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Abstract

Circuit simulation is an important tool for the design and verification of inte-

grated circuits. It is increasingly common to combine analog and digital subcir-

cuits on a single chip. These combined circuits present problems for simulation.

In this dissertation some techniques are presented to combine different simulation

modes, logic and analog, implicitly, without direct instructions from the user.

This results in improved simulation of combined analog and digital circuits.

A unified data structure allows the free mixing of analog and digital devices,

with support for both analog and logic level simulation simultaneously. The ana-

log simulation is based on traditional algorithms, LU decomposition by a modified

Crout method and iteration by Newton’s method, enhanced to support incremen-

tal changes to the matrix and to bypass of parts of the matrix solution that are

inactive or already converged. The resulting simulation is much faster than the

traditional solution method with bypass only applied to model evaluation, without

loss of accuracy. The logic level simulation is based on traditional event driven

logic simulation, where logic states are propagated. A logic element has both a

circuit and logic description.

A method is presented to automatically choose between logic and analog simu-

lation in parts of the circuit that have a logic level description. The choice is based

on the assumption that when the digital signals appear to be clean a digital sim-

ulation is valid. When the digital signals show race and spike conditions or slow

transitions they are suspect and analog simulation is used for the problem parts

of the circuit. When the conversion between modes is poorly defined or difficult

to make the analog mode is selected. The simulation mode changes dynamically

as the simulation runs. Mode changes can be made on parts of the circuit as small

as a single gate.

For digital circuits these techniques are much faster than full analog simulation.

They accurately simulate cases where digital simulation fails by applying analog

techniques on a local basis and they simulate the interface between analog and

digital parts of the circuit better than other methods.
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Chapter 1

Introduction

1.1 Motivation

As technology improves, integrated circuits grow in size and complexity. Such

circuit complexity precludes the use of breadboarding for prototyping, and de-

mands computer-assisted analysis offered by simulation. The size and complexity

of circuits has grown to the point where, often, circuit simulation has become the

major cost in the development cycle. In many cases, however, a simulation does

not produce satisfactory results. Changes to the circuit description are required to

get the simulator to run. Often, the resulting model or topology may no longer be

an accurate representation of the actual circuit. A circuit may often be simulated

successfully by partitioning into smaller blocks and applying different algorithms

to different blocks. Reconnecting the blocks together often causes interactions

that separate simulations do not show.

Considerable progress in simulation has been made for digital circuits, and for

1
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many classes of analog circuits. However, there are classes of circuits, particularly

in the analog domain, that continue to plague simulation tools with problems of

convergence and accuracy. These circuits are characterized by widely varying time

constants, and often include mixed analog and digital blocks with feedback. They

can be small or large. The number of active elements ranges from 5 to 100,000

devices. Examples of the problem circuits include A/D converters, phase locked

loops, switched capacitor circuits, and oscillator start-up circuits.

A new generation of mixed-mode simulators has evolved to apply different

algorithms to different blocks. However, the burden of selecting the most ap-

propriate algorithm for each block rests with the designer. The netlist accepts

both circuit and logic level elements, with some restrictions on how they connect

together. Some require entire subcircuit blocks to be all either digital or analog,

but not mixed. Existing simulators use this information to explicitly partition

the circuit into analog and digital parts, then apply the nominally appropriate

algorithm to each part, with explicit conversions at the interfaces.

At first this may seem to not be a problem, since the designer knows how

the circuit blocks should work, but too often the assumptions the designer made

do not hold. Only a more detailed simulation would show the failings of the

circuit. The information required to select the simulation algorithm is often the

very information the designer is seeking from the simulation.

Some circuits, specified on a device level, are best simulated by traditional

Newton-Raphson – LU decomposition methods. Some are best done by relaxation.
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Some are best done by a combination. Likewise, some circuits, specified in logic

level, can be accurately simulated by traditional logic level simulation. Some

require a more accurate “timing” simulation, which is the same as relaxation

based analog simulation, to properly simulate race conditions, or other improper

signals.

1.2 Research objectives

The two levels to consider in mixed-mode simulation are actually circuit and

behavioral. Behavioral modeling is simply evaluating the function performed by

a block, and using the result. Circuit level means to evaluate the components

that make up a block, and how they interact. Evaluating each component can

be either circuit level or behavioral. Signals can also be considered to be either

circuit level or behavioral. Circuit level signals can be measured using instruments.

Behavioral level signals are abstract quantities, or interpretations or circuit level

signals. With this in mind, the decision process is whether to use the concrete

(circuit level) or abstract (behavioral level).

In the behavioral level, only the apparent behavior at the terminals is consid-

ered, but this is not always good enough. Some means is necessary to determine

whether it is necessary to simulate the internal behavior of blocks, instead of

relying on their nominal behavior. Given a circuit block, the behavior is con-

sidered to be easily predicted if the voltages and currents at the interface points

meet certain constraints, over some time. It is desirable to determine this as the
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simulation runs, and dynamically switch modes locally. Assuming the behavioral

mode is logic level, various acceleration techniques are available, including the use

of an event queue to avoid computer time when there is no action. This research

investigates efficient techniques for mixing this with traditional analog simulation.

The following areas were investigated in this work. The results of this research

were incorporated into a general purpose simulator, “URECA”.

Multiple solution methods Some circuits are best solved by traditional meth-

ods (Newton-Raphson, LU decomposition, etc.) Some are best solved by

other methods, such as relaxation, harmonic balance, event driven, etc.

Three methods were chosen here: traditional (Newton’s method, LU de-

composition), relaxation, and gate level (behavioral, with discrete states).

Automatic choice of method Simulators exist that use a variety of methods.

All known simulators that can use more than one method require the user

to partition the circuit and specify what method to use where. In this work,

the choice between the three methods named above is made implicitly, for

each device, at run time. The choice of method changes as the simulation

progresses.

Heuristic shortcuts Often, it is not necessary to do all calculations, or use the

most complete model. Research was done to determine what shortcuts can

be taken, and how to make these decisions automatically.

Automatic partitioning of the circuit There are several reasons to partition
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the circuit. It may be advantageous to apply different methods to different

parts of the circuit. Varying time constants could allow more economic so-

lution if the slow parts can be simulated with a larger step size. There exist

known methods of partitioning[58], but they are slow. (Time grows super-

linearly with circuit size.) Likewise, the time needed to order the equations

(pivoting) grows superlinearly with circuit size. In this work, ordering and

partitioning is done crudely as part of subcircuit expansion, resulting in a

bordered block diagonal matrix. Partitioning is implicit. Simulation meth-

ods are applied to each device as appropriate. Partial solution of the matrix

uses a trace of how changes propagate to determine the parts to operate on.

Partitioning is implicit, and can change dynamically.



Chapter 2

Background of Circuit
Simulation

2.1 Types of Simulation

This section introduces several types of simulation, with a brief overview. More

detail is available in sections 2.2 and 2.4. Descriptions of some of the programs

are in section 2.3.

2.1.1 Classical network simulation

The common conventional circuit simulators are based on a mechanization of

the methods taught as undergraduate circuit theory[57][30]. The most common

(SPICE)[31] are based on modified nodal analysis. Nodal analysis is simply the

application of Kirchoff’s current law. This results in a singular matrix if there are

ideal voltage sources, so a modified nodal analysis adds equations for the currents

in voltage sources.

6
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The resulting system of linear equations is solved by LU decomposition, and

forward and back substitution. Without sparse matrix techniques, the running

time for this isO(n3). Further details on this are available in any text on numerical

analysis[37][48].

Sparse matrix techniques improve this running time substantially. It has been

observed to be typically about O(n1.4) for a typical circuit in SPICE[31]. This

tends to deteriorate for large circuits. It is possible to do as good as linear time,

for some large circuits with few connections at each node[9]. Duff has published

a comprehensive summary of sparse matrix techniques[17].

Nonlinear circuits are solved by the Newton-Raphson method, with each iter-

ation solved by LU decomposition. This is also well documented in any numerical

analysis text.

For the time domain solution, the energy storage components (capacitors and

inductors) are discretized by some finite difference method. Usually, this is done

on a component by component basis, in effect replacing them with resistors and

sources. This is known as a companion model. The differential equations are then

converted to algebraic equations. These equations are solved at each time step.

This is costly, but if the circuit is linear only the right side of the equations

changes at each time. The LU decomposition need not be repeated, only the

forward and back substitution. Unfortunately, most circuits are not linear.

In summary, conventional methods usually gives good results, but at consid-



2.1. TYPES OF SIMULATION 8

erable cost in time.

2.1.2 Logic level simulation

At the other extreme, there is logic level simulation. Instead of the continuum

of levels that is available from conventional analog simulator, there are only a

finite number of states. Also, the circuit is often clocked. Most of the time the

circuit is latent, nothing is happening. One example of a logic level simulator is

TEGAS[51].

In the simple case, there are three states, 1, 0, and unknown. Typically, there

are also strengths, such as driven, weak, and charged, bringing the number of

states to nine. Transition states can be added. Including all possible transitions

brings the number of states to 27. The cost of many states often outweighs the

benefits, so many simulators compromise on nine states.

The circuit building blocks are the basic logic blocks: gates, flop-flops, coun-

ters, etc. Each of these blocks has an output that is defined for a given input,

after some delay. The signal flow is unidirectional through the blocks.

On a simple level, logic simulators cycle through the list of blocks, calculate

their outputs based on the input, and build the list of states for the next time.

Most of the time, most signals are latent. They are not changing. A selective trace

table indicates the blocks are affected by each node. Once this table exists, it is

only necessary to simulate those blocks of the circuit whose input changes, leading

to dramatic savings in time. It is now event driven. When the state at any node
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changes, its effect is looked up in the selective trace table, and placed in an event

queue. The simulation runs by stepping through the event queue, and simulating

those events. Each event changes the state at some nodes, which makes more

entries into the event queue. To start it, it is only necessary to schedule the initial

event. The running time is proportional to the number of events. The size of the

circuit and the desired time granularity have nothing to do with the running time,

beyond the setup time.

This type of simulation runs fast, but only for logic circuits, and it provides

only logic states as output.

2.1.3 Switch level simulation

Digital VLSI circuits use the devices mainly as switches. Switch level simulation[40]

takes this view. Every active device is modelled as a voltage controlled switch,

then a discrete simulation is done, using event driven selective trace techniques.

It is thus similar to logic level simulation.

2.1.4 Timing simulation

The most critical parameter in digital circuits is timing. (avoidance of race condi-

tions, etc.) A true logic level simulation does not have enough information to show

this. Timing simulation[40] considers gate delays and capacitances, to attempt to

show timing more accurately.

MOTIS[8][19] is an example of a timing simulator. This class of simulators
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makes the assumption that the circuit resembles a typical digital circuit, so it

can use most of the speed-up techniques that are commonly applied to logic level

simulation. Timing simulation discretized time in intervals smaller than the clock

cycle of the circuit being simulated.

Some so-called timing simulators are logic or switch level simulators that take

into account gate delays. Others are based on differential equations, like analog

simulators, but without iteration. They still assume that the signal propagates

only on one direction. The waveforms are often only accurate enough to determine

timing, but may not show second-order effects, such as overshoot. Some so-called

mixed-mode simulators are really timing simulators.

2.1.5 Mixed-mode simulation

Mixed-mode simulation applies more than one algorithm to the circuit. The circuit

is partitioned into parts to which each algorithm is applied. It often does not mean

mixed analog and digital, but perhaps two different levels of digital simulation,

such as logic (discrete states) and timing (some sense of voltage).

Some early mixed-mode simulators, such as DIANA[4][3] consist of two simu-

lators running concurrently. Two separate simulators, analog and digital, run in

lock-step with each other, and exchange information. Possible methods of com-

munication between them include UNIX pipes and VMS mailboxes.

There are mixed-mode simulators are not just two simulators running concur-

rently. (SAMSON[42][43], SPLICE[32][44][25]) The two modes are integrated into



2.2. CLASSIC CIRCUIT SIMULATION 11

one program, and communicate by special nodes or blocks. These simulators still

require the user to partition the circuit.

Implicit mixed-mode simulation, as described in this dissertation, allows the

free mixing of analog and digital modes.

2.2 Classic Circuit Simulation

This section is an overview of some well known simulation methods: DC analysis,

transient analysis, and gate level logic simulation. Simulators based on these meth-

ods are available commercially, and are well documented in several texts[1][30][57].

The information here should be familiar to those well versed in simulation and

computer aided design.

2.2.1 DC analysis

Basic Circuit Theory

The simplest analysis done by a circuit simulator is a linear DC analysis. Nearly all

simulators are based on a mechanization of the methods taught in undergraduate

circuit theory[55][46]. The most common are based on modified nodal analysis.

Nodal analysis is simply the application of Kirchoff’s current law. It solves for

all node voltages. Modified nodal analysis adds a few current variables, to fix

singularity problems with voltage sources.

The basic algorithm for linear DC analysis is shown in algorithm 2.1.
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Read in the circuit description, and store, by branch.
Allocate memory for sparse matrix system.
For each branch {

Calculate its admittance and offset current.
Add it to the admittance matrix or current vector.
(This produces a system of linear equations.)

}
Solve the system of equations.
(This produces the voltages at all nodes.)
Print or plot the selected values.

Algorithm 2.1: Linear DC Analysis

1 2

R1 R3

C1

R2

C2I0

0

Figure 2.1: A simple circuit
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Consider the circuit in figure 2.1. In DC analysis, energy storage elements are

ignored by replacing capacitors by open circuits, and inductors by short circuits.

From basic circuit theory, the nodal equations representing this are:

(
1

R1

+
1

R2

)
V1 −

(
1

R2

)
V2 = I0

−
(

1

R2

)
V1 +

(
1

R2

+
1

R3

)
V2 = 0 (2.1)

In matrix form, this is:




1

R1

+
1

R2

− 1

R2

− 1

R2

1

R2

+
1

R3




[
V1

V2

]
=

[
I0

0

]
(2.2)

In general, this system of equations can be represented as Yv = i where Y

is the nodal admittance matrix, v is the vector of unknown node voltages, and i

is the current excitation vector. This system of equations is solved for the node

voltages.

Typical Implementation

The first step of a typical implementation is to read the circuit description from

the file. A list of all circuit elements, with their nodes and values, is stored. No

evaluation takes place at this time.

After reading the circuit description file, memory is allocated for the matrix

(2.2) that represents the equations. Sparse matrix techniques are used in all but

the most primitive simulators. The allocation step scans the element list, and
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sets up an indexing scheme for sparse matrix allocation. In the most primitive

simulators, it simply counts nodes then dimensions an array accordingly. At least

two arrays need to be set up: Y, the nodal admittance matrix and i, the current

excitation vector. The unknown voltage vector, v, will eventually replace i, so it

is not allocated separately. Sparse matrix schemes vary. SPICE uses a doubly

linked list in which each element is allocated separately[31]. URECA uses a vector

scheme that uses pointers to vectors representing partial rows and columns are

set up[9]. At this point the arrays are filled with zeros.

The next step is to fill in the actual values. The internal representation of

the netlist is scanned. Each element is evaluated and its admittance is added to

the appropriate place in the Y and i arrays. For example, a current source adds

its value to the place in i representing the first node, and subtracts it from the

place in i representing the second node, for a total of two entries. A resistor adds

its admittance (1/R) to the diagonal at each of its nodes, and subtracts it from

the off-diagonal places. A resistor of 10 ohms connecting between nodes 1 and 2

adds .1 to y1,1 and y2,2, and subtracts .1 from y1,2 and y2,1. Row and column 0

are thrown away, because node 0 is used as a reference, at which the voltage is by

definition zero. This sets up the system of equations Yv = i, which will be solved

next.

A true nodal analysis does not allow ideal voltage sources, so modified nodal

analysis(MNA)[24] is used. With true nodal analysis, voltage sources with series

resistance can be converted to current sources with shunt resistance. MNA is the
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same as nodal analysis except that there are additional variables to represent cur-

rent through the voltage sources. Some variations on MNA exist, including nullor

methods[50], which replace multi-terminal elements with simple two terminal el-

ements: the nullator, which has current and voltage both zero, and the norator

for which they are both arbitrary. Some early simulators used the sparse tableau

approach[23] or a state variable approach[26]. For expediency, URECA uses a true

nodal analysis with the restriction that voltage sources must have resistance.

Once all elements are processed this way (assuming nodal analysis) we have

the system of n equations described above, where n is approximately the number

of nodes in the circuit. It is solved by LU decomposition followed by forward and

back substitution. In LU decomposition, the matrix Y is replaced by two matrices:

an upper triangular U and lower triangular L, such that LU = Y. Forward and

back substitution replaces i with the voltage (solution) vector v.

With dense matrix techniques the running time for this would be O(n3), where

n is the number of equations. Sparse matrix techniques improve this running time

substantially. For a typical circuit, it has been observed to be about O(n1.4) in

SPICE[31]. There is more detail on matrix solution methods, especially as they

apply to mixed-mode simulation, in 3.1.

