The Gnucap Model Compiler

Albert Davis
Idaho State University
Pocatello, Idaho 83209 USA
davialbe@isu.edu

Abstract

This paper describes a modeling language and its com-
piler, for adding models to a mixed-signal simulator
"Gnucap". This language is supplies more simulator de-
tails than the popular "AMS" languages do, and provides
a similar high level interface.

1 Overview of the model compiler

For many years, adding models to simulators has been
considered to be a nuisance. Model code is usually very
simulator specific, requiring intimate knowledge of the de-
tails of the simulator you are installing the model into.
Every simulator requires some "overhead" code. This is
the code to parse the input, fill in default values and the
like. For most simulators, most of the code for a typical
model is this overhead.

Hard coded models restrict the ability to change the
simulator for new algorithms. It is often necessary to
change all of the models to make a trivial change to an
algorithm.

The goal of this project is to express a model in mod-
eler’s terms, to minimize simulator dependencies, and
produce an end result that is as efficient as a manually
coded model. An expedient implementation is also a fac-
tor. This language supports more simulator details than
the popular "AMS" languages do.

The language allows a model developer to describe the
model in a mixed behavioral and circuit form. It also
provides a mechanism to describe in an intuitive form
the overhead associated with modeling, such as parsing,
probes, and binning. It also handles the details associated
with a mixed-mode queue driven simulator.

The description language is divided into two sections,
matching the Spice device and model statements. For
the model, inheritance is supported, so similar devices or
models can share core or parameters by inheriting from a
common base. A device can link to any model inherited
from the same base. This is used for the many "lev-
els" of MOSFET models. The language is C-like, and is
designed for efficiency. All aspects of efficiency are im-
portant. Generated models are as efficient as hand-coded
models.

The language specifies a subcircuit, which can be com-
posed of any device types known by the simulator, pa-
rameter lists, and equations. The simulator has some
additional device types, poly-conductances and poly-
capacitors, to help with purely mathematical models.
The description is hierarchical, in the sense that devices
defined by the model compiler can also be used as primi-
tives.

The compiler uses a data-flow oriented design, and is
coded in C++. This design style groups code by stages
in the data flow. This style was chosen over an object-
oriented design because it is easier to change front ends
and back ends. Making it easier to change the front end
will enable it to support other input languages, such as
Verilog-A, Verilog-AMS, and VHDL-AMS. Changing the
back end could enable it to be ported to other simulators.

The input stage is a recursive descent parser using the
public domain "argparse" parsing class, which is also used
in the Gnucap simulator. It builds a data structure that
mimics the input file. A simulator-dependent back end
reads the data and builds the output file.

All of the advanced device models (diodes, BJT’s,
MOSFETS) in Gnucap are implemented using the model
compiler. The primitives are still hand coded. It has been
shown to save a significant amount of time in implement-

ing a model, with no sacrifice in performance.

2 Overview of Gnucap

Gnucap is a mixed-signal simulator, with a Spice-like cir-
cuit description format. It is not a Spice derivative. It is
written in C++ with an object oriented design. It makes
extensive use of advanced C++ features, such as inheri-
tance, templates, and STL.

The transient analysis is Spice-like in the sense that
it is based on the same math. It deviates from Spice in
that it uses a partial solution scheme, with incremental
update and partial solutions. It uses queues to manage
the simulation, much like the event queues found in digital
simulators. It allows different portions of the circuit to be
simulated with different algorithms, with decisions made
on the fly about which algorithms to apply where.

Gnucap uses special sparse matrix package that allows
incremental update and partial solutions. By allowing
incremental update, model evaluation can be controlled
by an event queue.

To support the mixed-mode simulation, some steps that
are traditionally combined into a single function must be
separated. In Spice, the "gather", "precondition", "eval-
uate", and "load" steps are combined into a single func-
tion. In Gnucap, they must be separate functions, that
in some cases are not called sequentially.

To support mixed-mode simulation, there are other
functions not found in traditional simulators. These in-
clude functions to determine whether or not to queue a
device for evaluation and functions to pre-calculate some
values. Since it is queue driven, the order of evaluation
and order of loading are not consistent. Some devices
may not be loaded at all if there state does not change.

