
QPDF Manual

For QPDF Version 2.3.0, August 11, 2011

Jay Berkenbilt

QPDF Manual: For QPDF Version 2.3.0, August 11, 2011
Jay Berkenbilt
Copyright © 2005–2011 Jay Berkenbilt

iii

Table of Contents
General Information ... iv
1. What is QPDF? .. 1
2. Building and Installing QPDF ... 2

2.1. System Requirements .. 2
2.2. Build Instructions ... 2

3. Running QPDF ... 4
3.1. Basic Invocation .. 4
3.2. Basic Options .. 4
3.3. Encryption Options ... 4
3.4. Advanced Transformation Options ... 6
3.5. Testing, Inspection, and Debugging Options .. 8

4. QDF Mode .. 10
5. Using the QPDF Library .. 12
6. Design and Library Notes ... 13

6.1. Introduction ... 13
6.2. Design Goals ... 13
6.3. Encryption ... 15
6.4. Writing PDF Files .. 15
6.5. Filtered Streams ... 16

7. Linearization .. 18
7.1. Basic Strategy for Linearization .. 18
7.2. Preparing For Linearization .. 18
7.3. Optimization .. 18
7.4. Writing Linearized Files .. 19
7.5. Calculating Linearization Data .. 19
7.6. Known Issues with Linearization ... 19
7.7. Debugging Note ... 20

8. Object and Cross-Reference Streams .. 21
8.1. Object Streams ... 21
8.2. Cross-Reference Streams .. 21

8.2.1. Cross-Reference Stream Data ... 22
8.3. Implications for Linearized Files ... 22
8.4. Implementation Notes .. 23

A. Release Notes .. 24
B. Upgrading from 2.0 to 2.1 ... 28

iv

General Information
QPDF is a program that does structural, content-preserving transformations on PDF files. QPDF's website is located
at http://qpdf.sourceforge.net/.

QPDF has been released under the terms of Version 2.0 of the Artistic License [http://www.opensource.org/licens-
es/artistic-license-2.0.php], a copy of which appears in the file Artistic-2.0 in the source distribution.

QPDF was originally created in 2001 and modified periodically between 2001 and 2005 during my employment at
Apex CoVantage [http://www.apexcovantage.com]. Upon my departure from Apex, the company graciously allowed
me to take ownership of the software and continue maintaining as an open source project, a decision for which I am
very grateful. I have made considerable enhancements to it since that time. I feel fortunate to have worked for people
who would make such a decision. This work would not have been possible without their support.

http://qpdf.sourceforge.net/
http://www.opensource.org/licenses/artistic-license-2.0.php
http://www.opensource.org/licenses/artistic-license-2.0.php
http://www.opensource.org/licenses/artistic-license-2.0.php
http://www.apexcovantage.com
http://www.apexcovantage.com

1

Chapter 1. What is QPDF?
QPDF is a program that does structural, content-preserving transformations on PDF files. It could have been called
something like pdf-to-pdf. It also provides many useful capabilities to developers of PDF-producing software or for
people who just want to look at the innards of a PDF file to learn more about how they work.

QPDF is not a PDF content creation library, a PDF viewer, or a program capable of converting PDF into other formats.
In particular, QPDF knows nothing about the semantics of PDF content streams. If you are looking for something that
can do that, you should look elsewhere. However, once you have a valid PDF file, QPDF can be used to transform
that file in ways perhaps your original PDF creation can't handle. For example, programs generate simple PDF files
but can't password-protect them, web-optimize them, or perform other transformations of that type.

2

Chapter 2. Building and Installing
QPDF
This chapter describes how to build and install qpdf. Please see also the README and INSTALL files in the source
distribution.

2.1. System Requirements
The qpdf package has relatively few external dependencies. In order to build qpdf, the following packages are required:

• zlib: http://www.zlib.net/

• pcre: http://www.pcre.org/

• gnu make 3.81 or newer: http://www.gnu.org/software/make

• perl version 5.8 or newer: http://www.perl.org/; required for fix-qdf and the test suite.

• GNU diffutils (any version): http://www.gnu.org/software/diffutils/ is required to run the test suite. Note that this is
the version of diff present on virtually all GNU/Linux systems. This is required because the test suite uses diff -u.

Part of qpdf's test suite does comparisons of the contents PDF files by converting them images and comparing the im-
ages. You can optionally disable this part of the test suite by running configure with the --disable-test-compare-im-
ages flag. If you leave this enabled, the following additional requirements are required by the test suite. Note that in
no case are these items required to use qpdf.

• libtiff: http://www.remotesensing.org/libtiff/

• GhostScript version 8.60 or newer: http://pages.cs.wisc.edu/~ghost/

This option is primarily intended for use by packagers of qpdf so that they can avoid having the qpdf packages depend
on tiff and ghostscript software.

If Adobe Reader is installed as acroread, some additional test cases will be enabled. These test cases simply verify
that Adobe Reader can open the files that qpdf creates. They require version 8.0 or newer to pass. However, in order
to avoid having qpdf depend on non-free (as in liberty) software, the test suite will still pass without Adobe reader,
and the test suite still exercises the full functionality of the software.

Pre-built documentation is distributed with qpdf, so you should generally not need to rebuild the documentation.
In order to build the documentation from its docbook sources, you need the docbook XML style sheets (http://
downloads.sourceforge.net/docbook/). To build the PDF version of the documentation, you need Apache fop (http://
xml.apache.org/fop/) version 0.94 of higher.

2.2. Build Instructions
Building qpdf on UNIX is generally just a matter of running

./configure
make

You can also run make check to run the test suite and make install to install. Please run ./configure --help for
options on what can be configured. You can also set the value of DESTDIR during installation to install to a temporary

http://www.zlib.net/
http://www.pcre.org/
http://www.gnu.org/software/make
http://www.perl.org/
http://www.gnu.org/software/diffutils/
http://www.remotesensing.org/libtiff/
http://pages.cs.wisc.edu/~ghost/
http://downloads.sourceforge.net/docbook/
http://downloads.sourceforge.net/docbook/
http://xml.apache.org/fop/
http://xml.apache.org/fop/

Building and Installing QPDF

3

location, as is common with many open source packages. Please see also the README and INSTALL files in the
source distribution.

Building on Windows is a little bit more complicated. For details, please see README-windows.txt in the source
distribution. You can also download a binary distribution for Windows. There is a port of qpdf in the contrib area
generously contributed by Jian Ma. This is also discussed in more detail in README-windows.txt.

There are some other things you can do with the build. Although qpdf uses autoconf, it does not use automake but
instead uses a hand-crafted non-recursive Makefile that requires gnu make. If you're really interested, please read the
comments in the top-level Makefile.

4

Chapter 3. Running QPDF
This chapter describes how to run the qpdf program from the command line.