At this point any information requested by the user can be printed out or sent

to a post-processor. Node voltages are available directly. Other information, such

as branch voltages and currents, can be calculated from the node voltages.
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Nonlinear circuits

If there are nonlinear elements an iterative method is used to find the solution.

In URECA and SPICE the Newton-Raphson method is used. For the scalar case,

the current value (at iteration k) can be represented by the formula:

xk = xk−1 − f(xk−1)/ḟ(xk−1) k = 1, 2, . . . (2.3)

For convenience, we can rearrange it as:

ḟ(xk−1)xk = ḟ(xk−1)xk−1 − f(xk−1) k = 1, 2, . . . (2.4)

For several variables this becomes, in matrix notation:

Ax(k) = Ax(k−1) − f(x(k−1)) k = 1, 2, . . . (2.5)

where A is the Jacobian matrix, containing the partial derivatives aij = ∂fi(x)/∂xj

for i, j = 1, . . . , n. This results in a system of equations of the form Ax = b, which

can be solved by LU decomposition. The elements are linearized individually and

their results are summed to make the matrix. The derivative is the admittance.

The right side ḟ(xk−1)xk−1 − f(xk−1) corresponds to a current source in parallel

with the admittance.

The basic algorithm for nonlinear DC analysis shown in algorithm 2.2.

The convergence criteria used in SPICE is not based on voltage, but on the

nonlinear branch equations[31, p. 127]. Using voltage alone as a criterion can

result in a false indication of convergence.
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Read in the circuit description, and store, by branch.
Allocate memory for sparse matrix system.
Guess a possible solution.
Repeat until converged {

If too many iterations {
Stop, print failure message.

}
For each branch {

Calculate its linearized admittance (ḟ(v))

and offset current (i = ḟ(v)v − f(v)).
Add it to the admittance (Jacobian) matrix and current vector.
(This produces a system of linear equations.)

}
Solve the system of equations.
(This produces the voltages at all nodes.)

}
Print or plot the selected values.

Algorithm 2.2: Nonlinear DC Analysis
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As in the linear case, this algorithm computes all the node voltages directly.

Other parameters, including current and power, can be easily calculated from the

voltages and linearized admittance and offset current.

2.2.2 Transient analysis

Numerical Integration

The transient analysis of circuits is an initial value problem, with multiple vari-

ables. The differential equations representing the elements (capacitors and induc-

tors) are integrated individually, resulting in a companion model, which reduces

the problem to DC analysis, which is repeated for each step.

The companion model is a resistor and source that generated the equations

corresponding to the integrated element equation. For example, the differential

equation representing a capacitor is:

i = C
dv

dt
(2.6)

The backward Euler1 formula for the approximate solution of a differential

equation ẋ = f(x, t) is

xn = xn−1 + hẋn n = 1, 2, . . . (2.7)

where x0 is the initial value, and h is a small time increment.

1The backward Euler method is rarely used, because of its poor accuracy. It is used here
because the application to circuits is clearest with this method.
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R = h/C

V = vn-1

G = C/h I = (C/h)vn-1
+

−

+

−

+

−

vnvn

in

in

(a) Voltage source equivalent (b) Current source equivalent

Figure 2.2: Companion models for the Backward Euler formula

To apply 2.7 to a capacitor (i = C dv/dt), identify the voltage v as x, ẋ as

dv/dt = i/C, giving:

vn = vn−1 + h
in
C

n = 1, 2, . . . (2.8)

The value h/C represents a resistance, so a companion model (figure 2.2a) can

be used to represent capacitors, to allow the use of the DC analysis algorithms.

Equivalently, it could be defined in terms of current

in = (vn − vn−1)
C

h
n = 1, 2, . . . (2.9)

which can be rewritten as

in =
C

h
vn − C

h
vn−1 n = 1, 2, . . . (2.10)

giving the equivalent companion model of a C/h conductance in parallel with a

current source of (C/h)vn−1, in figure 2.2b.
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Euler’s method is simple, but not accurate. The error term is O(n). It is

rarely used in simulation. Instead, a higher order method is usually used. Some

common choices include the trapezoid rule and Gear’s method[20]. The Adams

(predictor-corrector, multistep) methods do not work well because of poor stability

characteristics for stiff systems[57, p. 379].

A typical circuit is a stiff system. Its eigenvalues (poles) are widely separated.

In many cases, the response due to the larger eigenvalues can be ignored, and

assumed instantaneous. In a real system poles on the left half of the s-plane

(negative real part) indicate a decaying response, or stability. Poles on the right

half plane (positive real part) indicate instability. Ideally, the numerical method

would mimic this border. Only the trapezoid rule does. Even the trapezoid rule

appears to show ringing on stiff poles, so for stiff systems a stability region that

closes on the right half plane is often better. Gear’s methods provide this. Usually

automatic step control prevents the ringing problem at the expense of having stiff

poles force a step size much smaller than necessary. The fact that the stability

border is correct means that oscillators simulate correctly given appropriate step

size selection. A good explanation of the stability region in discrete time, in terms

of z-transforms, can be found in a text on digital signal processing[35].

In many simulators, including SPICE and URECA, the trapezoid rule is used.

The trapezoid rule is:

xn = xn−1 + (h/2)(ẋn + ẋn−1) n = 1, 2, . . . (2.11)
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The difference equation for a capacitor becomes

in =
2C

h
(vn − vn−1)− in−1 n = 1, 2, . . . (2.12)

which can be rewritten as

in =
2C

h
vn − 2C

h
vn−1 − in−1 (2.13)

This is equivalent to the companion model of a conductance of 2C/h in parallel

with a current source of −(2C/h)vn−1 − in−1.

For the same circuit as in subsection 2.2.1, the system of equations becomes:




1

R1

+
1

R2

+
2C1

h
− 1

R2

− 2C1

h

− 1

R2

− 2C1

h

1

R2

+
1

R3

+
2C1

h
+

2C2

h




[
V1

V2

]
=

[
I0 + iC1

−iC1 + iC2

]
(2.14)

where either iC = −(2C/h)vn−1 − in−1.

Time step control

To minimize computation time, the step size should be chosen to be the largest

that will give the desired accuracy. It is desirable to have automatic control. The

two methods used in SPICE are based on local truncation error and iteration

count. SPICE3[38] uses an explicit correcter to reduce the iteration count and

provide an upper bound on step size.

The iteration count method (which does not work well[31][38]) decreases step

size when there are too many iterations at a particular step, and increases it when

there are few enough to hint that it will still be adequate with a larger step size.
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In SPICE2, if too many iterations are required the solution is abandoned and the

step size is reduced by a factor of eight. If convergence is accepted in fewer than

the desired number of iterations the solution is accepted and the step size may be

doubled for the next step. The desired range is specified by the user.

Another (better) method is to estimate the local truncation error, and ad-

just the time step to keep it below some bound. SPICE approximates the local

truncation error (LTE) for the trapezoid rule as:

εx = −h3

12

d3x

dt3
(2.15)

Since the allowable error should be divided over all steps, the allowable error for

one step is:

ε =
εx

h
=

h2

12

d3x

dt3
(2.16)

Solving for h gives a suggestion for what step size to use.

h =

√√√√12ε
d3x
dt3

(2.17)

The estimate of d3x/dt3 is obtained by divided differences. If the time step just

taken exceeds this value, the step is rejected and h provides a good estimate of

what the new step size should be.

2.2.3 Logic simulation

Basic algorithm

In the simplest version, gate level (logic) simulation consists of processing the

elements (gates and inputs), and forcing their outputs on the appropriate node.
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Only one gate can drive a node. All gates have a delay. No iteration is required,

so the gate can be evaluated and its output can be simply plugged in. Order

of evaluation is irrelevant. Because of the delay, feedback in the circuit is not a

factor. Time is discrete, and represented by an integer. A unit delay simulator

requires all elements to have the same delay, equal to the time granularity. Two

arrays of node values are used, now and previous.

Read in the circuit description.
Assume states at nodes are initially unknown.
for each time step {

Copy the current values to old.
for each element (gate or stimulus) {

Evaluate it. (based on “old”)
Plug it in.

}
Print or plot the selected values.

}

Algorithm 2.3: Non-Event Driven Logic Simulation

The basic (non-event-driven, unit delay) logic simulation algorithm is shown

in algorithm 2.3. This algorithm is inefficient, because every element is processed

once on every time step. An enhanced algorithm (2.4) will take advantage of

latency in the circuit by not processing elements whose inputs do not change.
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Exploiting latency

To exploit the latency in the circuit, an algorithm known as selective trace[53] is

used. As part of the set-up (before simulation), a fan-out table is built, containing

a list of elements affected by each node. The simulation is based on exclusive

simulation of activity. It is event driven.

Events are generated by inputs to the circuit and by any signal that changes.

An event queue contains a list of events pending, where each event consists of an

action and the time at which it occurs. Initially, the queue contains only the input

signals. The action is a list of gates to be evaluated at that time. When these gates

are evaluated, signals at other nodes change. A check in the fan-out list reveals

what other gates are affected. These are added to the event queue. Incorporating

non-unit delays is a matter of adjusting the times in the event queue.

The improved (event driven) logic simulation algorithm is shown in algorithm

2.4. This algorithm still assumes that there is exactly one element driving each

node. In some logic simulators, the nodes are named by the elements that drive

them.

A special element “buss” or “wire-tie” (wired-and, wired-or) handles open-

collector type nodes. In some simulators, this special element is input explicitly

by the user. In others, it is added automatically as a hidden element. The

algorithm still fails sometimes with pass transistors, which become the equivalent

of multiple elements driving some nodes.
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Read in the circuit description.
Build the fan-out list. (Selective trace table)
Assume states at nodes are initially unknown.
Initialize the event queue, with the external stimuli.
for each event {

Advance time to the event time.
Copy the current values to old.
for each element to be activated at this time{

Evaluate it.
Plug it in.
Schedule the elements connected to its output node.

}
Print or plot the selected values

}

Algorithm 2.4: Event Driven Logic Simulation

Choice of states

The first logic simulator[5] had only two states: true and false. The unknown

state was added so that hazard and race conditions could be detected[6][18].

Eventually, more states were added to handle more types of signals:

• Value: false, unknown, true.

• Strength: driven (forcing), weak (soft), floating (hi-z).

• History: stable, transition (rising, falling), unknown (initial, generated).

Four state (false, true, unknown, floating) and nine state (combinations of

value and strength as above) are common. An initial unknown state (as opposed
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to a generated unknown) is useful for showing the parts of the circuit are not

driven, or are not properly initialized. The value (false, unknown, true) can be

considered to be an abstraction of voltage. The strength can be considered to be

an abstraction of impedance.

2.3 Related Works in Simulation

This section highlights some of the significant achievements in simulation, beyond

the classic circuit and logic simulation. It is not a comprehensive survey. In gen-

eral, they are either methods of enhancing the accuracy of the digital simulation,

at a cost in time and space, or are based on assumptions about an analog circuit

that allow faster, but less accurate or less robust, methods to be used.

2.3.1 MOTIS

Who

B. R. Chawla, H. K. Gummel, P. Kozak at Bell Laboratories, 1975. (MOTIS)[8]

S. P. Fan, M. Y. Hsueh, A. R. Newton, D. O. Pederson at Berkeley, 1977. (MOTIS-

C)[19]

Synopsis

MOTIS[8] is the first of the so-called timing simulators. Assume that a MOS

circuit is built of simple topologies that can be reduced to pull-down/pull-up
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subcircuits by series/parallel reductions. A simple update formula is derived by

linearizing each subcircuit, and calculating the change in voltage in terms of a

time increment. It uses a simple table-driven device model, and calculates the

output voltage of a typical logic gate using an approximate series/parallel current

summation formula. The device tables are based on voltage in 64 levels. Signals

are propagated from gate to gate without iteration, as in logic simulators, with

Backward Euler integration, and a small preset time step, typically 1 ns. There

is no time step control. (Algorithm 2.5)

At each time point:
Linearize the circuit: (Calculate g(v), i(v))

Calculate dv = i(v)
c/dt−g(v)

Increment time and repeat

Algorithm 2.5: MOTIS algorithm

Voltage waveforms are usually within 10 percent of a detailed circuit sim-

ulation. Accuracy deteriorates with circuits containing many bidirectional pass

transistors and logical feedback loops. It may, without warning, produce erroneous

results, and become numerically unstable[8][43].

MOTIS-C[19] is similar to MOTIS, but with several improvements. It uses

the trapezoid rule, instead of backward Euler integration. The fixed step size

is computed automatically at the beginning of the analysis. It uses a different

decoupling process for floating devices. It does not decouple the two simultaneous

equations describing a floating capacitor. It has the same numerical properties,
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and the same inaccuracies and instabilities.

Both MOTIS and MOTIS-C have several weaknesses. There is no error control.

There are no floating capacitors. They assume that the circuit fits the common

MOS-gate form. The output can become unstable with some circuits, such as

floating transistors and logical feedback loops.

2.3.2 DIANA

Who

G. Arnout and H. J. DeMan at Katholieke Universiteit Leuven, Heverlee, Belgium,

1978. [4] [3] [13] [12] [14] [15] [11]

Synopsis

DIANA introduced the concept of mixed circuit and logic simulation. This is a

hybrid simulator, an analog and digital simulator running concurrently, synchro-

nized. It is based on the fact that a large portion of a typical digital circuit can

be adequately modeled and simulated at gate level, while the rest of the circuit

is simulated at circuit level. It is claimed to produce a speed-up of up to two

orders of magnitude over traditional circuit simulation with accuracy within 5%

of circuit simulators, such as SPICE[43][28].

It divides the circuit into a single analog block that interacts with gate models

through threshold functions and boolean controlled elements. A threshold function
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is a block that has analog input and digital output: L = 0 if V ≤ V0, L = 1, if

V ≥ V1, L = ∗ otherwise. These elements have other capabilities, including time

delays. A boolean controlled element has digital input and analog output. It is a

controlled ideal switch with an offset voltage. Rise and fall times can be defined.

Later versions also had frequency domain analysis, but the mixed mode analy-

sis was restricted to the time domain. Frequency domain analysis can be obtained

by FFT. Extensions were added for sampled data circuits. A commercial version

is available: the two program set ANDI and SWAP from Silvar-Lisco. [28]

2.3.3 SPLICE

Who

A. R. Newton at Berkeley, 1978. (SPLICE)[32]

R. A. Saleh at Berkeley, 1984. (SPLICE1.7)[44]

J. E. Kleckner at Berkeley, 1984. (SPLICE2)[25]

Synopsis

SPLICE[32] is another mixed-level simulator, initially introduced about the same

time as DIANA. It models a network as a collection of subnetworks, each de-

scribed either at the circuit or logic levels. The circuit level subnetworks were

integrated with a common step size, with the Backward Euler method. An al-

gorithm similar to MOTIS and MOTIS-C was used to propagate signals among
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subnetworks. Interaction between adjacent subnetworks is handled by explicitly

inserting thresholders, logic-to-voltage converters and logic-to-current converters.

An integer time event scheduler keeps track of the activity of the various subnet-

works, as is done in event driven logic simulation.

A more recent version, SPLICE1.7[44], introduced iterated timing analysis.

This change improves accuracy by converging the subnetwork-to-subnetwork sig-

nal propagation iteration. The change requires each node to have a grounded

capacitor. The presence of floating capacitors slows down convergence consid-

erably, causing it to be slower in some cases than standard circuit simulation.

Performance results indicate speed-ups are about half those of non-iterated meth-

ods.

SPLICE2[25] generalized SPLICE to better handle typical analog circuits. It

uses a floating point representation of time, and has automatic time step control,

based on truncation error. Partial solutions of the circuit and step size control

use a selective trace algorithm, as in logic simulators. The solution is still based

on relaxation, generally the SOR method, using selective trace to control the

ordering.

2.3.4 MACRO

Who

N. B. G.Rabbat, A. L. Sangiovanni-Vincentelli, H. Y. Hsieh, for IBM, 1979. [39]



2.3. RELATED WORKS IN SIMULATION 31

Synopsis

MACRO introduced the concept of latency at the circuit level. It models a network

as a collection of subnetworks that share a common integration time step.

On detecting that the time derivatives of the variables of a particular subnet-

work are smaller than a given tolerance, and the inputs to the subnetwork have

not changed appreciably over the current time step, the subnetwork is considered

latent and its equations are not solved.

2.3.5 SAMSON

Who

Karem A. Sakallah and Stephen W. Director at Carnegie Mellon.

Synopsis

SAMSON introduced event driven circuit simulation (EDCS). Partition the net-

work into loosely-interconnected multi-terminal subnetworks, and choose a sep-

arate step size for each subnetwork. A fast-changing component takes a smaller

step size than a slower-changing one. This is a temporally sparse network. Tradi-

tional simulators waste time by simulating the entire network with the same step

size.