Complex devices use a subcircuit internal representa-
tion. This results in a small speed penalty, which is over-
come by the mixed-mode logic. One benefit of this is
that the models for other types of analysis, such as AC
and pole-zero, are generated implicitly by the subcircuit.
They require no effort from the person making the mod-
els. A second benefit is that it helps with mixed-mode
tracking.

All devices use a 3-level representation internally, but it
is presented to the user as 2 levels. For comparison, Spice
uses a 2-level representation, the device and a model.
Gnucap presents to the user a 2-level representation com-
patible with Spice, but a third level, a “common” is used

internally. The “common” stores information that is spec-
ified per device but is shared between identical devices.
Parameters such as dimensions, expressions, and compo-
nent values are stored in the common.

Run times for very large circuits are often considerably
faster than Spice-type simulators. It is able to exploit
latency, like digital simulators. If a portion of the circuit
is linear, or nearly linear, it precomputes that portion. If a
circuit is at a stable operating point, it may be considered
to be linear. It can also support hierarchy by using block
decomposition.

For the future, further enhancements are planned. One
approach that shows promise is “cached model evalua-
tion”, where the results of several model evaluations are
cached for future use. There are also plans for full mod-
eling of self-heating and true multi-rate support.

One of the early goals in Gnucap was to simplify model
installation. It is easier than Spice, provided you are not
starting with a Spice model, but the emphasis on mixed
signal circuits has resulted in model installation being not
as easy as was hoped. The modeler needs to contend with
the mixed signal aspects of the simulator. It is possible
to ignore this, but the simpler approach results in poor
performance.

A separate program, the model compiler being de-
scribed in this paper, provides a higher level interface
for modeling. The modeling language is C-like for easy
translation, and generally hides the implementation de-
tails.

3 History of model compilers

Good programmers have always used scripts to automate
repetitive tasks. There are programs that go beyond sim-
ple scripting to do many tasks. For developing traditional
languages, the utilities “lex” and “yacc” are well known,
as tools to generate lexical analyzers and parsers.

The use of model compilers by simulators is also not
new. Most commercial simulators had some kind of tools
for generating models. One commercial example is the
PSPICE “Parts” program. The XSPICE “code models”
are another example. The XSPICE language is based on
simple processing that generates “C”. It is mostly copied
through. It does not have the capability or flexibility of
the Gnucap modeling language.

CAzM is a table driven simulator. It uses a model
compiler to generate tables. The model equations are

evaluated at an array of points, and tables are generated.

The high level circuit description languages VHDL and
Verilog are often implemented as compilers. In some, the
circuit description is compiled to C then compiled and
linked to the simulator. Scripts are used to improve the
user interface.

Some in-house simulators use model compilers. The
proprietary simulators used by Lucent are examples of
this.

Finally, it was often a topic of debate in graduate
school.

4 The language

The description language is divided into two sections,
matching the Spice device and model statements. For
the model, inheritance is supported, so similar devices or
models can share core or parameters by inheriting from a
common base. A device can link to any model inherited
from the same base. This is used for the many “levels” of
MOSFET models. The language is C-like, and is designed
for efficiency. All aspects of efficiency are important.

4.1 The “device” section
4.1.1 Outline

The “device” section describes the portion of the code
relating to each device, as presented to the user in the
device or instance statement in a Spice format file. The
Gnucap “common” is also included here. It consists of
several sections:

Overhead Several lines deal with overhead such as how
to identify the device.

Circuit This section describes the internal circuit topol-
ogy in a netlist form, similar but not identical to the
Spice format.

Probes This section lists the ways you can probe a de-
vice, for printing and plotting, and how the values
are calculated.

Device This section lists the parameters that apply to
each device. This includes all of the “state variables”.
It also lists temperature dependent parameters.

Common This section lists the parameters that apply
to all identical devices. In general, the parameters
such as length and width are included here.