3.1. Basic Invocation
When running qpdf, the basic invocation is as follows:

qpdf [options] infilename [outfilename]

This converts PDF file infilename to PDF file outfilename. The output file is functionally identical to the input file but
may have been structurally reorganized. Also, orphaned objects will be removed from the file. Many transformations
are available as controlled by the options below.

outfilename does not have to be seekable, even when generating linearized files. Specifying “-” as outfilename means
to write to standard output. However, you can't specify the same file as both the input and the output because qpdf
reads data from the input file as it writes to the output file.

Most options require an output file, but some testing or inspection commands do not. These are specifically noted.

3.2. Basic Options
The following options are the most common ones and perform commonly needed transformations.

--password=password
Specifies a password for accessing encrypted files.

--linearize
Causes generation of a linearized (web optimized) output file.

--encrypt options --
Causes generation an encrypted output file. Please see Section 3.3, “Encryption Options”, page 4 for details
on how to specify encryption parameters.

--decrypt
Removes any encryption on the file. A password must be supplied if the file is password protected.

Password-protected files may be opened by specifying a password. By default, qpdf will preserve any encryption data
associated with a file. If --decrypt is specified, qpdf will attempt to remove any encryption information. If --encrypt
is specified, qpdf will replace the document's encryption parameters with whatever is specified.

Note that qpdf does not obey encryption restrictions already imposed on the file. Doing so would be meaningless since
qpdf can be used to remove encryption from the file entirely. This functionality is not intended to be used for bypassing
copyright restrictions or other restrictions placed on files by their producers.

3.3. Encryption Options
To change the encryption parameters of a file, use the --encrypt flag. The syntax is

--encrypt user-password owner-password key-length [restrictions] --

Note that “--” terminates parsing of encryption flags and must be present even if no restrictions are present.

Running QPDF

5

Either or both of the user password and the owner password may be empty strings.

The value for key-length may be 40 or 128. The restriction flags are dependent upon key length. When no additional
restrictions are given, the default is to be fully permissive.

If key-length is 40, the following restriction options are available:

--print=[yn]
Determines whether or not to allow printing.

--modify=[yn]
Determines whether or not to allow document modification.

--extract=[yn]
Determines whether or not to allow text/image extraction.

--annotate=[yn]
Determines whether or not to allow comments and form fill-in and signing.

If key-length is 128, the following restriction options are available:

--accessibility=[yn]
Determines whether or not to allow accessibility to visually impaired.

--extract=[yn]
Determines whether or not to allow text/graphic extraction.

--print=print-opt
Controls printing access. print-opt may be one of the following:

• full: allow full printing

• low: allow low-resolution printing only

• none: disallow printing

--modify=modify-opt
Controls modify access. modify-opt may be one of the following, each of which implies all the options that
follow it:

• all: allow full document modification

• annotate: allow comment authoring and form operations

• form: allow form field fill-in and signing

• assembly: allow document assembly only

• none: allow no modifications

--cleartext-metadata
If specified, any metadata stream in the document will be left unencrypted even if the rest of the document is
encrypted. This also forces the PDF version to be at least 1.5.

--use-aes=[yn]
If --use-aes=y is specified, AES encryption will be used instead of RC4 encryption. This forces the PDF version
to be at least 1.6.

Running QPDF

6

--force-V4
Use of this option forces the /V and /R parameters in the document's encryption dictionary to be set to the value
4. As qpdf will automatically do this when required, there is no reason to ever use this option. It exists primarily
for use in testing qpdf itself. This option also forces the PDF version to be at least 1.5.

The default for each permission option is to be fully permissive.

3.4. Advanced Transformation Options
These transformation options control fine points of how qpdf creates the output file. Mostly these are of use only to
people who are very familiar with the PDF file format or who are PDF developers. The following options are available:

--stream-data=option
Controls transformation of stream data. The value of option may be one of the following:

• compress: recompress stream data when possible (default)

• preserve: leave all stream data as is

• uncompress: uncompress stream data when possible

--normalize-content=[yn]
Enables or disables normalization of content streams.

--suppress-recovery
Prevents qpdf from attempting to recover damaged files.

--object-streams=mode
Controls handing of object streams. The value of mode may be one of the following:

• preserve: preserve original object streams (default)

• disable: don't write any object streams

• generate: use object streams wherever possible

--ignore-xref-streams
Tells qpdf to ignore any cross-reference streams.

--qdf
Turns on QDF mode. For additional information on QDF, please see Chapter 4, QDF Mode, page 10.

--min-version=version
Forces the PDF version of the output file to be at least version. In other words, if the input file has a lower
version than the specified version, the specified version will be used. If the input file has a higher version, the
input file's original version will be used. It is seldom necessary to use this option since qpdf will automatically
increase the version as needed when adding features that require newer PDF readers.

--force-version=version
This option forces the PDF version to be the exact version specified even when the file may have content that is
not supported in that version. In some cases, forcing the output file's PDF version to be lower than that of the
input file will cause qpdf to disable certain features of the document. Specifically, AES encryption is disabled if
the version is less than 1.6, cleartext metadata and object streams are disabled if less than 1.5, 128-bit encryption
keys are disabled if less than 1.4, and all encryption is disabled if less than 1.3. Even with these precautions, qpdf

Running QPDF

7

won't be able to do things like eliminate use of newer image compression schemes, transparency groups, or other
features that may have been added in more recent versions of PDF.

As a general rule, with the exception of big structural things like the use of object streams or AES encryption,
PDF viewers are supposed to ignore features in files that they don't support from newer versions. This means that
forcing the version to a lower version may make it possible to open your PDF file with an older version, though
bear in mind that some of the original document's functionality may be lost.

By default, when a stream is encoded using non-lossy filters that qpdf understands and is not already compressed
using a good compression scheme, qpdf will uncompress and recompress streams. Assuming proper filter imple-
ments, this is safe and generally results in smaller files. This behavior may also be explicitly requested with --stream-
data=compress.

When --stream-data=preserve is specified, qpdf will never attempt to change the filtering of any stream data.

When --stream-data=uncompress is specified, qpdf will attempt to remove any non-lossy filters that it supports. This
includes /FlateDecode, /LZWDecode, /ASCII85Decode, and /ASCIIHexDecode. This can be very useful
for inspecting the contents of various streams.

When --normalize-content=y is specified, qpdf will attempt to normalize whitespace and newlines in page content
streams. This is generally safe but could, in some cases, cause damage to the content streams. This option is intended
for people who wish to study PDF content streams or to debug PDF content. You should not use this for “production”
PDF files.

Ordinarily, qpdf will attempt to recover from certain types of errors in PDF files. These include errors in the cross-
reference table, certain types of object numbering errors, and certain types of stream length errors. Sometimes, qpdf
may think it has recovered but may not have actually recovered, so care should be taken when using this option as
some data loss is possible. The --suppress-recovery option will prevent qpdf from attempting recovery. In this case,
it will fail on the first error that it encounters.

Object streams, also known as compressed objects, were introduced into the PDF specification at version 1.5, corre-
sponding to Acrobat 6. Some older PDF viewers may not support files with object streams. qpdf can be used to trans-
form files with object streams to files without object streams or vice versa. As mentioned above, there are three object
stream modes: preserve, disable, and generate.