A subnetwork can be either alert or dormant. When a subnetwork is alert,
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it is modeled by its nonlinear algebraic-differential system of subnet equations,

called the alert model. When dormant, it is modeled by a set of extrapolation

equations called the dormant model. The dormant model is effectively decoupled

from the rest of the circuit. The use of a dormant model avoids the discretization

and linearization steps required to solve an alert model, hence a reduction in

computation time.

Logic blocks are included on a subnetwork level. Conversions take place at

the terminals of the subnetwork. The conversions consist of thresholds and logic

controlled voltage sources, as in prior work.

Block LU factorization is used to solve the alert nodes. A set of extrapolation

equations solves for the dormant nodes. A node is dormant if all the subnetworks

connected to it are dormant.

Implementation is as several of C programs. The two major components are

SAM1, the model compiler, and SAM2, the event driven simulator. SAM1 gener-

ates a set of C functions to evaluate and solve the equations of a subcircuit. The

algorithms are described in more detail in section 2.4.1.

2.3.6 ADEPT

Who

Peter Odryna at Silicon Compiler Systems and Sani Nassif at Carnegie Mellon

University, 1987.[34][45]
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Synopsis

The Adept algorithm claims to use voltage as the independent variable, and time

as a dependent variable. It introduced a method of step size control, based on

time constants. L-SIM[45] is a commercial product that uses the Adept algorithm.

First the circuit is linearized, giving a small signal equivalent circuit. By

using Thevinin and Norton equivalents, an equivalent RC circuit is produced, as

in MOTIS[8][34]. The circuit is equivalent in the sense of having the same time

constants. It then determines from the time constant what dt will give the desired

dv, and places this time in the event queue. At the event, re-evaluate models.

When any node changes, the nodes that are connected to it are re-evaluated. This

propagates as far as conductances carry it, apparently not through capacitors, and

not through conductances that are now open.

The formula ρ = (Cij ∗ V̇j + Gij ∗ Vj)/Ii indicates how tightly the nodes are

coupled. If ρ is small, the nodes are considered to be not coupled, so the effect of

any small coupling can be neglected.

L-SIM uses a unified approach, with four different algorithms, all running off

the same event queue. (system, logic, switch, adept.)

There is a notion of an intelligent node that makes interfacing between methods

automatic. Still, the user must partition the circuit and specify the method.

The user needs to choose a voltage resolution, say 1 mV. Sometimes this is not

accurate enough. According to Odryna and Nassif this problem does not occur in
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normal digital MOS design, but does occur in general analog circuits. The virtual

ground op-amp is a good example of where it fails. It needs a resolution below

1 nV, for the example given. Some need more. A simple circuit is shown in the

L-SIM user guide[45, Fig. 3.9, p. 3-17]. It tends to hang up on elements that are

far removed from hard voltage nodes.

Although it is not necessary for the user to identify critical paths, it is necessary

to identify blocks on which to apply the various algorithms.

2.3.7 RELAX

Who

Jacob K. White and Alberto Sangiovanni-Vincentelli at Berkeley. (White is now

at MIT).[58]

Synopsis

RELAX uses Waveform Relaxation which solves for waveforms, instead of time

snapshots. The traditional simulation algorithm solves for all nodes at a time

point, then moves on to the next time. Waveform relaxation solves for waveforms,

for all time, or a segment of time, at a node, then moves on to the next node.

It is necessary to order the nodes from input to output. Then, given the

input waveform, solve for the waveform at the next internal node. Now that its

waveform is known, solve for the next, and so on. After all nodes are done, repeat.



2.3. RELATED WORKS IN SIMULATION 35

(Iterate until convergence.)

Feedback will change the waveforms at nodes that were already calculated, so

iteration is necessary. Typical digital MOS circuits have a signal flow that can

be easily traced, with few feedback paths, and the paths are short. In this case

convergence is reasonably fast. If there is significant feedback, or if the circuit

does not fit the single signal path from input to output well, convergence can be

slow. It uses a relaxation algorithm similar to the Gauss-Seidel method.

The simulator needs to store entire waveforms (all time points) for all nodes.

This requires a large amount of memory.

To help solve these problems the circuit is partitioned into blocks that are

solved individually by any convenient method, and the blocks are combined by

a waveform relaxation method. Blocks are chosen such that they each have a

distinct input and output. Algorithms are given to do this partitioning, based

on finding Norton equivalent conductances and Norton equivalent capacitances at

each node[58, p. 161-162]. White claims that the results have always matched the

best attempts at hand partitioning, wherever he checked.

The actual algorithm does not solve for all time all at once. Time is broken

into windows. The size of each window is determined at the beginning of each

iteration. Algorithms are given for this, also[58, p. 172].

Performance comparisons are given, comparing to Spice2. “OpAmp” and “4-

bit counter” show an improvement of 8:1. “RingOsc.” and “Encode-Decode” show
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22:1. White attributes part of this improvement to coding techniques, part to Unix

C being faster than Fortran, and part to Waveform Relaxation. Another circuit

“VHSIC Memory” shows only slight improvement (less than 2:1). To summarize,

it works well where there is a distinct signal flow from input to output, poorly

otherwise.

White’s work included a study of the problems of partitioning and ordering

the circuit, which may apply to the general analog case as well.

2.4 Mixed Mode Simulation

Two significant advances in mixed-mode simulation are event-driven circuit sim-

ulation as in SAMSON, and iterated timing analysis as in SPLICE. The other

common approach to mixed-mode simulation, two simulators connected together,

as in DIANA, is not discussed here because its contributions have been eclipsed

by the more recent developments.

SAMSON assumes that circuits are fundamentally analog, and that logic simu-

lation is an acceleration method. SPLICE assumes that circuits are fundamentally

digital, but often the additional information of an analog simulation is needed to

provide the proper timing information. This work draws heavily on both of these.
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2.4.1 Event Driven Circuit Simulation: SAMSON

Introduction

SAMSON[41][42][43] (by Karem A. Sakallah and Stephen W. Director at Carnegie

Mellon University) mixes circuit and logic simulation. Starting from a detailed

circuit model, a compatible logic model is developed. Logic level is considered an

abstraction of circuit level. The mixed level algorithm is implemented using event

driven techniques, based on exclusive simulation of activity.[53]

Analog Simulation

Traditional transient analysis seeks solutions for all signals at every grid point.

This is nonminimal. A large subset of those are not necessary. The network is

temporally sparse: At any given time, most signals are changing slowly, if at all.

SAMSON introduces event driven circuit simulation (EDCS). Partition the

network into loosely-interconnected multi-terminal subnetworks, and choose a sep-

arate step size for each subnetwork. An event queue is implemented. An event

is “an occurrence of relative significance, especially growing out of earlier hap-

penings or conditions”2. In SAMSON events are usually generated by truncation

errors exceeding set bounds.

Since the network is temporally sparse, it is possible to solve parts of the circuit

2From Webster’s New World Dictionary of the American Language, as quoted by Sakallah[41,
p. 14].
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separately, with different time steps. Circuits are partitioned through the modular

network, the use of readily identifiable subcircuits.

There are two significant possible problems. First, the efficiency gained may

be lost to overhead, causing EDCS to be slower than traditional circuit simulation.

Sakallah illustrates an occurrance of this in SAMSON using a resistor network[41,

p. 123]. Second, there may be decoupling errors. Signals are inexact, and interact

through extrapolated values. This can be easily controlled, since there is an

intimate link between decoupling errors and extrapolation errors.

The prediction based differentiation (PBD) formulae of Van Bokhoven are

used[54], which are similar to the BDF (Gear[20] and Brayton[7]) formulae. Since

step sizes vary, coefficients must be recalculated constantly, which is done by in-

terpolation by divided differences. PBD formulas are defined over a non-uniform

time grid, so are a better fit to the dormant models than Gear’s BDF.

Step size control is based on local truncation error. If the error is too high,

the step is rejected, and the solution is retried with either a smaller step size, or

higher integration order. One advantage of the PBD formulae over BDF is that

the order can be easily changed, simply by adding or deleting one term from the

formula.

A network is partitioned into subnetworks. Each subnetwork selects its own

integration step size (based on estimated truncation error). It is alert at the time

points at which its variables are calculated. These are events. It is dormant

between events.
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When a subnetwork is alert, it is modeled by its nonlinear algebraic-differential

system of subnet equations, called the alert model. When dormant, it is modeled

by a set of extrapolation equations: a decoupled system of output equations based

on asymptotic behavior within a step, called the dormant model. There is a check

on truncation error, the dormancy condition. If it is violated the subnetwork is

alerted immediately, reducing its step size.

The dormant model is effectively decoupled from the rest of the circuit. Com-

putation time is reduced because the use of a dormant model avoids the discretiza-

tion and linearization steps required to solve an alert model.

Latency is a special case of dormancy. A subnet is dormant when the extrap-

olation model is adequate, because changes in signals are sufficiently small, and

truncation error remains low enough without another integration step. A subnet

is latent when the signal did not change at all.

A modular network forms a matrix in bordered block diagonal [47] form. This

form permits separate solution of the blocks (subnetworks), possibly in parallel.

Possibly some can share storage. The network is derived from a composition

of subnetworks. The resulting matrix is solved by a direct (LU decomposition)

method, that is equivalent to replacing subnets with equivalent circuits involving

their terminal variables. These equivalents are connected together and solved.

Sakallah describes a four pass method for solving this BBD system in SAM-

SON. Phase I (ForwardPass) converts each subnet to its terminal equivalent

circuit. Phase II (Propagate) assembles the expressions computed by phase I
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into a connection matrix, or builds a main circuit using the terminal equivalents.

Phase III (SolveConEqns) solves this system of equations by LU decomposition.

Phase IV (BackwardPass) substitutes input variables back into the subnet equa-

tions, and solves for internal and output variables. (Forward and back substitu-

tion.)

Phases I, II, and III are equivalent to the common LU decomposition, broken

apart to allow skipping some of the calculations for dormant subnets. If a subnet is

dormant, phases I and IV do not need to be done. Instead, substitute extrapolate

for I, and a dormancy check for IV.

The EDCS algorithm (2.6) makes a pass over the whole network at every time

step. Time steps occur at events generated by truncation error in one or more

subnets. Although they are not fully evaluated, dormant subnets are still checked

for truncation error and extrapolated whenever an event occurs anywhere in the

circuit being simulated. Model evaluation and that part of LU decomposition are

bypassed for dormant blocks.

There are a few problems with this method:

1. Every event forces evaluation of the main circuit. Frequently occurring

events in one subcircuit in a large circuit could use a considerable amount of time

repeating identical solutions of the main circuit, even when most of the subnets

are dormant. Dormant subnets are still checked for truncation error at every

event.
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program EDCS
Initialize time step and event queue.
For all time steps (events) (Repeat until no more events, or t > tf ) {

Build the active list: subnets having events now.
Build the dormant list: what is left over.
Discretize active subnets.
Extrapolate dormant subnets.
Repeat until all dormancy conditions are satisfied {

Solve system of equations
(4-phase BBD method, iterate until convergence.)
Check dormancy conditions.
If violated:

Activate the subnet.
}
Check truncation errors and adjust step size. (It may go backwards!)
Schedule the next event.

}

Algorithm 2.6: Event Driven Circuit Simulation
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2. The algorithm does not allow for nested subnets. To do so would require

recursion. The algorithm is non-recursive. A VLSI simulator needs to support

nested subnets because circuits are designed hierarchically. It is possible to sup-

port nested subnets, as it appears to the user, by flattening to a single level, but

this eliminates much of the advantage of the EDCS algorithm.

Logic Simulation

Since the goal is mixed-mode simulation, the logic-level model is considered to be

an abstraction of the circuit-level model. There is no unknown state. Instead there

is an in-transition state, so “abnormal” signals, such as spikes, can be processed.

The logic level model is developed from the circuit level model, by several

steps:

1. Eliminate internal variables.

2. Make assumptions about impedance levels and variables at the terminals.

3. Separate the static (logic function) and dynamic (transient response) com-

ponents.

4. Transform the model variables from the continuous voltage domain to the

logic domain.

The voltage range is divided into regions, based on thresholds. There are

three regions (high, low, and transition) based on two thresholds. There are two

additional parameters representing the high and low levels. The three regions
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correspond to three logic states, (H (high), L (low), and X (transition)). The X

state is too ambiguous, so is replaced by two states, R (rising) and F (falling).

Since a dormant logic subnet has no activity at all, it is latent. It is there-

fore not necessary to process them. The EDLS (event driven logic simulation)

algorithm (2.7) touches only the subnets that are active, as indicated by events.

This method, as in all deterministic logic simulation algorithms, assumes that

the output rise and fall times are independent of the input rise and fall times,

which is not usually true. One possible remedy is to allow output transition

times to be specified as a function of input transition times, but this complicates

scheduling.

Mixed Simulation

The mixed simulation algorithm simply combines the EDCS and EDLS algorithms

with a single event queue. Logic and circuit blocks are stored separately. There

are explicit conversions between logic and circuit levels.

Logic to Circuit Conversion An equivalent circuit of a controlled voltage

source couples logic outputs to the circuit level. (Figure 2.3.) Ideally, a transition

will have a smooth transfer curve, as in figure 2.4. This conversion approximates

it to piece-wise linear, as in figure 2.5.

Note that it begins rising before the full delay time has elapsed. The signal to

be converted is taken off before the back-end delay (figure 2.6), and the delay is
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program EDLS
Initialize time step and event queue.
for all events (repeat until no more events, or t > tf ) {

Alert list is empty.
For all current events {

Filter out narrow spikes.
If the event survives:

Take the new state.
Solve connection equations.
Alert other subnets affected by it.

}
For all outputs of alert subnets {

Evaluate logic function.
Case (old,new) {

No change:
Do nothing.

(L,F),(H,R):
Error (race condition).

(F,L),(R,H):
Accept the new (stable) state.

(L,R),(F,R),(H,R),(R,F):
Accept the new (transition) state.
Schedule its future transition to a stable state.

}
}

}

Algorithm 2.7: Event Driven Logic Simulation
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Figure 2.3: Logic to circuit signal conversion
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Figure 2.4: A rising circuit switching signal (smooth)
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Figure 2.5: A piece-wise linear rising waveform
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Figure 2.6: Simplified model of a logic subnet



2.4. MIXED MODE SIMULATION 47

built into the conversion. Since the rise times are known, the only time needed

from the logic simulation is the time at which it enters the transition region.

Figure 2.7: Temporally overlapping transitions

Figure 2.8: Multiple overlapping transitions

For overlapping transitions, the conversion is handled as in figures 2.7 and 2.8.

Figure 2.7 represents a pair of transitions, that result in a spike. Figure 2.8 is
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three transitions, which have the effect of spending more time in the transition

region. This approach is an approximation that is not necessarily accurate in

all cases, but represents a more accurate approach than previous attempts[3][33].

Further research, including the possibility of spline interpolation, is suggested[41,

p. 113]. The URECA approach uses this ambiguity as one indicator that analog

simulation is more appropriate for this part of the circuit.

r(t) f(t)

enters R enters H enters F enters L

Figure 2.9: Thresholding

Circuit to Logic Conversion Voltage signals are transformed to logic signals

by thresholding. The voltage, relative to thresholds for high and low, is trans-

formed to the appropriate logic level (figure 2.9).

For improper signals, this simple conversion can lead to illegal logic signal

transitions (figure 2.10). The proper response would be as shown in figure 2.11.

To generate the additional transition, the converter must extrapolate backwards to
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Enters R Enters L

Figure 2.10: Improper logic signal produced by thresholding

Enters R Enters LEnters F

Figure 2.11: Correct response to improper logic signal
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determine the time at which the downward transition process began. This involves

descheduling, because the t2 cannot be determined until the signal crosses the low

threshold at t4. Further research is suggested[41, p. 119] with the direction of

a composite front end - back end delay model. SAMSON uses a simpler, less

accurate, approach of generating a transition to the F state when the slope of the

signal changes sign (at tx). This introduces timing errors of (tx − t2), which are

assumed to be much less than the propagation delays of the logic level subnets

driven by this signal.

Summary

SAMSON is probably the most significant prior work. Unlike other mixed-mode

simulators, it is fundamentally analog, with logic mode considered to be an accel-

eration method.

Much of the complexity and incomplete solutions are in the conversions be-

tween circuit and logic levels. The ambiguous conversions are not a problem in

URECA. Instead, they are used to indicate when the other solution method should

be used, assisting in the automatic decision making process.



Chapter 3

Implicit Mixed Mode Simulation

3.1 LU decomposition

The most common method of solving the system of equations in analog circuit

analysis is LU decomposition with forward and back substitution. This system of

equations needs to be solved on every time step and every iteration. Often only a

few values have changed between iterations, and those that have changed, changed

only by a small amount. In mixed mode simulation, some parts of the circuit do

not naturally fit this model. Some of the variables needed for this method may not

exist, or may exist only in a different form. To address this issue, we will review

the commonly used Crout method, and then extend it to fit the cases where only

parts of the matrix change and only parts of the matrix exist. It will be used as

a framework for the other methods, which will adapt dynamically.

