converting a string adds string quotes and backslashes:
... hello = 'hello, world\n'
>>> hellos = `hello`
>>> print hellos
'hello, world\n'
>>> # The argument of reverse quotes may be a tuple:
... `x, y, ('spam', 'eggs')`
"(31.400000000000002, 40000, ('spam', 'eggs'))"

Here are two ways to write a table of squares and cubes:

41

>>> import string
>>> for x in range(1, 11):
... print string.rjust(`x`, 2), string.rjust(`x*x`, 3),
... # Note trailing comma on previous line
... print string.rjust(`x*x*x`, 4)
...
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

10 100 1000
>>> for x in range(1,11):
... print '%2d %3d %4d' % (x, x*x, x*x*x)
...
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

10 100 1000

(Note that one space between each column was added by the way print works: it always adds spaces
between its arguments.)
This example demonstrates the function string.rjust() , which right-justi�es a string in a �eld of a
given width by padding it with spaces on the left. There are similar functions string.ljust() and
string.center() . These functions do not write anything, they just return a new string. If the input
string is too long, they don't truncate it, but return it unchanged; this will mess up your column lay-out
but that's usually better than the alternative, which would be lying about a value. (If you really want
truncation you can always add a slice operation, as in ` string.ljust(x, n)[0:n] '.)
There is another function, string.zfill() , which pads a numeric string on the left with zeros. It
understands about plus and minus signs:

>>> import string
>>> string.zfill('12', 5)
'00012'
>>> string.zfill('-3.14', 7)
'-003.14'
>>> string.zfill('3.14159265359', 5)
'3.14159265359'

Using the % operator looks like this:

>>> import math
>>> print 'The value of PI is approximately %5.3f.' % math.pi
The value of PI is approximately 3.142.

If there is more than one format in the string you pass a tuple as right operand, e.g.

42 Chapter 7. Input and Output

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 7678}
>>> for name, phone in table.items():
... print '%-10s ==> %10d' % (name, phone)
...
Jack ==> 4098
Dcab ==> 7678
Sjoerd ==> 4127

Most formats work exactly as in C and require that you pass the proper type; however, if you don't you
get an exception, not a core dump. The %s format is more relaxed: if the corresponding argument is not
a string object, it is converted to string using the str() built-in function. Using * to pass the width or
precision in as a separate (integer) argument is supported. The C formats %n and %p are not supported.
If you have a really long format string that you don't want to split up, it would be nice if you could
reference the variables to be formatted by name instead of by position. This can be done by using an
extension of C formats using the form %(name)format , e.g.

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print 'Jack: %(Jack)d; Sjoerd: %(Sjoerd)d; Dcab: %(Dcab)d' % table
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This is particularly useful in combination with the new built-in vars() function, which returns a dictio-
nary containing all local variables.

7.2 Reading and Writing Files

open() returns a �le object, and is most commonly used with two arguments: ` open(�lename, mode)'.

>>> f=open('/tmp/workfile', 'w')
>>> print f
<open file '/tmp/workfile', mode 'w' at 80a0960>

The �rst argument is a string containing the �lename. The second argument is another string containing
a few characters describing the way in which the �le will be used. mode can be 'r' when the �le will
only be read, 'w' for only writing (an existing �le with the same name will be erased), and 'a' opens
the �le for appending; any data written to the �le is automatically added to the end. 'r+' opens the
�le for both reading and writing. The mode argument is optional; 'r' will be assumed if it's omitted.
On Windows and the Macintosh, 'b' appended to the mode opens the �le in binary mode, so there are
also modes like 'rb', 'wb', and 'r+b'. Windows makes a distinction between text and binary �les; the
end-of-line characters in text �les are automatically altered slightly when data is read or written. This
behind-the-scenes modi�cation to �le data is �ne for ascii text �les, but it'll corrupt binary data like
that in JPEGs or `.EXE' �les. Be very careful to use binary mode when reading and writing such �les.
(Note that the precise semantics of text mode on the Macintosh depends on the underlying C library
being used.)

7.2.1 Methods of File Objects

The rest of the examples in this section will assume that a �le object called f has already been created.
To read a �le's contents, call f.read(size), which reads some quantity of data and returns it as a string.
size is an optional numeric argument. When size is omitted or negative, the entire contents of the �le will
be read and returned; it's your problem if the �le is twice as large as your machine's memory. Otherwise,
at most size bytes are read and returned. If the end of the �le has been reached, f.read() will return
an empty string ("").

7.2. Reading and Writing Files 43

>>> f.read()
'This is the entire file.\n'
>>> f.read()
''

f.readline() reads a single line from the �le; a newline character (\n) is left at the end of the string,
and is only omitted on the last line of the �le if the �le doesn't end in a newline. This makes the return
value unambiguous; if f.readline() returns an empty string, the end of the �le has been reached, while
a blank line is represented by '\n', a string containing only a single newline.

>>> f.readline()
'This is the first line of the file.\n'
>>> f.readline()
'Second line of the file\n'
>>> f.readline()
''

f.readlines() returns a list containing all the lines of data in the �le. If given an optional parameter
sizehint , it reads that many bytes from the �le and enough more to complete a line, and returns the
lines from that. This is often used to allow e�cient reading of a large �le by lines, but without having
to load the entire �le in memory. Only complete lines will be returned.

