
Borges DMS

Self-Documentation

Edited by
Camille Bégnis

Joël Pomerleau

joel@mandrakesoft.com

Christian Roy

croy@mandrakesoft.com

Fabian Mandelbaum

fabman@mandrakesoft.com

Peter Pingus

pp@mandrakesoft.com

Jerry Huynh-Tot

jerry@mandrakesoft.com

John Rye

jrt746@clear.net.nz

Borges DMS: Self-Documentation
Published 2002-04-19
Copyright © 2002 MandrakeSoft SA
Edited by and Camille Bégnis,Joël Pomerleau, Christian Roy, Fabian Mandelbaum, Peter
Pingus, Jerry Huynh-Tot, and John Rye

Table of Contents
Preface ...??

1. Legal Notice ..??
2. About Borges Documentation ..??

1. A Revolutionary Concept ..??
1.1. What is Borges?..??

1.1.1. Features ..??
1.2. Choosing Borges ..??

1.2.1. Do I need it?...??
1.2.2. Is Borges for me? ...??

1.3. Some Vocabulary ...??
2. Quick Start Guide...??

2.1. Installation..??
2.1.1. Where to get it? ...??
2.1.2. How do I install it? ...??
2.1.3. Dependencies ..??

2.2. First Steps..??
2.3. Beginning Your Own Project ...??

2.3.1. Configuring Borges to Start a New Project ...??
2.3.2. Step by Step Example...??
2.3.3. Final Notes ...??

3. User’s Reference manual ...??
3.1. Documents Writing ...??

3.1.1. Configuration Files ...??
3.1.2. Document Creation Features...??
3.1.3. Document modification features ..??
3.1.4. Adding new languages to the system..??

3.2. Generating Final Documents ...??
3.2.1. Single Manual Generation...??
3.2.2. Generating Multiple Documents at One Time ...??
3.2.3. Generating a Single Module..??
3.2.4. OMF Support...??

3.3. Output Style Customizations ..??
3.3.1. Customizing Existing Formats..??
3.3.2. Creating a New Customization Layer ...??

3.4. Revision Management ..??
3.4.1. Module Life Cycle...??
3.4.2. Inter-Language Module Synchronization ...??
3.4.3. Project Major Release ...??
3.4.4. Generating Reports...??

4. Features for the Project Manager ...??
4.1. Server Side Repository..??
4.2. Automatically Compile and Publish Reports ...??
4.3. Sending Mails to Authors ..??

4.3.1. Adding Information on the Mail Footer..??
4.4. Accounting Reports...??

4.4.1. Project Report ..??
4.4.2. Authors Report..??

5. Borges and XML Editors ..??
5.1. Which Editor Should I Use?...??
5.2. Emacs+PSGML ..??

5.2.1. Installing PSGML..??
5.2.2. DTD-Awareness ..??
5.2.3. Basic PSGML Commands..??

6. Borges and CVS Integration ...??
6.1. Starting a New Project on CVS..??
6.2. What changes when using CVS ..??

6.2.1. Commands with Modified Behavior ...??
6.2.2. New Useful Commands...??

iii

7. Programmer’s Reference manual ...??
7.1. Makefiles...??

7.1.1. Borges source Makefile ..??
7.1.2. Documentation Projects Makefiles ...??
7.1.3. Makefiles in Action...??

7.2. The Way a Manual is Generated ...??
7.3. Adding/changing Manuals Rules ..??
7.4. Supporting Another DTD than DocBook ..??
7.5. Notes on Borges Installation ..??

7.5.1. Installing Borges on an Unusual Path..??
7.5.2. Adapting Borges to unusual Environment ...??

8. Getting Help ..??
8.1. Bug Reports, Feature Requests, Patches ..??
8.2. Contact ..??

9. Sample Module for Tests...??
A. Borges Commands Reminder..??

A.1. Compilation...??
A.2. Revision Management Commands..??
A.3. Reports Generation Commands...??
A.4. Project Management Commands...??

B. GNU Free Documentation License ...??
B.1. GNU Free Documentation License...??

0. PREAMBLE..??
1. APPLICABILITY AND DEFINITIONS ...??
2. VERBATIM COPYING...??
3. COPYING IN QUANTITY ..??
4. MODIFICATIONS ..??
5. COMBINING DOCUMENTS ...??
6. COLLECTIONS OF DOCUMENTS ...??
7. AGGREGATION WITH INDEPENDENT WORKS ..??
8. TRANSLATION ..??
9. TERMINATION ..??
10. FUTURE REVISIONS OF THIS LICENSE ..??

B.2. How to use this License for your documents ...??

iv

Preface

1. Legal Notice
Copyright © 2002-2004 by MandrakeSoft S.A.

This manual is protected under MandrakeSoft intellectual property rights. Permission is
granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software
Foundation; with no invariant sections, no front-cover texts, no back-cover Texts. A copy of
the license is included in the section Appendix B.

Linux is a registered trademark of Linus Torvalds. All other trademarks and copyrights are
the property of their respective owners.

2. About Borges Documentation
Borges is an XML based extensible document management system powered by open source
technologies. It is designed to facilitate the management of multiple languages, content
reusability and teamwork.

This manual is intended for Borges users. You will learn how to install Borges, create a new
project and use it. This manual also includes a User Reference Guide that further explains
the core functionalities such as conf/ files, etc. Finally, the Programmer’s reference manual
will look at the inner working of the application such as creating custom DTDs/stylesheets
and adding new modules.

i

Preface

ii

Chapter 1. A Revolutionary Concept

1.1. What is Borges?
Borges is an open source extensible document management system aimed at XML-aware
documentation projects. It’s main purpose is to optimize internationalization (many lan-
guages, translations), reusable content and teamwork.

The main philosophy behind Borges is to provide a convenient tool:

• For beginners: by providing a very simple interface to compile XML DocBook documents
into various formats.

• For advanced users: by providing a whole set of customization features allowing you to
easily tweak every single aspect of the system: output formats and layout, custom rules,
etc.

• For project managers: by providing a powerful project tracking system to juggle authors
and translators, deadlines, etc.

1.1.1. Features
The supported DTDs are DocBook and TDB (Training DocBook), a subset of the DocBook
DTD written for the training manuals of MandrakeSoft. Adding external DTDs is very easy,
even though the revision checking system is currently tighty-linked with the DocBook DTD.

Currently, the system allows you to:

• Compile the source files into PDF, PS and (X)HTML whether they be complete documents
or just modules (component parts of documents);

• Compile multilingual documents. This allows you to have, for example, a booklet in 2, 3
or more languages.

• Manage different versions of a single document by easily defining derived versions based
on conditional parts;

• Assign work to the project’s participants. Each module is assigned a set of authors: writ-
ers, translators and proofreaders; each one responsible for one state of a module. Each
contributor can easily review his attributions through web pages, and receive e-mails with
his currently assigned tasks;

• Track the work in progress. From the whole project (made of various documents) to the
most basic components (paragraphs), and their translations. Notify the project’s adminis-
trator by e-mail about the work not yet assigned;

• Define the workflow of the modules. The workflow is the set of states a module goes
through during its “life”. Different projects might have different workflow needs, and
different enterprises have different workflows. Usually, the workflow begins with the
“write” task and finishes with a “lang_proofread” task.

• Track the state of each module according to the workflow. Once a task is completed, the
corresponding state is passed and the module switches to the next state;

• Perform work on modules through a web frontend. Project participants can work on mod-
ules (write, translate, proofread) using a web frontend which greatly simplifies participa-
tion of “remote” authors in a project allowing them to work without the need to have
Borges installed on their computers.

Quick facts about Borges :

• Automatic management of images in EPS, PNG, JPEG, XFig formats;

• Automatic management of global and local (per-document) external entities;

• Automatic management of modules as external entities.

1

Chapter 1. A Revolutionary Concept

1.2. Choosing Borges

1.2.1. Do I need it?

This section, instead of presenting features, addresses the needs that Borges answers.

Constant revision, Multiple languages

If you manage or publish books that need frequent (constant) revision in multiple languages.
Borges is for you. It will enable you to track changes at the paragraph or block of text level,
maximizing translator’s and proof reader’s time.

Team Leaders

If you manage a team of authors, even scattered around the net, through it’s CVS integration,
task, revision and languages management, Borges will considerably simplify your life.

Reusable Content

If the content you are publishing is reusable, Borges is for you. For example, you write a
travel guidebook for the USA and would like, from that same content, to publish books on
each individual state without having to manipulate your document. You can also publish
one book out of many.

Multiple Format Publishing

In todays Internet world, the format you choose to publish your work is something very
likely to change. Furthermore, in a Customer Relationship Management perspective, it becomes
a great asset to deliver content in the format most suitable for your users. It may be a book, it
may be a web site, it may be a downloadable PDF... Borges , through it’s XML and DocBook
foundation is specifically tailored to address these needs... You can define layout for all of
those formats and really adopt a content provider approach.

1.2.2. Is Borges for me?
Do not think about using Borges if you:

• seldom write documents more than 2 pages long;

• seldom have your documents translated;

• don’t want to work under operating systems other than Windows™;

• get scared when seeing a text mode console;

Do use Borges if you:

• happen to manage many big documents;

• have those documents translated into many languages;

• manage a team of many people involved in the production of these documents;

• regularly lose your hair because the documented items change everyday;

• can rely on someone at ease with GNU/Linux;

• wish to bring your documentation project and team into a new generation of technical
documentation with XML and DocBook.

2

Chapter 1. A Revolutionary Concept

In short, Borges will provide you with a solution to efficiently manage large documentation
projects, bringing higher quality and reducing delays. The counterpart will be some time to
spend reading the documentation and getting used to the system. If necessary installing a
GNU/Linux system will also be needed. If you don’t know DocBook, you’ll have to learn it
as well.

Still interested in the beast? Congratulations! read on, and good luck. You won’t regret it!

1.3. Some Vocabulary

We will explain all terms used in Borges ’ documentation: project, author, author initials,
document, sub-document, module, module status, atom, atom revision, etc.

Note: The terms are not presented in any particular order.

Author

An author can be the redactor, the translator or the reviewer of a module. Generally
speaking, the “author” concept is bound to the creator (in this case, writer) of some-
thing, but Borges treats translators and reviewers as authors.

See Also: Author Initials, Module.

Author Initials

Borges identifies the different authors that participate in a project by their initials. This
limits the initials used by different authors of the same project to be unique.

If your project has a small group of authors, two-letter initials should be enough, but
more letters may be used as long as they are unique.

See Also: Author, Project.

Project

A project is a document or a set of documents you are managing with Borges . Usually,
a project contains lots of documents.

See Also: Document.

Super-document

Designates a set of modules, structured together to form a book, an article, a user man-
ual; any exhaustive information block about a particular subject.

The super-document is the “master” from which different documents can be generated.
The super-document structure is defined in the master.top.xml file.

A super-document can contain mutually exclusive informations that will be sorted out
by specializing the super-documents into various documents.

See Also: Document.

Document

A document is a compilation of a super-document resulting in a PDF file or (X)HTML
file(s). You may choose to compile all your super-document, or parts of it. Documents
can be whole books, articles, reference sheets, letters, manuals, etc.

See Also: Compilation, Super-document.

3

Chapter 1. A Revolutionary Concept

Compilation

Compilation is the process by which a set of source XML files is “transformed” into a
PDF or (X)HTML document.

Structuring element

In a super-document, a structuring element is a DocBook element that contains module
elements. Typical structuring elements are part or chapter .

See Also: Super-document, Module element.

Module element

In a super-document, a module element is a DocBook element which contains the spe-
cial

<para role="module">

child element. A module element will be replaced in the final document by the module
content itself. Typical module elements are chapter or sect1 .

See Also: Super-document, Module element.