51
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3.1.1 Review, Basics, Crout’s algorithm

LU decomposition[27][48][57][49] is the factoring or decomposing of the matrix A

into the product of two matrices, L, a lower triangular matrix, and U, an upper

triangular matrix. Either L or U has ones along the principal diagonal. The

system Ax = b becomes LUx = b.

Once A has been factored into L and U, the system is first solved for an in-

termediate vector y, by setting Ux = y and solving the lower triangular system

Ly = b for y. This is called forward substitution. Then, the upper triangular sys-

tem Ux = y is solved for x. This is called back substitution. In circuit simulation,

the resultant vector x is usually the node voltages of the circuit.

Ordinarily, these operations are performed in place. No memory beyond that

already used to store the original matrix is needed because once an element in L

or U is computed the corresponding element of A is no longer needed. Likewise,

once an element in y and later x is computed the original element of b is no

longer needed. We chose not to perform factoring in place because by retaining

the original A and b partial updates, and partial solutions are possible using

a modified algorithm. This doesn’t work for Gauss’s algorithm, because of the

intermediate results in the matrix. Crout’s algorithm1 (algorithm 3.1) calculates

L and U directly without storing any intermediate results. Forward substitution

(algorithm 3.2) solves Ly = b for y. Backward substitution (algorithm 3.3 solves

1Crout’s work is just a minor variation on Doolittle’s work, from the 1800’s. The only
difference is that Crout normalizes U and Doolittle normalizes L. Unfortunately, no references
are available for Doolittle.
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Ux = y for x.

for (k = 1, . . . , n) {
for (i = k, . . . , n)

lik = aik −
k−1∑

p=1

lipupk

if (k ≡ n) stop
for (j = k + 1, . . . , n)

ukj =
akj −∑k−1

p=1 lkpupj

lkk}

Algorithm 3.1: Crout’s algorithm

for (k = 1, . . . , n)

yk =
bk −∑k−1

p=1 lkpyp

lkk

Algorithm 3.2: Forward Substitution

for (k = n, n− 1, . . . , 1)
xk = yk −∑n

p=k+1 ukpxp

Algorithm 3.3: Backward Substitution

The Crout algorithm does not operate on any element in the matrix unless it

is in the row or column being eliminated. It only accesses elements of U in the

same column, above the element being eliminated, and elements of L in the same

row to the left of the element being eliminated. It eliminates elements scanning
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Figure 3.1: Crout’s algorithm
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across rows above the diagonal and down columns below the diagonal. The status

of the elements during the process is illustrated in figure 3.1.

Computed
No longer
accessed

Computed
and
accessed

Not yet
accessed

Being
eliminated

Figure 3.2: Crout’s algorithm on a banded with spikes sparse matrix

Figure 3.2 shows the same algorithm (or essentially the same algorithm, modi-

fied to test for zero, and to skip unnecessary operations) applied to a sparse matrix

of the type resulting from a typical nodal analysis without subcircuits or any form

of partitioning. The matrix is roughly banded with varying bandwidth. A few

rows and columns have “spikes” representing many circuit or element connections

to a few nodes. To accommodate the spikes, it is necessary to test every element

for zero as the row or column is processed, even though it may not require any op-

erations. A table could be set up to minimize the testing, allowing the algorithm
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to skip groups of elements at a time. This is often done in linked list based sparse

matrix algorithms. Nevertheless, the testing is non-trivial. The test is a simple

“if” statement, usually to see if storage is allocated, but even this can dominate

if the matrix is sparse enough, which is likely in a matrix produced by a large

circuit. Most likely, it results in a solution time for a large matrix of O(n2). The

modified algorithm presented in the next section is an improvement for this type

of matrix.

Computed
No longer
accessed

Computed
and
accessed

Not yet
accessed

Being
eliminated

Figure 3.3: Crout’s algorithm on a BBD matrix

Figure 3.3 shows the algorithm applied to a bordered block diagonal matrix of
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the form likely to result from subcircuit expansion or explicit partitioning. The

blocks along the diagonal represent subcircuits. The border represents connections

between them. Scanning across a row (or column) operates on elements within

the block being worked on, and in the border. No access is needed to blocks

belonging to other subcircuits. If subcircuit expansion is applied recursively, the

blocks themselves could be bordered block diagonal, and the same conditions

apply.

The next section describes a modified method that is a better fit to the type

of matrix resulting from nodal analysis of circuits.

3.1.2 Sparse vector method

Storage

Traditional LU decomposition based simulators use generic sparse matrix storage,

that does not exploit the form of the matrix. The usual method is a pair of linked

lists, which is well documented elsewhere[17][57][31], and will not be repeated

here.

The approach used here is a vector scheme[9], that uses two pointer arrays and

allows access to the sparse matrix element in the same time ordinarily needed to

access an element in a dense matrix, thus eliminating the overhead of the more

complicated indexing scheme. Also, the number of tests for zero elements required

is reduced to one per column (or row). The scheme also allows blocks representing
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subcircuits to be stored in a compact form that still appears compact as part of

the large matrix. This method was inspired by a paper by Dongarra, Gustavson

and Karp on dense matrices on a vector machine[16].

The matrix is stored by row below the diagonal, and by column above. The

part above the diagonal is stored backwards. This enables the diagonal itself to be

part of both the upper and lower parts, without duplication. Two pointer arrays

hold pointers to the apparent location of row 0 of each column, and column 0 of

each row. It doesn’t matter that row 0 and column 0 do not exist. An integer

array basenode holds the number of the lowest node connected to each node.

At this point, we digress, and discuss usual methods of storing two-dimensional

matrices in the language “C”. Like most other languages, C supports two-dimen-

sional static arrays. Indices start at 0, and they are stored by row. Another

approach is to set up an array of pointers, one pointer for each row, and n row

vectors. The pointer array and all the row vectors are dynamically allocated by a

call to the library function “calloc”. Using this method, the size of the matrix can

be adjusted to fit the problem, the space can be returned to the system when it

is no longer needed, and a new array, of a possibly different size, can be allocated

for a new problem. Machine memory limits do not influence coding at all. The

C code to access an array stored this way looks exactly the same as code for a

static two-dimensional array, except that the requirement to keep track of the

allocated size is eliminated. It is implicit in the pointers. The machine code

generated accesses an element by indirection through a pointer rather than by a
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multiplication and an addition. The rows of the array can be of different lengths.

To start from an index other than 0 it is simply a matter of adjusting the pointer

so it points to where location 0 would be if it were there. For example, to start

at 1, decrement the row pointer before storing it. To start at 7, subtract 7 before

storing it. (In C, pointer arithmetic takes into account the size of the item being

pointed to.)

Storing the lower triangular part of the matrix is exactly the same as a stan-

dard matrix except for the pointer adjustments. The upper triangular part is

similar except that row and column are interchanged and the vector direction is

backwards. To accomplish this the pointer points to the end of the vector instead

of the beginning, to the apparent location of element 0, and the row number has

its sign changed.

When memory is allocated row n and column n are allocated as a unit, with

the diagonal element common to both. The row pointer points to one end of it,

the column pointer to the other.

Consider the matrix:



11 12 0 0 0
21 22 23 0 0
0 32 33 34 35
0 0 43 44 0
0 0 0 54 55




(3.1)

This matrix is stored in the linear array:

[
11 21 22 12 32 33 23 43 44 34 0 54 55 0 35

]
(3.2)
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It can be broken into 5 vectors:

[
11

]

[
21 22 12

]

[
32 33 23

]

[
43 44 34

]

[
0 54 55 0 35

]
(3.3)

The basenode integer array contains a list of the lowest node connected to each:

[
1 1 2 3 3

]
(3.4)

In this list, node 1 has no connections lower than 1. Node 2 connects to as

low as 1. Node 5 connects to as low as 3. Connections to higher nodes are not

considered.

The pointer arrays point to what would be row or column 0, if they existed.

The row pointer array points below the actual storage:

[
−1 0 2 4 7

]
(3.5)

The column pointer array points above the actual storage:

[
1 4 8 12 17

]
(3.6)
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To access element 32 (row 3, column 2, below the diagonal) take the base of

row 3 (2), and add 2. It is stored in location 4. To access element 34 (row 3,

column 4, above the diagonal) take the base of column 4 (12), and subtract 3. It

is stored in location 9.

The added complexity in working with the matrix, as compared to the dense

case, is insignificant, consisting of checking to see whether it is above or below

the diagonal, and using the appropriate code. The difference is reversing row and

column, and possibly negating the row number. It often is known whether the

element being accessed is above, below, or on the diagonal, so the appropriate

code can be used directly. To access the diagonal element, either code can be

used, or another pointer array can point directly to the diagonal element. Most

of the added complexity is in setting up the system, which needs to be done only

once, for many solutions of systems with the same structure. Access time is often

further reduced because the elements of the vector are used in order, so finding

an element is done simply by incrementing or decrementing a pointer.

Solving

By calculating the L and U factors in a different order the algorithm becomes a

better fit to the allocation scheme. (Figure 3.4. Algorithm 3.4.)

Adding a simple test for the length of the vector eliminates the need to access

the zeros outside the band. (Algorithm 3.5.) The basenode table (the lowest node

connecting to a given node, or the the index of the lowest numbered element in a



3.1. LU DECOMPOSITION 62

Computed
and
accessed

Not yet
accessed

Being
eliminated

Figure 3.4: Modified Crout’s algorithm
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l11 = a11

for (k = 2, . . . , n){
u1k =

a1k

l11

for (i = 2, . . . , k − 1){
uik =

aik −∑i−1
p=1 lipupk

lii}
lk1 = ak1

for (j = 2, . . . , k){
lkj = akj −

j−1∑

p=1

lkpupj

}
}

Algorithm 3.4: Modified Crout Algorithm

given row or column. In any row or column, the elements from 1 to some k will

be zero. Elements from k + 1 up to the diagonal will be non-zero, or subject to

being filled in, so are treated as if they were non-zero. Thus, an entire column or

row can be tested for its zeros in a single test. There are now only O(n) of these

tests.

Figure 3.5 shows the algorithm applied to the same matrix as figure 3.2, at

several stages in the decomposition. Figure 3.6 shows the algorithm applied to

a BBD matrix resulting from subcircuit expansion. While working on elements

within a block there are no accesses outside the block. Because of this, it is possible

to decompose the blocks representing subcircuits separately without concern for

the remainder of the system. If two or more are linear and identical, their matrix
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l11 = a11

for (k = 2, . . . , n){
b = basenode(k)
if (b < k){

s = max(basenode(i), basenode(k))

usk =
ask

lss
for (i = b + 1, . . . , k − 1){

uik =
aik −∑i−1

p=s lipupk

lii}
s = max(basenode(k), basenode(j))
lks = aks

for (j = b + 1, . . . , k){
lkj = akj −

j−1∑
p=s

lkpupj

}
}

}

Algorithm 3.5: Modified Crout with Zero Bypass
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Figure 3.5: Modified Crout’s algorithm on a banded with spikes sparse matrix
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Figure 3.6: Modified Crout’s algorithm on a BBD matrix
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blocks will also be identical, before and after decomposition. They can thus share

storage, and be decomposed only once.

3.1.3 Solving only part of the matrix

Circuit simulation requires repeated solutions of matrices that are almost the

same. After the first solution the matrix is changed in only some of its locations.

It is desirable to solve again without repeating all the work.

There are several methods published for recomputing the inverse or LU factors

of matrices with low-rank modifications.[22][37]. The method used here requires

storage of both the original matrix A and the decomposed matrices LU. Since the

original matrix is maintained, only those elements that change need to be rebuilt.

The change process is to add the difference between the old and new values, and

flag those elements as changed. After the changes are made to A, the flags tell

which parts of LU need to be recomputed.

From the algorithm and definition of LU decomposition, an element lij is

calculated by:

lij = aij −
j−1∑

p=1

lipupj. (3.7)

From this, the value lij depends only on elements of L and U for nodes m < j.

For a bordered band matrix, lip ≡ 0 for p < basenode(i) and upj ≡ 0 for

p < basenode(j), so lij depends only on nodes m such that maxbasenode(i, j) ≤
m < j. For a BBD matrix, basenode(i or j) is always in the same block, or

maxbasenode(i, j) ≥ q, where q is the lowest node in the block. So, lij depends
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only on elements of LU within the same block. For elements in the border, upj ≡ 0

for p < basenode(j), so it, too, depends only on elements within the corresponding

block, and that segment of its own row.

Elements above the diagonal are handled similarly, based on

uij =
aij −∑i−1

p=1 lipupj

lii
(3.8)

To find which elements are affected by changes to a particular element aij (the

converse of the above), it is only necessary to look at the formulae for lpq and

upq to see which contain the corresponding lij or uij, then apply this criterion

recursively.

For a sample element aij above the diagonal, the elements {ukj|i ≤ k < j}
are affected, and need to be recalculated. The change also affects {lkj|j ≤ k ≤
n}, directly. The row {ujp|j < p ≤ n} needs to be renormalized as a result of

the change to ljj. The elements ukp and lkp, where j ≤ k, p ≤ n, needs to be

recalculated as a result of the other changed to L and U. A similar analysis could

be applied to changes below the diagonal.

For a BBD matrix the direct changes do not affect the zeros outside the block

being changed and the border. Since other changes are the result of propagation

of changes to the column of the initial change, they do not propagate outside the

block containing the initial change, except to the border.

To keep track of what has changed, it is known that changes are confined to

the same block, and to the border. Changes propagate only to higher numbered
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nodes. After any set of modifications, the new decomposition starts at the lowest

numbered node in a block that changed, and continues to the end of that block.

This simplistic approach could waste some time because only the column directly

below an element in U, or row directly to the right of an element in L actually

needs to be redone. Most changes, other than those on the diagonal, are in groups

of four, so a change to aij usually is accompanied by changes to aji, aii, ajj. In this

case, there are no wasted operations. In the case where the update is asymmetric

about the diagonal, the only problem with this approach is a few extra operations.

After decomposing A into LU, the system Ly = b must be solved for y

(forward substitution). A particular element yk is calculated by

yk =
bk −∑k−1

p=1 lkpyp

lkk

(3.9)

This is similar to the formula for u, so the same arguments on change propagation

apply. The change only affects the corresponding block.

Back substitution solves for the node voltages. It will be shown later that

the propagation of changes is predicted by the fanout list, and its values are not

necessarily calculated from this matrix, so it can be managed by the selective

trace algorithm.

3.2 Iterative methods

Nonlinear equations are almost always solved by iterative methods. Most circuit

simulators use either Newton’s method or a relaxation method. Depending on the
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equations being solved, either may work better. One or both may not work at all.

We now review the methods used, and how they fit in a unified data structure to

allow the free choice at run time. We also cast logic simulation as an abstraction

of iterative methods. For formal analysis of these methods, the reader is referred

to several texts on iterative solutions of equations[36][56][52].

3.2.1 Fixed Point Iteration

Solving nonlinear equations is generally done by some form of fixed point iteration.

Given a function f(x), it is desired to find a root x(∗) of that function2. In any

fixed point method, an iteration function g(x) is defined such that x = g(x).

Given a starting point x(0), applying the iteration x(k) = g(x(k−1)) generates a

sequence {x(k)}∞k=0. Hopefully, x(k) → x(∗) as k →∞.

The generic fixed point method uses an iteration function of the form of:

g(x) = x− α−1f(x) (3.10)

The iteration is then:

x(k) = x(k−1) − α−1f(x(k−1)) k = 1, 2, . . . (3.11)

A suitable value for α, and a suitable starting point, x(0), will result in con-

vergence to the root. An unsuitable value for α or starting point will result in

non-convergence or slow convergence.

2In this section, the notation x(k) refers to the kth iteration of x.
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This can be extended to an n dimensional function F by replacing α with a

nonsingular matrix A. The n dimensional method is

x(k) = x(k−1) −A−1f(x(k−1)) k = 0, 1, . . . (3.12)

The resulting system of linear equations is solved either by LU decomposition,

or by relaxation. Both methods are commonly used in circuit simulators. Relax-

ation methods iterate directly. LU decomposition based methods reformulate the

equation to either

Ax(k) = Ax(k−1) − f(x(k−1)) k = 1, 2, . . . (3.13)

or

A(x(k) − x(k−1)) = −f(x(k−1)) k = 1, 2, . . . (3.14)

The most commonly used form of the fixed point iteration is Newton’s method,

where α = f ′(x), and is reevaluated every iteration. In the n dimensional case,

the matrix A is the Jacobian, a matrix of partial derivatives, aij = ∂fi(x)/∂xj for

i, j = 1, . . . , n. In SPICE and most classic circuit simulators, the form 3.13 is used.

In the linear case it maps to directly to Yv = i, where Y is the admittance matrix,

v is the vector of unknown node voltages, and i is the vector of fixed currents.

When the initial guess is close enough, the method has quadratic convergence. It

may converge linearly or not at all with a poor initial guess.