>>> f.readlines()
['This is the first line of the file.\n', 'Second line of the file\n']

f.write(string) writes the contents of string to the �le, returning None.
>>> f.write('This is a test\n')

f.tell() returns an integer giving the �le object's current position in the �le, measured in bytes from
the beginning of the �le. To change the �le object's position, use ` f.seek(o�set, from_what)'. The
position is computed from adding o�set to a reference point; the reference point is selected by the
from_what argument. A from_what value of 0 measures from the beginning of the �le, 1 uses the
current �le position, and 2 uses the end of the �le as the reference point. from_what can be omitted
and defaults to 0, using the beginning of the �le as the reference point.

>>> f=open('/tmp/workfile', 'r+')
>>> f.write('0123456789abcdef')
>>> f.seek(5) # Go to the 5th byte in the file
>>> f.read(1)
'5'
>>> f.seek(-3, 2) # Go to the 3rd byte before the end
>>> f.read(1)
'd'

When you're done with a �le, call f.close() to close it and free up any system resources taken up by
the open �le. After calling f.close(), attempts to use the �le object will automatically fail.

>>> f.close()
>>> f.read()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: I/O operation on closed file

44 Chapter 7. Input and Output

File objects have some additional methods, such as isatty() and truncate() which are less frequently
used; consult the Library Reference for a complete guide to �le objects.

7.2.2 The pickle Module

Strings can easily be written to and read from a �le. Numbers take a bit more e�ort, since the read()
method only returns strings, which will have to be passed to a function like string.atoi() , which takes
a string like '123' and returns its numeric value 123. However, when you want to save more complex
data types like lists, dictionaries, or class instances, things get a lot more complicated.
Rather than have users be constantly writing and debugging code to save complicated data types, Python
provides a standard module called pickle. This is an amazing module that can take almost any Python
object (even some forms of Python code!), and convert it to a string representation; this process is called
pickling. Reconstructing the object from the string representation is called unpickling. Between pickling
and unpickling, the string representing the object may have been stored in a �le or data, or sent over a
network connection to some distant machine.
If you have an object x, and a �le object f that's been opened for writing, the simplest way to pickle the
object takes only one line of code:

pickle.dump(x, f)

To unpickle the object again, if f is a �le object which has been opened for reading:

x = pickle.load(f)

(There are other variants of this, used when pickling many objects or when you don't want to write the
pickled data to a �le; consult the complete documentation for pickle in the Library Reference.)
pickle is the standard way to make Python objects which can be stored and reused by other programs
or by a future invocation of the same program; the technical term for this is a persistent object. Because
pickle is so widely used, many authors who write Python extensions take care to ensure that new data
types such as matrices can be properly pickled and unpickled.

7.2. Reading and Writing Files 45

46

CHAPTER

EIGHT

Errors and Exceptions

Until now error messages haven't been more than mentioned, but if you have tried out the examples
you have probably seen some. There are (at least) two distinguishable kinds of errors: syntax errors and
exceptions.

8.1 Syntax Errors

Syntax errors, also known as parsing errors, are perhaps the most common kind of complaint you get
while you are still learning Python:

>>> while 1 print 'Hello world'
File "<stdin>", line 1

while 1 print 'Hello world'
^

SyntaxError: invalid syntax

The parser repeats the o�ending line and displays a little `arrow' pointing at the earliest point in the
line where the error was detected. The error is caused by (or at least detected at) the token preceding
the arrow: in the example, the error is detected at the keyword print, since a colon (`:') is missing
before it. File name and line number are printed so you know where to look in case the input came from
a script.

8.2 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error when an attempt is
made to execute it. Errors detected during execution are called exceptions and are not unconditionally
fatal: you will soon learn how to handle them in Python programs. Most exceptions are not handled by
programs, however, and result in error messages as shown here:

>>> 10 * (1/0)
Traceback (most recent call last):

File "<stdin>", line 1
ZeroDivisionError: integer division or modulo
>>> 4 + spam*3
Traceback (most recent call last):

File "<stdin>", line 1
NameError: spam
>>> '2' + 2
Traceback (most recent call last):

File "<stdin>", line 1
TypeError: illegal argument type for built-in operation

47

The last line of the error message indicates what happened. Exceptions come in di�erent types, and the
type is printed as part of the message: the types in the example are ZeroDivisionError , NameError and
TypeError. The string printed as the exception type is the name of the built-in name for the exception
that occurred. This is true for all built-in exceptions, but need not be true for user-de�ned exceptions
(although it is a useful convention). Standard exception names are built-in identi�ers (not reserved
keywords).
The rest of the line is a detail whose interpretation depends on the exception type; its meaning is
dependent on the exception type.
The preceding part of the error message shows the context where the exception happened, in the form
of a stack backtrace. In general it contains a stack backtrace listing source lines; however, it will not
display lines read from standard input.
The Python Library Reference lists the built-in exceptions and their meanings.

8.3 Handling Exceptions

It is possible to write programs that handle selected exceptions. Look at the following example, which
asks the user for input until a valid integer has been entered, but allows the user to interrupt the program
(using Control-C or whatever the operating system supports); note that a user-generated interruption
is signalled by raising the KeyboardInterrupt exception.

>>> while 1:
... try:
... x = int(raw_input("Please enter a number: "))
... break
... except ValueError:
... print "Oops! That was no valid number. Try again..."
...

The try statement works as follows.

• First, the try clause (the statement(s) between the try and except keywords) is executed.

• If no exception occurs, the except clause is skipped and execution of the try statement is �nished.

• If an exception occurs during execution of the try clause, the rest of the clause is skipped. Then
if its type matches the exception named after the except keyword, the rest of the try clause is
skipped, the except clause is executed, and then execution continues after the try statement.