In preserve mode, the relationship to objects and the streams that contain them is preserved from the original file. In
disable mode, all objects are written as regular, uncompressed objects. The resulting file should be readable by older
PDF viewers. (Of course, the content of the files may include features not supported by older viewers, but at least
the structure will be supported.) In generate mode, qpdf will create its own object streams. This will usually result in
more compact PDF files, though they may not be readable by older viewers. In this mode, qpdf will also make sure
the PDF version number in the header is at least 1.5.

Ordinarily, qpdf reads cross-reference streams when they are present in a PDF file. If --ignore-xref-streams is spec-
ified, qpdf will ignore any cross-reference streams for hybrid PDF files. The purpose of hybrid files is to make some
content available to viewers that are not aware of cross-reference streams. It is almost never desirable to ignore them.
The only time when you might want to use this feature is if you are testing creation of hybrid PDF files and wish to
see how a PDF consumer that doesn't understand object and cross-reference streams would interpret such a file.

The --qdf flag turns on QDF mode, which changes some of the defaults described above. Specifically, in QDF mode,
by default, stream data is uncompressed, content streams are normalized, and encryption is removed. These defaults
can still be overridden by specifying the appropriate options as described above. Additionally, in QDF mode, stream
lengths are stored as indirect objects, objects are laid out in a less efficient but more readable fashion, and the documents
are interspersed with comments that make it easier for the user to find things and also make it possible for fix-qdf to
work properly. QDF mode is intended for people, mostly developers, who wish to inspect or modify PDF files in a
text editor. For details, please see Chapter 4, QDF Mode, page 10.

Running QPDF

8

3.5. Testing, Inspection, and Debugging Op-
tions
These options can be useful for digging into PDF files or for use in automated test suites for software that uses the qpdf
library. When any of the options in this section are specified, no output file should be given. The following options
are available:

--static-id
Causes generation of a fixed value for /ID. This is intended for testing only. Never use it for production files.

--no-original-object-ids
Suppresses inclusion of original object ID comments in QDF files. This can be useful when generating QDF files
for test purposes, particularly when comparing them to determine whether two PDF files have identical content.

-show-encryption
Shows document encryption parameters. Also shows the document's user password if the owner password is given.

-check-linearization
Checks file integrity and linearization status.

-show-linearization
Checks and displays all data in the linearization hint tables.

-show-xref
Shows the contents of the cross-reference table in a human-readable form. This is especially useful for files with
cross-reference streams which are stored in a binary format.

-show-object=obj[,gen]
Show the contents of the given object. This is especially useful for inspecting objects that are inside of object
streams (also known as “compressed objects”).

-raw-stream-data
When used along with the --show-object option, if the object is a stream, shows the raw stream data instead of
object's contents.

-filtered-stream-data
When used along with the --show-object option, if the object is a stream, shows the filtered stream data instead
of object's contents. If the stream is filtered using filters that qpdf does not support, an error will be issued.

-show-pages
Shows the object and generation number for each page dictionary object and for each content stream associated
with the page. Having this information makes it more convenient to inspect objects from a particular page.

-with-images
When used along with --show-pages, also shows the object and generation numbers for the image objects on each
page. (At present, information about images in shared resource dictionaries are not output by this command. This
is discussed in a comment in the source code.)

-check
Checks file structure and well as encryption, linearization, and encoding of stream data. A file for which --check
reports no errors may still have errors in stream data content but should otherwise be structurally sound. If --check
any errors, qpdf will exit with a status of 2. There are some recoverable conditions that --check detects. These
are issued as warnings instead of errors. If qpdf finds no errors but finds warnings, it will exit with a status of
3 (as of version 2.0.4).

Running QPDF

9

The --raw-stream-data and --filtered-stream-data options are ignored unless --show-object is given. Either of these
options will cause the stream data to be written to standard output. In order to avoid commingling of stream data with
other output, it is recommend that these objects not be combined with other test/inspection options.

If --filtered-stream-data is given and --normalize-content=y is also given, qpdf will attempt to normalize the stream
data as if it is a page content stream. This attempt will be made even if it is not a page content stream, in which case
it will produce unusuable results.

10

Chapter 4. QDF Mode
In QDF mode, qpdf creates PDF files in what we call QDF form. A PDF file in QDF form, sometimes called a QDF
file, is a completely valid PDF file that has %QDF-1.0 as its third line (after the pdf header and binary characters)
and has certain other characteristics. The purpose of QDF form is to make it possible to edit PDF files, with some
restrictions, in an ordinary text editor. This can be very useful for experimenting with different PDF constructs or for
making one-off edits to PDF files (though there are other reasons why this may not always work).

It is ordinarily very difficult to edit PDF files in a text editor for two reasons: most meaningful data in PDF files is
compressed, and PDF files are full of offset and length information that makes it hard to add or remove data. A QDF
file is organized in a manner such that, if edits are kept within certain constraints, the fix-qdf program, distributed with
qpdf, is able to restore edited files to a correct state. The fix-qdf program takes no command-line arguments. It reads
a possibly edited QDF file from standard input and writes a repaired file to standard output.

The following attributes characterize a QDF file:

• All objects appear in numerical order in the PDF file, including when objects appear in object streams.

• Objects are printed in an easy-to-read format, and all line endings are normalized to UNIX line endings.

• Unless specifically overridden, streams appear uncompressed (when qpdf supports the filters and they are com-
pressed with a non-lossy compression scheme), and most content streams are normalized (line endings are converted
to just a UNIX-style linefeeds).

• All streams lengths are represented as indirect objects, and the stream length object is always the next object after
the stream. If the stream data does not end with a newline, an extra newline is inserted, and a special comment
appears after the stream indicating that this has been done.

• If the PDF file contains object streams, if object stream n contains k objects, those objects are numbered from n
+1 through n+k, and the object number/offset pairs appear on a separate line for each object. Additionally, each
object in the object stream is preceded by a comment indicating its object number and index. This makes it very
easy to find objects in object streams.

• All beginnings of objects, stream tokens, endstream tokens, and endobj tokens appear on lines by themselves.
A blank line follows every endobj token.

• If there is a cross-reference stream, it is unfiltered.

• Page dictionaries and page content streams are marked with special comments that make them easy to find.

• Comments precede each object indicating the object number of the corresponding object in the original file.

When editing a QDF file, any edits can be made as long as the above constraints are maintained. This means that you
can freely edit a page's content without worrying about messing up the QDF file. It is also possible to add new objects
so long as those objects are added after the last object in the file or subsequent objects are renumbered. If a QDF file
has object streams in it, you can always add the new objects before the xref stream and then change the number of the
xref stream, since nothing generally ever references it by number.

It is not generally practical to remove objects from QDF files without messing up object numbering, but if you remove
all references to an object, you can run qpdf on the file (after running fix-qdf), and qpdf will omit the now-orphaned
object.