A variation on Newton’s method differs only in that it does not recalculate the

derivatives every iteration[2]. This method, strictly, has only linear convergence,

but if the derivative only changes by a small amount, performance can be almost
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as good as Newton’s method. The advantage is that time can be saved by not

calculating all the derivatives and the LU decomposition every time. Solving the

system of equations is only forward and back substitution, for that block of the

matrix.

Alternatively, calculation of the derivative may be avoided by using a difference

approximation:

f ′(x(k)) ≈ f(x(k) + h(k))− f(x(k))

h(k)
(3.15)

The secant method uses h(k) = x(k−1) − x(k) and approximates the derivative by:

f ′(x(k)) ≈ f(x(k−1))− f(x(k))

x(k−1) − x(k)
(3.16)

The regula falsi method uses h(k) = x̄−x(k) where x̄ is usually an old value of x(k)

chosen so that x̄ and x(k) bracket the root. It approximates the derivative as:

f ′(x(k)) ≈ f(x̄)− f(x(k))

x̄− x(k)
(3.17)

These discrete methods have slower convergence than Newton’s method, but

may converge when Newton’s method does not and avoid computing the deriva-

tive. The secant method has order 1.6. The regula falsi method is linear. Using

an old approximation of the derivative is usually linear. The regula falsi method

is often used when Newton’s method fails, because it brackets the root.

In circuit simulation, the matrices used in 3.13 are built by summing of the

individual circuit elements, as described in section 2.2.1. Keeping the old deriva-

tive avoids updating the matrix, which makes it possible to avoid calculating
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its decomposition. (See 3.1.3.) The secant method uses a prior value to avoid

computing the derivative, with some sacrifice in convergence order. It is used

for secondary effects in device models, where there is little change per iteration,

but would involve a considerable cost to compute the derivative correctly. The

regula falsi method can be used as a backup, when Newton’s method is failing

to converge. All these variations fit the model of 3.13, and a new choice can be

made for any element at any time. If an entire subcircuit can use old derivative

values, that block of the matrix A is unchanged, saving the time needed for the

LU decomposition for that block.

3.2.2 Relaxation methods

A basic principle for generating iterative methods is splitting [36, p. 217]. Given

a linear system Ax = b, A can be decomposed into the sum of two matrices

A = B−C, where B is nonsingular and the system Bx = d is easy to solve. The

iterative method can be defined by:

Bx(k) = Cx(k−1) + b k = 1, 2, . . . (3.18)

By rearranging terms:

x(k) = B−1(Cx(k−1) + b) k = 1, 2, . . . (3.19)

or

x(k) = x(k−1) −B−1(Ax(k−1) − b) k = 1, 2, . . . (3.20)
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The Jacobi iteration (simultaneous relaxation) splits A into A = D − L −
U, where D is diagonal, L is strictly lower triangular, and U is strictly upper

triangular. Then, B = D and C = L + U. The resulting iteration is algorithm

3.6 or:

x(k) = D−1((L + U)x(k−1) + b) k = 1, 2, . . . (3.21)

Guess all x
(0)
i

for (k = 1, . . .){
for (i = 1, . . . , n){

x
(k)
i =

1

aii


−

n∑

j=1
j 6=i

aijx
(k−1)
j + bi




}
if (all x

(k)
i ≈ x

(k−1)
i ) break

}

Algorithm 3.6: Relaxation: Jacobi Method

The Gauss-Seidel method uses B = D − L and C = U, to take advantage of

values already computed, resulting in the iteration:

x(k) = (D− L)−1(Ux(k−1) + b) k = 1, 2, . . . (3.22)

In algorithm form, it is the same as 3.6 except that the sum is split into two

parts, using x
(k)
j instead of x

(k−1)
j if it is available, thus always using the most

recent value of xj available.

In a variation on Gauss-Seidel, instead of L and U being strictly lower and

upper triangular, permutations are. L + U is the same. The difference is which
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elements are part of L and which part of U. Mathematically, the iteration func-

tion is the same, but elements of x are solved in a different order, equivalent to

solving a permutation of A and b. The order is appropriate for the permuta-

tions used, which changes dynamically on each iteration. The algorithm changes

only in that the i loop is not done in order, and that all xj are not computed

every time. This (actually SOR) is the selective trace driven algorithm used in

SPLICE2[32][44][25].

For nonlinear circuits, A is the matrix of partial derivatives (the Jacobian ma-

trix), resulting in a combined relaxation-Newton method. In practice, the matrix

A is not formed explicitly. The partial derivatives are not actually calculated.

Logic simulation is simply an abstraction of circuit simulation, by a relaxation

method. The only difference is that the values are discrete logic states, instead of

continuous values.

3.3 Local step control

3.3.1 Solving part of the circuit

LU decomposition on part of a matrix was discussed in 3.1.3. Since the original

matrix A is kept, and not over-written by LU, it is possible to change it when

necessary. Alternatively, the change in the derivative may be small enough that

a partial model evaluation can be done, which will update only the right side of

the system of equations.
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The matrix was built by summing the Norton equivalent of all circuit branches.

To update the existing matrix, conceptually the method is to subtract the old

value, and add the new value. To have the same effect, the actual code adds the

difference between the old and new values. If too much accumulated round-off

error is suspected, the matrix element can be rebuilt according to 3.7 or 3.8. As a

test to see if the effect propagates to the rest of the matrix, the difference added

can be compared to a tolerance. If the change exceeds a tolerance, that node is

marked as changed. Changes to the right side vector are handled similarly, and

separately. In general, many changes will be made to the right side, but many

fewer to the matrix.

As the changes are made, the nodes being changed are tagged, so that the

LU decomposition can start there, bypassing parts that did not change. Decom-

position stops at the end of a block. An array of flags indicates which nodes

changed.

The simulation is event driven, using selective trace to control which elements

are evaluated, and using a bypass to skip parts of the decomposition of the Jaco-

bian. (Algorithm 3.7)

In comparison, SPICE will bypass model evaluation when the voltages at the

terminals of a device are close enough (v(k)− v(k−1) < VNTOL), but will not bypass

the decomposition phase. The matrix is built as usual, using old values if the

model evaluation is being bypassed. SAMSON also uses bypass, not selective

trace, to skip model evaluation in the same way, with a “dormancy check” to see
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For each element being evaluated now {
Evaluate the function.
Correct the right side vector.
If the change was significant {

Mark the nodes as changed.
}
If it needs the derivative evaluated {

Evaluate the derivative.
Correct the matrix.
If the change was significant {

Mark the nodes as changed.
}

}
}
For each node marked for decomposition {

Begin partial LU decomposition to end of block.
Skip counter to end of block + 1.

}
For each node marked for evaluation {

Begin partial forward substitution to end of block.
Skip counter to end of block + 1.

}

Algorithm 3.7: Simulation with Jacobian Bypass
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if the bypass is valid. SAMSON will bypass the decomposition of the Jacobian

for whole subcircuit blocks, based on user partitioning.

3.3.2 The event queue

An event is something happening that has some effect on the circuit. In logic

circuits, the concept of an event is clear, because either something is happening,

or nothing is happening. There are no questionable areas. In analog circuits, the

decision is more subtle.

In logic circuits, an event is any signal changing. Initially, events occur when

an external signal changes. These are the easiest to detect, because they are listed

in the circuit description. When a signal propagates, it generates more events.

In analog circuits, a threshold determines when a signal is considered to have a

significant change.

These are some conditions that are considered to be “events”:

1. Abrupt change of an input.

2. Significant change of an input.

3. An internal voltage or current abruptly changes.

4. An internal voltage or current changes significantly.

5. A device crosses a region boundary.

6. It is time for another step, as in integrating a capacitor.



3.3. LOCAL STEP CONTROL 79

7. Integration truncation error is out of bounds.

8. Another iteration is needed.

An event queue stores the list of pending events, sorted by increasing time.

An event has two components: time and description. The description is a list of

things to do. Here, it is a list of branches to process.

Unlike digital simulation, in analog simulation many events can occur at an

approximate time. Since many events are generated by an error or signal change

exceeding a tolerance, it is often permissible to change the time at which an event

is considered to occur so that many events can be considered to occur at the

same time. An example of this is the integration time steps for a capacitor. If

integration time steps are smaller than they need to be, the solution accuracy will

be increased. The extra processing time of more steps may be offset by having

them synchronized.

SPLICE and SAMSON both will back up time if truncation error is too high.

URECA will not back up time, but will instead accept occasional steps that are

out of tolerance.

3.3.3 Selective trace applied to LU decomposition

Selective trace, as implemented in logic simulators, uses a fan-out list to deter-

mine how changes to the system propagate. The event queue contains a list of

elements to process, sorted by the time at which to process them. In trace driven
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circuit simulation circuit branches are evaluated when needed, and the results

of the evaluation is patched into the matrix. If the matrix (A) and its decom-

position (LU) are stored separately, it is possible to do this without touching

branches not indicated by the event queue. There is no need to refill the parts

of the matrix that do not change. A list is maintained to show which nodes are

changed, which corresponds to which rows and columns in the matrix are changed.

(Algorithm 3.8)

Initialize the event queue.
while there are more events {

Advance time to the earliest event in the queue.
for each event at this time {

Evaluate the branches requested.
Add the result to the matrix.
Check tolerance at nodes that were touched.
Mark those that changed more than the tolerance.

}
for each node that has a changed entry in the matrix, not already decomposed {

Do partial LU decomposition.
(Skip nodes that were computed in this operation.)

}
for each node that has a changed entry in the right side, not already computed {

Do partial forward substitution.
(Skip nodes that were computed in this operation.)

}
Do back substitution.
Check iteration tolerances.
Enqueue elements subject to changed voltages at the same time.

}

Algorithm 3.8: Selective Trace Applied to LU Decomposition
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3.4 Logic simulation

In developing the logic simulation algorithms for implicit mixed-mode simulation,

there are several goals to be considered.

1. Logic is considered to be an abstraction of a subset of the analog domain.

A logic block, like an analog functional block, takes the inputs, applies

some transfer function, and produces the outputs. The digital signals are

abstractions of the analog signals: voltage and resistance. With this in

mind, there is no unknown state, since it cannot be represented in the analog

domain.

2. The form chosen, both the internal data structures and the netlist descrip-

tion, must fit in a primarily analog simulator. A logic element is considered

to be similar to a circuit element, device, or subcircuit. A logic technology

description is considered to be similar to a transistor or mosfet technology

description for example, a “.model card” in SPICE. Logic values at nodes

are stored in an array that parallels the voltage array.

3. The logic algorithms employed use the same techniques as traditional logic

simulators, in hopes that for purely logic circuits, the “mixed” simulation

(which is not really mixed) will not result in a significant penalty in time

or space. Since the analog model also exists, there is a significant cost in

space, slightly worse than a fully analog simulator.
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3.4.1 Logic States

It is necessary to abstract the voltage and resistance into discrete states for logic

simulation. The states are based on a correspondence to technology dependent

tables. URECA supports only one technology (CMOS), but to be useful to a

practicing engineer, different technologies must be supported. Some significant

other technologies include NMOS, TTL, ECL, and diode logic. All of these have

binary states (true and false) when operating correctly. Other states, including

in-transition and unknown, are variations on the binary states that show history.

The “hi-z” state, which is used extensively in some logic families, is part of an

abstraction of the resistance. The resistance, when operating correctly, is normally

some low value or some high value. It is usually either constant, changes in

synchronization with the voltage, or is controlled by some input. The choice of

values is again technology dependent.

In a typical gate, the output transition follows some finite time after the input

transition. This is indicated by an in transition state, either rising or falling. The

internal representation of the transition states is to store both the new and old

values. As an approximation, the transition state can show either that the signal

is in the transition region, or it is waiting. The transition state is not propagated.

It is only used internally to the logic model to show that the output will change

soon. Thus, any transition has a new and old value. The signal that propagates

is the old value. After a specified delay the new value propagates to the old value.

The simple algorithm for evaluating a gate is shown in algorithm 3.9.
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On an input (old) transition {
Evaluate the logic function based on old inputs.
If there is a state change {

Place the result in new (indicating a transition state).
Enqueue the change to the final state.

}
}
When the time for the final change arrives {

Copy new to old. (Propagate the change.)
Evaluate fanout elements.

}

Algorithm 3.9: Gate Evaluation

The strength or resistance state (strong vs. weak) either tracks the voltage

state, is constant, or is driven by another input. The exact behavior depends on

the logic family. In an open collector transistor logic family all lows will be strong,

and all highs will be weak. In CMOS both states will be strong, but a transmission

gate will propagate its input voltage, with the control terminal deciding whether

it is strong or weak. When only one element drives a node, the strength makes

no difference. When two or more elements drive a node, any conflict is a fault

that will cause a switch to analog simulation. If exactly one is strong, all the weak

signals are ignored. If more than one is strong and they have the same state, that

is the state that is propagated. If they have different states, an error exists, which

also switches to analog simulation. If all are weak, and the states disagree, analog

simulation is used. A passive pull-up is a special element that is ordinarily weak

but becomes strong if everything else connecting to that node is weak.
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3.4.2 Inconsistencies

in1

in2

out
(internal)

out
(propagated)

delay delay

Figure 3.7: Distinct transitions

The above abstractions work when all signals are proper, that is when there are

no race or spike conditions. In race conditions signals arrive at a gate at different

times that are not sufficiently different to be considered independently. The second

transition may arrive after the first by a time that is less than the propagation

delay of the gate.

In the figures 3.7, 3.8, and 3.9 two inputs are applied to an and gate.

In figure 3.7 in2 follows in1, with enough time to allow the first to propagate
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in1

in2

out
(internal)

out
(propagated)

Figure 3.8: Overlapping transitions

before applying the second. The result is the expected pulse in the output. The

output signal states, by applying algorithm 3.9, are L, R, H, F, L. (In internal

binary form: 00, 01, 11, 10, 00.)

In figure 3.8 in2 follows in1 too soon, so in2 arrives before in1 has propagated.

By applying algorithm 3.9, the output is L, R, L, L or 00, 01, 00, 00, with an illegal

R to L transition. To make the desired L, R, F, L or 00, 01, 10, 00 pattern, when

another input arrives, the existing new output state is immediately propagated to

old, so new can accept the second input transition. This produces a spike in the

output, which will activate the other elements connecting to that node.

In figure 3.9 in2 arrives before in1, producing no output change. Since there is

no output change, no events are generated and no other elements activated. It is
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in1

in2

out
(internal)

out
(propagated)

Figure 3.9: Overlapping transitions, no spike
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likely that both cases (figure 3.8 and figure 3.9) were designed to have the signals

arrive simultaneously, in which case a spike may be generated and propagated. In

both cases, the logic model used is inadequate. The first case causes a switch to

analog mode for that element. The second case causes no such switch, indicating

that the signal is proper, which it may not be. It should cause a switch to analog

mode. This leads to a revised algorithm 3.10.

On an input (old) transition {
If in a transition state {

Copy new to old. (Propagate the change.)
Activate analog mode.
Evaluate fanout elements.

}
Evaluate the logic function based on old inputs.
If there is a state change {

Place the result in new (indicating a transition state).
Enqueue the change to the final state.

}
}
When the time for the final change arrives {

If in a transition state {
Copy new to old. (Propagate the change.)
Evaluate fanout elements.

}
}

Algorithm 3.10: Gate Evaluation, Allowing for Races

These algorithms for logic simulation are similar to those used in most logic

simulators. They are clearly inadequate, as was shown, when race conditions exist.

In URECA these problems are used as indicators to switch to analog mode.
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3.5 Mixed simulation

The essence of mixed-mode simulation is that two or different types of simulation

can be applied in the same circuit. This section discusses the data structures and

decision algorithms to combine logic and circuit simulation.

3.5.1 Data Structures

The value at any node can be either continuous (voltage) or discrete (logic state).

In addition, other information could also be useful at each node. A node value

array holds the additional information:

Logic value. Two bits, new and old, represent the logic state as true or false. In

stable states both the new and old values are the same. If they are different,

the state is in transition. This translates to voltage in analog simulation.

The definitions of true and false, from the analog viewpoint, are determined

by user specified process dependent parameters.

Safe logic value. It is probable that some states will be calculated incorrectly

because of iteration. The values at the start of iteration are stored here, to

keep the history, not contaminated by false iteration values.

Logic strength. Two bits, new and old, represent the strength as either strong

or weak. The state definitions here are also dependent on user specified pa-

rameters. It translates to resistance in the analog domain. Usually, strong
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corresponds to a low resistance and weak to a high resistance, possibly infi-

nite.

Mode. The mode can be either analog or digital depending on how the value at

the node was calculated. It is set when the value (voltage or logic state)

is calculated, and is used in mode conversion. If the mode is digital, the

logic value was calculated directly by a logic gate, the analog voltage is

estimated, if needed, from the logic state. If the mode is analog, the voltage

is calculated by solving the network equations. The logic state is calculated

from the analog voltage by thresholding.

Quality. There is an indication of the “quality” of a supposedly digital signal.

The number is an integer. A value of zero means it is good enough to be

simulated as digital. If a signal is found to be defective in some way (too slow

or out of range) quality is set to the value of transits, usually 2, and analog

mode is selected. When a clean transition occurs, quality is decremented.