• If an exception occurs which does not match the exception named in the except clause, it is passed
on to outer try statements; if no handler is found, it is an unhandled exception and execution stops
with a message as shown above.

A try statement may have more than one except clause, to specify handlers for di�erent exceptions. At
most one handler will be executed. Handlers only handle exceptions that occur in the corresponding try
clause, not in other handlers of the same try statement. An except clause may name multiple exceptions
as a parenthesized list, e.g.:

... except (RuntimeError, TypeError, NameError):

... pass

The last except clause may omit the exception name(s), to serve as a wildcard. Use this with extreme
caution, since it is easy to mask a real programming error in this way! It can also be used to print an
error message and then re-raise the exception (allowing a caller to handle the exception as well):

48 Chapter 8. Errors and Exceptions

import string, sys

try:
f = open('myfile.txt')
s = f.readline()
i = int(string.strip(s))

except IOError, (errno, strerror):
print "I/O error(%s): %s" % (errno, strerror)

except ValueError:
print "Could not convert data to an integer."

except:
print "Unexpected error:", sys.exc_info()[0]
raise

The try . . . except statement has an optional else clause, which, when present, must follow all except
clauses. It is useful for code that must be executed if the try clause does not raise an exception. For
example:

for arg in sys.argv[1:]:
try:

f = open(arg, 'r')
except IOError:

print 'cannot open', arg
else:

print arg, 'has', len(f.readlines()), 'lines'
f.close()

The use of the else clause is better than adding additional code to the try clause because it avoids
accidentally catching an exception that wasn't raised by the code being protected by the try . . . except
statement.
When an exception occurs, it may have an associated value, also known as the exception's argument.
The presence and type of the argument depend on the exception type. For exception types which have
an argument, the except clause may specify a variable after the exception name (or list) to receive the
argument's value, as follows:

>>> try:
... spam()
... except NameError, x:
... print 'name', x, 'undefined'
...
name spam undefined

If an exception has an argument, it is printed as the last part (`detail') of the message for unhandled
exceptions.
Exception handlers don't just handle exceptions if they occur immediately in the try clause, but also if
they occur inside functions that are called (even indirectly) in the try clause. For example:

8.3. Handling Exceptions 49

>>> def this_fails():
... x = 1/0
...
>>> try:
... this_fails()
... except ZeroDivisionError, detail:
... print 'Handling run-time error:', detail
...
Handling run-time error: integer division or modulo

8.4 Raising Exceptions

The raise statement allows the programmer to force a speci�ed exception to occur. For example:

>>> raise NameError, 'HiThere'
Traceback (most recent call last):

File "<stdin>", line 1
NameError: HiThere

The �rst argument to raise names the exception to be raised. The optional second argument speci�es
the exception's argument.

8.5 User-de�ned Exceptions

Programs may name their own exceptions by assigning a string to a variable or creating a new exception
class. For example:

>>> class MyError:
... def __init__(self, value):
... self.value = value
... def __str__(self):
... return `self.value`
...
>>> try:
... raise MyError(2*2)
... except MyError, e:
... print 'My exception occurred, value:', e.value
...
My exception occurred, value: 4
>>> raise MyError, 1
Traceback (most recent call last):

File "<stdin>", line 1
__main__.MyError: 1

Many standard modules use this to report errors that may occur in functions they de�ne.
More information on classes is presented in chapter 9, �Classes.�

8.6 De�ning Clean-up Actions

The try statement has another optional clause which is intended to de�ne clean-up actions that must
be executed under all circumstances. For example:

50 Chapter 8. Errors and Exceptions

>>> try:
... raise KeyboardInterrupt
... finally:
... print 'Goodbye, world!'
...
Goodbye, world!
Traceback (most recent call last):

File "<stdin>", line 2
KeyboardInterrupt

A �nally clause is executed whether or not an exception has occurred in the try clause. When an
exception has occurred, it is re-raised after the �nally clause is executed. The �nally clause is also
executed �on the way out� when the try statement is left via a break or return statement.
A try statement must either have one or more except clauses or one �nally clause, but not both.

8.6. De�ning Clean-up Actions 51

52

CHAPTER

NINE

Classes

Python's class mechanism adds classes to the language with a minimum of new syntax and semantics.
It is a mixture of the class mechanisms found in C++ and Modula-3. As is true for modules, classes
in Python do not put an absolute barrier between de�nition and user, but rather rely on the politeness
of the user not to �break into the de�nition.� The most important features of classes are retained with
full power, however: the class inheritance mechanism allows multiple base classes, a derived class can
override any methods of its base class or classes, a method can call the method of a base class with the
same name. Objects can contain an arbitrary amount of private data.
In C++ terminology, all class members (including the data members) are public, and all member functions
are virtual. There are no special constructors or destructors. As in Modula-3, there are no shorthands
for referencing the object's members from its methods: the method function is declared with an explicit
�rst argument representing the object, which is provided implicitly by the call. As in Smalltalk, classes
themselves are objects, albeit in the wider sense of the word: in Python, all data types are objects.
This provides semantics for importing and renaming. But, just like in C ++ or Modula-3, built-in types
cannot be used as base classes for extension by the user. Also, like in C ++ but unlike in Modula-3, most
built-in operators with special syntax (arithmetic operators, subscripting etc.) can be rede�ned for class
instances.