Module

Modules are the parts that compose documents. Usually, a super-document is divided
into small chunks called modules to simplify writing, translating, management and
content re-use. Chapters, sections, appendices and glossaries are good candidates to
become modules.

In fact, Borges requires that any structuring element be placed in a module to be able
to be translated and to take advantage of the revision management features.

Modules can have some parts flagged, by means of the condition= attribute, in order
to be excluded from certain compilations. This gives you the ability to create more than
one kind of document from a single set of modules, improving the content re-use features
of Borges .

See Also: Document, Super-document, Project.

Original Module

This is used to specify a module which has been written by the module redactor. Trans-
lators will use this original module as the base for all translations.

See Also: Module, Translated Module.

Translated Module

Designates a module which is not the original one, but a translation of the original
module.

See Also: Module, Original Module.

Module Status

Modules go through different states during their life cycle. Each “state” determines the
module’s status.

In order to go from one state to another, some operation needs to be performed on the
module, for example: writing, translating, spell checking, proofreading, etc.

See Also: Life Cycle.

Atom

Atoms are the XML elements used for checking modifications inside a module. They
are the smallest possible elements that contain text. Typical DocBook atoms are <title>
and <para>.

4

Chapter 1. A Revolutionary Concept

See Also: Atom Revision.

Atom Revision

Atom’s have a revision number used by the Borges revision management system in
order to track changes made into modules at an “atom scale”.

See Also: Atom.

Life Cycle

The life cycle of a module is composed of several stages (or states) that a module must
go through in order to be considered ready to be released. Currently, Borges only sup-
ports a fixed life cycle, which is detailed in Section 3.4.1.

See Also: Module, Module Status.

5

Chapter 1. A Revolutionary Concept

6

Chapter 2. Quick Start Guide

2.1. Installation
As of now, Borges has only been tested on Mandrake Linux. It should work on any Linux
system provided the necessary dependencies are installed. Please inform us of any successes
or failures on any other systems.

2.1.1. Where to get it?
Current versions are published on SourceForge1. There, you will find different packagings:

• If you are on an RPM based system, install Borges and Borges-DocBook noarch packages;

• You can also choose to get the tarball (Borges-*.tar.bz2);

The different Borges packages are also part of the Mandrake Linux distribution.

Finally, if you like living dangerously, you can get the current CVS version with following
parameters:CVS_RSH=ssh and CVSROOT=:ext:anoncvs@cvs.mandrakesoft.com:/cooker .
Then, you can get the module Borges with password cvs .

2.1.2. How do I install it?
Just install the RPM packages, or read the instructions in the tarball.

Note: Borges installs by default in /usr/share/Borges/ . If that doesn’t suits you, please see
Section 7.5.1.

2.1.3. Dependencies
If you do not install Borges from RPM packages, you’ll have to check that the following
programs or libraries are available on your system:

• make

• libxslt-proc ;

• perl ;

• perl-XML-Twig , perl-DateManip and perl-XML-LibXML libraries;

• ImageMagick images processor for images transformations;

• xfig diagrams editor if you wish to work with xfig diagrams;

• DocBook DTD XML version 4.2 into /usr/share/sgml/docbook/xml-dtd-4.2/ ;

• DocBook DSSSL stylesheets into /usr/share/sgml/docbook/dsssl-stylesheets/ ;

• DocBook XSL stylesheets into /usr/share/sgml/docbook/xsl-stylesheets/ ;

• openjade

• tetex-latex

• jadetex

Tip: If something goes wrong while trying to install Borges , make sure that those applications are
installed correctly.

1. http://sourceforge.net/projects/borges-dms/

7

Chapter 2. Quick Start Guide

2.2. First Steps

Borges provides an easy procedure to start with a new documentation project. We will detail
the configuration steps necessary to create a project template. Afterwards, the sample doc-
ument provided with Borges will be compiled into both PDF and HTML and the progress
report will be generated.

To start with a new Borges repository, you need to perform the following steps:

1. Create the project skeleton

Borges provides a simple script to create a new project skeleton. Let’s assume you want
to put your files under My_Project in your home directory, then you would issue:
/usr/share/Borges/bin/configure ~/My_Project

to do so.

Note: The following steps assume you are in the working directory (~/My_Project/ in the
example).

2. Initialize the System with the Provided Sample

Now, Borges has to be initialized with a new document to work with. To do so with the
provided sample, just issue:
make adddoc doc=My_Book master=/usr/share/Borges/Sample/master.top.xml

and directories will be populated with the minimum required files.

3. Compile My_Book to PDF and Check the Result

Now you can compile the sample document to PDF to check how it looks. Issue
make -C manuals/My_Book My_Book.pdf LANG=en

to do so, and check the resulting PDF by issuing
xpdf manuals/My_Book/My_Book.pdf

if everything went well, you should see a nice PDF of the sample document. Of course,
you can use Acrobat Reader instead of Xpdf to open the PDF if you prefer.

Tip: the -C argument of the make command simply means to make the My_Book.pdf target
in the manuals/My_Book directory. You could have run

cd manuals/My_Book; make templates LANG=en

as well.

4. Compile My_Book to HTML and Check the Result

You can also compile the sample document to HTML. Issue
make -C manuals/My_Book My_Book.flat.html LANG=en

to do so, and then check the results by pointing your favorite browser to ~/My_Project/manuals/My_Book/My_Book.flat.html .

5. Generate and View the Report

The report is a tool of Borges which informs you about the progress of the work being
done in your project for all supported languages. To generate the report for the sample
document, issue
make -C reports all LANG=en

8

Chapter 2. Quick Start Guide

and view the resulting report by pointing your favorite web browser to ~/My_Project/reports/index.html .

It was not that hard was it? Now, you can setup Borges to work with your own projects.

2.3. Beginning Your Own Project

We will first outline the steps needed to configure Borges for a new project and then a step-
by-step example will be provided.

2.3.1. Configuring Borges to Start a New Project
First, you should create a new project skeleton based on the provided template as described
in Section 2.2:

$ /usr/share/Borges/bin/configure ~/New_Project en 2.1
$ cd ~/New_Project

Note: You should replace en by the language code you wish to use by default on your system, if
it’s not English. Likewise 2.1 is the first release number of the documentation you are about to
start working on. 1.0 will be used if nothing is provided.

Next, you have to perform the following steps (see Section 2.3.2 below for details):

1. Declare the languages expected to be used in this project besides the default one.

2. Prepare the master file. The master file outlining your project’s structure needs to be
created and edited.

Tip: You can think of the master file as the “skeleton” of your future document.

3. Insert your new document into the project.

4. List the initial contributors meant to work on the project.

5. Define entities. Entities for titles and names (for example, application names, company
names, etc.) need to be defined. The importance of entities is explained in Section 2.3.2.6
and in Section 3.1.2.1.

6. Generate the writers’ guidelines. The writers’ guidelines is a PDF or HTML file compiled
from the master file having your project’s structure as its content. Once generated the file
should be read with an appropriate tool (Xpdf or Acrobat Reader , for example) to check
its validity.

7. Assign tasks to every contributor. Ideally you should be able now to assign a reponsible
for every single task of the life cycle of every module.

8. Write the modules and create images. Now, authors can start writing the different mod-
ules that make up your project and creating the modules’ associated images (if needed).

9. Check the result. You can check the progress of the work being done on your project
(writing, translating, etc.) by compiling the project and reading the resulting PDF from
time to time.

In the following section a step by step example is provided to clarify the points detailed
above.

9

Chapter 2. Quick Start Guide

2.3.2. Step by Step Example
Let’s say you want to start a new book named “My_Book” consisting of a preface and two
chapters: the first with two sections and the last one with three sections. You also want to
include one appendix and want your book to be translated into French and Spanish.

So, here is what you have to do, step-by-step.

Note: In all the following examples comments in files are excluded for simplicity reasons. Luckily,
all configuration files are self-documented so you can always refer to them for an explanation of a
particular configuration option. You can consult Section 3.1.1 for details about configuration files.

Note: All examples of command lines to issue assume that the current directory is ~/New_Project/
(you can use pwd to check that).

2.3.2.1. Edit the Main Configuration File

Borges is designed to handle multiple manuals and languages; to define your project details,
it uses a file named repository.xml stored under the conf/ directory.

Note: It is not mandatory to modify the main configuration file at that point. You can keep default
values for now and come back here when you actually need to change parameters.

The conf/repository.xml file for your starting project should look like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<configuration>

<repository>
<title>Documentation Project</title>
<paths>

<modules>modules</modules>
<manuals>manuals</manuals>

</paths>
<dtd>http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd</dtd>
<outputs>

<makefile>$DISTDIR/backend/Makefile.DB</makefile>
</outputs>
<manuals>
</manuals>
<languages>

<lang>en</lang>
</languages>
<revisions>

<original>
<type role="1time">

<name>write</name><author>tbn</author><weight>10</weight>
</type>
<type role="2time">

<name>update</name><author>tbn</author><weight role="proportional">8</weight>
</type>
<type>

<name>tproof</name><author>tbn</author><weight>4</weight>
</type>
<type role="2translate">

<name>pproof</name><author>tbn</author><weight>2</weight>
</type>
<type>

<name>ispell</name><author>tbn</author><weight>1</weight>
</type>
<type>

<name>lproof</name><author>tbn</author><weight>4</weight>
</type>

</original>

10

Chapter 2. Quick Start Guide

<translation>
<type role="1time">

<name>translate</name><author>tbn</author><weight>8</weight>
</type>
<type>

<name>synch</name><author>tbn</author><weight role="proportional">6</weight>
</type>
<type>

<name>ispell</name><author>tbn</author><weight>1</weight>
</type>
<type>

<name>lproof</name><author>tbn</author><weight>4</weight>
</type>

</translation>
<cost>0.01</cost>

</revisions>
</repository>

</configuration>

The file is pretty self-explanatory (comments have been removed here for clarity sake), how-
ever there are some things to note. The <manuals> section contains all the documents (one
<manual> entry per document) handled by Borges . The <languages> section contains all
supported languages for all projects (one <lang> entry containing the two letter ISO code of
the language per each language).

Note: There is no document defined yet, and no language but the default one you wish to use for
your project. Other documents and languages will be added later through the command line.

Warning
The <manuals> and <languages> list is handled by Borges and you must not modify it by
hand. Same goes for the <borges> element which is used to record the Borges version
used by the repository.

The <revisions> section defines the document’s workflow, which represents the “life cycle”
of modules or the “stages” through which each modules part of a document must pass. See
Section 3.1.1.5 for more information.

2.3.2.2. Add the Languages to be Used

This is done in one single command. As we want to add both French and Spanish besides
English, we will have to run:

make addlang NEWLANG=fr
make addlang NEWLANG=es

The addlang target will actually perform the following tasks:

• Update conf/repository.xml ;

• Create all directories meant to hold language specific files (in modules/ entities/ and
images/) and populate them with all default files;

• Make all module templates for this new languge for all defined documents;

• Add all new files to the CVS repository, if available.

The addlang target has more options, consult Section 3.1.4 for more information.

11

Chapter 2. Quick Start Guide

2.3.2.3. Define the Document Structure

We spoke about “document structure” a lot, right? Well, time has come to define it. We need
to create a file named master.top.xml . You can copy /usr/share/Borges/Sample/master.top.xml
to ~/New_Project/master.top.xml and edit it to fit your needs.