When fix-qdf is run, it goes through the file and recomputes the following parts of the file:

• the /N, /W, and /First keys of all object stream dictionaries

QDF Mode

11

• the pairs of numbers representing object numbers and offsets of objects in object streams

• all stream lengths

• the cross-reference table or cross-reference stream

• the offset to the cross-reference table or cross-reference stream following the startxref token

12

Chapter 5. Using the QPDF Library
The source tree for the qpdf package has an examples directory that contains a few example programs. The qpdf/
qpdf.cc source file also serves as a useful example since it exercises almost all of the qpdf library's public interface.
The best source of documentation on the library itself is reading comments in include/qpdf/QPDF.hh, include/qpdf/
QDFWriter.hh, and include/qpdf/QPDFObjectHandle.hh.

All header files are installed in the include/qpdf directory. It is recommend that you use #include <qpdf/
QPDF.hh> rather than adding include/qpdf to your include path.

When linking against the qpdf static library, you may also need to specify -lpcre -lz on your link command. If
your system understands how to read libtool .la files, this may not be necessary.

13

Chapter 6. Design and Library Notes

6.1. Introduction
This section was written prior to the implementation of the qpdf package and was subsequently modified to reflect the
implementation. In some cases, for purposes of explanation, it may differ slightly from the actual implementation. As
always, the source code and test suite are authoritative. Even if there are some errors, this document should serve as
a road map to understanding how this code works.

In general, one should adhere strictly to a specification when writing but be liberal in reading. This way, the product
of our software will be accepted by the widest range of other programs, and we will accept the widest range of input
files. This library attempts to conform to that philosophy whenever possible but also aims to provide strict check-
ing for people who want to validate PDF files. If you don't want to see warnings and are trying to write something
that is tolerant, you can call setSuppressWarnings(true). If you want to fail on the first error, you can call
setAttemptRecovery(false). The default behavior is to generating warnings for recoverable problems. Note
that recovery will not always produce the desired results even if it is able to get through the file. Unlike most other PDF
files that produce generic warnings such as “This file is damaged,”, qpdf generally issues a detailed error message that
would be most useful to a PDF developer. This is by design as there seems to be a shortage of PDF validation tools
out there. (This was, in fact, one of the major motivations behind the initial creation of qpdf.)

6.2. Design Goals
The QPDF package includes support for reading and rewriting PDF files. It aims to hide from the user details involving
object locations, modified (appended) PDF files, the directness/indirectness of objects, and stream filters including
encryption. It does not aim to hide knowledge of the object hierarchy or content stream contents. Put another way, a
user of the qpdf library is expected to have knowledge about how PDF files work, but is not expected to have to keep
track of bookkeeping details such as file positions.

A user of the library never has to care whether an object is direct or indirect. All access to objects deals with this
transparently. All memory management details are also handled by the library.

The PointerHolder object is used internally by the library to deal with memory management. This is basically a
smart pointer object very similar in spirit to the Boost library's shared_ptr object, but predating it by several years.
This library also makes use of a technique for giving fine-grained access to methods in one class to other classes by
using public subclasses with friends and only private members that in turn call private methods of the containing class.
See QPDFObjectHandle::Factory as an example.

The top-level qpdf class is QPDF. A QPDF object represents a PDF file. The library provides methods for both
accessing and mutating PDF files.

QPDFObject is the basic PDF Object class. It is an abstract base class from which are derived classes for each type
of PDF object. Clients do not interact with Objects directly but instead interact with QPDFObjectHandle.

QPDFObjectHandle contains PointerHolder<QPDFObject> and includes accessor methods that are type-safe
proxies to the methods of the derived object classes as well as methods for querying object types. They can be passed
around by value, copied, stored in containers, etc. with very low overhead. Instances of QPDFObjectHandle always
contain a reference back to the QPDF object from which they were created. A QPDFObjectHandle may be direct
or indirect. If indirect, the QPDFObject the PointerHolder initially points to is a null pointer. In this case, the
first attempt to access the underlying QPDFObject will result in the QPDFObject being resolved via a call to the
referenced QPDF instance. This makes it essentially impossible to make coding errors in which certain things will
work for some PDF files and not for others based on which objects are direct and which objects are indirect.

Design and Library Notes

14

There is no public interface for creating instances of QPDFObjectHandle. They can be created only inside the QPDF
library. This is generally done through a call to the private method QPDF::readObject which uses QPDFTokenizer
to read an indirect object at a given file position and return a QPDFObjectHandle that encapsulates it. There are
also internal methods to create fabricated indirect objects from existing direct objects or to change an indirect object
into a direct object, though these steps are not performed except to support rewriting.

When the QPDF class creates a new object, it dynamically allocates the appropriate type of QPDFObject and im-
mediately hands the pointer to an instance of QPDFObjectHandle. The parser reads a token from the current file
position. If the token is a not either a dictionary or array opener, an object is immediately constructed from the single
token and the parser returns. Otherwise, the parser is invoked recursively in a special mode in which it accumulates
objects until it finds a balancing closer. During this process, the “R” keyword is recognized and an indirect QPDFOb-
jectHandle may be constructed.

The QPDF::resolve() method, which is used to resolve an indirect object, may be invoked from the QPDFObjec-
tHandle class. It first checks a cache to see whether this object has already been read. If not, it reads the object from
the PDF file and caches it. It the returns the resulting QPDFObjectHandle. The calling object handle then replaces
its PointerHolder<QDFObject> with the one from the newly returned QPDFObjectHandle. In this way, only a
single copy of any direct object need exist and clients can access objects transparently without knowing caring whether
they are direct or indirect objects. Additionally, no object is ever read from the file more than once. That means that
only the portions of the PDF file that are actually needed are ever read from the input file, thus allowing the qpdf
package to take advantage of this important design goal of PDF files.

If the requested object is inside of an object stream, the object stream itself is first read into memory. Then the tokenizer
reads objects from the memory stream based on the offset information stored in the stream. Those individual objects
are cached, after which the temporary buffer holding the object stream contents are discarded. In this way, the first
time an object in an object stream is requested, all objects in the stream are cached.

An instance of QPDF is constructed by using the class's default constructor. If desired, the QPDF object may be
configured with various methods that change its default behavior. Then the QPDF::processFile() method is passed
the name of a PDF file, which permanently associates the file with that QPDF object. A password may also be given
for access to password-protected files. QPDF does not enforce encryption parameters and will treat user and owner
passwords equivalently. Either password may be used to access an encrypted file. 1 QPDF will allow recovery of a
user password given an owner password. The input PDF file must be seekable. (Output files written by QPDFWriter
need not be seekable, even when creating linearized files.) During construction, QPDF validates the PDF file's header,
and then reads the cross reference tables and trailer dictionaries. The QPDF class keeps only the first trailer dictionary
though it does read all of them so it can check the /Prev key. QPDF class users may request the root object and
the trailer dictionary specifically. The cross reference table is kept private. Objects may then be requested by number
of by walking the object tree.

When a PDF file has a cross-reference stream instead of a cross-reference table and trailer, requesting the document's
trailer dictionary returns the stream dictionary from the cross-reference stream instead.

There are some convenience routines for very common operations such as walking the page tree and returning a vector
of all page objects. For full details, please see the header file QPDF.hh.