9.1 A Word About Terminology

Lacking universally accepted terminology to talk about classes, I will make occasional use of Smalltalk
and C++ terms. (I would use Modula-3 terms, since its object-oriented semantics are closer to those of
Python than C++, but I expect that few readers have heard of it.)
I also have to warn you that there's a terminological pitfall for object-oriented readers: the word �object�
in Python does not necessarily mean a class instance. Like C ++ and Modula-3, and unlike Smalltalk,
not all types in Python are classes: the basic built-in types like integers and lists are not, and even
somewhat more exotic types like �les aren't. However, all Python types share a little bit of common
semantics that is best described by using the word object.
Objects have individuality, and multiple names (in multiple scopes) can be bound to the same object.
This is known as aliasing in other languages. This is usually not appreciated on a �rst glance at Python,
and can be safely ignored when dealing with immutable basic types (numbers, strings, tuples). However,
aliasing has an (intended!) e�ect on the semantics of Python code involving mutable objects such as
lists, dictionaries, and most types representing entities outside the program (�les, windows, etc.). This
is usually used to the bene�t of the program, since aliases behave like pointers in some respects. For
example, passing an object is cheap since only a pointer is passed by the implementation; and if a function
modi�es an object passed as an argument, the caller will see the change � this obviates the need for
two di�erent argument passing mechanisms as in Pascal.

53

9.2 Python Scopes and Name Spaces

Before introducing classes, I �rst have to tell you something about Python's scope rules. Class de�nitions
play some neat tricks with namespaces, and you need to know how scopes and namespaces work to fully
understand what's going on. Incidentally, knowledge about this subject is useful for any advanced Python
programmer.
Let's begin with some de�nitions.
A namespace is a mapping from names to objects. Most namespaces are currently implemented as Python
dictionaries, but that's normally not noticeable in any way (except for performance), and it may change
in the future. Examples of namespaces are: the set of built-in names (functions such as abs(), and
built-in exception names); the global names in a module; and the local names in a function invocation.
In a sense the set of attributes of an object also form a namespace. The important thing to know about
namespaces is that there is absolutely no relation between names in di�erent namespaces; for instance,
two di�erent modules may both de�ne a function �maximize� without confusion � users of the modules
must pre�x it with the module name.
By the way, I use the word attribute for any name following a dot � for example, in the expression
z.real, real is an attribute of the object z. Strictly speaking, references to names in modules are
attribute references: in the expression modname.funcname , modname is a module object and funcname
is an attribute of it. In this case there happens to be a straightforward mapping between the module's
attributes and the global names de�ned in the module: they share the same namespace! 1

Attributes may be read-only or writable. In the latter case, assignment to attributes is possible. Module
attributes are writable: you can write ` modname.the_answer = 42 '. Writable attributes may also be
deleted with the del statement, e.g. `del modname.the_answer '.
Name spaces are created at di�erent moments and have di�erent lifetimes. The namespace containing
the built-in names is created when the Python interpreter starts up, and is never deleted. The global
namespace for a module is created when the module de�nition is read in; normally, module namespaces
also last until the interpreter quits. The statements executed by the top-level invocation of the interpreter,
either read from a script �le or interactively, are considered part of a module called __main__, so they
have their own global namespace. (The built-in names actually also live in a module; this is called
__builtin__.)
The local namespace for a function is created when the function is called, and deleted when the function
returns or raises an exception that is not handled within the function. (Actually, forgetting would be
a better way to describe what actually happens.) Of course, recursive invocations each have their own
local namespace.
A scope is a textual region of a Python program where a namespace is directly accessible. �Directly
accessible� here means that an unquali�ed reference to a name attempts to �nd the name in the names-
pace.
Although scopes are determined statically, they are used dynamically. At any time during execution,
exactly three nested scopes are in use (i.e., exactly three namespaces are directly accessible): the inner-
most scope, which is searched �rst, contains the local names, the middle scope, searched next, contains
the current module's global names, and the outermost scope (searched last) is the namespace containing
built-in names.
Usually, the local scope references the local names of the (textually) current function. Outside of func-
tions, the local scope references the same namespace as the global scope: the module's namespace. Class
de�nitions place yet another namespace in the local scope.
It is important to realize that scopes are determined textually: the global scope of a function de�ned in
a module is that module's namespace, no matter from where or by what alias the function is called. On
the other hand, the actual search for names is done dynamically, at run time � however, the language
de�nition is evolving towards static name resolution, at �compile� time, so don't rely on dynamic name
resolution! (In fact, local variables are already determined statically.)

1Except for one thing. Module objects have a secret read-only attribute called __dict__ which returns the dictionary
used to implement the module's namespace; the name __dict__ is an attribute but not a global name. Obviously, using
this violates the abstraction of namespace implementation, and should be restricted to things like post-mortem debuggers.

54 Chapter 9. Classes

A special quirk of Python is that assignments always go into the innermost scope. Assignments do not
copy data � they just bind names to objects. The same is true for deletions: the statement ` del x'
removes the binding of x from the namespace referenced by the local scope. In fact, all operations that
introduce new names use the local scope: in particular, import statements and function de�nitions bind
the module or function name in the local scope. (The global statement can be used to indicate that
particular variables live in the global scope.)

9.3 A First Look at Classes

Classes introduce a little bit of new syntax, three new object types, and some new semantics.