The master.top.xml file for your project should look like this:

<?xml version=’1.0’ encoding=’iso-8859-1’?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
"/usr/share/sgml/docbook/xml-dtd-4.2/docbookx.dtd"[
<!ENTITY % entities SYSTEM "entities">
%entities;
]>
<book id="My_Book" lang="⟨">

<title>&book-title;</title>
<preface role="module" id="legal-notice">

<para>Put here the content of the former legal notice
section. If not all can fit here in the physical page,
ask the team.</para>

</preface>
<chapter>

<title>&chapter-1-title;</title>
<sect1 role="module" id="chap1-sect1-section">

<title>First Section Title</title>
<para>Write the chapter 1, section 1 contents</para>

</sect1>
<sect1 role="module" id="chap1-sect2-section">

<title>Second Section Title</title>
<para>Write in here the chapter 1, section 2 contents</para>

</sect1>
</chapter>
<chapter>

<title>&chapter-2-title;</title>
<sect1 role="module" id="chap2-sect1-section">

<title>Second Chapter First Section Title</title>
<para>Write in here the chapter 2, section 1 contents</para>

</sect1>
<sect1 role="module" id=""chap2-sect2-section>

<title>Second Chapter Second Section Title</title>
<para>Write in here the chapter 2, section 2 contents</para>

</sect1>
<sect1 role="module" id="chap2-sect3-section">

<title>Second Chapter Third Section Title</title>
<para>Write in here the chapter 2, section 3 contents</para>

</sect1>
</chapter>
<appendix role="module" id="app1-appendix">

<title>First Appendix Title</title>
<para>Write in here interesting appendix informations</para>

</appendix>
</book>

Thinking in a more or less “modular” way we can say that, generally speaking, a book has: a
title, a preface, chapters and appendices. So, that is exactly what is represented in the sample
master.top.xml above, no more, no less.

Finally, our master document looks like a standard DocBook document. However, there is
something essential to be noted: The role="module" attribute. The elements (usually, sectX ,
chapter , appendix) having this attribute, denotes the modules handled by Borges .

For example, the whole sect1 element

<sect1 role="module" id="chap1-sect1-section">
<title>First Section Title</title>
<para>Write the chapter 1, section 1 contents</para>

</sect1>

12

Chapter 2. Quick Start Guide

will be used to generate the module’s template. It will show as is in the document’s guide-
lines but will be replaced by the module’s content as written by its author in the module
chap1-sect1-section.xml . Note that the module’s name is taken from the structuring ele-
ment ID.

This way of deriving the resulting document directly from the specifications document en-
sures that there is no discrepancy between specs and final result. Furthermore, the system
publishes those directions for the writers in the the spec file and in the module templates.
They will have disappeared in the final document. Do not hesitate to make those guidelines
as lengthy as necessary.

Note: You might need to change the XML SYSTEMdeclaration of the DocBook DTD ("/usr/share/sgml/docbook/xml-dtd-4.2/docbookx.dtd")
to suit your system.

2.3.2.4. Insert the New Document

Now that the structure of the document is defined, the system can create the directories and
files to support this new document. This is all done in one single command:

make adddoc doc=My_Book master=master.top.xml

this will create the new My_Book document based on the master file master.top.xml . It will
actually perform the following tasks:

• Update conf/repository.xml ;

• create manuals/My_Book/ directory and populate it with all needed file and language
directories;

• Make all module templates for this new document in all defined languages;

• Add all new files to the CVS repository, if available.

2.3.2.5. List Initial Contributors

Each “contributor” (writer, translator, proofreader, etc.) must now be known from the sys-
tem. Borges uses this information version management and author credits among other
things. Contributors are listed in conf/authors.xml and is filled with default values ini-
tially. So just edit authors.xml with your favorite text editor to enter your staff. Below is a
sample profile:

<?xml version="1.0" encoding="ISO-8859-1"?>
<authorgroup>

<editor id="cb">
<firstname>Camille</firstname><surname>Bégnis</surname>
<affiliation>

<address><email>camille@some_company.com</email></address>
</affiliation>

</editor>
<author id="pp">

<firstname>Peter</firstname><surname>Pingus</surname>
<affiliation>

<address><email>peter@pingus.com</email></address>
</affiliation>

</author>
</authorgroup>

Replace existing data with your own, possibly removing the <author> element if you are
currently alone working on that project. Make sure to use unique IDs.

13

Chapter 2. Quick Start Guide

see Section 3.1.1.2 for more information about the structure of this file.

If you did not do it already it is time to tell to the system who you are in conf/author.xml
(see Section 3.1.1.1).

2.3.2.6. Define Entities

Note: This step is optional and can be performed in a loop during documents writing.

Project and document entities need to be defined. Project entities are those entities common
to all documents, for example: computer program names. Document entities are those en-
tities used only in a particular document. All entities files are XML files. Entities file names
must end in .ent .

Project entities files go into the entities/ directory.

Master entities files go into the manuals/My_Book/ll/ directory where ll is the two letter
ISO code for the language. All entities defined in master.top.xml will have to be defined
here.

Note: Global entities are covered more thoroughly in Section 3.1.2.1.

When you add a new super-document to the repository, strings needed to be translated
found in the master file are automatically transformed into entities that are created in ll/strings.ent .
You then just need to open that file and write your own content in it. By default Borges sets
entities content to FILL ME: entity-name .

Below you have a sample strings.ent file:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<!ENTITY e-mail "E-mail:">
<!ENTITY web "Web:">

2.3.2.7. Generate the Writers’ Guidelines

Issue

make -C manuals/My_Book master.top.pdf LANG=en

to do so, and check the resulting PDF with your favorite PDF viewer.

Tip: You can also issue

make -C manuals/My_Book master.top.flat.html LANG=en

to build the writers’ guidelines in HTML.

If all went fine, you should see the book with the table of contents, all chapters and sections
with the guidelines you wrote in it.

2.3.2.8. Assign Tasks to Contributors

By default tasks are assigned to the people declared in the main configuration file (Section
3.1.1.5). You may need to reassign tasks, notably those assigned to tbn . Consult Section
3.4.1.3 to learn how to do that. However this step is optional.

14

Chapter 2. Quick Start Guide

2.3.2.9. Write the Modules and Create Images

All that is left now is to fill your book with content: write the modules and create the images
and/or drawings your book will contain. If needed, new entities file(s) have to be created
and filled properly.

So, open the modules’ XML files (modules/en/chap2-sect1-section.xml for the first sec-
tion of the second chapter of the English book, for example) with your favorite text editor
and start filling it with content. We won’t tell you how to use DocBook here, there is excellent
material about that all over the Internet. Start consulting The DocBook Wiki2.

If you use entities in your modules, make sure you create a new entities file to hold the
modules’ entities (entities/en/acronym-list.ent for a file having entities for acronyms
in English, for example). Consult Section 3.1.2.1 for more information about entities.

Borges also supports images and drawings. At the time of writing, PNG and JPEG (for
raster images), EPS (for vector graphics), and XFig drawings were supported. Consult Sec-
tion 3.1.2.2 for more information about images.

Images and drawings common to all languages should be put in the images/ directory and
images and drawings particular to each language must be put in the images/ll/ directory,
where ll is the two letter ISO code for the language.

2.3.2.10. Check the Result

Finally, you have to check the results. Issue

make -C manuals/My_Book master.pdf LANG=en

to compile the document into PDF and open it with your favorite PDF reader.

You can also compile the document into HTML both as a single (flat) HTML file or as several
(chunked) HTML files. Issuing

make -C manuals/My_Book master.html LANG=en

will compile the document into chunked HTML files. Point your web browser to ~/New_Project/manuals/My_Book/html/index.html
to check the results. Issuing

make -C manuals/My_Book master.flat.html LANG=en

will compile into a single HTML file. Point your web browser to ~/New_Project/manuals/My_Book/master.flat.html
to check the results.

2.3.3. Final Notes
A few things to note:

• Needless to say, the last two sections of Section 2.3.2 should be done “in a loop”. There is
no need to write all the modules for your book to check how it looks so far.

• The LANG=en parameter passed to the make commands in the above sections is only
needed if your preferred language is other than English. This is needed to compile docu-
ments in another language than the one declared in your author.xml profile conf file.

2. http://www.docbook.org/wiki/moin.cgi/
15

Chapter 2. Quick Start Guide

16

Chapter 3. User’s Reference manual

3.1. Documents Writing

Following is a review of the configuration files’ format and the required elements on master.top.xml
for the revision system to work. All the necessary elements to create your documents for
your projects, from global entities to documents compilation, are detailed in this section
also.

3.1.1. Configuration Files
Following is an in-depth review of Borges ’ configuration files and their format.

3.1.1.1. conf/author.xml

This file holds information related to the author (writer, translator, etc.) who will use that
copy of the repository. A Borges project is meant to be stored in a CVS repository, and used
by many people. Each author must customize this file in its own copy of the repository in
order to use the revision system and to be able to compile documents.

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<author>

<initials>pp</initials>
<lang>en</lang>

</author>

• <initials> holds the author’s identifier. This has been defined in conf/authors.xml . If
not, it must be done: see Section 3.1.1.2.

• <lang> holds the author’s preferred language. Note that we use the word “preferred”
because the language can be overridden with the LANG=parameter when doing compila-
tions.

3.1.1.2. conf/authors.xml

Each “contributor” (writer, translator, proofreader, etc.) must be known from the system.
Borges uses this information version management and author credits among other things.
Contributors are listed in conf/authors.xml and is filled with default values initially. So
just edit authors.xml with your favorite text editor to enter your staff. Below is a sample
profile:

<?xml version="1.0" encoding="ISO-8859-1"?>
<authorgroup>

<editor id="cb">
<firstname>Camille</firstname><surname>Bégnis</surname>
<affiliation>

<address><email>camille@some_company.com</email></address>
</affiliation>

</editor>
<author id="pp">

<firstname>Peter</firstname><surname>Pingus</surname>
<affiliation>

<address><email>peter@pingus.com</email></address>
</affiliation>

</author>
</authorgroup>

That file should strictly follow the default structure and:
17

Chapter 3. User’s Reference manual

• The <editor> contributor type is used to store the project manager profile. There must be
one and only one. This person will notably receive tasks not assigned to anybody else so
that he can assign pending tasks.

• The <author> contributor type is used for all other people working on the project. There
can be as many as needed.

• Each contributor must have a unique and meaningfull id used to identify him in the
system. It should be composed of letters only.

• The email address will be used to send tasks the contributor is currently meant to perform
(see Section 4.3).

3.1.1.3. conf/manual-default.xml

This file will be used as a template to generate document specific configuration files (Section
3.1.1.4). It holds the configuration parameters of the style-sheets to use by default when pro-
ducing PDF and HTML output. Please refer to Section 3.3 for details on how to customize
the default style-sheets to fit your particular needs.

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<configuration omf.seriesid="">

<makefile>$DISTDIR/backend/Makefile.DB</makefile>
<style format="pdf" toolchain="jade">../../drivers/docbook-jadetex.dsssl</style>
<style format="flat.html" toolchain="xsl">../../drivers/docbook-xhtml.xsl</style>
<style format="html" toolchain="xsl">../../drivers/docbook-xhtml-chunk.xsl</style>

<document id="">

<style format="pdf"/>
<style format="html"/>

<language lang="en">
<style format="pdf" toolchain="jade">../../drivers/db-jadetex-letter-en.dsssl</style>

</language>
<language lang="fr"/>
<language lang="es"/>

<exclude>multilingual</exclude>
</document>

</configuration>

• <makefile> designates the Makefile holding the rules specific to a particular document
type. The default one is for DocBook documents. $DISTDIR references to the location
where Borges is installed (/usr/share/Borges/ by default. That allows you to redefine
a complete new set of targets and use them easily on a per document basis.

• <style> : in this example, the first three <style> elements hold the style-sheet used for the
three output formats provided by default with Borges . Under the <document> element,
<style> tells which formats should be generated when making all the documents. Finally,
it is possible to define a specific stylesheet for a specific language and a specific document
in the way done with the last <style> element of the above example.

• <document> holds the configuration for the first sub document. The id attribute must be
left empty and will be automatically filled at document insertion time.