The following example should clarify how QPDF processes a simple file.

• Client constructs QPDF pdf and calls pdf.processFile("a.pdf");.

• The QPDF class checks the beginning of a.pdf for %!PDF-1.[0-9]+. It then reads the cross reference table
mentioned at the end of the file, ensuring that it is looking before the last %%EOF. After getting to trailer
keyword, it invokes the parser.

1 As pointed out earlier, the intention is not for qpdf to be used to bypass security on files. but as any open source PDF consumer may be easily
modified to bypass basic PDF document security, and qpdf offers may transformations that can do this as well, there seems to be little point in the
added complexity of conditionally enforcing document security.

Design and Library Notes

15

• The parser sees “<<”, so it calls itself recursively in dictionary creation mode.

• In dictionary creation mode, the parser keeps accumulating objects until it encounters “>>”. Each object that is
read is pushed onto a stack. If “R” is read, the last two objects on the stack are inspected. If they are integers,
they are popped off the stack and their values are used to construct an indirect object handle which is then pushed
onto the stack. When “>>” is finally read, the stack is converted into a QPDF_Dictionary which is placed in a
QPDFObjectHandle and returned.

• The resulting dictionary is saved as the trailer dictionary.

• The /Prev key is searched. If present, QPDF seeks to that point and repeats except that the new trailer dictionary
is not saved. If /Prev is not present, the initial parsing process is complete.

If there is an encryption dictionary, the document's encryption parameters are initialized.

• The client requests root object. The QPDF class gets the value of root key from trailer dictionary and returns it. It
is an unresolved indirect QPDFObjectHandle.

• The client requests the /Pages key from root QPDFObjectHandle. The QPDFObjectHandle notices that it
is indirect so it asks QPDF to resolve it. QPDF looks in the object cache for an object with the root dictionary's
object ID and generation number. Upon not seeing it, it checks the cross reference table, gets the offset, and reads
the object present at that offset. It stores the result in the object cache and returns the cached result. The calling
QPDFObjectHandle replaces its object pointer with the one from the resolved QPDFObjectHandle, verifies
that it a valid dictionary object, and returns the (unresolved indirect) QPDFObject handle to the top of the Pages
hierarchy.

As the client continues to request objects, the same process is followed for each new requested object.

6.3. Encryption
Encryption is supported transparently by qpdf. When opening a PDF file, if an encryption dictionary exists, the QPDF
object processes this dictionary using the password (if any) provided. The primary decryption key is computed and
cached. No further access is made to the encryption dictionary after that time. When an object is read from a file, the
object ID and generation of the object in which it is contained is always known. Using this information along with
the stored encryption key, all stream and string objects are transparently decrypted. Raw encrypted objects are never
stored in memory. This way, nothing in the library ever has to know or care whether it is reading an encrypted file.

An interface is also provided for writing encrypted streams and strings given an encryption key. This is used by
QPDFWriter when it rewrites encrypted files.

6.4. Writing PDF Files
The qpdf library supports file writing of QPDF objects to PDF files through the QPDFWriter class. The QPDFWriter
class has two writing modes: one for non-linearized files, and one for linearized files. See Chapter 7, Linearization, page
18 for a description of linearization is implemented. This section describes how we write non-linearized files
including the creation of QDF files (see Chapter 4, QDF Mode, page 10.

This outline was written prior to implementation and is not exactly accurate, but it provides a correct “notional” idea
of how writing works. Look at the code in QPDFWriter for exact details.

• Initialize state:

• next object number = 1

Design and Library Notes

16

• object queue = empty

• renumber table: old object id/generation to new id/0 = empty

• xref table: new id -> offset = empty

• Create a QPDF object from a file.

• Write header for new PDF file.

• Request the trailer dictionary.

• For each value that is an indirect object, grab the next object number (via an operation that returns and increments
the number). Map object to new number in renumber table. Push object onto queue.

• While there are more objects on the queue:

• Pop queue.

• Look up object's new number n in the renumbering table.

• Store current offset into xref table.

• Write n 0 obj.

• If object is null, whether direct or indirect, write out null, thus eliminating unresolvable indirect object references.

• If the object is a stream stream, write stream contents, piped through any filters as required, to a memory buffer.
Use this buffer to determine the stream length.

• If object is not a stream, array, or dictionary, write out its contents.

• If object is an array or dictionary (including stream), traverse its elements (for array) or values (for dictionaries),
handling recursive dictionaries and arrays, looking for indirect objects. When an indirect object is found, if it is
not resolvable, ignore. (This case is handled when writing it out.) Otherwise, look it up in the renumbering table.
If not found, grab the next available object number, assign to the referenced object in the renumbering table, and
push the referenced object onto the queue. As a special case, when writing out a stream dictionary, replace length,
filters, and decode parameters as required.

Write out dictionary or array, replacing any unresolvable indirect object references with null (pdf spec says ref-
erence to non-existent object is legal and resolves to null) and any resolvable ones with references to the renum-
bered objects.

• If the object is a stream, write stream\n, the stream contents (from the memory buffer), and \nendstream\n.

• When done, write endobj.

Once we have finished the queue, all referenced objects will have been written out and all deleted objects or unref-
erenced objects will have been skipped. The new cross-reference table will contain an offset for every new object
number from 1 up to the number of objects written. This can be used to write out a new xref table. Finally we can
write out the trailer dictionary with appropriately computed /ID (see spec, 8.3, File Identifiers), the cross reference
table offset, and %%EOF.

6.5. Filtered Streams
Support for streams is implemented through the Pipeline interface which was designed for this package.

Design and Library Notes

17

When reading streams, create a series of Pipeline objects. The Pipeline abstract base requires implementation write()
and finish() and provides an implementation of getNext(). Each pipeline object, upon receiving data, does whatever it
is going to do and then writes the data (possibly modified) to its successor. Alternatively, a pipeline may be an end-
of-the-line pipeline that does something like store its output to a file or a memory buffer ignoring a successor. For
additional details, look at Pipeline.hh.

QPDF can read raw or filtered streams. When reading a filtered stream, the QPDF class creates a Pipeline object for
one of each appropriate filter object and chains them together. The last filter should write to whatever type of output
is required. The QPDF class has an interface to write raw or filtered stream contents to a given pipeline.

18

Chapter 7. Linearization
This chapter describes how QPDF and QPDFWriter implement creation and processing of linearized PDFS.

7.1. Basic Strategy for Linearization
To avoid the incestuous problem of having the qpdf library validate its own linearized files, we have a special linearized
file checking mode which can be invoked via qpdf --check-linearization (or qpdf --check). This mode reads the
linearization parameter dictionary and the hint streams and validates that object ordering, parameters, and hint stream
contents are correct. The validation code was first tested against linearized files created by external tools (Acrobat and
pdlin) and then used to validate files created by QPDFWriter itself.