9.3.1 Class De�nition Syntax

The simplest form of class de�nition looks like this:

class ClassName:
<statement-1>
.
.
.
<statement-N>

Class de�nitions, like function de�nitions (def statements) must be executed before they have any e�ect.
(You could conceivably place a class de�nition in a branch of an if statement, or inside a function.)
In practice, the statements inside a class de�nition will usually be function de�nitions, but other state-
ments are allowed, and sometimes useful � we'll come back to this later. The function de�nitions inside
a class normally have a peculiar form of argument list, dictated by the calling conventions for methods
� again, this is explained later.
When a class de�nition is entered, a new namespace is created, and used as the local scope � thus, all
assignments to local variables go into this new namespace. In particular, function de�nitions bind the
name of the new function here.
When a class de�nition is left normally (via the end), a class object is created. This is basically a wrapper
around the contents of the namespace created by the class de�nition; we'll learn more about class objects
in the next section. The original local scope (the one in e�ect just before the class de�nitions was entered)
is reinstated, and the class object is bound here to the class name given in the class de�nition header
(ClassName in the example).

9.3.2 Class Objects

Class objects support two kinds of operations: attribute references and instantiation.
Attribute references use the standard syntax used for all attribute references in Python: obj.name. Valid
attribute names are all the names that were in the class's namespace when the class object was created.
So, if the class de�nition looked like this:

class MyClass:
"A simple example class"
i = 12345
def f(x):

return 'hello world'

then MyClass.i and MyClass.f are valid attribute references, returning an integer and a method object,
respectively. Class attributes can also be assigned to, so you can change the value of MyClass.i by

9.3. A First Look at Classes 55

assignment. __doc__ is also a valid attribute, returning the docstring belonging to the class: "A simple
example class").
Class instantiation uses function notation. Just pretend that the class object is a parameterless function
that returns a new instance of the class. For example (assuming the above class):

x = MyClass()

creates a new instance of the class and assigns this object to the local variable x.
The instantiation operation (�calling� a class object) creates an empty object. Many classes like to create
objects in a known initial state. Therefore a class may de�ne a special method named __init__(), like
this:

def __init__(self):
self.data = []

When a class de�nes an __init__() method, class instantiation automatically invokes __init__() for
the newly-created class instance. So in this example, a new, initialized instance can be obtained by:

x = MyClass()

Of course, the __init__() method may have arguments for greater �exibility. In that case, arguments
given to the class instantiation operator are passed on to __init__(). For example,

>>> class Complex:
... def __init__(self, realpart, imagpart):
... self.r = realpart
... self.i = imagpart
...
>>> x = Complex(3.0,-4.5)
>>> x.r, x.i
(3.0, -4.5)

9.3.3 Instance Objects

Now what can we do with instance objects? The only operations understood by instance objects are
attribute references. There are two kinds of valid attribute names.
The �rst I'll call data attributes . These correspond to �instance variables� in Smalltalk, and to �data
members� in C++. Data attributes need not be declared; like local variables, they spring into existence
when they are �rst assigned to. For example, if x is the instance of MyClass created above, the following
piece of code will print the value 16, without leaving a trace:

x.counter = 1
while x.counter < 10:

x.counter = x.counter * 2
print x.counter
del x.counter

The second kind of attribute references understood by instance objects are methods. A method is a
function that �belongs to� an object. (In Python, the term method is not unique to class instances:
other object types can have methods as well, e.g., list objects have methods called append, insert,
remove, sort, and so on. However, below, we'll use the term method exclusively to mean methods of
class instance objects, unless explicitly stated otherwise.)

56 Chapter 9. Classes

Valid method names of an instance object depend on its class. By de�nition, all attributes of a class that
are (user-de�ned) function objects de�ne corresponding methods of its instances. So in our example, x.f
is a valid method reference, since MyClass.f is a function, but x.i is not, since MyClass.i is not. But
x.f is not the same thing as MyClass.f � it is a method object, not a function object.

9.3.4 Method Objects

Usually, a method is called immediately, e.g.:

x.f()

In our example, this will return the string 'hello world' . However, it is not necessary to call a method
right away: x.f is a method object, and can be stored away and called at a later time. For example:

xf = x.f
while 1:

print xf()

will continue to print `hello world' until the end of time.
What exactly happens when a method is called? You may have noticed that x.f() was called without
an argument above, even though the function de�nition for f speci�ed an argument. What happened to
the argument? Surely Python raises an exception when a function that requires an argument is called
without any � even if the argument isn't actually used...
Actually, you may have guessed the answer: the special thing about methods is that the object is passed as
the �rst argument of the function. In our example, the call x.f() is exactly equivalent to MyClass.f(x).
In general, calling a method with a list of n arguments is equivalent to calling the corresponding function
with an argument list that is created by inserting the method's object before the �rst argument.
If you still don't understand how methods work, a look at the implementation can perhaps clarify matters.
When an instance attribute is referenced that isn't a data attribute, its class is searched. If the name
denotes a valid class attribute that is a function object, a method object is created by packing (pointers
to) the instance object and the function object just found together in an abstract object: this is the
method object. When the method object is called with an argument list, it is unpacked again, a new
argument list is constructed from the instance object and the original argument list, and the function
object is called with this new argument list.

9.4 Random Remarks

[These should perhaps be placed more carefully...]
Data attributes override method attributes with the same name; to avoid accidental name con�icts, which
may cause hard-to-�nd bugs in large programs, it is wise to use some kind of convention that minimizes
the chance of con�icts, e.g., capitalize method names, pre�x data attribute names with a small unique
string (perhaps just an underscore), or use verbs for methods and nouns for data attributes.
Data attributes may be referenced by methods as well as by ordinary users (�clients�) of an object. In
other words, classes are not usable to implement pure abstract data types. In fact, nothing in Python
makes it possible to enforce data hiding � it is all based upon convention. (On the other hand, the
Python implementation, written in C, can completely hide implementation details and control access to
an object if necessary; this can be used by extensions to Python written in C.)
Clients should use data attributes with care � clients may mess up invariants maintained by the methods
by stamping on their data attributes. Note that clients may add data attributes of their own to an
instance object without a�ecting the validity of the methods, as long as name con�icts are avoided �
again, a naming convention can save a lot of headaches here.