• <language> tells in which languages that sub document is meant to be translated. That
information will be used for tasks dispatching and documents generation.

• <exclude> see Section 3.1.1.4 for explanation. The multilingual flag is excluded by de-
fault. It can be used in modules to mark data to be included only in multilingual docu-
ments (see Section 3.1.2.5).

Remember that this file just holds the default configuration for the documents that will be
inserted in the project. You will most probably need to adjust that configuration after docu-
ment insertion (Section 3.1.1.4).

18

Chapter 3. User’s Reference manual

3.1.1.4. manuals/My_Book/conf.xml

This file holds the configuration of a specific documnent, and notably style-sheets to use
when producing PDF or HTML output, as well as “aliases” and exclusion information for
deriving various documents from a single super-document. File is based on the conf/manual-default.xml
file (Section 3.1.1.3).

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<configuration omf.seriesid="7a5f2ef8-3239-11d8-8574-a94a75e630dd">

<makefile>$DISTDIR/backend/Makefile.DB</makefile>
<style format="pdf" toolchain="jade">../../drivers/docbook-jadetex.dsssl</style>
<style format="flat.html" toolchain="xsl">../../drivers/docbook-xhtml.xsl</style>
<style format="html" toolchain="xsl">../../drivers/docbook-xhtml-chunk.xsl</style>

<document id="My_Book">

<style format="pdf"/>
<style format="html"/>

<language lang="en">
<style format="pdf" toolchain="jade">../../drivers/db-jadetex-letter-en.dsssl</style>

</language>
<language lang="fr"/>
<language lang="es"/>

<exclude>Mac</exclude>
<exclude>multilingual</exclude>

</document>

<document id="My_Book_Mac">

<style format="pdf"/>
<style format="html"/>

<language lang="en">
<style format="pdf" toolchain="jade">../../drivers/db-jadetex-letter-en.dsssl</style>

</language>
<language lang="fr"/>
<language lang="es"/>

<exclude>PC</exclude>
<exclude>multilingual</exclude>

</document>

<document id="ML-Doc" multilang="//part">
<style format="pdf"/>
<language lang="en"/>
<language lang="fr"/>
<language lang="es"/>
<exclude>unilingual</exclude>

</document>
</configuration>

We have already seen (Section 3.1.1.3) the meaning of the elements of that file. We will now
detail the use the the <exclude> element and see how this document has been configured.

<exclude> holds the name of the “flags” to exclude in conditional-compilation of the docu-
ment. See Section 3.1.2.4 for detailed explanation.

With the sample manuals/My_Book/conf.xml above, issuing

make -C manuals/My_Book My_Book.pdf

will compile a PDF file named manuals/My_Book/My_Book.pdf excluding from all modules
all elements marked with condition="Mac" ; issuing

make -C manuals/My_Book My_Book_Mac.pdf

will compile a PDF file named manuals/My_Book/My_Book_Mac.pdf excluding all elements
marked with condition="PC" .

19

Chapter 3. User’s Reference manual

Finally, there is a third document available in PDF only, and the multilang attribute tells
us it’s in fact a document containing various parts in various languages in the same book.
In this case, the document ML-Doc.pdf will have its body (<part> here) repeated in English,
French and Spanish. Please refer to Section 3.1.2.5 for more information.

3.1.1.5. conf/repository.xml

This file is the most important configuration file because it’s the top configuration file for the
whole Borges project. We will detail here a sample configuration file and see what one can
modify by hand.

<?xml version=’1.0’ encoding=’iso-8859-1’?>
<configuration>

<repository>
<title>Documentation Project</title>
<borges>0.11.2</borges>
<paths>

<modules>modules</modules>
<manuals>manuals</manuals>

</paths>
<dtd>http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd</dtd>
<outputs>

<makefile>$DISTDIR/backend/Makefile.DB</makefile>
</outputs>
<manuals>

<manual>Book</manual>
<manual status="inactive">Took</manual>

</manuals>

<pool id="Printer">
<document id="Book/Book">

<language lang="en">
<style format="pdf"/>

</language>
<language lang="fr">

<style format="pdf"/>
</language>

</document>
</pool>

<languages>
<lang>en</lang>
<lang>fr</lang>
<lang>es</lang>

</languages>

<revisions>
<original>

<type role="1time">
<name>write</name><author>tbn</author><weight>10</weight>

</type>
<type role="2time">

<name>update</name><author>tbn</author><weight role="proportional">8</weight>
</type>
<type>

<name>tproof</name><author>tbn</author><weight>4</weight>
</type>
<type role="2translate">

<name>pproof</name><author>tbn</author><weight>2</weight>
</type>
<type>

<name>ispell</name><author>tbn</author><weight>1</weight>
</type>
<type>

<name>lproof</name><author>tbn</author><weight>4</weight>
</type>

</original>
<translation>

<type role="1time">

20

Chapter 3. User’s Reference manual

<name>translate</name><author>tbn</author><weight>8</weight>
</type>
<type>

<name>synch</name><author>tbn</author><weight role="proportional">6</weight>
</type>
<type>

<name>ispell</name><author>tbn</author><weight>1</weight>
</type>
<type>

<name>lproof</name><author>tbn</author><weight>4</weight>
</type>

</translation>
<cost>0.01</cost>

</revisions>
</repository>

</configuration>

We will review now, section by section, what you can change and what far.

• <title> holds the qproject’s name. This is used as the title in the reports generated by
Borges report facilities. Mandatory.

• <dtd> holds the URI of the DTD used for all the documents and modules in this project.
There can be only one DTD per project. Make sure you use the same DTD in your docu-
ments master files. If you change that you’ll need to update accordingly all of your master
files. Mandatory.

• <outputs> holds the location of the template output Makefile files. Template output
make files are used for the different DTDs Borges supports. At the moment of this writing,
only the DocBook DTD was supported (hence, the .DB file name extension). You can put as
many <makefile> entries as you like provided the rules in it do not conflict. Mandatory.

Note: you can also specify the Makefile to be used on a super-document basis (see Section
3.1.1.4).

• <manuals> holds the directory name of the different documents, with one <manual> entry
per document. This is automatically managed by the adddoc target (Section 2.3.2.4). .

Caution
It is highly recommended not to add here any manual by hand. Use the make adddoc
command instead. See Section 2.3.2.4.

Tip: Even if GNU/Linux supports the space character in path names, it is recommended not to
use them here. You can use the hyphen (-) or the underscore (_) as word separators for path
names.

In our example, the document Took is marked with attribute status="inactive" . That
means this manual won’t ba taken into account when generating reports or outputs.

• <pool> : this element that can be repeated as much as needed is used to define document
subsets for a specific publication media. See Section 3.2.2.2.

• <languages> holds the languages supported by all documents, one <lang> entry per lan-
guage containing the two letter ISO code (in lowercase) for that language.

Caution
It is highly recommended not to add here any language by hand but the first one. Use
the make addlang command instead. See Section 3.1.4.

21

Chapter 3. User’s Reference manual

There are two things you can do here:

• Change the order of the languages: the first one is the default one, and will be used in
some rare places when the system needs a default language. The order then determines
the order of the languages in reports.

• As seen above for documents, a status="inactive" attribute can be added to a <lang>
element to temporarily deactivate it..

• <revisions> holds the revision types managed by the revision system. The order in
which they appear defines the work-flow of the document’s modules. The workflow pre-
sented here is the default one provided by Borges . It is possible to change steps name
and number, removing or adding new steps. We will analyse first how the default work-
flow (Figure 3-1) is coded and then see how it is possible to customize it. The workflow is
devided in two sections:

original

This is the workflow followed by original modules. There are two special states in that
workflow. The one marked with role="1time" is only required one time (typically
the first writing) and won’t be required for module updates. Passing the state marked
as role="2translate" will trigger the translation for all other languages, so that
translators can begin their work. Finally, the task marked with role="2time" will be
available for future releases only after the module is written.

translation

This is the workflow to be followed by translated modules. The state marked with
role="1time" is only required one time (typically the initial translation) and won’t
be required again for module updates.

See Figure 3-1 to see how those tasks articulate with each others. Each workflow is made
of tasks with the following information:

• <name> holds the name of the revision for the system. This is the meaning we give them
for the default workflow: write , for module’s initial writing; translate for module’s
initial translation; tproof for module’s technical proofreading; pproof for module’s
pedagogical proofreading, ispell for module’s spell-checking and lproof for mod-
ule’s idiomatic proofreading. After that comes update for original modules updates in
future releases, and synch for synchronization of the translations with the original.

• <author> holds the “default” author initials or identifier for a revision type. If no author
is assigned to a revision type yet, tbn (To Be Named) must be used.

• <weight> is used to estimate the relative cost of a task with respect to writing task.
For example the pedagogic proofreading (pproof) task has a relative weight of 2 with
respect to write (10), meaning that we estimate it costs 5 times less to do pedagogic
proofreading than writing a text (see Section 4.4). Of course you can use whatever val-
ues you wish here.

You may have noted that some weights are added the attribute role="proportional" .
That means that the cost of this task will be weighted by the actual changes done on
this module. See Section 4.4 to get details on the way this is calculated.

The <revisions> element is repeated for each language defined in the system. This is to
allow defining specific authors for every language. See Section 3.1.4 to learn how to define
those authors at language addition time.

• <cost> is the estimated cost per written character for the writing task (see Section 4.4). All
other costs will be derived from this one according to respectives weights. Adjust to your
own value.

22

Chapter 3. User’s Reference manual

3.1.1.6. master.top.xml and the Revision System

The <revhistory> part of the master.top.xml file plays an important role in the revision
system of Borges .

Below you have a sample <revhistory> part:

<revhistory>
<revision lang="en">

<revnumber>1</revnumber>
<date>2002-06-04</date>
<authorinitials>pp</authorinitials>
<revremark>First Draft</revremark>

</revision>
<revision lang="fr">

<revnumber>1</revnumber>
<date>2002-06-14</date>
<authorinitials>pt</authorinitials>
<revremark>Begin French Translation</revremark>

</revision>
<revision lang="es">

<revnumber>1</revnumber>
<date>2002-06-10</date>
<authorinitials>rp</authorinitials>
<revremark>Begin Spanish Translation</revremark>

</revision>
</revhistory>

Each <revision> entry contains data related to one of the translations of the document.
It has a lang attribute with the two letter ISO code (in lowercase) of the language. The
first entry has been automatically created at document creation time (see Section 2.3.2.4)
following ones are added by translators to record the date at which they began translating a
document:

• <revnumber> contains the revision number (or edition number) of the document. It is the
one corresponding to the current document release (see Section 3.4.3). Mandatory.

• <date> contains the date at which work on the corresponding language started. This is
used by the report facility of Borges to estimate finishing dates for the revisions; in the
sample above, work has begun on the French revision on June, the 10th, 2002. The format
is YYYY-MM-DD. Mandatory.

• <authorinitials> contains the initials (unique identifier) of the author responsible for
that revision. Optional.

• <revremark> contains remarks on the revision itself. This remark is not rendered with the
default DSSSL style-sheet provided by Borges for printed documents, so you’ll need to
customize the style-sheet if you want the remarks to be printed. Optional.

3.1.2. Document Creation Features
In the following sections the document creation features of Borges will be detailed. The
sections are not presented in any particular order.

3.1.2.1. Global Entities

Global entities are those entities that you intend to use without any change at all among all
versions of a project and/or among all your projects. They reside in the entities/ directory
and are XML files with file names ending in .ent

Put all entities which neither change from one language to another nor from one document
to another under entities/ .

23

Chapter 3. User’s Reference manual

Put all entities which do change from one language to another, but do not change from one
document to another in entities/ll/ , where ll is the ISO two letter code (in lowercase)
for the language in question.