When it becomes zero, it is considered clean enough for digital simulation.

Old quality. Another copy of quality for iteration.

Logic family. The conversion between digital and analog information differs be-

tween logic families. If devices in different families connect to the same

node, the interfacing must be analog. The logic family value is a pointer

representing the model card of the family that generated the digital infor-

mation.
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Iteration number tags. Two integers, one for digital, one for analog, keep track

of when the node was last updated. If the digital information is more recent

than the analog information and analog information is needed, a conversion

function can be called to generate up-to-date analog information. A similar

conversion converts analog to digital, if the analog information is newer.

Last change time. The time at which this node was last updated. This time is

either the present time, or in the past.

Time difference. The difference between the last update and the one before

that. It is used in integration and slope checking for analog to logic conver-

sion.

Next event time. If an event is scheduled at this node, its time is stored here.

This time is usually in the future. A zero means there are no events scheduled

at this node.

Voltage. This is the most recent voltage at this node, usually calculated either by

the standard analog simulation method, or by a conversion from the digital

value. It is valid at the last change time.

Old voltage. The voltage one time step ago is used in integration, and to de-

termine slope for analog to logic conversion. This voltage was valid time

difference before the most recent voltage.

Both analog and digital values can exist at any node. The mode shows whether

the node is analog, with digital derived from it, or digital, with an analog approx-
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imation derived from the digital. The iteration tags indicate which are valid. If

one is older than the other, the older one is not valid and must be regenerated.

The admittance (Jacobian) matrix is allocated for all parts of the circuit,

assuming that it may be all analog. For parts of the circuit that are simulated as

digital, the corresponding parts of the matrix are not filled or used. In a program

intended for commercial use, the matrix would be allocated by subcircuit blocks,

with the allocation for the hopefully digital blocks deferred until they are needed.

This change would result in a considerable reduction of memory requirements for

large circuits that are primarily digital.

3.5.2 Choice of methods, how?

Given that both analog and digital modes exist it is obviously necessary to choose

which mode to apply where. Sometimes it seems obvious. Only one model for

an element exists. Usually the user does specify, but is often wrong. Analog

elements will necessarily need analog simulation. Logic elements apparently need

logic simulation, but this is not always true. Race conditions and poorly shaped

signals can make logic simulation misleading. It is possible that a logic device was

misused deliberately by the user. Two examples of this are making an oscillator

out of two gates, and using a gate as an amplifier. The decision of which mode to

use is made for each logic element, at run time, based on a set of rules.

The rules for deciding which mode to use are based on some assumptions:

1. Both analog and digital information are available at any node, at the request
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of any element attached to that node.

2. The conversion will be made on request. If the result is suspect, it will be

tagged for analog simulation.

3. A logic block with digital inputs will be simulated as analog, resulting in

analog outputs, if any input or combination has a questionable state. This

will force the logic block driving it to generate analog outputs, even if it is

simulated as digital.

4. A logic block with analog inputs will be simulated as digital only if the input

logic states can easily be determined from the voltages.

5. A logic block with digital inputs from a different logic family will be simu-

lated as if its inputs were analog. This means that it may be simulated as

digital, but the conversions take place.

The application of these rules will become apparent in the next section: circuit

to logic conversion. One important basis for the mode decision is the difficulty of

making the conversions between analog and digital type signals.

3.5.3 Circuit to Logic Conversion

Voltage signals are transformed to logic signals by thresholding (figure 3.10),

roughly as in SAMSON. (See section 2.4.1.) For improper signals this simple

conversion leads to illegal logic signal transitions (figure 3.11). SAMSON uses the
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r(t) f(t)

enters R enters H enters F enters L

Figure 3.10: Thresholding

Enters R Enters L

Figure 3.11: Improper logic signal produced by thresholding
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approach of generating a transition to the F state when the slope of the signal

changes, introducing timing errors which are hoped to be insignificant. URECA

simply cancels the transition state and marks the node as not suitable for dig-

ital simulation. Voltages outside the proper range for the type of circuit also

indicate to simulate that gate as analog. The conversions are summarized in the

algorithm 3.11.

After making the conversion the result is stored, so it is available to other

gates connecting to the same node.

Logic mode means that the logic function for the block is evaluated directly.

Circuit mode means that the subcircuit representing the block is evaluated. It

is possible that the subcircuit could consist of logic blocks. The same algorithm

could applied in each block to determine how to simulate it, but the information is

already available if they were inputs to the enclosing block, so will not be repeated.

In a block with several inputs, one input can force the block to be evaluated in

circuit mode. If the subcircuit consists of logic blocks, it is probable that some

will be evaluated as logic and some as circuit. At least one will be evaluated as a

circuit if possible.

3.5.4 Logic to Circuit Conversion

The output equivalent circuit of most logic elements can be approximated as two

resistors: pull up and pull down, and a capacitor. In a typical gate, the values of

these resistors change to effectively connect the output to either the power supply
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If this is an analog node {
If first iteration this step {

Save the logic values.
} else {

Restore the logic values.
}
Get the voltage v.
If v ≥ vH {

state = high.
} else if v ≤ vL {

state = low.
} else (in transition) {

Calculate voltage difference.
If rising {

futurestate = high.
If too slow or inflection {

Mark quality as bad.
}

} else if falling {
futurestate = low.
If too slow or inflection {

Mark quality as bad.
}

}
}
If out of range {

Mark quality as bad.
}
If quality is not good, and a transition occurred {

Improve quality by one grade.
}
Save the logic family, iteration count, and change time.

} else {
The logic information is already good.

}

Algorithm 3.11: Circuit to Logic Conversion
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(a) Resistor equivalent (b) Voltage source equivalent

Figure 3.12: Logic to circuit signal conversion

(a fixed voltage) or ground. This suggests an equivalent circuit for the output in

figure 3.12a, with the resistors R1 and R2 controlled by the logic function. In a

commercial simulator the equivalent circuit could be provided by the user as a

subcircuit.

It is desirable for the equivalent circuit used to have constant resistance, if

possible, to avoid changing and solving the matrix. Changing a voltage only

changes the right side vector, resulting in a less costly solution. A more efficient

model is then a voltage source with a fixed series resistor (figure 3.12b). This

model is less accurate because the resistor is fixed. The voltage source is entered

into the matrix as a fixed source controlled by the logic function.
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An extensive analysis of the conversions used in SAMSON is available in

Sakallah’s thesis[41, p. 105-116], and summarized in section 2.4.1. The conversion

used here is similar.

The conversion process takes the signal before the back-end delay, and then

produces a piece-wise-linear output, as in SAMSON. The case of overlapping

transitions is taken as an indicator to use an analog model.



Chapter 4

Results

In this chapter some simulation examples are presented, to illustrate some of the

advantages of the techniques described in this dissertation. The simulations were

run on an experimantal simulator: URECA. The examples were contrived to show

the techniques, not necessarily to be typical of real world circuits.

4.1 The URECA Simulator

The URECA simulator is an interactive general purpose simulator, written in

C, which performs the standard AC, DC, and transient analyses. The transient

analysis incorporates most of the techniques in this dissertation. It adds the basic

logic elements to the standard SPICE elements. It consists of about 18000 lines of

C code, and runs on several platforms including MS-DOS, SUN, and NeXT. The

timing benchmarks here were run either on a NeXT 68040 cube, a NeXT 68030

cube, or a Sun 3-50.

98
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The circuit description language is almost the same as SPICE. An example

circuit description is on page 110 of this document. The most significant difference

is the addition of logic elements. A label starting with U represents a logic element.

The user must specify the nodes, logic family, and gate type. Currently, only the

simple gates (and, nand, or, nor, xor, inverter) are implemented. A “.model” card

describes the logic family: rise time, fall time, delay, thresholds, and margins. For

each type of gate used, the user must supply a subcircuit, in standard SPICE

format, to use for the gate in analog mode. The only semiconductor devices are

the diode and mosfet. The diode model is equivalent to the SPICE diode model,

except that it does not include breakdown. The mosfet model is equivalent to the

SPICE level-2 model. Both models include nonlinear capacitance. A behavioral

modeling language is also included, but it was not used for the results here except

to generate some special signals that would otherwise be difficult to generate.

The simulator will automatically select whether to use the subcircuit or the

internal gate level model depending on the signals present. These decisions are

made for each gate individually, and will change during the simulation. By default,

all gates are assumed to require analog simulation at the start. When signals are

determined to be clean enough to allow digital simulation, the gates will switch

modes. If a gate now in digital mode receives a dirty input signal it will switch

to analog mode, to properly model any spikes that may occur. If a gate is used

improperly, for example as an analog device, the signals will not be clean enough

and it will be simulated in analog mode. The analog mode is simply using the
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supplied subcircuit as if the U card were replaced by an X card. The digital mode

assumes that the device is functioning properly, and does not model internal

behavior.

Logic and analog elements interface through the unified data structure, defined

in section 3.5. Each node can have all the information, but unneeded variables

can be blank. If a node has only logic elements connecting to it there may

be no voltage information. If only analog elements connect to a node there will

be no logic information. Logic information requires a logic element because the

definition of logic states is technology dependent.

The equations of the circuit level model are formulated as a true nodal analysis,

and stored and solved as a sparse matrix, as described in section 3.1. Because of

the true nodal analysis, voltage sources have resistance, and are modelled by their

Thevinin equivalent.

The incremental update of the matrix is implemented, but the partial LU

decomposition is not. The time spent in LU decomposition in the test circuits is

small enough to be not significant. This would not be true for real VLSI circuits.

When model evaluation is bypassed the access to the matrix is also bypassed.

Roundoff error from the incremental update can be significant in cases where a

poor guess for iteration results in values far from the actual values. There is a

check for this. If excess error is detected, the entire matrix is rebuilt.

Equations are not re-ordered, so the density of the matrix is dependent on

how the user numbers the nodes. The model expansion technique produces the



4.1. THE URECA SIMULATOR 101

expected bordered block diagonal form, which is fairly efficient, but the ordering

within the blocks is totally up to the user. Markowitz[29] described methods for

ordering a matrix. White[58] described methods for a priori ordering. None of

these were implemented in URECA.

The sparse matrix algorithms will minimize the storage and decomposition

time, based on the assumption that ordering within a block was specified to keep

the non-zeros as close to the diagonal as possible. Because of this, performance is

dependent on how the nodes are numbered.

The event queue is implemented as a simple list. The only action is to simulate

now. When an event occurs, the main circuit is activated. If appropriate, inactive

subcircuits may be bypassed. This bypass can result in significant time savings

since the subcircuits being bypassed, and their nodes are not touched. The selec-

tive trace algorithm, which would allow activating a subcircuit without activating

the main circuit, is not implemented. Logic gates and abrupt signal transitions

generate events, but capacitors do not, therefore integration errors have no influ-

ence on step size. This does not interfere with the mixed-mode operation.

There are several options (through the “.options” card) to enable and disable

the techniques, to allow for testing. Incremental update and bypass mode can

be controlled. The simulator can be run in analog, mixed, or digital mode. In

analog mode, subcircuits are used for logic elements, as if all U devices were X

devices (subcircuits). The digital mode is equivalent to the existing mixed mode

simulators. Logic elements are modelled by logic functions without regard for
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x5 x5

Figure 4.1: A 10 band graphic equalizer

whether the logic function is valid. The mixed mode enables automatic mode

selection, as determined by signal quality.

4.2 Sparse matrix: A Large Linear Circuit

This example was contrived to show the effectiveness of the vector sparse matrix

algorithms. The circuit consists of cascaded graphic equalizer circuits (figure 4.1),

using only linear elements. The circuit has 37 nodes, and consists of 12 op-

amps modelled as controlled sources, used in ten active filters and two amplifiers.

These equalizers were cascaded by nesting subcircuits, to build large circuits. The
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Figure 4.2: Many equalizers
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equalizer circuits were cascaded in groups of four, as a subcircuit. The resulting

subcircuits were cascaded in groups of four. They were cascaded either two, four,

or eight times, resulting in circuits of 1153, 2305, and 4606 nodes (figure 4.2). The

resulting matrices, formed by macro expansion, have a density of 2%, 1.1%, and

0.6%.

In this benchmark a trivial single point analysis was done to show how much

time was spent solving the system of equations. It was repeated using SPICE 2g6.

For URECA, the times in seconds (on a NeXT 68040) were:
nodes 1153 2305 4606

load 0.34 0.70 1.28
lu 1.56 3.69 8.10

back 0.27 0.52 1.15
overhead 0.05 0.14 1.18

total 2.22 5.05 11.74

In contrast, the times for decomposition (lu) for SPICE were 50.2 seconds for

1153 nodes, and 196.02 seconds for 2305 nodes. (Also on a NeXT 68040.) The

4606 node circuit did not run, because of a memory limit.

From these figures it can be seen that the growth in simulation time is slightly

superlinear with the circuit size. The reason it is not linear is that the model

expansion increases matrix bandwidth slightly and running time is quadratically

proportional to the effective bandwidth. For this circuit, the LU decomposition

phase dominates the running time. For a nonlinear circuit this would not be so.

The growth in SPICE is nearly quadratic. The difference in running time between

URECA and SPICE is primarily from the different sparse matrix techniques. LU
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decomposition time dominates for this circuit, which has no nonlinear elements.

The low density shows that in this case the natural ordering from macro ex-

pansion is good, where many subcircuits are used, in this case. This may not be

true in general.

4.3 Incremental update: A Comparator

This example, a comparator used in an analog to digital converter, demonstrates

the effect of the bypass and incremental matrix change algorithms, on an ordinary

analog circuit. The circuit is a typical CMOS LSI circuit, with 28 mosfets and 20

nodes (figure 4.3). Typically, this would be used as a part of a larger circuit.

Four runs of an operating point analysis and a transient analysis were per-

formed, with incremental update (incmode) on and off, and bypass on and off. All

four produced identical results, within the accuracy of the printed output, and

identical iteration counts.

The times for the various options were:

For operating point: (Sun 3-50)
no incmode incmode no incmode incmode

no bypass no bypass bypass bypass

load 4.84 4.94 4.24 2.74
lu 0.46 0.40 0.48 0.42

back 0.22 0.24 0.16 0.22
overhead 0.20 0.18 0.14 0.18

total 5.72 5.76 5.02 3.56
For transient analysis: (NeXT 68030)
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no incmode incmode no incmode incmode
no bypass no bypass bypass bypass

load 22.81 23.39 21.48 9.63
lu 2.68 2.79 2.77 2.77

back 1.28 1.42 1.51 1.38
overhead 1.58 1.15 1.43 1.07

total 28.35 28.75 27.19 14.85

From these figures, the lu, back, and overhead times are close to the same

for all options, as expected. The load time, which includes model evaluation, is

significantly different.

Incmode alone results in no time savings, because all calculations still need to

be made. In fact, there is a slight penalty. Bypass alone results in a small savings

of about 10%. Using both together results in much more than expected. Load

time is roughly cut in half.

The bypass mode causes model evaluation to be bypassed when the inputs are

within some tolerance on successive iterations. The process of model evaluation

includes solving some equations and activating a subcircuit, which loads its values

into the system of equations to be solved. When the matrix needs to be rebuilt

(no incmode) it is possible to bypass solving the model equations, but the values

must still be added to the matrix, causing the subcircuit to be activated. When

the matrix does not need to be rebuilt, there is no need to activate the subcircuit,

resulting in significant time savings.

4.4 Mixed-mode simulation: A string of gates
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This example, a gate array, demonstrates a mixed analog and digital circuit. A low

frequency sinusoidal signal is applied to the input of a string of six logic inverters

(figures 4.4, 4.5). At some point the signal is clean enough to be processed as

digital. The circuit was run in all three modes, analog, mixed, and digital, with

a variety of input signals. As expected, the analog mode simulation gives good

accuracy with poor speed. The digital mode simulation gives poor results in cases

where the input is not a valid digital signal, but does it fast. The mixed mode

gives good results, with a speed in between. The circuit also demonstrates the

event driven step control, in digital and mixed mode.

In the first test, the input is a square wave, a valid logic signal, but from an

analog source. In the second test, the input is a large sinusoid (5 volts p-p). In

the third test, the input voltage is decreased, so the thresholds of the first gate

are never met.

0.12

Logic state: 3 = high
     2 = falling
     1 = rising
     0 = low

Quality: 0 = proper logic signal
1 = improving
2 = improper: must use analog

Mode:  0 = gate in logic mode
     1 = gate in analog mode
     2 = analog elements

Figure 4.6: Logic display syntax

The output of the simulation is shown here in tabular form, with notes to show
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when mode switching occurs. A logic state is shown in the form a.bc, where a is

the state (3 = high, 2 = falling, 1 = rising, 0 = low), b is an indication of the

quality of the signal as digital (2 = bad, 1 = improving, 0 = good), and c indicates

which simulation mode was used (2 = always analog, 1 = gate as analog, 0 = gate

as digital). This is shown in figure 4.6.

