/* Complex tangent function for a complex float type. Copyright (C) 1997-2018 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include "quadmath-imp.h" __complex128 ctanq (__complex128 x) { __complex128 res; if (__glibc_unlikely (!finiteq (__real__ x) || !finiteq (__imag__ x))) { if (isinfq (__imag__ x)) { if (finiteq (__real__ x) && fabsq (__real__ x) > 1) { __float128 sinrx, cosrx; sincosq (__real__ x, &sinrx, &cosrx); __real__ res = copysignq (0, sinrx * cosrx); } else __real__ res = copysignq (0, __real__ x); __imag__ res = copysignq (1, __imag__ x); } else if (__real__ x == 0) { res = x; } else { __real__ res = nanq (""); if (__imag__ x == 0) __imag__ res = __imag__ x; else __imag__ res = nanq (""); if (isinfq (__real__ x)) feraiseexcept (FE_INVALID); } } else { __float128 sinrx, cosrx; __float128 den; const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q / 2); /* tan(x+iy) = (sin(2x) + i*sinh(2y))/(cos(2x) + cosh(2y)) = (sin(x)*cos(x) + i*sinh(y)*cosh(y)/(cos(x)^2 + sinh(y)^2). */ if (__glibc_likely (fabsq (__real__ x) > FLT128_MIN)) { sincosq (__real__ x, &sinrx, &cosrx); } else { sinrx = __real__ x; cosrx = 1; } if (fabsq (__imag__ x) > t) { /* Avoid intermediate overflow when the real part of the result may be subnormal. Ignoring negligible terms, the imaginary part is +/- 1, the real part is sin(x)*cos(x)/sinh(y)^2 = 4*sin(x)*cos(x)/exp(2y). */ __float128 exp_2t = expq (2 * t); __imag__ res = copysignq (1, __imag__ x); __real__ res = 4 * sinrx * cosrx; __imag__ x = fabsq (__imag__ x); __imag__ x -= t; __real__ res /= exp_2t; if (__imag__ x > t) { /* Underflow (original imaginary part of x has absolute value > 2t). */ __real__ res /= exp_2t; } else __real__ res /= expq (2 * __imag__ x); } else { __float128 sinhix, coshix; if (fabsq (__imag__ x) > FLT128_MIN) { sinhix = sinhq (__imag__ x); coshix = coshq (__imag__ x); } else { sinhix = __imag__ x; coshix = 1; } if (fabsq (sinhix) > fabsq (cosrx) * FLT128_EPSILON) den = cosrx * cosrx + sinhix * sinhix; else den = cosrx * cosrx; __real__ res = sinrx * cosrx / den; __imag__ res = sinhix * coshix / den; } math_check_force_underflow_complex (res); } return res; }