Good candidates for global entities are:

• Company names;

• Program (software) names;

• Operating Systems names.

• Most acronyms1.

3.1.2.2. Images

Including images in your work is as easy as inserting a <figure> element in your modules.
For example:

<figure>
<title>An Amazing Figure</title>
<mediaobject>

<imageobject>
<imagedata align="center" fileref="images/image_file_name.png"

format="PNG"/>
</imageobject>

</mediaobject>
</figure>

will insert a PNG image contained in the file named image_file_name.png , aligned in the
center of the page with “An Amazing Figure” (without the quotes) as its title.

Needless to say, Borges will take care of finding the image for you in the corresponding
images/ll/ directory, where ll is the two letter ISO code (in lowercase) of the language the
module will be compiled into.

You can also put language-neutral images under the images/ directory and Borges will get
them from there.

Images formats available for your documents are PNG (format="PNG"), PDF (format="PDF")
and EPS (format="EPS"). Borges will automatically make them available at the right place
for you. If the required format is not available Borges will take care of converting the image
to the needed format automatically. Supported formats as input image files are:

.png

Portable Network Graphic (bitmap);

.jpg

Compressed bitmap usable for photos;

.eps

Encapsulated PostScript (Vector);

.pdf

Encapsulated Portable Document Format (Vector);

.fig

native output format of the xfig diagram application.

1. Acronyms are used “almost” without change between all languages/projects. One that does
change, for example, is ISDN which is RDSI in Spanish.

24

Chapter 3. User’s Reference manual

Missing Images
In case that you insert an image in a module and you forget to make the image itself, the
system will replace it by a default image, so that the compilation is not broken. The image
used by default is images/missing.jpg and you can replace it with whatever you want.

Additionally, whenever Borges finds a missing image, it will report it in the <manual>.missing.xx.img
text file. So if you have just compiled a document (say UserGuide) in French and you note
some images are missing (showing the default missing image) you can get the list of missing
images by printing manuals/UserGuide/UserGuide.missing.fr.img . You can also gener-
ate that file directly to check that no other images are missing by simply running make -C
manuals/UserGuide/ UserGuide.missing.fr.img

3.1.2.3. Index Support

DocBook is able to generate an automatic index by collecting all index terms found in the
source document. Borges will automatically generate such an index provided you request
it in the master document. If you want an index to be added at the end of your book, simply
end your master.top.xml in:

<index id="index">
<title>Index </title>
<para>Automatic Index Here.</para>

</index>
</book>

3.1.2.4. Specialized Books for Different Needs

Often you need to make small variations on your book to fit different audiences, for example
a technical manual for a family of products with only small differences between them.

So, instead of writing different books for the different audiences, it would be desirable to
have the possibility to write one set of modules for all audiences and have different parts
excluded from the different documentation books for each audience.

Borges makes this possible thanks to “conditional compilation”. Conditional compilation
allows you to “mark” some parts of your modules or entire modules in order to exclude
them in certain compilations, but not in others.

25

Chapter 3. User’s Reference manual

Let’s take an example. You are writing a user manual for the Tortoise operating system
running on both Intel and Sparc architectures. There are only minor differences between
both guides.

You only need to add the condition="i386" attribute to mark an element (section, para-
graph, phrase, note, warning, tip, etc.) as being only valid for the Intel version. Likewise
mark elements specific to the Sparc version with condition="sparc" . If the element ap-
pears to be an entire module, add the attribute in the master file:

<sect1 condition="i386">
<title>Some Title</title>
<para role="module">some_sect-sect1</para>
<para>Introduce here the Tortoise OS, highlighting Intel specifications.</para>

</sect1>

You then need to tell Borges how to derive both user guides from the Tortoise-UserGuide
super-document. This is done in the super document configuration file Section 3.1.1.4. For
our example, this file could be:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<configuration>

<stylesheet>
<dssslprint>../drivers/docbook-jadetex.dsssl</dssslprint>
<xslxhtmlchunk>../drivers/docbook-xhtml-chunk.xsl</xslxhtmlchunk>
<xslxhtmlflat>../drivers/docbook-xhtml.xsl</xslxhtmlflat>

</stylesheet>
<manuals>

<manual>
<lang>en</lang>
<format>html</format>
<exclude>sparc</exclude>

</manual>
<manual id="Tortoise-Sparc">
<lang>en</lang>
<format>html</format>
<exclude>i386</exclude>

</manual>
</manuals>

</configuration>

That done, issuing

make -C manuals/My_Book Tortoise-i386.pdf

will compile the whole book into PDF discarding the elements with condition="sparc" .

3.1.2.5. Miltilingual Documents

3.1.2.6. Document Validation

From time to time, it is recommended you check that your modules are valid XML. Issue

make -C manuals/My_Book master.validate

to validate your whole super-document for your preferred (working) language.

Tip: Use the LANG=ll parameter to validate in a language other than your preferred language. ll
is the ISO two letter code (in lowercase) for the language you want to validate the super-document
into.

26

Chapter 3. User’s Reference manual

Validation of plain master document does not mean that all your sub-documents will be
actually valid. To ensure that the Tortoise-i386 document is actually valid (taking into
account exclusions and indexes), issue:

make -C manuals/My_Book Tortoise-i386.flat.validate

Finally, if you wish to validate against one single module, run:

make -C modules/en tortoise-install-sect1.validate

Caution
At the moment, module validation does not check cross references (<xref>) validity.

3.1.2.7. Making Translated Paragraphs Transparent to the Revision System

When translating a module into a another language it often happens that the translator
wants to add a footnote with translator notes or a few clarification words in a separate para-
graph. Also, some licenses (for example the GPL and the GFDL) require that you include
some portion of it in the original language.

Borges ’ automated revision management system will report differences between the trans-
lated module and the original module only because of those added footnotes/paragraphs,
even if they are correct or necessary in some cases; so, how can you make those paragraphs
“invisible” to the revision system?

Borges solves this “problem” in an elegant way which does not break DocBook compatibil-
ity by using the revision="-1" attribute. For example:

<para revision="-1">En otro idioma</para>

will exclude that paragraph (in Spanish, in the example) when comparing against the origi-
nal looking for differences in revisions.

This way, you can have those “extra” paragraphs in your translation without worrying about
the revisions report being wrong every the time just because of them.

3.1.3. Document modification features
Whenever you modify the structure of a super-document it is necessary to inform the sys-
tem of such modifications. That will particularly build the module templates for the added
modules.

Simply run the make alltemplates command.

If your project is CVS enabled, the new module templates will automatically be added to the
CVS repository. See Section 6.2.1.

3.1.4. Adding new languages to the system
When one of your documents needs to be translated, or simply when you decide that one
of the documents will need to be translated, it is time to make the system aware of this new
language. This is done in one single command:

make addlang NEWLANG=ll

will declare the new ll 2 language document for the whole project. It will actually perform
the following tasks:

2. ll being the two letters ISO code for that language. See ISO 6393.

27

Chapter 3. User’s Reference manual

• Update conf/repository.xml ;

• create all language specific directories for modules, images, entities, etc.;

• copy entities files from the default one (first in the list of languages in the main configura-
tion file) to the new language directories;

• Make all module templates for this new language for all defined documents;

• Add all new files to the CVS repository, if available. Note that you’ll still need to commit
those files by hand;

Once this is done translators will have to

1. Translate entities in manuals/My_Doc/ll/*.ent ;

2. Translate entities in entities/ll/*.ent ;

3. Translate modules in modules/ll/*.xml ;

4. Take snapshots and translate diagrams from images/xx/ to images/ll/ , xx being
another language for which images have already been created.

3.2. Generating Final Documents

Beyond the simple document generation, many advanced features are available to allow
the user to easily customize the output formats or to generate a set of manuals in a single
command. We will detail all that here.

3.2.1. Single Manual Generation
A final manual (in a user readable format) is simply identified by its name followed by a
format extension. Four formats with four extensions are available for DocBook documents
in Borges :

Table 3-1. Borges Output Formats

Format Extension Description

PDF .pdf The famous Adobe PDF format for printable
documents with readers available for all platforms.

HTML .html Standard HTML format for online publishing, with
chunked output: the document is chunked in many
different HTML files. In this case My_Book.html
designates a directory, not a file, containing all the
HTML files composing the document. The entry
page is My_Book.html/index.html

Flat HTML .flat.html One single HTML file for the whole document. Can
result a very big file.

PostScript .ps for printable documents.

Knowing that all you need to do is to make the desired output. For example if you want to
get the document Install-guide-RPM from the super-document Install-guide in English
in PDF format, just run:

make -C manuals/Install-guide/ Install-guide-RPM.pdf LANG=en

28

Chapter 3. User’s Reference manual

3.2.2. Generating Multiple Documents at One Time

3.2.2.1. For the Whole Project

When one needs to publish all the manuals available in all language for his project, compil-
ing them one after the other in all formats can be harassing. For this reason Borges provides
a target to automatically compile any combination of manual-language-format.

The synopsis of this command is:

make all [SUBDOCS="<docs list>"]

Without the SUBDOCSoption, this command will generate all sub documents as defined in the
conf.xml files (Section 3.1.1.4) of all the documents defined for the whole project (Section
2.3.2.4).

If you supply a SUBDOCSlist, only the specified super-document/document pairs will be
generated. If you wish to get only the manuals Install-guide-RPM and Install-guide-tar
from super-document Install-guide , you’ll have to use SUBDOCS="Install-guide/Install-guide-RPM
Install-guide/Install-guide-tar"

With this example we would end up with the following command line:

make all SUBDOCS="Install-guide/Install-guide-RPM Install-guide/Install-guide-tar"

Which will result in all manuals in Outputs/ , sorted by language and document.

3.2.2.2. For a Documents Subset

Documents from a single project are often published separately for different purposes or
publishing medias. This feature allows to define pools of documents in specific formats and
languages, that can be used to generate in a single commands all the output documents
associated, or an archive containing the sources for just those deocuments.

We have seen at Section 3.1.1.5 that we can define elements like this:

<pool id="Printer">
<document id="Book/Book">

<language lang="en">
<style format="pdf"/>

</language>
<language lang="fr">

<style format="pdf"/>
</language>

</document>
</pool>

Note about the format of this element: The <style> element must always specify the format
attribute. It must be enclosed in a <language> element (with a mandatory lang attribute) which
must be enclosed in a <document> element (with an id attribute). The id attribute identifies the
document/subdocument pair concerned. Each of these elements can be repeated as much as
needed to reach the exact combination of document, language and format needed.

Once a pool is defined in conf/repository.xml with appropriate id , one can start the gen-
eration of the documents defined in it in a single command:

make all POOL=Printer

That will generate and place in Outputs/Printer all the documents defined in the pool
with ID Printer .

Likewise, the following command:

make archive POOL=Printer

29

Chapter 3. User’s Reference manual

Will create an archive called Printer-9.2.tar.bz2 (9.2 being replaced by the current
project release) containing a striped down version of the project repository allowing only
to generate the documents defined in the Printer pool with make all.

3.2.2.3. For one super-document

A feature also allows you to generate all documents (in all formats and languages defined
in the conf.xml file) associated to a specific super-document.

make -C manuals/Install-guide/ all

does the job for the Install-guide super-document for example. The resulting files will be
stored in the manuals/Install-guide/Outputs/ directory.

3.2.2.4. For one document

Finally you may want to generate all formats and languages outputs associated to a single
document as defined in the conf.xml file. Simply run

make -C manuals/Install-guide/ Install-guide-RPM.all

The resulting files will be stored in the manuals/Install-guide/Outputs/ directory.

3.2.3. Generating a Single Module
When you are working on writing and/or translating a module, you will often want to
have a look at it in one of the supported output formats. Borges ’ single module compilation
feature allows you to do so without the need to compile the whole document containing the
module in question, thus leaving you more time to do your work instead of waiting out the
long book compilation times.