* 6 inverters as gates
* Specify the input signal
.gen freq=1 offset=2.5 init=2.5 ampl=2.5
*
* Circuit description, SPICE-like format
V1 1 0 generator( 1. )
U2 0 2 1 mos inv
U3 0 3 2 mos inv
U4 0 4 3 mos inv
U5 0 5 4 mos inv
U6 0 6 5 mos inv
U7 0 7 6 mos inv
*
* Description of the logic family
.model mos logic ( delay= 1n rise= 1n fall= 1n rs= 100. rw= 1.G
+ thh= 0.75 thl= 0.25 mr= 5. mf= 5. over=10k vmax= 5. vmin= 0. )
*
* Circuit description of the analog equivalent of the logic inverter
.subckt mosinv1 1 2 3
M1 2 3 1 1 nmos l= 100.u w= 100.u nrd= 1. nrs= 1.
M2 2 3 4 4 pmos l= 100.u w= 100.u nrd= 1. nrs= 1.
Vdd 4 1 dc ( 5. )
.ends
*
* Description of the mosfet models used
.model nmos nmos (level=2 vto= 0. gamma= 0. phi= 0.6 is= 10.E-15 pb= 0.8
+ cgso= 0. cgdo= 0. cgbo= 0. rsh= 0. cj= 0. mj= 0.5 cjsw= 0. mjsw= 0.33
+ tox= 100.n nfs= 0. tpg=1 ld= 0. uo= 600. neff= 1. fc= 0.5 delta= 0. )
*+(* vfb=-0.6 * kp= 20.71886u )
.model pmos pmos (level=2 vto= 0. gamma= 0. phi= 0.6 is= 10.E-15 pb= 0.8
+ cgso= 0. cgdo= 0. cgbo= 0. rsh= 0. cj= 0. mj= 0.5 cjsw= 0. mjsw= 0.33
+ tox= 100.n nfs= 0. tpg=1 ld= 0. uo= 600. neff= 1. fc= 0.5 delta= 0. )
*+(* vfb=-0.6 * kp= 20.71886u )
*
* Commands, what to do.
.options itl4=30 out=170
.print tran v(nodes) l(nodes)
.tran 0 10 .05
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.end

4.4.1 Clean Digital Input

For the first test the input signal used is a square wave, a good digital signal. The

simulation starts in analog mode then switches. U2 and U3 switch at 1 second.

The other gates switch at 1.5 seconds. Since the signals are all clean, they remain

in digital mode once there. For other signals this will not be the case.

-->gen freq=0. ampl=1. max=5. min=0. offset=0. init=2.5
-->gen rise=1.n fall=1.n width=0.5 period=1.
-->set bypass incmode mixed
-->tr 0 10 .1 skip 10
Time v(1) v(4) v(7) logic(1) logic(4) logic(7)
0. 2.5 2.3893 4.9847 1.22 1.21 3.11
0.1 5. 96.374p 5. 3.12 0.21 3.11
0.2 5. 96.374p 5. 3.12 0.21 3.11
0.3 5. 96.374p 5. 3.12 0.21 3.11
0.4 5. 96.374p 5. 3.12 0.21 3.11
0.5 5. 96.374p 5. 3.12 0.21 3.11
0.6 0. 5. 96.371p 0.02 3.11 0.01
0.7 0. 5. 96.371p 0.02 3.11 0.01
0.8 0. 5. 96.371p 0.02 3.11 0.01
0.9 0. 5. 96.371p 0.02 3.11 0.01
1. 0. 5. 96.371p 0.02 3.11 0.01

U2:98964 switch to digital
U3:98964 switch to digital
1.1 5. 5. 96.371p 3.02 3.11 0.01
1.2 5. 5. 96.371p 3.02 3.11 0.01
1.3 5. 5. 96.371p 3.02 3.11 0.01
1.4 5. 5. 96.371p 3.02 3.11 0.01
1.5 5. 5. 96.371p 3.02 3.11 0.01

U4:99067 switch to digital
U5:99067 switch to digital
U6:99072 switch to digital
U7:99072 switch to digital
1.6 0. 5. 0. 0.02 3. 0.
1.7 0. 5. 0. 0.02 3. 0.
1.8 0. 5. 0. 0.02 3. 0.

............
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The running time varied from 87.51 seconds to 14.95 seconds for the various

simulation options. The total time for mixed mode is only slightly slower than the

digital mode. There is a significant time savings by using bypass and incremental

matrix update. For all modes, the time spent solving the system of equations and

for overhead was about the same. In the digital and mixed cases they dominated.

This document discussed methods of speeding up the solution phase, but the

partial solution method is not implemented. Adding the partial solution method

will reduce the time spent in solving the equations for the digital and mixed cases.

analog analog mixed mixed digital digital
no inc incmode no inc incmode no inc incmode

no byp bypass no byp bypass no byp bypass

load 73.71 13.31 10.98 4.40 4.33 2.50
lu 5.80 6.08 4.46 5.94 5.69 5.86

back 2.30 1.92 1.71 1.76 2.04 2.11
output 3.89 3.87 3.27 3.27 3.11 3.09

overhead 1.81 1.82 1.56 1.41 1.53 1.39
total 87.51 27.00 21.99 16.78 16.71 14.95

iterations 4570 4536 4508 4505 4496 4496

4.4.2 A Signal Too Slow

The second test uses a sinusoidal input, which is not a proper logic signal. This

signal has an adequate amplitude and it is properly offset, but the rise and fall

times are much too slow. The signal used is a 1 Hz sine wave, with a peak ampli-

tude of 2.5 volts, offset by 2.5 volts. The maximum voltage is 5, and the minimum

is 0, like a digital signal, but the transition is too slow. The proper behavior of

this circuit is for the signal to become increasingly square as it propagates. After
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several stages, the rise and fall times are fast enough to look like a proper digital

signal.

.generator freq=1 ampl=2.5 offset=2.5 init=2.5

The simulation starts, as usual, with all gates assumed to need analog simula-

tion. After 1 second (2 state transitions), the last two (U6 and U7) are observed

to be clean enough for digital simulation, but there it is questionable later at 1.1

and 1.6 seconds, when they hunt, and eventually settle to digital mode at 1.6 sec-

onds. At 1.1 seconds, U5 attempts, unsuccessfully, to switch to digital mode, then

switches to digital at 1.5 seconds, hunts at 2.1 seconds, then settles into digital

mode at 2.6 seconds. U4 attempts digital mode at 1.6 seconds, switches back to

analog, to remain there, at 2.1 seconds. There are no more mode changes after 2.6

seconds. For the remainder of the run, U2, U3, and U4 are simulated as analog,

and U5, U6, and U7 are simulated as digital. Some of the hunting may be due to

a mismatch between the analog and digital models in delay and transition time.

The reason for the hunting in this case, is that inconsistent values during

iterating the nonlinear model equations produce values that are out of range.

This suggests a need to not switch based on non-converged values. As presently

implemented, it will switch on any value, converged or not, for that iteration. On

later iterations it will switch to the proper mode. The cost is that it is in analog

mode more than necessary.

Mixed mode simulation with automatic switching:

-->set mixed
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-->print tran v 1 4 5 logic 1 4 5
-->tr 0 10 .1 skip 10
Time v(1) v(4) v(5) logic(1) logic(4) logic(5)
0. 2.5 2.3893 3.4393 1.22 1.21 1.21
0.1 3.9695 370.07n 5. 3.12 0.21 3.11
0.2 4.8776 -45.656p 5. 3.12 0.21 3.11
0.3 4.8776 -45.656p 5. 3.12 0.21 3.11
0.4 3.9695 370.07n 5. 3.12 0.21 3.11
0.5 2.5 2.3893 3.4394 2.22 1.21 2.11
0.6 1.0305 5. -75.88p 0.12 3.11 0.01
0.7 0.12236 5. -75.938p 0.12 3.11 0.01
0.8 0.12236 5. -75.938p 0.12 3.11 0.01
0.9 1.0305 5. -75.88p 0.12 3.11 0.01

U6:532 switch to digital
U7:532 switch to digital
1. 2.5 2.3894 3.4393 1.22 2.11 1.01

U5:541 switch to digital
U5:542 switch to analog
U7:542 switch to analog
U6:543 switch to analog
U6:547 switch to digital
U7:547 switch to digital
1.1 3.9695 370.07n 5. 3.12 0.11 3.01
1.2 4.8776 -45.55p 5. 3.12 0.11 3.01
1.3 4.8776 -45.55p 5. 3.12 0.11 3.01
1.4 3.9695 370.07n 5. 3.12 0.11 3.01
1.5 2.5 2.3893 3.4394 2.22 1.11 2.01

U4:818 switch to digital
U5:818 switch to digital
U4:819 switch to analog
U5:819 switch to analog
U4:822 switch to digital
U5:822 switch to digital
U7:822 switch to analog
U6:823 switch to analog
U7:823 switch to digital
U7:824 switch to analog
U6:825 switch to digital
U7:825 switch to digital
1.6 1.0305 5. 5. 0.12 3. 3.
1.7 0.12236 5. 5. 0.12 3. 3.
1.8 0.12236 5. 5. 0.12 3. 3.
1.9 1.0305 5. 5. 0.12 3. 3.
2. 2.5 5. 5. 1.22 3. 3.

U4:1075 switch to analog
U5:1076 switch to analog
2.1 3.9695 370.07n 5. 3.12 0.11 3.01
2.2 4.8776 -45.661p 5. 3.12 0.11 3.01
2.3 4.8776 -45.661p 5. 3.12 0.11 3.01
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2.4 3.9695 370.07n 5. 3.12 0.11 3.01
2.5 2.5 2.3893 3.4395 2.22 1.11 2.01

U5:1342 switch to digital
2.6 1.0305 5. 0. 0.12 3.01 0.
2.7 0.12236 5. 0. 0.12 3.01 0.
2.8 0.12236 5. 0. 0.12 3.01 0.
2.9 1.0305 5. 0. 0.12 3.01 0.
3. 2.5 2.3894 0. 1.22 2.01 0.
3.1 3.9695 370.07n 5. 3.12 0.01 3.

................
8.9 1.0305 5. 0. 0.12 3.01 0.
9. 2.5 2.3894 0. 1.22 2.01 0.
9.1 3.9695 370.07n 5. 3.12 0.01 3.
9.2 4.8776 96.376p 5. 3.12 0.01 3.
9.3 4.8776 96.376p 5. 3.12 0.01 3.
9.4 3.9695 370.07n 5. 3.12 0.01 3.
9.5 2.5 2.3893 5. 2.22 1.01 3.
9.6 1.0305 5. 0. 0.12 3.01 0.
9.7 0.12236 5. 0. 0.12 3.01 0.
9.8 0.12236 5. 0. 0.12 3.01 0.
9.9 1.0305 5. 0. 0.12 3.01 0.
10. 2.5 2.3894 0. 1.22 2.01 0.

The analog simulation shows identical logic states for the gates simulated as

digital. The voltages are nearly the same except for the obvious lack of precision

in digital mode. The most obvious is the in-transition state (at 3, 9, 9.5, and 10

seconds in the range shown). The voltage at node 5 is 3.43 (obviously in transition)

in the analog simulation. The digital simulation shows it as either 0 or 5, showing

a mismatch between the digital and analog models in delay and transition time.

In all these cases, the logic state shows rising or falling. Considering that in this

example the transition times are fast compared to the displayed step sizes, this is

not surprising.

Full analog simulation:

-->set analog
-->tr 0 10 .1 skip 10
Time v(1) v(4) v(5) logic(1) logic(4) logic(5)
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.......
1.8 0.12236 5. -76.06p 0.12 3.01 0.01
1.9 1.0305 5. -76.001p 0.12 3.01 0.01
2. 2.5 2.3894 3.4393 1.22 2.01 1.01
2.1 3.9695 370.07n 5. 3.12 0.01 3.01
2.2 4.8776 -45.653p 5. 3.12 0.01 3.01
2.3 4.8776 -45.653p 5. 3.12 0.01 3.01
2.4 3.9695 370.07n 5. 3.12 0.01 3.01
2.5 2.5 2.3893 3.4395 2.22 1.01 2.01
2.6 1.0305 5. -75.998p 0.12 3.01 0.01
2.7 0.12236 5. -76.057p 0.12 3.01 0.01
2.8 0.12236 5. -76.057p 0.12 3.01 0.01
2.9 1.0305 5. -75.998p 0.12 3.01 0.01
3. 2.5 2.3894 3.4392 1.22 2.01 1.01
3.1 3.9695 370.07n 5. 3.12 0.01 3.01

............
8.9 1.0305 5. -75.988p 0.12 3.01 0.01
9. 2.5 2.3894 3.4391 1.22 2.01 1.01
9.1 3.9695 370.07n 5. 3.12 0.01 3.01
9.2 4.8776 -45.64p 5. 3.12 0.01 3.01
9.3 4.8776 -45.64p 5. 3.12 0.01 3.01
9.4 3.9695 370.07n 5. 3.12 0.01 3.01
9.5 2.5 2.3893 3.4396 2.22 1.01 2.01
9.6 1.0305 5. -75.99p 0.12 3.01 0.01
9.7 0.12236 5. -76.048p 0.12 3.01 0.01
9.8 0.12236 5. -76.048p 0.12 3.01 0.01
9.9 1.0305 5. -75.99p 0.12 3.01 0.01
10. 2.5 2.3894 3.4391 1.22 2.01 1.01

The full digital simulation appears to be valid, except that the transition

states are not shown. The transitions occur at times other than those displayed,

indicating the time at which transitions occurred was not modelled correctly.

Considering the coarseness of this printout, it is probably accurate enough, but in

practice it may not be. The fact that the results appear to be correct, but in fact

are not, points out an important problem that implicit mixed mode simulation

helps to solve.

Full digital simulation:

-->set digital
-->tr 0 10 .1 skip 10
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Time v(1) v(4) v(5) logic(1) logic(4) logic(5)
0. 2.5 0. 0. 1.22 1.2 1.2
0.1 3.9695 0. 5. 3.12 0. 3.
0.2 4.8776 0. 5. 3.12 0. 3.
0.3 4.8776 0. 5. 3.12 0. 3.
0.4 3.9695 0. 5. 3.12 0. 3.
0.5 2.5 0. 5. 2.22 0. 3.
0.6 1.0305 5. 0. 0.12 3. 0.
0.7 0.12236 5. 0. 0.12 3. 0.

.................
8.8 0.12236 5. 0. 0.12 3. 0.
8.9 1.0305 5. 0. 0.12 3. 0.
9. 2.5 5. 0. 1.22 3. 0.
9.1 3.9695 0. 5. 3.12 0. 3.
9.2 4.8776 0. 5. 3.12 0. 3.
9.3 4.8776 0. 5. 3.12 0. 3.
9.4 3.9695 0. 5. 3.12 0. 3.
9.5 2.5 0. 5. 2.22 0. 3.
9.6 1.0305 5. 0. 0.12 3. 0.
9.7 0.12236 5. 0. 0.12 3. 0.
9.8 0.12236 5. 0. 0.12 3. 0.
9.9 1.0305 5. 0. 0.12 3. 0.
10. 2.5 5. 0. 1.22 3. 0.

A closer look near the transition at 9.5 seconds reveals the importance of this

difference. The mixed simulation, with the first few gates simulated in analog

mode, correctly shows the state change at node 5 as occurring at 9.5 seconds.

The full digital simulation shows the transition delayed until 9.59 seconds. The

difference is due to the apparent time of transition of the input. With the first

gate simulated as analog, the signal is amplified before making any state decisions,

so the transition point of the entire circuit is at the midpoint, about 2.5 volts.

With the first gate simulated as digital, the state transition occurs when the input

signal passes from the transition region to the logic-low region, near 1.16 volts.

This state change time is propagated to the rest of the circuit. This would be the

result with other “mixed-mode” simulators.
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More detail around 9.5 seconds, mixed mode:

Time v(1) v(4) v(5) logic(1) logic(4) logic(5)
9.4 3.9695 370.07n 5. 3.12 0.01 3.
9.4 3.9695 370.07n 5. 3.12 0.01 3.
9.41 3.8396 1.1411u 5. 3.12 0.01 3.
9.42 3.7044 3.3673u 5. 2.12 0.01 3.
9.43 3.5644 9.6149u 5. 2.22 0.01 3.
9.44 3.4203 26.904u 5. 2.22 0.01 3.
9.45 3.2725 74.869u 5. 2.22 0.01 3.
9.46 3.1217 211.35u 5. 2.22 0.01 3.
9.47 2.9685 624.3u 5. 2.22 0.01 3.
9.48 2.8133 0.0020482 5. 2.22 0.01 3.
9.49 2.657 0.0087765 5. 2.22 0.01 3.
9.5 2.5 2.3893 5. 2.22 1.01 3.
9.5 2.5 2.3893 5. 2.22 1.01 3.
9.51 2.343 4.9912 5. 2.22 3.01 2.
9.51 2.343 4.9912 0. 2.22 3.01 0.
9.51 2.343 4.9912 0. 2.22 3.01 0.
9.51 2.343 4.9912 0. 2.22 3.01 0.
9.52 2.1867 4.998 0. 2.22 3.01 0.
9.53 2.0315 4.9994 0. 2.22 3.01 0.
9.54 1.8783 4.9998 0. 2.22 3.01 0.
9.55 1.7275 4.9999 0. 2.22 3.01 0.
9.56 1.5797 5. 0. 2.22 3.01 0.
9.57 1.4356 5. 0. 2.22 3.01 0.
9.58 1.2956 5. 0. 2.22 3.01 0.
9.59 1.1604 5. 0. 0.12 3.01 0.
9.6 1.0305 5. 0. 0.12 3.01 0.