9.4. Random Remarks 57

There is no shorthand for referencing data attributes (or other methods!) from within methods. I �nd
that this actually increases the readability of methods: there is no chance of confusing local variables
and instance variables when glancing through a method.
Conventionally, the �rst argument of methods is often called self. This is nothing more than a conven-
tion: the name self has absolutely no special meaning to Python. (Note, however, that by not following
the convention your code may be less readable by other Python programmers, and it is also conceivable
that a class browser program be written which relies upon such a convention.)
Any function object that is a class attribute de�nes a method for instances of that class. It is not
necessary that the function de�nition is textually enclosed in the class de�nition: assigning a function
object to a local variable in the class is also ok. For example:

Function defined outside the class
def f1(self, x, y):

return min(x, x+y)

class C:
f = f1
def g(self):

return 'hello world'
h = g

Now f, g and h are all attributes of class C that refer to function objects, and consequently they are all
methods of instances of C � h being exactly equivalent to g. Note that this practice usually only serves
to confuse the reader of a program.
Methods may call other methods by using method attributes of the self argument, e.g.:

class Bag:
def __init__(self):

self.data = []
def add(self, x):

self.data.append(x)
def addtwice(self, x):

self.add(x)
self.add(x)

Methods may reference global names in the same way as ordinary functions. The global scope associated
with a method is the module containing the class de�nition. (The class itself is never used as a global
scope!) While one rarely encounters a good reason for using global data in a method, there are many
legitimate uses of the global scope: for one thing, functions and modules imported into the global scope
can be used by methods, as well as functions and classes de�ned in it. Usually, the class containing the
method is itself de�ned in this global scope, and in the next section we'll �nd some good reasons why a
method would want to reference its own class!

9.5 Inheritance

Of course, a language feature would not be worthy of the name �class� without supporting inheritance.
The syntax for a derived class de�nition looks as follows:

58 Chapter 9. Classes

class DerivedClassName(BaseClassName):
<statement-1>
.
.
.
<statement-N>

The name BaseClassName must be de�ned in a scope containing the derived class de�nition. Instead of
a base class name, an expression is also allowed. This is useful when the base class is de�ned in another
module, e.g.,

class DerivedClassName(modname.BaseClassName):

Execution of a derived class de�nition proceeds the same as for a base class. When the class object is
constructed, the base class is remembered. This is used for resolving attribute references: if a requested
attribute is not found in the class, it is searched in the base class. This rule is applied recursively if the
base class itself is derived from some other class.
There's nothing special about instantiation of derived classes: DerivedClassName() creates a new in-
stance of the class. Method references are resolved as follows: the corresponding class attribute is
searched, descending down the chain of base classes if necessary, and the method reference is valid if this
yields a function object.
Derived classes may override methods of their base classes. Because methods have no special privileges
when calling other methods of the same object, a method of a base class that calls another method
de�ned in the same base class, may in fact end up calling a method of a derived class that overrides it.
(For C++ programmers: all methods in Python are e�ectively virtual.)
An overriding method in a derived class may in fact want to extend rather than simply replace the base
class method of the same name. There is a simple way to call the base class method directly: just call
`BaseClassName.methodname(self, arguments) '. This is occasionally useful to clients as well. (Note
that this only works if the base class is de�ned or imported directly in the global scope.)

9.5.1 Multiple Inheritance

Python supports a limited form of multiple inheritance as well. A class de�nition with multiple base
classes looks as follows:

class DerivedClassName(Base1, Base2, Base3):
<statement-1>
.
.
.
<statement-N>

The only rule necessary to explain the semantics is the resolution rule used for class attribute references.
This is depth-�rst, left-to-right. Thus, if an attribute is not found in DerivedClassName , it is searched
in Base1, then (recursively) in the base classes of Base1, and only if it is not found there, it is searched
in Base2, and so on.
(To some people breadth �rst � searching Base2 and Base3 before the base classes of Base1 � looks
more natural. However, this would require you to know whether a particular attribute of Base1 is
actually de�ned in Base1 or in one of its base classes before you can �gure out the consequences of a
name con�ict with an attribute of Base2. The depth-�rst rule makes no di�erences between direct and
inherited attributes of Base1.)

9.5. Inheritance 59

It is clear that indiscriminate use of multiple inheritance is a maintenance nightmare, given the reliance
in Python on conventions to avoid accidental name con�icts. A well-known problem with multiple
inheritance is a class derived from two classes that happen to have a common base class. While it is
easy enough to �gure out what happens in this case (the instance will have a single copy of �instance
variables� or data attributes used by the common base class), it is not clear that these semantics are in
any way useful.