7.2. Preparing For Linearization
Before creating a linearized PDF file from any other PDF file, the PDF file must be altered such that all page attributes
are propagated down to the page level (and not inherited from parents in the /Pages tree). We also have to know
which objects refer to which other objects, being concerned with page boundaries and a few other cases. We refer to
this part of preparing the PDF file as optimization, discussed in Section 7.3, “Optimization”, page 18. Note the, in
this context, the term optimization is a qpdf term, and the term linearization is a term from the PDF specification. Do
not be confused by the fact that many applications refer to linearization as optimization or web optimization.

When creating linearized PDF files from optimized PDF files, there are really only a few issues that need to be dealt
with:

• Creation of hints tables

• Placing objects in the correct order

• Filling in offsets and byte sizes

7.3. Optimization
In order to perform various operations such as linearization and splitting files into pages, it is necessary to know which
objects are referenced by which pages, page thumbnails, and root and trailer dictionary keys. It is also necessary to
ensure that all page-level attributes appear directly at the page level and are not inherited from parents in the pages tree.

We refer to the process of enforcing these constraints as optimization. As mentioned above, note that some applications
refer to linearization as optimization. Although this optimization was initially motivated by the need to create linearized
files, we are using these terms separately.

PDF file optimization is implemented in the QPDF_optimization.cc source file. That file is richly commented and
serves as the primary reference for the optimization process.

After optimization has been completed, the private member variables obj_user_to_objects and object_to_obj_users in
QPDF have been populated. Any object that has more than one value in the object_to_obj_users table is shared. Any
object that has exactly one value in the object_to_obj_users table is private. To find all the private objects in a page or
a trailer or root dictionary key, one merely has make this determination for each element in the obj_user_to_objects
table for the given page or key.

Note that pages and thumbnails have different object user types, so the above test on a page will not include objects
referenced by the page's thumbnail dictionary and nothing else.

Linearization

19

7.4. Writing Linearized Files
We will create files with only primary hint streams. We will never write overflow hint streams. (As of PDF version 1.4,
Acrobat doesn't either, and they are never necessary.) The hint streams contain offset information to objects that point
to where they would be if the hint stream were not present. This means that we have to calculate all object positions
before we can generate and write the hint table. This means that we have to generate the file in two passes. To make
this reliable, QPDFWriter in linearization mode invokes exactly the same code twice to write the file to a pipeline.

In the first pass, the target pipeline is a count pipeline chained to a discard pipeline. The count pipeline simply passes
its data through to the next pipeline in the chain but can return the number of bytes passed through it at any intermediate
point. The discard pipeline is an end of line pipeline that just throws its data away. The hint stream is not written and
dummy values with adequate padding are stored in the first cross reference table, linearization parameter dictionary,
and /Prev key of the first trailer dictionary. All the offset, length, object renumbering information, and anything else
we need for the second pass is stored.

At the end of the first pass, this information is passed to the QPDF class which constructs a compressed hint stream
in a memory buffer and returns it. QPDFWriter uses this information to write a complete hint stream object into a
memory buffer. At this point, the length of the hint stream is known.

In the second pass, the end of the pipeline chain is a regular file instead of a discard pipeline, and we have known values
for all the offsets and lengths that we didn't have in the first pass. We have to adjust offsets that appear after the start of
the hint stream by the length of the hint stream, which is known. Anything that is of variable length is padded, with the
padding code surrounding any writing code that differs in the two passes. This ensures that changes to the way things
are represented never results in offsets that were gathered during the first pass becoming incorrect for the second pass.

Using this strategy, we can write linearized files to a non-seekable output stream with only a single pass to disk or
wherever the output is going.

7.5. Calculating Linearization Data
Once a file is optimized, we have information about which objects access which other objects. We can then process
these tables to decide which part (as described in “Linearized PDF Document Structure” in the PDF specification)
each object is contained within. This tells us the exact order in which objects are written. The QPDFWriter class
asks for this information and enqueues objects for writing in the proper order. It also turns on a check that causes an
exception to be thrown if an object is encountered that has not already been queued. (This could happen only if there
were a bug in the traversal code used to calculate the linearization data.)

7.6. Known Issues with Linearization
There are a handful of known issues with this linearization code. These issues do not appear to impact the behavior of
linearized files which still work as intended: it is possible for a web browser to begin to display them before they are
fully downloaded. In fact, it seems that various other programs that create linearized files have many of these same
issues. These items make reference to terminology used in the linearization appendix of the PDF specification.

• Thread Dictionary information keys appear in part 4 with the rest of Threads instead of in part 9. Objects in part
9 are not grouped together functionally.

• We are not calculating numerators for shared object positions within content streams or interleaving them within
content streams.

• We generate only page offset, shared object, and outline hint tables. It would be relatively easy to add some additional
tables. We gather most of the information needed to create thumbnail hint tables. There are comments in the code
about this.

Linearization

20

7.7. Debugging Note
The qpdf --show-linearization command can show the complete contents of linearization hint streams. To look at
the raw data, you can extract the filtered contents of the linearization hint tables using qpdf --show-object=n --fil-
tered-stream-data. Then, to convert this into a bit stream (since linearization tables are bit streams written without
regard to byte boundaries), you can pipe the resulting data through the following perl code:

use bytes;
binmode STDIN;
undef $/;
my $a = <STDIN>;
my @ch = split(//, $a);
map { printf("%08b", ord($_)) } @ch;
print "\n";

21

Chapter 8. Object and Cross-Reference
Streams
This chapter provides information about the implementation of object stream and cross-reference stream support in
qpdf.

8.1. Object Streams
Object streams can contain any regular object except the following:

• stream objects

• objects with generation > 0

• the encryption dictionary

• objects containing the /Length of another stream

In addition, Adobe reader (at least as of version 8.0.0) appears to not be able to handle having the document catalog
appear in an object stream if the file is encrypted, though this is not specifically disallowed by the specification.

There are additional restrictions for linearized files. See Section 8.3, “Implications for Linearized Files”, page 22for
details.

The PDF specification refers to objects in object streams as “compressed objects” regardless of whether the object
stream is compressed.

The generation number of every object in an object stream must be zero. It is possible to delete and replace an object
in an object stream with a regular object.

The object stream dictionary has the following keys:

• /N: number of objects

• /First: byte offset of first object

• /Extends: indirect reference to stream that this extends

Stream collections are formed with /Extends. They must form a directed acyclic graph. These can be used for
semantic information and are not meaningful to the PDF document's syntactic structure. Although qpdf preserves
stream collections, it never generates them and doesn't make use of this information in any way.

The specification recommends limiting the number of objects in object stream for efficiency in reading and decoding.
Acrobat 6 uses no more than objects per object stream for linearized files and no more 200 objects per stream for non-
linearized files. QPDFWriter, in object stream generation mode, never puts more than 100 objects in an object stream.

Object stream contents consists of N pairs of integers, each of which is the object number and the byte offset of the
object relative to the first object in the stream, followed by the objects themselves, concatenated.

8.2. Cross-Reference Streams
For non-hybrid files, the value following startxref is the byte offset to the xref stream rather than the word xref.