More detail around 9.5 seconds, digital mode:

Time v(1) v(4) v(5) logic(1) logic(4) logic(5)
9.4 3.9695 0. 5. 3.12 0. 3.
9.4 3.9695 0. 5. 3.12 0. 3.
9.41 3.8396 0. 5. 3.12 0. 3.
9.42 3.7044 0. 5. 2.12 0. 3.
9.43 3.5644 0. 5. 2.22 0. 3.
9.44 3.4203 0. 5. 2.22 0. 3.
9.45 3.2725 0. 5. 2.22 0. 3.
9.46 3.1217 0. 5. 2.22 0. 3.
9.47 2.9685 0. 5. 2.22 0. 3.
9.48 2.8133 0. 5. 2.22 0. 3.
9.49 2.657 0. 5. 2.22 0. 3.
9.5 2.5 0. 5. 2.22 0. 3.
9.5 2.5 0. 5. 2.22 0. 3.
9.51 2.343 0. 5. 2.22 0. 3.
9.52 2.1867 0. 5. 2.22 0. 3.
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9.53 2.0315 0. 5. 2.22 0. 3.
9.54 1.8783 0. 5. 2.22 0. 3.
9.55 1.7275 0. 5. 2.22 0. 3.
9.56 1.5797 0. 5. 2.22 0. 3.
9.57 1.4356 0. 5. 2.22 0. 3.
9.58 1.2956 0. 5. 2.22 0. 3.
9.59 1.1604 0. 5. 0.12 0. 3.
9.59 1.1604 0. 5. 0.12 0. 3.
9.59 1.1604 0. 5. 0.12 1. 3.
9.59 1.1604 5. 5. 0.12 3. 2.
9.59 1.1604 5. 0. 0.12 3. 0.
9.59 1.1604 5. 0. 0.12 3. 0.
9.59 1.1604 5. 0. 0.12 3. 0.
9.6 1.0305 5. 0. 0.12 3. 0.

The simulation runs much slower with this input. There were roughly twice as

many iterations, hence twice the running time. The all digital mode runs in about

the same time as it did with the digital input, but in this case (slow sine input)

it gives questionable results. There is less difference between the full analog and

mixed simulations because several gates were in analog mode more of the time.

Again, the combined bypass and incremental update saved a significant amount of

time. The savings from bypass and incremental mode are more than the savings

from mixed-mode.

analog analog mixed mixed digital digital
no inc incmode no inc incmode no inc incmode

no byp bypass no byp bypass no byp bypass

load 148.51 65.12 83.82 50.25 4.53 2.61
lu 11.46 11.36 11.13 11.25 5.41 5.92

back 4.51 4.06 4.03 4.01 1.88 1.67
output 3.91 3.99 3.57 3.58 3.20 3.26

overhead 3.22 3.02 3.45 2.88 1.83 1.75
total 171.60 87.56 105.99 71.97 16.85 15.21

iterations 9242 9192 9182 9136 4506 4506
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4.4.3 Input Signal Too Small

The third input signal used is a low amplitude sinusoid. The signal used here is,

again, 1 Hz with an offset of 2.5 volts, but the peak amplitude is only 1 volt. The

maximum voltage is 3.5 and the minimum is 1.5. It never leaves the transition

region. The proper behavior for this circuit is similar to the second case except

that it will take probably one more stage to become square enough. The simula-

tion results are very different between full digital and mixed mode. The digital

simulation is completely incorrect because it never senses any transitions.

The mode switching hunts more, because more of the simulation is analog, and

it is more likely that non-converged values are not appropriate for logic simulation.

The output results are as expected, for this circuit.

-->pr tran v 1 5 6 logic 1 5 6
-->set mixed
-->tr 0 10 .1 skip 10
Time v(1) v(5) v(6) logic(1) logic(5) logic(6)
..................
7.8 1.5489 -46.309p 5. 1.22 0.01 3.
7.9 1.9122 7.1127n 5. 1.22 0.01 3.

U7:41150 switch to analog
U6:41151 switch to analog
U7:41151 switch to digital
U6:41152 switch to digital
U7:41153 switch to analog
U6:41154 switch to analog
U7:41154 switch to digital
U6:41155 switch to digital
8. 2.5 3.4761 0. 1.22 1.01 0.

U7:41156 switch to analog
U6:41157 switch to analog
U7:41157 switch to digital
U6:41158 switch to digital
U5:41159 switch to digital
U5:41160 switch to analog
U7:41161 switch to analog
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U6:41162 switch to analog
U7:41162 switch to digital
U6:41163 switch to digital
U7:41164 switch to analog
U7:41165 switch to digital
8.1 3.0878 5. 0. 1.22 3.01 0.
8.2 3.4511 5. 0. 1.22 3.01 0.
8.3 3.4511 5. 0. 0.22 3.01 0.
8.4 3.0878 5. 0. 0.22 3.01 0.
8.5 2.5 3.4531 0. 0.22 2.01 0.

U5:41414 switch to digital
8.6 1.9122 0. 5. 0.22 0. 3.
8.7 1.5489 0. 5. 0.22 0. 3.
8.8 1.5489 0. 5. 1.22 0. 3.
8.9 1.9122 0. 5. 1.22 0. 3.

................

The full digital simulation gives completely incorrect results. Logic states

never change. The state at the input, which is determined by an analog to logic

conversion, switches between low and rising, both effectively low. The initial state

is arbitrary. Since it was in transition and had a positive slope, it was chosen to

be rising (old state = low, future state = high). At the inflection point, where

the signal starts to fall, it had not reached the threshold so had never become

high. The future state becomes low, indicating the apparently stable low state.

The input state alternates between low and rising, which is always considered low.

This never propagates, so all following stages are constant.

-->pr tran v 1 5 6 logic 1 5 6
-->set digital
-->tr 0 10 .1 skip 10
Time v(1) v(5) v(6) logic(1) logic(5) logic(6)
0. 2.5 0. 0. 1.22 1.2 1.2
0.1 3.0878 0. 5. 1.22 0. 3.
0.2 3.4511 0. 5. 1.22 0. 3.
0.3 3.4511 0. 5. 0.22 0. 3.
0.4 3.0878 0. 5. 0.22 0. 3.
0.5 2.5 0. 5. 0.22 0. 3.
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..................
7.8 1.5489 0. 5. 1.22 0. 3.
7.9 1.9122 0. 5. 1.22 0. 3.
8. 2.5 0. 5. 1.22 0. 3.
8.1 3.0878 0. 5. 1.22 0. 3.
8.2 3.4511 0. 5. 1.22 0. 3.
8.3 3.4511 0. 5. 0.22 0. 3.
8.4 3.0878 0. 5. 0.22 0. 3.
8.5 2.5 0. 5. 0.22 0. 3.
8.6 1.9122 0. 5. 0.22 0. 3.
8.7 1.5489 0. 5. 0.22 0. 3.
8.8 1.5489 0. 5. 1.22 0. 3.
8.9 1.9122 0. 5. 1.22 0. 3.

................

4.4.4 Summary

This example has shown the application of implicit mixed-mode simulation to a

simple inverter string, with a variety of inputs. For the clean, digital input, the

running time was about a factor of six faster than traditional analog simulation,

and only slightly slower than the fully digital mode. The load time, including

model evaluation, was faster than traditional by about a factor of 20. For a

slowly changing sinusoidal input, only a slight saving was realized, but it produced

correct results in all cases. Sometimes, the fully digital mode did not.

The time savings from incremental update of the matrix, combined with model

evaluation bypass, was significant, a factor of two or three in total running time,

two to five in load time, including model evaluation. One conclusion that can be

drawn from this is that it is necessary to switch modes.



Chapter 5

Contributions and Suggestions
for Further Research

In this dissertation some techniques have been presented to combine different

simulation modes implicitly, without direct instructions from the user.

Modifications to the well-known LU decomposition algorithms to allow for the

solution of a partial matrix were presented. This allows parts of the matrix to

be bypassed, or totally ignored, if the information that part solves for is known

by some other means. It provides a more efficient means of simulating parts

of the circuit, by applying the selective trace algorithm, which is common in

digital simulators, to the entire circuit. Parts of circuits with widely varying time

constants, and very different signal frequencies can be simulated together without

interfering with each other.

A method was presented to automatically choose between logic and analog

simulation in parts of the circuit that have a logic level description. The choice

123
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is based on the assumption that when the digital signals appear to be clean, a

digital simulation is valid. When the digital signals show race and spike conditions

or slow transition times, they are suspect and analog simulation is used for the

problem parts of the circuit. The change can be made on parts of the circuit

as small as a single gate. When the conversion between modes is poorly defined

and difficult to make, the analog mode is selected. Since the problem parts of

the circuit are simulated as analog at the remaining interface points, the signal is

hopefully clean, and the conversion can be made easily and unambiguously.

The implementation used here begins in the analog mode to establish the initial

conditions. When a signal passes two transitions, while all the time meeting the

criteria for a proper digital signal, it is accepted as digital. Any hint at failing to

meet the criteria causes a switch back to analog mode. The method used is prone

to hunting problems, where a gate switched back and forth between analog and

digital mode repeatedly, in marginal cases. This is not a serious problem for a

user, because the run time is no worse than analog simulation, and the accuracy

is no worse than digital simulation. Usually, when hunting, it is mostly in digital

mode, so the effect of the hunting is that simulation time is increased somewhat

over what it would be without the hunting problem.

For analog circuits model bypass is used to eliminate needless calculations after

a the terminal voltages of a subcircuit or device have converged, but other parts of

the circuit have not. Bypass is not new. It results in about 10% savings in time,

with no apparent loss of accuracy, and usually no increase in iteration count.
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Instead of rebuilding the matrix at each iteration, URECA keeps the old ma-

trix and updates it, usually by adding the difference between the new and old

values. Without bypass this would have no benefit. When a model or subcircuit

is bypassed it is not necessary to load the values into the matrix. If an entire

subcircuit or semiconductor device can be bypassed, it eliminates the need to

process the subcircuit at all, resulting in considerable time savings. Tests have

shown that model evaluation and matrix load time are cut in half, or better, for

moderate sized semiconductor circuits. Up to five times improvement has been

demonstrated. This is expected to improve for very large circuits.

The use of selective trace to control model evaluation in analog simulation was

investigated, but not implemented. The success of the incremental update method

indicates that selective trace should also be successful. The most important benefit

of selective trace is believed to be that it is possible to activate small parts of the

circuit without activating the main circuit. This should improve simulation time

considerably for circuits with widely differing frequencies of operation, such as

sampled data circuits.

A vector method for solving the matrix was reviewed and implemented. It is a

nearly optimal method for LU decomposition of the particular type of sparse ma-

trix that exists in circuit simulation of large circuits. It was shown to be effective

in solving large circuits, those of over 1000 nodes. For typical semiconductor cir-

cuits matrix solution time is small compared to model evaluation time. For digital

circuits in digital mode, matrix solution still dominates. A theoretical analysis
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was done on methods of solving part of the matrix, but this was not implemented.

The unnecessary matrix solution is the one factor in why even the digital mode is

not nearly as fast as a pure logic simulator.

In this work, it became apparent that some areas merit further investigation:

Cached evaluation of subcircuits and models. Large circuits tend to have

many blocks and devices repeated. Often their operating points are close, so

they also can be considered to be repeated. Existing simulators evaluate the

models every time. Since model evaluation time is dominant, considerable

time could be saved if they could re-use the results of model evaluation, by

saving them in a cache.

Cleaner switching between analog and digital modes. During iteration,

the apparent voltages at some nodes of an analog circuit can take on im-

proper values. After a few iterations of Newton’s method, they settle to a

reasonable value. If the node in question drives a digital element, this appar-

ent voltage swing during iteration can temporarily trick the mode switching

to switch back to analog, even though the converged signal is proper for dig-

ital simulation. This switching only affects a few iterations then it switches

back to digital mode, so it does not hurt the accuracy. The user may not

even notice it unless notification of switching was requested. The problem

with it is that it wastes time by activating the analog model for a few it-

erations, when it will switch back to digital before iteration is complete.

An investigation is needed to determine when it is acceptable to ignore the
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fact that a signal was marked as invalid, and thus continue with digital

simulation.

Further analysis and testing of the selective trace method. In this work,

the application of selective trace to analog simulation was investigated theo-

retically, but not fully implemented. The implementation activates the main

circuit on all events. By using selective trace, a subcircuit could be activated

without the main circuit, resulting in a large time savings for large circuits

where parts of the circuit require smaller time steps than the main circuit,

such as sampled data systems.

Partial solutions. Techniques were described here to do a partial LU decompo-

sition of a matrix in which only a few elements have changed. The same

techniques can be used to solve for a few node voltages without solving for

all of them. Work needs to be done on how to determine which elements

need updating, taking into account how the changes propagate. It is im-

portant that the method for deciding be efficient, otherwise its cost may

mask the savings. A study is also needed on how this effects the integration

algorithms for capacitors and inductors, since the voltages available are not

all at the same time. It is probable that the voltages at the two terminals of

a capacitor are at different times, and the previous time values at another

set of different times, with different differences.

Improvement of memory utilization. The combined methods in this work

were not optimized. They use more space than traditional simulation, in
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all areas. With large circuits, the space consideration is important, at least

to minimize swapping. There are many areas with redundant storage, such

as duplication of subcircuits. The storage for identical subcircuits could be

shared. In addition to saving space, it would help with cached evaluation of

models.

Analysis of error accumulation in matrix updates. In this work matrices

are updated often by adding a difference between a new and old value. Each

time there is probably some small round-off error. Often, during iteration

when far from convergence, the round off errors can be very large. These

errors can accumulate as partial solutions are repeated. It was assumed,

possibly incorrectly, that these errors are small. The present implementa-

tion of URECA senses certain conditions where these errors are large, and

rebuilds the entire matrix. Work needs to be done to develop a more efficient

scheme.

Integration of other methods to the scheme. The methods used here are

traditional circuit simulation, and logic simulation. There are other methods

in use, including harmonic balance and analog behavioral modeling. These

could be integrated into the scheme, for a true multi-mode simulator.

AC analysis of a mixed mode circuit. In traditional simulators, the AC anal-

ysis uses a linearized model based on the DC or transient analysis. Some-

times, the AC performance is desired for a mixed mode circuit. An example

is a sampled data filter (digital or switched capacitor): analog in, sample,
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process the samples, convert back to the same analog domain. What is the

frequency response of this “filter”? Another example is an RF communica-

tion channel: audio in, modulate, send through channel, demodulate, audio

out. One way is to do a mixed-mode transient analysis, and FFT to get the

frequency domain information, but this is inefficient. Similarly, pole-zero

analysis of a mixed mode circuit would be desirable.

Implementing on non-traditional computers. With VLSI, non-traditional

computer architectures are becoming practical and affordable. Massively

parallel architectures, such as the Connection Machine, could become popu-

lar, and migrate from being purely research machines to the workstations. A

study of mixed-mode simulation on these new computer architectures could

be productive.

Detailed simulation of devices. The two modes in this simulator are actually

different levels of detail. One level (circuit level) decomposes elements into

smaller parts. The other level (logic or abstract level) approximates them

by simple equations. One could consider the existing device models to be an

abstraction of a true device simulation. A full device simulation could then

be substituted for the models now used. This, of course, would increase

the simulation cost, but could provide information which is not presently

available.

Thermal analysis, with self-heating Thermal problems have always plagued

circuit designers. Usually thermal problem are dealt with in an ad-hoc
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manner. Integrating a thermal analysis with the circuit analysis could point

out places where the circuit has thermal problems, and show if temperature

compensation techniques actually work.

Extraction of logic level parameters from the circuit model. The mixed-

mode simulation can use either a logic level or circuit level model for logic

elements. In the existing implementation, the logic parameters, and equiv-

alent circuit, are specified by the user, with no check that they match. This

inconsistency is one reason sometimes the mode selection mechanism hunts

between modes. It is possible to extract the logic parameters by simulating

the circuit model, or extract the values for a standard circuit model from

the logic model. This would both make it easier for the user and establish

some consistency between the two models.

In summary, the techniques described here allow simulation of mixed analog

and digital circuits with the analog and digital elements to be freely mixed, not

necessarily by the rules. The techniques here model the interface better than other

approaches.
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