The command synopsis for compiling a single module is:

make -C manuals/module module MOD=<module_name> FORMAT=<output_format> [LANG=ll] [exclude=foo]

Note that the directory for single module compilation is always manuals/module regardless
of which document the module belongs to. This directory is automatically created when
Borges is initialized, and all single module compilation outputs go into it.

The LANG=ll parameter is optional and it is used to force compilation to occur in a language
other than the default one. ll is the two letter lowercase ISO code of the language.

The exclude= parameter is optional and it is used to exclude elements from input XML files.
See Section 3.1.1.4.

For example, after issuing:

make -C manuals/module borges-compile-features-sect1.pdf LANG=es

you will end up with the PDF file manuals/module/borges-compile-features-sect1.pdf
with the contents of the borges-compile-features-sect1 module in Spanish.

3.2.4. OMF Support

The Open Metadata Framework is an initiative of ibiblio4 to provide an open cataloging sys-
tem for documentation. It allows various documentation projects to present their documents
through a common catalog interface, making browsing and searching much easier. See the
OMF home5 for more information. The ScrollKeeper6 project offers a common interface for

4. http://www.ibiblio.org/
5. http://www.ibiblio.org/osrt/omf/
6. http://scrollkeeper.sourceforge.net/
30

Chapter 3. User’s Reference manual

managing OMF files.

To generate the OMF file for a specific sub-document, simply run, for example:

make -C manuals/Install-guide/ Install-guide-RPM.omf

This will generate in a single file all the OMF metadata necessary to catalog all the actual
output files (all languages and all formats) derived from the specified document, according
to the content of the conf.xml file.

The actual cataloging metadata is extracted from the master document header. The following
table shows the DocBook elements (from inside the info element (bookinfo , articleinfo ,
etc.) of the master file) used to fill the information in the different OMF elements.

Table 3-2. Correspondence between DocBook and OMF elements

OMF element DocBook equivalent

creator first author

title title: subtitle

date pubdate

description abstract

type releaseinfo

coverage/@architecture @arch

coverage/@os @os

rights/@type legalnotice[1]/@conformance

rights/@license legalnotice[1]/@role

rights/@holder copyright/holder

Consult the http://www.ibiblio.org/osrt/omf/omf_elementsOMF Specification to learn about
the meanings of the OMF elements.

Note: The OMF files are automatically generated when all the formats associated with specific
documents are generated (make all)

3.3. Output Style Customizations
With Borges it is very easy to control the way final documents are formatted thanks to
DocBook customization features. Moreover it is easy to create new customization layers so
that each manual can have its own design.

3.3.1. Customizing Existing Formats
As we already seen in Section 3.1.1.3, the customization layers for all output formats are
located in drivers/ directory. You just need to open the stylesheet corresponding to the
format you want to change with your text editor:

drivers/docbook-jadetex.dsssl

for PDF and PS formats outputs;

drivers/docbook-xhtml.xsl

for flat HTML output format;

31

Chapter 3. User’s Reference manual

drivers/docbook-xhtml-chunk.xsl

for chunked HTML output format.

Consult the documentation on how to customize XSL8 and DSSSL9 stylesheets if needed.

3.3.2. Creating a New Customization Layer
Having one customization layer per output format might not be enough for some special
needs. Let’s imagine that there is a manual you want to publish in both Europe and in the
United States. Therefore you need two different paper formats: A4 and Letter . This is done
in two simple steps:

1. Create a new customization layer

This customization layer will be placed on top of Borges print customization layer, re-
sulting in the following layers:

Our new customization layer (drivers/docbook-jadetex-Letter.dssssl) would look
like:

<!DOCTYPE style-sheet PUBLIC "-//James Clark//DTD DSSSL Style Sheet//EN" [<!ENTITY docbook-jadetex.dsssl SYSTEM "docbook-jadetex.dsssl" CDATA DSSSL >]>

<style-sheet>
<style-specification id="print" use="docbook-jadetex">

<style-specification-body>

;;What size paper do you need? A4, A5, USletter or USlandscape?
(define %paper-type% "USletter")

</style-specification-body>
</style-specification>
<external-specification id="docbook-jadetex" document="docbook-jadetex.dsssl">

</style-sheet>

Now that the customization layer is ready we just need to direct the system to use it in
the second step.

2. The default Borges print stylesheet uses A4 paper format. We then need to create a new
manual that will use the “Letter” customization layer we just created. This is done in the
super document configuration file, for example manuals/Install-guide/conf.xml :
<?xml version="1.0" encoding="ISO-8859-1"?>
<configuration>

<stylesheet>
<dssslprint>../../drivers/docbook-jadetex.dsssl</dssslprint>

8. http://www.docbook.org/wiki/moin.cgi/DocBookXslStylesheetDocs
9. http://www.docbook.org/wiki/moin.cgi/DocBookDssslStylesheetDocs

32

Chapter 3. User’s Reference manual

<xslxhtmlflat>../../drivers/docbook-xhtml.xsl</xslxhtmlflat>
<xslxhtmlchunk>../../drivers/docbook-xhtml-chunk.xsl</xslxhtmlchunk>

</stylesheet>

<manuals>
<manual id="Install-guide-A4">

<lang>en</lang>
<format>pdf</format>

</manual>
<manual id="Install-guide-Letter">

<lang>en</lang>
<format>pdf</format>
<stylesheet>

<dssslprint>../../drivers/docbook-jadetex-Letter.dsssl</dssslprint>
</stylesheet>

</manual>
</manuals>

</configuration>

In this file, the first stylesheet element informs the system that we want to use the
Borges stylesheets per default. Therefore, the Install-guide-A4 manual will use docbook-jadetex.dsssl
with A4 paper format. However for manual Install-guide-Letter we specify that we
want to use our customization layer docbook-jadetex-Letter.dsssl . The other for-
mats (HTML) will still use the default stylesheets as we did not redefine them.

Once this is done, you can use the Section 3.2.2 feature to generate, at the same time, the
two different books Install-guide-A4.pdf and Install-guide-Letter.pdf respectively
in A4 and Letter paper formats.

3.4. Revision Management

Revision management is the most interesting feature of Borges . It tracks documents on two
axes:

1.

Module status (Section 3.4.1)

Each independent piece of a document called a “module” has its own life cycle in
Borges . Granular module management ensures quality standards while allowing you
to generate accurate project tracking information.

2.

Translation Freshness (Section 3.4.2)

Translating a document is something common. Updating translations for an ever-
changing original is often a nightmare. Thanks to the innovative system brought by
Borges , it is possible to know whenever a translation needs to be updated, and where
exactly the changes are located. This system also ensures that the structure of the doc-
ument is respected throughout its various translations, while allowing translators to
explicitly make additions with respect to the original structure.

Thanks to these tools, hierarchical reports can be generated giving relevant project tracking
information for everyone: project managers as well as module authors, translators, contrib-
utors, etc.

In addition to module revisions it is necessary to handle whole document revisions (when a
new version of the documented product is released for example).

33

Chapter 3. User’s Reference manual

3.4.1. Module Life Cycle

3.4.1.1. The underlying philosophy

A module is born when it is referenced for the first time in a master document. It reaches its
maturity when it passes final language proofreading. Between those two steps it is necessary
to bring a module to each one of these steps10:

1.

Written

When the redactor has finished writing an original module.

2.

Translated

When a translator has finished the translation of an original module to his language.

3.

Technical proofreading

When a technical expert has read a module, and his remarks have been incorporated.

4.

Pedagogical proofreading

When an education specialist has read a module, and his remarks have been incorpo-
rated.

5.

Spell checking

When the module has successfully passed a spell checker.

6.

Language proofreading

When a skilled native speaker has read a module, and his remarks have been incor-
porated.

After a module has reached this last step, it is regarded as mature and ready for publication.
Below is a diagram that better explains the process for an original module and one of its
translations.

10. this is for the default Borges modules workflow.

34

Chapter 3. User’s Reference manual

Technical
Proofreading

Update

Writing

Technical
Proofreading

Proofreading

Proofreading

Presentational

Spell checking

Translation

Language

Ready for

first publication

Ready for

first publication

The module is defined in

the master super−document

Automatic elements ID

Proofreading
Language

Spell checking

A major release change is decided
All Automatic IDs are reassigned

Proofreading

Proofreading

Spell checking

Language
Proofreading

Spell checking

Language

Ready for

publication

Ready for

publication

Presentational

Assign Automatic IDs where missing Synchronize

Figure 3-1. Borges’ Default Module Life Cycle

35

Chapter 3. User’s Reference manual

This figure is the illustration of the information contained in Section 3.1.1.5, and requires a
few comments:

• Just after the original module passes the presentational proofreading status, all automatic
IDs in it are (re)assigned, as well for all its translations. This resets the automatic IDs
numbering from one to the other release.

• After a major release change is decided the writing and translation states are not required
anymore, simply because this only needs to bo done once. Instead they are replaced by
the “Update” and “Synchronise” steps.

• The “Synchronise” step can be reactivated even after the original has passed the “Presen-
tational Proofreading” status. This is to allow the translations to be updated with respect
to the original if this one is to be altered afterwards. This is represented by dotted arrows
in the diagram. See Section 3.4.2. Note that the subsequent steps for the translation (spell
and language proof) are not reactivated if they had been done already.

Note: This is the description of the default workflow as proposed by Borges by default. It is
possible to define a customized workflow by defining it in Section 3.1.1.5.

3.4.1.2. Module Status in Practice

The module history is stored in a hidden file, and must not be edited by hand. For this pur-
pose there are make targets that will take care of all the tasks associated with a module’s
status.

This is the synopsis of the command that will perform the work associated to a task:

make <module-name>.revision TYPE=<type>

where <type> is one of the following, corresponding to the steps we described just above:

1. write

2. translate

3. tproof

4. pproof

5. ispell

6. lproof

Let’s imagine you just modified the module intro-section.xml according to the remarks
made by the pedagogical proofreader. The command to issue in the directory containing the
file will be:

make intro-section.revision TYPE=pproof

3.4.1.3. Assigning tasks

In order to get full advantage of Borges features, it is recommended that you assign all tasks
in all languages for all modules. That will ensure that no task is left orphaned, improving
project efficiency.

This operation is achieved with the following command:

make <module-name>.revision TYPE=<type>.todo AUTHOR=<ai>

36

Chapter 3. User’s Reference manual

where <ai> are the initials of the author responsible for that operation. For example if au-
thor pp is responsible for performing language proofreading on module intro-section in
Spanish, you would issue:

make -C modules/es/ intro-section.revision TYPE=pproof.todo AUTHOR=pp

3.4.1.4. Customizing the Modules Workflow

To Be Written

3.4.2. Inter-Language Module Synchronization

3.4.2.1. The Idea Behind Atom Revisions

To ensure a translation remains up to date with respect to its original, it is necessary to
track changes in the original. To track changes in a text, there is basically only one method:
generate the differences between two versions. However this has a big drawback: when
the changes are not relevant for the translator (spell and syntactic changes in opposition to
semantic changes), one has to extract pertinent bits in a sea of irrelevant information.

To make sure relevant changes are explicitly marked as such, human action is needed. There-
fore the redactor changing the meaning of a paragraph will have to explicitly mark that
paragraph as modified by incrementing its associated revision attribute. Then the system
will be able to spot atoms through a translated module that are not up to date and warn the
translator.

3.4.2.2. Authors Duties

The whole system relies on authors good will. If they are conscientious at adding revisions
all will be fine. Experience has proved that it’s easy to make authors aware of the problem,
and then all works perfectly.