Object and Cross-Reference Streams

22

For hybrid files (files containing both xref tables and cross-reference streams), the xref table's trailer dictionary contains
the key /XRefStm whose value is the byte offset to a cross-reference stream that supplements the xref table. A
PDF 1.5-compliant application should read the xref table first. Then it should replace any object that it has already
seen with any defined in the xref stream. Then it should follow any /Prev pointer in the original xref table's trailer
dictionary. The specification is not clear about what should be done, if anything, with a /Prev pointer in the xref
stream referenced by an xref table. The QPDF class ignores it, which is probably reasonable since, if this case were
to appear for any sensible PDF file, the previous xref table would probably have a corresponding /XRefStm pointer
of its own. For example, if a hybrid file were appended, the appended section would have its own xref table and /
XRefStm. The appended xref table would point to the previous xref table which would point the /XRefStm, meaning
that the new /XRefStm doesn't have to point to it.

Since xref streams must be read very early, they may not be encrypted, and the may not contain indirect objects for
keys required to read them, which are these:

• /Type: value /XRef

• /Size: value n+1: where n is highest object number (same as /Size in the trailer dictionary)

• /Index (optional): value [n count ...] used to determine which objects' information is stored in this stream.
The default is [0 /Size].

• /Prev: value offset: byte offset of previous xref stream (same as /Prev in the trailer dictionary)

• /W [...]: sizes of each field in the xref table

The other fields in the xref stream, which may be indirect if desired, are the union of those from the xref table's trailer
dictionary.

8.2.1. Cross-Reference Stream Data
The stream data is binary and encoded in big-endian byte order. Entries are concatenated, and each entry has a length
equal to the total of the entries in /W above. Each entry consists of one or more fields, the first of which is the type of
the field. The number of bytes for each field is given by /W above. A 0 in /W indicates that the field is omitted and
has the default value. The default value for the field type is “1”. All other default values are “0”.

PDF 1.5 has three field types:

• 0: for free objects. Format: 0 obj next-generation, same as the free table in a traditional cross-reference table

• 1: regular non-compressed object. Format: 1 offset generation

• 2: for objects in object streams. Format: 2 object-stream-number index, the number of object stream
containing the object and the index within the object stream of the object.

It seems standard to have the first entry in the table be 0 0 0 instead of 0 0 ffff if there are no deleted objects.

8.3. Implications for Linearized Files
For linearized files, the linearization dictionary, document catalog, and page objects may not be contained in object
streams.

Objects stored within object streams are given the highest range of object numbers within the main and first-page
cross-reference sections.

It is okay to use cross-reference streams in place of regular xref tables. There are on special considerations.

Object and Cross-Reference Streams

23

Hint data refers to object streams themselves, not the objects in the streams. Shared object references should also be
made to the object streams. There are no reference in any hint tables to the object numbers of compressed objects
(objects within object streams).

When numbering objects, all shared objects within both the first and second halves of the linearized files must be
numbered consecutively after all normal uncompressed objects in that half.

8.4. Implementation Notes
There are three modes for writing object streams: disable, preserve, and generate. In disable mode, we do not generate
any object streams, and we also generate an xref table rather than xref streams. This can be used to generate PDF
files that are viewable with older readers. In preserve mode, we write object streams such that written object streams
contain the same objects and /Extends relationships as in the original file. This is equal to disable if the file has no
object streams. In generate, we create object streams ourselves by grouping objects that are allowed in object streams
together in sets of no more than 100 objects. We also ensure that the PDF version is at least 1.5 in generate mode, but
we preserve the version header in the other modes. The default is preserve.

We do not support creation of hybrid files. When we write files, even in preserve mode, we will lose any xref tables
and merge any appended sections.

24

Appendix A. Release Notes
For a detailed list of changes, please see the file ChangeLog in the source distribution.

2.3.0: August 11, 2011

• Bug fix: when preserving existing encryption on encrypted files with cleartext metadata, older qpdf versions
would generate password-protected files with no valid password. This operation now works. This bug only af-
fected files created by copying existing encryption parameters; explicit encryption with specification of clear-
text metadata worked before and continues to work.

• Enhance QPDFWriter with a new constructor that allows you to delay the specification of the output file.
When using this constructor, you may now call QPDFWriter::setOutputFilename to specify the output file,
or you may use QPDFWriter::setOutputMemory to cause QPDFWriter to write the resulting PDF file to a
memory buffer. You may then use QPDFWriter::getBuffer to retrieve the memory buffer.

• Add new API call QPDF::replaceObject for replacing objects by object ID

• Add new API call QPDF::swapObjects for swapping two objects by object ID

• Add QPDFObjectHandle::getDictAsMap and QPDFObjectHandle::getArrayAsVector to allow retrieval of
dictionary objects as maps and array objects as vectors.

• Add functions qpdf_get_info_key and qpdf_set_info_key to the C API for manipulating string fields of the
document's /Info dictionary.

• Add functions qpdf_init_write_memory, qpdf_get_buffer_length, and qpdf_get_buffer to the C API for writing
PDF files to a memory buffer instead of a file.

2.2.4: June 25, 2011

• Fix installation and compilation issues; no functionality changes.

2.2.3: April 30, 2011

• Handle some damaged streams with incorrect characters following the stream keyword.

• Improve handling of inline images when normalizing content streams.

• Enhance error recovery to properly handle files that use object 0 as a regular object, which is specifically
disallowed by the spec.

2.2.2: October 4, 2010

• Add new function qpdf_read_memory to the C API to call QPDF::processMemoryFile. This was an omission
in qpdf 2.2.1.

2.2.1: October 1, 2010

• Add new method QPDF::setOutputStreams to replace std::cout and std::cerr with other streams for generation
of diagnostic messages and error messages. This can be useful for GUIs or other applications that want to
capture any output generated by the library to present to the user in some other way. Note that QPDF does
not write to std::cout (or the specified output stream) except where explicitly mentioned in QPDF.hh, and
that the only use of the error stream is for warnings. Note also that output of warnings is suppressed when
setSuppressWarnings(true) is called.

Release Notes

25

• Add new method QPDF::processMemoryFile for operating on PDF files that are loaded into memory rather
than in a file on disk.

• Give a warning but otherwise ignore empty PDF objects by treating them as null. Empty object are not permitted
by the PDF specification but have been known to appear in some actual PDF files.

• Handle inline image filter abbreviations when the appear as stream filter abbreviations. The PDF specification
does not allow use of stream filter abbreviations in this way, but Adobe Reader and some other PDF readers
accept them since they sometimes appear incorrectly in actual PDF files.

• Implement miscellaneous enhancements to PointerHolder and Buffer to support other changes.

2.2.0: August 14, 2010

• Add new methods to QPDFObjectHandle (newStream and replaceStreamData for creating new streams and
replacing stream data. This makes it possible to perform a wide range of operations that were not previously
possible.

• Add new helper method in QPDFObjectHandle (addPageContents) for appending or prepending new content
streams to a page. This method makes it possible to manipulate content streams without having to be concerned
whether a page's contents are a single stream or an array of streams.