9.6 Private Variables

There is limited support for class-private identi�ers. Any identi�er of the form __spam (at least two
leading underscores, at most one trailing underscore) is now textually replaced with _classname__spam ,
where classname is the current class name with leading underscore(s) stripped. This mangling is done
without regard of the syntactic position of the identi�er, so it can be used to de�ne class-private instance
and class variables, methods, as well as globals, and even to store instance variables private to this class
on instances of other classes. Truncation may occur when the mangled name would be longer than 255
characters. Outside classes, or when the class name consists of only underscores, no mangling occurs.
Name mangling is intended to give classes an easy way to de�ne �private� instance variables and methods,
without having to worry about instance variables de�ned by derived classes, or mucking with instance
variables by code outside the class. Note that the mangling rules are designed mostly to avoid accidents;
it still is possible for a determined soul to access or modify a variable that is considered private. This
can even be useful, e.g. for the debugger, and that's one reason why this loophole is not closed. (Buglet:
derivation of a class with the same name as the base class makes use of private variables of the base class
possible.)
Notice that code passed to exec, eval() or evalfile() does not consider the classname of the invoking
class to be the current class; this is similar to the e�ect of the global statement, the e�ect of which is
likewise restricted to code that is byte-compiled together. The same restriction applies to getattr(),
setattr() and delattr(), as well as when referencing __dict__ directly.
Here's an example of a class that implements its own __getattr__() and __setattr__() methods and
stores all attributes in a private variable, in a way that works in all versions of Python, including those
available before this feature was added:

class VirtualAttributes:
__vdict = None
__vdict_name = locals().keys()[0]

def __init__(self):
self.__dict__[self.__vdict_name] = {}

def __getattr__(self, name):
return self.__vdict[name]

def __setattr__(self, name, value):
self.__vdict[name] = value

9.7 Odds and Ends

Sometimes it is useful to have a data type similar to the Pascal �record� or C �struct�, bundling together
a couple of named data items. An empty class de�nition will do nicely, e.g.:

60 Chapter 9. Classes

class Employee:
pass

john = Employee() # Create an empty employee record

Fill the fields of the record
john.name = 'John Doe'
john.dept = 'computer lab'
john.salary = 1000

A piece of Python code that expects a particular abstract data type can often be passed a class that
emulates the methods of that data type instead. For instance, if you have a function that formats some
data from a �le object, you can de�ne a class with methods read() and readline() that gets the data
from a string bu�er instead, and pass it as an argument.
Instance method objects have attributes, too: m.im_self is the object of which the method is an instance,
and m.im_func is the function object corresponding to the method.

9.7.1 Exceptions Can Be Classes

User-de�ned exceptions are no longer limited to being string objects � they can be identi�ed by classes
as well. Using this mechanism it is possible to create extensible hierarchies of exceptions.
There are two new valid (semantic) forms for the raise statement:

raise Class, instance

raise instance

In the �rst form, instance must be an instance of Class or of a class derived from it. The second form
is a shorthand for:

raise instance.__class__, instance

An except clause may list classes as well as string objects. A class in an except clause is compatible with
an exception if it is the same class or a base class thereof (but not the other way around � an except
clause listing a derived class is not compatible with a base class). For example, the following code will
print B, C, D in that order:

9.7. Odds and Ends 61

class B:
pass

class C(B):
pass

class D(C):
pass

for c in [B, C, D]:
try:

raise c()
except D:

print "D"
except C:

print "C"
except B:

print "B"

Note that if the except clauses were reversed (with ` except B' �rst), it would have printed B, B, B �
the �rst matching except clause is triggered.
When an error message is printed for an unhandled exception which is a class, the class name is printed,
then a colon and a space, and �nally the instance converted to a string using the built-in function str().

62 Chapter 9. Classes

CHAPTER

TEN

What Now?

Reading this tutorial has probably reinforced your interest in using Python � you should be eager to
apply Python to solve your real-world problems. Now what should you do?
You should read, or at least page through, the Python Library Reference , which gives complete (though
terse) reference material about types, functions, and modules that can save you a lot of time when writing
Python programs. The standard Python distribution includes a lot of code in both C and Python; there
are modules to read Unix mailboxes, retrieve documents via HTTP, generate random numbers, parse
command-line options, write CGI programs, compress data, and a lot more; skimming through the
Library Reference will give you an idea of what's available.
The major Python Web site is http://www.python.org/ ; it contains code, documentation, and pointers to
Python-related pages around the Web. This web site is mirrored in various places around the world,
such as Europe, Japan, and Australia; a mirror may be faster than the main site, depending on your
geographical location. A more informal site is http://starship.python.net/ , which contains a bunch of
Python-related personal home pages; many people have downloadable software there.
For Python-related questions and problem reports, you can post to the newsgroup comp.lang.python ,
or send them to the mailing list at python-list@python.org . The newsgroup and mailing list are gate-
wayed, so messages posted to one will automatically be forwarded to the other. There are around 120
postings a day, asking (and answering) questions, suggesting new features, and announcing new mod-
ules. Before posting, be sure to check the list of Frequently Asked Questions (also called the FAQ), at
http://www.python.org/doc/FAQ.html , or look for it in the `Misc/' directory of the Python source distribu-
tion. Mailing list archives are available at http://www.python.org/pipermail/ . The FAQ answers many of
the questions that come up again and again, and may already contain the solution for your problem.

63

64

APPENDIX

A

Interactive Input Editing and History

Substitution

Some versions of the Python interpreter support editing of the current input line and history substitution,
similar to facilities found in the Korn shell and the GNU Bash shell. This is implemented using the GNU
Readline library, which supports Emacs-style and vi-style editing. This library has its own documentation
which I won't duplicate here; however, the basics are easily explained. The interactive editing and history
described here are optionally available in the Unix and CygWin versions of the interpreter.
This chapter does not document the editing facilities of Mark Hammond's PythonWin package or the
Tk-based environment, IDLE, distributed with Python. The command line history recall which operates
within DOS boxes on NT and some other DOS and Windows �avors is yet another beast.