When a module passes the pproof step, it becomes ready for translation. The system then
automatically adds IDs to any possible atom11 in that module. Let’s follow a specific para-
graph of the passwords module:

1. After the module has passed the pproof step, our paragraph got an automatic ID:
<para>
<screen> root# head -c 6 /dev/urandom | mimencode</screen>
This will print five random characters on the console, suitable for
password generation. You can find <command>mimencode</command> in the
<filename>metamailer</filename> package.</para>

2. Despite technical proofreading a reader has spotted an error: it should read six and
not five random characters. You then correct the error and add a revision ID:
<para revision="1">
<screen> root# head -c 6 /dev/urandom | mimencode</screen>
This will print six random characters on the console, suitable for
password generation. You can find <command>mimencode</command> in the
<filename>metamailer</filename> package.</para>

3. Later on, you realize there is a mistake in the package name, it is not metamailer but
metamail . Even though the filename element is not a default atom, you can assign it
an ID and a revision attribute:
<para revision="1">
<screen> root# head -c 6 /dev/urandom | mimencode</screen>

11. To get the list of elements that become an atom, consult
/usr/share/Borges/bin/scatter_ids.pl

37

Chapter 3. User’s Reference manual

This will print six random characters on the console, suitable for
password generation. You can find <command>mimencode</command> in the
<filename id="metamail-pack" revision="1">metamail</filename> package.</para>

This is better than increasing the paragraph revision to 2, as the translator will directly
spot the change in the filename element without having to search through the whole
paragraph.

Tip: If you wish to help translators spot a little change in a big chunk of text, it is better to en-
close the modified sentence in the phrase element, adding the ID and revision to that reduced
element...

Warning
It often happens that an author is forced to modify the structure of a module, even after it
has gone to translation. In that case, it may become necessary to assign IDs to possible
new elements. The author can choose to assign them manually (ensuring there are no risks
of duplicate IDs) or to let the system reassign all IDs throughout the module if there have
been many changes. This is made thanks to the following command:

make
<module-name>.id

Obviously, this command will also have to be run on translated modules...

3.4.2.3. How Translators Synchronize Modules

We won’t talk about report generation here, but rather about how to read the reports and
what to do according to the information contained in the reports.

Figure 3-2. An extract of a super-document report

Whenever a translated module becomes obsolete with respect to the original, the corre-
sponding cell in the super-document report table becomes red (Figure 3-2). If you click in
the cell, you then get to the module’s detailed report (Figure 3-3).

38

Chapter 3. User’s Reference manual

Figure 3-3. A Sample Modules’ report

In that report, after the revision history table, two links appear:

• Figure 3-4: spots the atoms that differ between the translation and its original;

• Figure 3-5: presents the original and translated atoms that are out of synch side by side.

Figure 3-4. Changes in IDs/revisions

In this table, the atoms that have been modified in the original clearly show. The author
knows that the element with ID passwords-pa2 has been modified, while a new element
metamail-pack has been added.

39

Chapter 3. User’s Reference manual

Figure 3-5. Side by side not synched elements

Through this page the translator can open the modules/fr/passwords.xml file, search the
element passwords-pa2 and synchronize its content according to the text in the HTML re-
port. Of course the new ID and revision attributes will have to be copied too, so that the
system will know the atom has been updated.

3.4.3. Project Major Release
When a new version of a software or product is released, its accompanying documentation
generally also needs big changes. That’s in this case that Borges offers a documents major
release feature, allowing you to restart the production cycle on existing modules.

When you have created your documents you have assigned them an initial release number
(see Section 2.3.2.4). Then all tasks that have been performed on associated modules since
then are linked to this precise release number. Increasing the release number of a project will
create a new set of tasks for every single module of the project with the new release number.

All this is performed in one single command:

make release REL=2.0

Note: This process can take a fair amount of time if there are a lot of modules and languages.

It is recommended to change the release number of all documents of a same project at once.
Indeed, if two documents with two different release numbers use a same module, it will re-
sult in conflicts when generating reports. Though if you prefer to manage document release
numbers separately you can with the following command:

make -C manuals/My_Manual/ release REL=2.0

3.4.4. Generating Reports
Here is a diagram showing the different HTMLreports generated by Borges , and the navi-
gation through them.

40

Chapter 3. User’s Reference manual

1
Global project

Super−document 2

Module A

Module C

Module B

Module D

Super−document 1

ID changes

Content changes

2

4

5

3

Figure 3-6. The reports generated by Borges

We will now see how to generate each one of those reports and how to read them.

Warning
It is necessary that all the sources in all languages are valid so that the reports get gener-
ated correctly.

3.4.4.1. Global Project Report

Generating this report will in fact generate all other reports so that it is possible to consult
them starting from the global project report page. You simply need to issue the following
command (in the reports/ directory of your project):

make all

This will generate the index.html file and you just have to point your browser to that file.
For an example of such a report, consult the Overall report for Borges Manuals12.

The resulting page is self-documented so we won’t detail it here. You will however note
that, during the compilation process, all rough super-documents have also been generated
(see the “Links to the compiled versions of the manuals”). If you wish to only generate the
reports without the documents, run

make index.html

Note: This feature is particularly useful for project managers willing to regularly (through cron
jobs) publish on a web site the current project status. It is enough to upload the content of the
reports/ directory on a web site and point people to it.

12. http://www.linux-mandrake.com/en/doc/project/Borges/reports/

41

Chapter 3. User’s Reference manual

3.4.4.2. Super-Document Report

If you wish to generate only the report for a super document (and all dependent reports),
run:

make master-report.html

in the directory of the super-document (e.g. manuals/My_Doc/). You can then open master-report.html
with your favorite browser. For an example of such a report, consult the Detailed report sta-
tus for Borges-doc13.

The table in that report has one line per module of the corresponding super-document. There
are at least three columns:

1. The name of the module, followed by the name of the original author of that module;

2. The title of the module;

3. Three possibilities for the content of that cell:

• The task in progress for that module in the language corresponding to that column.
If known the person responsible for that task is shown in parenthesis.

• If no task is available for now the text “Pending” is shown.

• “OK” means that all tasks required on that module have been passed.

If a cell appears with a red background, it means this translation is outdated with
respect to the original module. See Section 3.4.2.3.

A click on the text of that cell will lead to the corresponding Section 3.4.4.3.

3.4.4.3. Module report

There is no need to generate one specific module report, all module reports related to a
specific super-document are generated while making the super-document report. This page
simply contains the revision history for the module, plus possible links to detailed diff re-
ports if that module happens to be out of synch (see Section 3.4.2.3).

3.4.4.4. ID Changes Report

When a translator is in the process of updating a module, it may be interesting to quickly
regenerate the IDs report to check everything is fine. The command to issue is:

make <module-name>.ids.html LANG=<xx> manual=<super-document>

for example to get the IDs report of the passwords module in French as part of the Borges-doc
super-document, you will need to go into modules/fr/ and run:

make passwords.ids.html LANG=fr manual=Borges-doc

You then just need to open passwords.ids.html with your browser.

3.4.4.5. Content Changes Report

Same as above, but the command becomes:

make <module-name>.changes.html LANG=<xx> manual=<super-document>

13. http://www.linux-mandrake.com/en/doc/project/Borges/reports/Borges-doc/master-
report.html

42

Chapter 4. Features for the Project Manager

The previous chapter was dedicated to the working masses. We will now concentrate on a
few Borges features to assist the project manager.

The project reports (Section 3.4.4.1) are a great help. But there are additional tools to remind
authors of their current tasks (Section 4.3), and to evaluate the work made by each author
(Section 4.4).

4.1. Server Side Repository
Many of the following features are meant to be run periodically. Therefore it is highly rec-
ommended to create a special user on a server machine that would act as a robot. It would
have a local copy of the project repository, and would be directed to periodically run tasks.
This solution prevents possible conflicts with your own working repository.

4.2. Automatically Compile and Publish Reports
To ease automatic publication of reports, Borges provides a single publish target, wich will:

1. Clean the repository and get a fresh copy from CVS,

2. Generate reports and/or output documents,

3. Transfer them to a web server.

The command synopsis is simple:

make publish [PUBTYPE={report output}]

If the PUBTYPEargument is not provided, both reports and outputs will be generated and
published. If you wish to update only one of those, specify it with PUBTYPEargument. For
example if you wish to only update the reports on your website and not outputs, run make
publish PUBTYPE=report.

This command is a very good candidate for periodic (cron) scheduling. This is a crontab
example which updates reports every hour, and updates reports and output documents
twice a day.

Example 4-1. Crontab Publishing

0 * * * * nice make -C /home/r2d2/Borges/doc/ publish PUBTYPE=report
30 8,12 * * * * nice make -C /home/r2d2/Borges/doc/ publish

4.3. Sending Mails to Authors

This very useful feature allows you to prepare mails for every author listed in the project.
Those mails will list all tasks the author should be working on currently. Then Those mails
will be sent, provided a mail server is available.

Caution
This feature is only available if a local mail server is available (on the same machine where
the robot stands). If you wish to only generate the mails and send them on your own, you
can simply run make mails in reports/ .

43

Chapter 4. Features for the Project Manager

To send the mails, run: make sendmails in the reports/ directory. That command will:

1. Generate tasks reports„

2. Build contributors mail according to reports,

3. Send messages through local mail server.

This command is a very good candidate for periodic (cron) scheduling. This is a crontab
example which send mails every morning of working days.

Example 4-2. Crontab Mails Delivering

30 7 * * 1,2,3,4,5 nice make -C /home/r2d2/Borges/doc/reports sendmails

4.3.1. Adding Information on the Mail Footer
You can put additional information at the end of the mail, simply by writing your footer in
the file conf/mailfooter.txt .

Borges actually provides a mechanism to automatically fill this footer with useful informa-
tion for your contributors. You can find an example in /usr/share/Borges/template/conf/mailfooter.txt

P.S.
You can make your modifications directly from
@frontendurl-perso@

You can consult the compiled version of the manuals from
@outputsurl@
And current status at
@reportsurl@

Those modules corresponds to the files you can find in CVS with following parameters:
CVS_RSH=@CVS_RSH@
CVSROOT=@CVSROOT@

Do not hesitate to contact the documentation manager for any further
information.

You can simply copy this file to your robot’s conf/ directory, and eventually customize it.
Words between @will be replaces by their value as defined in conf/publish.xml .

When using the make sendmails command, if file conf/mailfooter.txt exists it will be
automatically appended to every mail sent to authors.

4.4. Accounting Reports

4.4.1. Project Report
This special report is made of tables for each manual and for the the whole project that
summarizes the authors contributions for each module and for each manual.

To generate these reports, simply run make -C reports/ accounting.html. Then point your
browser to the resulting file reports/accounting.html . The table shows all the project’s
super-documents in column, with the respective contribution of each authors on each line.
There are totals on each line for each author, and totals for each manual, plus a grand total
for the whole project on the bottom right corner.

Additionally, you will find under reports/<Manual-Name>/costs.html some more de-
tailed reports per manual which list authors contributions to each module. You can also
generate those manual specific reports by running make -C manuals/<Manual-Name>/
costs.html

Now some details on the way those casts are calculated.

The script scans all modules and calculates each contribution with the following formula:

44

Chapter 4. Features for the Project Manager

C=N*P*W/10

C=task Cost
N=number of text characters in the module
P=price per translated character
W=task weight

the P and Wparameters are defined in conf/repository.xml . You should adjust them to
your needs.

4.4.2. Authors Report
This report shows the same information but in an author’s point of view: it simply lists all
tasks done by each author and evaluates their cost. This report is generated by running:

make -C reports/ contributions.html

45

Chapter 4. Features for the Project Manager

46

Chapter 5. Borges and XML Editors

5.1. Which Editor Should I Use?
Borges ’ modules are plain text XML files, so any text editor (Emacs, Vi , you-name-it) should
be OK. Emacs is the favorite editor of Borges ’ authors, mainly because its PSGML module
makes working with XML files really easy.