• Add new method in QPDFObjectHandle: replaceOrRemoveKey, which replaces a dictionary key with a
given value unless the value is null, in which case it removes the key instead.

• Add new method in QPDFObjectHandle: getRawStreamData, which returns the raw (unfiltered) stream data
into a buffer. This complements the getStreamData method, which returns the filtered (uncompressed) stream
data and can only be used when the stream's data is filterable.

• Provide two new examples: pdf-double-page-size and pdf-invert-images that illustrate the newly added in-
terfaces.

• Fix a memory leak that would cause loss of a few bytes for every object involved in a cycle of object references.
Thanks to Jian Ma for calling my attention to the leak.

2.1.5: April 25, 2010

• Remove restriction of file identifier strings to 16 bytes. This unnecessary restriction was preventing qpdf from
being able to encrypt or decrypt files with identifier strings that were not exactly 16 bytes long. The specification
imposes no such restriction.

2.1.4: April 18, 2010

• Apply the same padding calculation fix from version 2.1.2 to the main cross reference stream as well.

• Since qpdf --check only performs limited checks, clarify the output to make it clear that there still may be
errors that qpdf can't check. This should make it less surprising to people when another PDF reader is unable
to read a file that qpdf thinks is okay.

2.1.3: March 27, 2010

• Fix bug that could cause a failure when rewriting PDF files that contain object streams with unreferenced objects
that in turn reference indirect scalars.

• Don't complain about (invalid) AES streams that aren't a multiple of 16 bytes. Instead, pad them before de-
crypting.

Release Notes

26

2.1.2: January 24, 2010

• Fix bug in padding around first half cross reference stream in linearized files. The bug could cause an assertion
failure when linearizing certain unlucky files.

2.1.1: December 14, 2009

• No changes in functionality; insert missing include in an internal library header file to support gcc 4.4, and
update test suite to ignore broken Adobe Reader installations.

2.1: October 30, 2009

• This is the first version of qpdf to include Windows support. On Windows, it is possible to build a DLL. Addi-
tionally, a partial C-language API has been introduced, which makes it possible to call qpdf functions from non-
C++ environments. I am very grateful to Zarko Gagic (http://delphi.about.com/) for tirelessly testing numerous
pre-release versions of this DLL and providing many excellent suggestions on improving the interface.

For programming to the C interface, please see the header file qpdf/qpdf-c.h and the example examples/pdf-
linearize.c.

• Zarko Gajic has written a Delphi wrapper for qpdf, which can be downloaded from qpdf's download side.
Zarko's Delphi wrapper is released with the same licensing terms as qpdf itself and comes with this disclaimer:
“Delphi wrapper unit qpdf.pas created by Zarko Gajic (http://delphi.about.com/). Use at your own risk and for
whatever purpose you want. No support is provided. Sample code is provided.”

• Support has been added for AES encryption and crypt filters. Although qpdf does not presently support files
that use PKI-based encryption, with the addition of AES and crypt filters, qpdf is now be able to open most
encrypted files created with newer versions of Acrobat or other PDF creation software. Note that I have not
been able to get very many files encrypted in this way, so it's possible there could still be some cases that qpdf
can't handle. Please report them if you find them.

• Many error messages have been improved to include more information in hopes of making qpdf a more useful
tool for PDF experts to use in manually recovering damaged PDF files.

• Attempt to avoid compressing metadata streams if possible. This is consistent with other PDF creation appli-
cations.

• Provide new command-line options for AES encrypt, cleartext metadata, and setting the minimum and forced
PDF versions of output files.

• Add additional methods to the QPDF object for querying the document's permissions. Although qpdf does
not enforce these permissions, it does make them available so that applications that use qpdf can enforce per-
missions.

• The --check option to qpdf has been extended to include some additional information.

• There have been a handful of non-compatible API changes. For details, see Appendix B, Upgrading from 2.0
to 2.1, page 28.

2.0.6: May 3, 2009

• Do not attempt to uncompress streams that have decode parameters we don't recognize. Earlier versions of qpdf
would have rejected files with such streams.

2.0.5: March 10, 2009

• Improve error handling in the LZW decoder, and fix a small error introduced in the previous version with regard
to handling full tables. The LZW decoder has been more strongly verified in this release.

http://delphi.about.com/
http://delphi.about.com/

Release Notes

27

2.0.4: February 21, 2009

• Include proper support for LZW streams encoded without the “early code change” flag. Special thanks to Atom
Smasher who reported the problem and provided an input file compressed in this way, which I did not previously
have.

• Implement some improvements to file recovery logic.

2.0.3: February 15, 2009

• Compile cleanly with gcc 4.4.

• Handle strings encoded as UTF-16BE properly.

2.0.2: June 30, 2008

• Update test suite to work properly with a non-bash /bin/sh and with Perl 5.10. No changes were made to the
actual qpdf source code itself for this release.

2.0.1: May 6, 2008

• No changes in functionality or interface. This release includes fixes to the source code so that qpdf compiles
properly and passes its test suite on a broader range of platforms. See ChangeLog in the source distribution
for details.

2.0: April 29, 2008

• First public release.

28

Appendix B. Upgrading from 2.0 to 2.1
Although, as a general rule, we like to avoid introducing source-level incompatibilities in qpdf's interface, there were a
few non-compatible changes made in this version. A considerable amount of source code that uses qpdf will probably
compile without any changes, but in some cases, you may have to update your code. The changes are enumerated here.
There are also some new interfaces; for those, please refer to the header files.

• QPDF's exception handling mechanism now uses std::logic_error for internal errors and std::runtime_error
for runtime errors in favor of the now removed QEXC classes used in previous versions. The QEXC exception
classes predated the addition of the <stdexcept> header file to the C++ standard library. Most of the exceptions
thrown by the qpdf library itself are still of type QPDFExc which is now derived from std::runtime_error.
Programs that caught an instance of std::exception and displayed it by calling the what() method will not need
to be changed.

• The QPDFExc class now internally represents various fields of the error condition and provides interfaces for
querying them. Among the fields is a numeric error code that can help applications act differently on (a small number
of) different error conditions. See QPDFExc.hh for details.

• Warnings can be retrieved from qpdf as instances of QPDFExc instead of strings.

• The nested QPDF::EncryptionData class's constructor takes an additional argument. This class is primarily in-
tended to be used by QPDFWriter. There's not really anything useful an end-user application could do with it. It
probably shouldn't really be part of the public interface to begin with. Likewise, some of the methods for computing
internal encryption dictionary parameters have changed to support /R=4 encryption.

• The method QPDF::getUserPassword has been removed since it didn't do what people would think it did. There
are now two new methods: QPDF::getPaddedUserPassword and QPDF::getTrimmedUserPassword. The first one
does what the old QPDF::getUserPassword method used to do, which is to return the password with possible binary
padding as specified by the PDF specification. The second one returns a human-readable password string.

• The enumerated types that used to be nested in QPDFWriter have moved to top-level enumerated types and are
now defined in the file qpdf/Constants.h. This enables them to be shared by both the C and C++ interfaces.