Functions There are several “function” sections where
calculations are done.

device BJT { // what it is called in code
parse_name bjt; // ... when parsing
model_type BJT; // model compatible with
id_letter Q; // Spice format label letter

circuit {....} // subckt form as netlist
tr_probe {....} // list of probes

device {....} // device specific data
common {....} // ... can be shared
function zzzz {....} // helper functions
tr_eval {....} // evaluation function core

4.1.2 The “circuit” section

The circuit section is used to describe a circuit toploogy
for the model. It is made of a list of components, similar
to a netlist, except that some extra parameters are added
to interface to the model. All components already defined
in the simulator are available, including types that are dy-
namically loaded, logic devices, and types defined by the
model compiler. The simulator includes some primitives
such as poly conductances and poly capacitors to help
with modeling.

A circuit can have components that may or may not
be used depending on parameters. There can also be
internal nodes, and they too can exist or not exist based
on parameters.

Internal components can get their data in several ways.
The simplest is a value determined from the model data.
A nonlinear sub-device can get its state information di-
rectly from the state table of the device being defined.
Another approach is to use a separate evaluation func-
tion.

circuit {
ports {col base emit sub};
local_nodes {
ic short_to=col short_if="m->rc == 0.";
ie short_to=emit short_if="m->re == 0.";
}
args sb DIODE {

area = b->as;
perim = ps;
is_raw = b->issat;
cj_raw =
cjsw_raw = NA;
off = true;

}
cpoly_g Ice {ic ie ib iel} state=cce_cpoly;

m->cbs;

resistance Rc {col i} value="m->rc/c->area'

omit="m->rc == 0.";

capacitance Cj {anode cathode} eval=Cj;

poly_cap Cbe {iemit ibase icol ibase}
state=qgbe;

diode Dsb {sub ic} args="sb"
reverse="m->polarity==pP"
omit="_n[n_bulk] == _n[n_isourcel";

4.1.3 The “probes” section

The “probes” section provides a way to list parameters
than can be output as the simulation runs. Each state-
ment consists of a keyword and an expression that is used
to calculate it. The expression is C-like, with some exten-
sions. All device state variables are available. All node
voltages are available. In addition, anything that can be
probed on any internal element is available. You can make
expressions based on these data.

tr_probe {
Vd = "@n_anode [V] - @n_cathode [V] ";
Id = "eYj[I] + eCj[I]";
CAPCUR = "eCj[I]";

QBE = gbe;
CQBE = cgbe;
GM = "(reversed) 7 gmr : gmf";

P ="@Rs[P] +@Rd[P] +@Ids[P]";
}

Once defined, the data can be accessed with an ordinary
plot or print statement to the simulator.

.print tran vd(M*) capcur(M12) gm(M11)
.plot tran vd(M#*) capcur(M12) gm(M11)
.print tran + I(Yj.M25) Charge(Cj.Ddb.M12)

4.1.4 The device section

This section contains a list of parameters that are specific
to each device. In general, these are the state variables,

that are calculated every time the model is evaluated.

device {
calculated_parameters {
double vbe "B-E voltage";
double cmu "collector-base current";
double gmu "Small signal conductance’’;
double gbe "Charge storage B-E junction";
¥
}

4.1.5 The common section

The common section is used to list parameters that define
the device. Identical devices can share this information.
User defined parameters that are specified for each device
are specified here. No instance specific state information
is here, but calculated parameters that can be calculated
based only on other parameters are specified here. You
can specify the names to be used for parsing, if and how
it is calculated or defaulted, and limits to the values.

common
unnamed area;
raw_parameters {
double area "area factor" name=Area
default=1.0 positive;
double perim "perimeter factor"
name=Perim default=0.0
positive print_test="perim != 0.";
X
calculated_parameters {
double is_adjusted "" name =
calculate="(m->js * area)";

IS

4.1.6 Evaluators and the “tr eval” function

A function “tr _eval” is the main evaluator function for
transient analysis. It gathers data and checks it then
dispatches it to the appropriate model evaluate function.

Elements that are used to build the model can also have
evaluator functions. They assume a simple input - output
relationship. They calculate an output and its derivative
based on its input. The actual meaning of input and
output depends on the type of device. It is a function,
with a C-like syntax.

4.2 The “model” section

4.2.1 Outline

The “model” section describes the portion of the code re-
lating to the “.model” statement in a Spice format file. It
consists of several sections:

Overhead Several lines deal with overhead such as how
to identify the model.