A.1 Line Editing

If supported, input line editing is active whenever the interpreter prints a primary or secondary prompt.
The current line can be edited using the conventional Emacs control characters. The most important of
these are: C-A (Control-A) moves the cursor to the beginning of the line, C-E to the end, C-B moves it
one position to the left, C-F to the right. Backspace erases the character to the left of the cursor, C-D
the character to its right. C-K kills (erases) the rest of the line to the right of the cursor, C-Y yanks back
the last killed string. C-underscore undoes the last change you made; it can be repeated for cumulative
e�ect.

A.2 History Substitution

History substitution works as follows. All non-empty input lines issued are saved in a history bu�er, and
when a new prompt is given you are positioned on a new line at the bottom of this bu�er. C-P moves one
line up (back) in the history bu�er, C-N moves one down. Any line in the history bu�er can be edited;
an asterisk appears in front of the prompt to mark a line as modi�ed. Pressing the Return key passes
the current line to the interpreter. C-R starts an incremental reverse search; C-S starts a forward search.

A.3 Key Bindings

The key bindings and some other parameters of the Readline library can be customized by placing
commands in an initialization �le called `�/.inputrc'. Key bindings have the form

key-name: function-name

or

65

"string": function-name

and options can be set with

set option-name value

For example:

I prefer vi-style editing:
set editing-mode vi

Edit using a single line:
set horizontal-scroll-mode On

Rebind some keys:
Meta-h: backward-kill-word
"\C-u": universal-argument
"\C-x\C-r": re-read-init-file

Note that the default binding for Tab in Python is to insert a Tab character instead of Readline's default
�lename completion function. If you insist, you can override this by putting

Tab: complete

in your `�/.inputrc'. (Of course, this makes it harder to type indented continuation lines.)
Automatic completion of variable and module names is optionally available. To enable it in the inter-
preter's interactive mode, add the following to your startup �le: 1

import rlcompleter, readline
readline.parse_and_bind('tab: complete')

This binds the TAB key to the completion function, so hitting the TAB key twice suggests completions;
it looks at Python statement names, the current local variables, and the available module names. For
dotted expressions such as string.a, it will evaluate the the expression up to the �nal ` .' and then
suggest completions from the attributes of the resulting object. Note that this may execute application-
de�ned code if an object with a __getattr__() method is part of the expression.

A.4 Commentary

This facility is an enormous step forward compared to earlier versions of the interpreter; however, some
wishes are left: It would be nice if the proper indentation were suggested on continuation lines (the
parser knows if an indent token is required next). The completion mechanism might use the interpreter's
symbol table. A command to check (or even suggest) matching parentheses, quotes, etc., would also be
useful.

1Python will execute the contents of a �le identi�ed by the PYTHONSTARTUP environment variable when you start
an interactive interpreter.

66 Appendix A. Interactive Input Editing and History Substitution

	1 Whetting Your Appetite
	1.1 Where From Here

	2 Using the Python Interpreter
	2.1 Invoking the Interpreter
	2.1.1 Argument Passing
	2.1.2 Interactive Mode

	2.2 The Interpreter and Its Environment
	2.2.1 Error Handling
	2.2.2 Executable Python Scripts
	2.2.3 The Interactive Startup File

	3 An Informal Introduction to Python
	3.1 Using Python as a Calculator
	3.1.1 Numbers
	3.1.2 Strings
	3.1.3 Unicode Strings
	3.1.4 Lists

	3.2 First Steps Towards Programming

	4 More Control Flow Tools
	4.1 if Statements
	4.2 for Statements
	4.3 The range() Function
	4.4 break and continue Statements, and else Clauses on Loops
	4.5 pass Statements
	4.6 Defining Functions
	4.7 More on Defining Functions
	4.7.1 Default Argument Values
	4.7.2 Keyword Arguments
	4.7.3 Arbitrary Argument Lists
	4.7.4 Lambda Forms
	4.7.5 Documentation Strings

	5 Data Structures
	5.1 More on Lists
	5.1.1 Using Lists as Stacks
	5.1.2 Using Lists as Queues
	5.1.3 Functional Programming Tools
	5.1.4 List Comprehensions

	5.2 The del statement
	5.3 Tuples and Sequences
	5.4 Dictionaries
	5.5 More on Conditions
	5.6 Comparing Sequences and Other Types

	6 Modules
	6.1 More on Modules
	6.1.1 The Module Search Path
	6.1.2 ``Compiled'' Python files

	6.2 Standard Modules
	6.3 The dir() Function
	6.4 Packages
	6.4.1 Importing * From a Package
	6.4.2 Intra-package References

	7 Input and Output
	7.1 Fancier Output Formatting
	7.2 Reading and Writing Files
	7.2.1 Methods of File Objects
	7.2.2 The pickle Module

	8 Errors and Exceptions
	8.1 Syntax Errors
	8.2 Exceptions
	8.3 Handling Exceptions
	8.4 Raising Exceptions
	8.5 User-defined Exceptions
	8.6 Defining Clean-up Actions

	9 Classes
	9.1 A Word About Terminology
	9.2 Python Scopes and Name Spaces
	9.3 A First Look at Classes
	9.3.1 Class Definition Syntax
	9.3.2 Class Objects
	9.3.3 Instance Objects
	9.3.4 Method Objects

	9.4 Random Remarks
	9.5 Inheritance
	9.5.1 Multiple Inheritance

	9.6 Private Variables
	9.7 Odds and Ends
	9.7.1 Exceptions Can Be Classes

	10 What Now?
	A Interactive Input Editing and History Substitution
	A.1 Line Editing
	A.2 History Substitution
	A.3 Key Bindings
	A.4 Commentary