Inherit One line states a model to inherit from. Unlike
C++, it is not necessary for the model compiler to
know anything about it. The base is may be either
hand coded or coded through the model compiler.

Independent This section lists the user specified param-
eters, with their defaults and limits.

Size dependent This section lists parameters that are
calculated based on size. It also lists user specified
parameters that will be automatically scaled. The
model compiler automatically generates the scaling
code, and a set of parameters relating to how it is
scaled.

Temperature dependent This section lists tempera-
ture dependent parameters, and how the actual value
is computed based on temperature.

Validate This section is a code block that checks model
parameters against size data in each device. It re-
turns true or false, depending on whether the data is
valid for that size. It is used for binning.

Functions There are several “function” sections where
calculations are done. The most important is
“tr _eval” which is the actual model equations.

4.2.2 A base class

model MOS_BASE { // in the code
dev_type MOS; // what device it matches
base; // a device refers to this omne
inherit DIODE; // even a base can inherit
keys {
NMOS polarity=pN; // id keys for parse
PMOS polarity=pP; // with adjustments
} // not restricted to base
independent {....}
size_dependent {....}
temperature_dependent {....}
validate {....}
tr_eval {....}

4.2.3 The “independent” section

These are the classic "model card" parameters or param-
eters based on them. “Raw” parameters are used directly.
“Calculated” parameters are calculated based on other
data, but are not entered directly by the user. The “over-
ride” section allows a derived model to override param-
eters defined in a base model, with different defaults or
different methods of calculating.

independent {
override {....} // override from base
raw {....} // the classic "model card"
calculated {....} // calculate these
code_pre {....}
code_post {....}

4.2.4 The “size_dependent” section

These parameters are adjusted based on size (length and
width) The adjusted parameters are then used like the

model M0S6 { // what it is called in the coderaw parameters. Each parameter implies "L", "W", and

level 6; // selecting this one by level
dev_type MOS; // what device it matches
inherit M0S123; // what to inherit from
independent {....} // parameters and fixup
size_dependent {....}
temperature_dependent {....}

validate {....} // how to validate

tr_eval {....} // model evaluation code

"P" variants.

size_dependent {
override {....} // override from base
raw {....} // classic "model card", almost
calculated {....}
code_pre {....}
code_post {....}

4.2.5 The “temperature_dependent” section

These parameters are adjusted based on temperature The
adjusted parameters are then used like the raw parame-
ters. The adjustment may occur during simulation, for
self-heating. Temperature is local and time-variant.

temperature_dependent {
calculated {....}
code_pre {....}
code_post {....}

}

4.2.6 The “validate” section

A “validate” function checks the validity of the combined
model parameters and device parameters. It returns a
truth value, indicating whether this model is valid for
this device, given the parameters. If there are multiple
models in a group, it can be used to automatically select
a good match, for automatic binning.

validate {
return (c->length <= m->1lmin);

}

4.2.7 tr_eval

This function does the real work. Has read access to
model and common. Has write access to device (passed
in). Computes the state variables. Does not do gather or
scatter.

5 Architecture of the compiler

The compiler uses a data-flow oriented design, and is
coded in C++. This design style groups code by stages
in the data flow. This style was chosen over an object-
oriented design because it is easier to change front ends
and back ends. Making it easier to change the front end
will enable it to support other input languages, such as
Verilog-A, Verilog-AMS, and VHDL-AMS. Changing the
back end could enable it to be ported to other simulators.

The input stage is a recursive descent parser using the
public domain “argparse” parsing class, which is also used
in the Gnucap simulator. It builds a data structure that
mimics the input file. A simulator-dependent back end
reads the data and builds the output file.

6 Results

Using the model compiler saves a significant amount of
time in developing a model, while maintaining the high
performance of hand coded models.

Porting Spice models is still somewhat of a nuisance,
because they are already coded at a low level. Since Spice
does not require the modularity that Gnucap does, it re-
quires a significant effort to untangle the models. In par-
ticular, separating temperature effects from precalcula-
tions is a significant nuisance. This is necessary for Gnu-
cap because of planned, support for self-heating effects.

Still, the biggest portion of the effort is in testing.