Nothing prevents you from using a GUI-based graphical editor, provided that it does not
interfere with Borges ’ requirements and management features.

However, a “pure” text editor is highly recommended because it offers the ultimate flexibil-
ity when working with XML files.

5.2. Emacs+PSGML
As mentioned before, Emacs with its PSGML module makes your life easier when working
with XML files. We will explain some basic PSGML commands and DTD features in the
following sections.

5.2.1. Installing PSGML
You can download PSGML from the PSGML home page1 or, if you are a Mandrake Linux user
and have the “contribs” source or CD configured in the Software Manager, simply issuing
urpmi psgml will install PSGML.

5.2.2. DTD-Awareness
PSGML mode is DTD-aware. This means that when using PSGML you will always produce
well-formed and valid XML files. Please refer to The XML FAQ2 for more information about
the meaning of the terms “well-formed” and “valid”.

PSGML should be told somehow about the DTD your module intends to conform to, in
order to be “aware” of it. To do so, Borges inserts the following at the end of every module’s
XML source file:

<!-- Keep this comment at the end of the file
Local variables:
mode: xml
sgml-parent-document: ("../../manuals/module/en/psgml-top.xml" "root_element")
End:
-->

where mode: xml guarantees that Emacs will enter XML mode after auto-loading PSGML
when you open the module’s source XML file with it, and root_element should be replaced
by the module’s root element, for example chapter if the module in question is a chapter.

Tip: In case you are wondering, the psgml-top.xml filename is automatically created under the
manuals/module/ directory when configuring Borges .

5.2.3. Basic PSGML Commands
PSGML mode adds powerful commands which take the burden of typing element tags
and/or element attributes when working with plain-text XML files.

1. http://psgml.sourceforge.net
2. http://www.ucc.ie/xml/faq.xml

47

Chapter 5. Borges and XML Editors

Note: The following table lists some PSGML commands without any order nor preference, please
refer to the PSGML documentation3 for a complete list of available commands.

Tip: When you see something like Ctrl -C-Ctrl -E it means that you have to press the Control key
plus the C key, and right afterwards the Control key plus the E key.

Table 5-1. PSGML Commands

Command Keyboard
Shortcut or
Menu Entry

Description

Insert Element Ctrl-C-Ctrl-E Inserts an element constrained by the DTD. That is,
only elements allowed by the DTD can be inserted. If
you press the Tab key, a list of valid elements is
shown in Emacs’ mini-buffer. If the element to be
inserted requires attributes you will be prompted to
enter their values in Emacs’ mini-buffer.

Validate File Ctrl-C-Ctrl-V Loads the DTD, parses it (if not already parsed), and
then presents the external validation command in
Emacs’ mini-buffer. Pressing Enter will proceed to
validate the file showing a list of validation errors.

Next Trouble
Spot

Ctrl-C-Ctrl-O This one includes the validation one, but instead of
showing a list of errors it stops when encounters the
first error and shows the error message in Emacs’
mini-buffer. This is the preferred way to validate
files.

End Element Ctrl-C-/ Ends the current open element. Actually, the Insert
Element command inserts opening and ending tags
where appropriate, but if you type the element name
and want to close it without typing the whole closing
tag, then this one comes handy.

List Valid Tags Ctrl-C-Ctrl-T Lists all the valid tags that can be inserted at the
current cursor position. This is useful when working
with “complex” DTDs (like DocBook) where some
elements can have dozens of elements inside them,
and you cannot expect to know them all by heart. It
can be used as a quick DTD “reminder”.

Fold Element Ctrl-C-Ctrl-F-
Ctrl-E

Folds the element the cursor is at. This is very handy
when working with big files to have a quick view of
the document’s (or part of a document’s) structure.
The effect of folding an element is that only the
opening tag and one line of content ending in ellipsis
(...) is shown.

Unfold Element Ctrl-C-Ctrl-U-
Ctrl-E

Unfolds the folded element the cursor is at.

Insert Attribute
Markup−→Insert
Attribute

Shows a list of the attributes valid for the element the
cursor is at from where you can chose the one you
want to insert. If the attribute selected requires a
value you will be prompted for it in Emacs’
mini-buffer.

3. http://www.lysator.liu.se/~lenst/about_psgml/psgml.html
48

Chapter 6. Borges and CVS Integration

Borges is designed to integrate flawlessly into a CVS environment. We will detail here the
initial procedure to start a new project with CVS support and look in detail how to use this
new repository with CVS.

6.1. Starting a New Project on CVS
The principle is quite straightforward: you create an initial repository, you import it to a
CVS server, and voilà! We will detail here the steps up to the point where you add your first
document to the project.

First of all you must have a working CVS repository and access to it. If your organization
does provide one to you ask for access to it and set the CVSROOT environment variable
accordingly. If not it is quite easy to create a local CVS repository, refer to your CVS docu-
mentation and set the CVSROOT environment variable.

1. Create a new project skeleton

This is the same command as usual, we’re here creating a project in ~/my_doc/ with
French as default language:
/usr/share/Borges/bin/configure ~/my_doc/ fr

2. Import the project skeleton to the CVS repository:

Borges povides a special wrapper to perform that task:
cd ~/my_doc/ make cvsinit PROJECT=MyNewProject

You will see all files being added to the CVS. Ones this is done you have to retrieve your
own copy of the CVS module MyNewProject that has just been created.

3. Checkout the new CVS module to start working

Make sure the CVSROOT variable is properly set. We will checkout our local copy of the
New project in ~/cvs/ :
cd ~/cvs/
cvs checkout MyNewProject

4. Initialize the new copy

The last step consists in preparing this working copy so that you can use it as any other
Borges project:
cd MyNewProject
./configure

All is now ready, you can add your first document to the system. Read the next section
to learn the changes that occur in Borges working with CVS

6.2. What changes when using CVS
When a Borges repository is integrated in a CVS environment, the bahavior of some targets
is modified and some others become available. We detail this specificities in here.

Tip: If you prefer Borges not to issue any CVS command, even when you are working inside a
CVS environment, add the option CVS=no to you make command lines.

6.2.1. Commands with Modified Behavior
Basically some commands that add new templates to the project add those new files auto-
matically to the CVS.

49

Chapter 6. Borges and CVS Integration

Tip: If you don’t want to mirror your changes on the CVS server when issuing commands locally,
simply add option CVS=no to your command line when running following commands. Don’t forget
then to commit manually your changes to CVS afterwards.

adddoc

When adding a new document all template files created by Borges (entities, modules,
image directories, etc.) are automatically added and committed to CVS. The same hap-
pens for the master.top.xml and all needed Makefile s. All this is done for all active
languages.

addlang

The same occurs here, for all modules needed by all documents, as well as entities.

alltemplates

This target, executed in a super-document directory, generates all new module tem-
plates for all languages and adds them to CVS. This is useful when you just have added
new modules to an existing super-document.

module.revision TYPE=pproof

When a module passes the pproof state (or whatever it is named according to step
marked as 2translate) its content is copied to translation modules. Borges then auto-
matically commits the translation modules to CVS.

module.revision

When you pass a revision on a module (even a .todo one) it is automatically commit-
ted with a standard log message indicating the task passed and the contributor. You
can override this default message by providing your own changelog in the optional
parameter CVSLOG.

6.2.2. New Useful Commands
Some new commands appear to ease the management of CVS sources from within Borges .

checkout

This target simply retrieves latest version from CVS and reconfigures the repository.

cvsinit

This target imports the current Borges repository to a CVS server. Consult Section 6.1.

master.top.commit

This target, executed in a super-document directory, will commit a modified super-
document (master.top.xml) to CVS checking previously it is fully valid.

<module>.commit

This target, executed in a modules directory (moduless/en/ f.e.), will commit a modi-
fied module (<module>.xml) to CVS checking previously it is fully valid.

commit [modules="module1 module2 ..."]

This target, executed in a modules directory (moduless/en/ f.e.), will validate and com-
mit all modified modules in current directory. Specifying the modules option will per-
form the action only on specified modules.

<image.ext>.commit

This target, executed in an images directory (images/en/ f.e.), will add and commit a
modified image (<image.ext>) to CVS checking previously it is fully valid.

50

Chapter 6. Borges and CVS Integration

<entity>.commit

This target, executed in an entities directory (entities/en/ or manuals/My_Book/en/
f.e.), will add and commit a modified entities file (<entity>.ent) to CVS checking pre-
viously it is fully valid.

Tip: If you prefer not to provide the change log in the CVS editor (normally vi) every time you
commit a file to CVS, you can provide your comments directly on the command line thanks to the
CVSLOGoption. For example

make mymodule.commit CVSLOG="Fixed the foo option syntax"

would directly commit changes made on module mymodule with specified chqangelog, without
opening the text editor.

51

Chapter 6. Borges and CVS Integration

52

Chapter 7. Programmer’s Reference manual

Here we will get into the Borges internals. This may be of interest for the developer as well
as for the user wishing to take advantage of the most advanced features of Borges .

If something is not clear enough below, or if you wish to know more, use the source Luke. If
there’s something you definitely do not understand, ask on Borges mailing list.

7.1. Makefiles
We will list here the different Makefiles available in Borges source repository and in the im-
plemented repositories1. We will detail the way those Makefiles are generated, distributed,
etc.

7.1.1. Borges source Makefile
There’s only one usable Makefile here. You’ll find it at the root of the repository.

This Makefile has two main targets:

doc

compiles the Borges documentation and reports;

install

installs Borges on a system so that users of that system can start documentation projects
on it, using Borges . It installs all the scripts and Makefile’s and builds a repository
template so that users can quickly start using Borges .

Tip: Borges gets installed in /usr/share by default (/usr/share/Borges/). You can change
that by passing the TARGETparameter to make . For example if you wish to relocate Borges
to /home/joe/test/Borges/ just run make install TARGET=/home/joe/test

You may have noticed that Borges does not need compilation. Indeed all scripts are in Perl
or bash and do not need compilation.

7.1.2. Documentation Projects Makefiles

7.1.2.1. What Goes Where

The diagram below shows how the different Makefiles provided by Borges are distributed
in the implementation repository.

7.1.2.2. Who Calls Who

The following diagram shows how the Makefiles found in the Borges source repository (on
the left) gets distributed into an imaginary project (on the right) with two books Book1 and
Book2 in two languages en and fr

1. It is important to distinguish between the Borges source repository, which is the repository hold-
ing all the Borges code maintained by its developers; and a simple implementation of Borges , which
is a documentation project repository, containing the documentation source files managed by Borges .

53

Chapter 7. Programmer’s Reference manual

conf/Makefile
reports/Makefile

backend/

Makefile.include.in
Makefile.entities
Makefile.module
Makefile.images
Makefile.local

Makefile.manual

conf/
reports/

Makefile.include

entities/
en/
fr/

modules/
en/
fr/

manuals/

images/
en/
fr/

Book1/
en/
fr/

Book2/
en/
fr/

Figure 7-1. Distributing Makefiles

7.1.3. Makefiles in Action
Here we show you how Makefiles are linked together. Figure 7-2 shows how Makefiles in-
clude each other. An arrow in the diagram means “includes”.

Makefile.include

reports/Makefile

manuals/Book/Makefile

manuals/Book/Makefile.include

/usr/share/Borges/backend/Makefile.DB

manuals/Book/xx/Makefile

manuals/images/xx/Makefile

modules/xx/Makefile

entities/xx/Makefile

Figure 7-2. Makefiles Relationships

All paths are relative to the project root directory unless otherwise stated.

We can distinguish between four types:

54

Chapter 7. Programmer’s Reference manual

Production

The Makefiles on the left are the ones actually used to perform tasks on manuals, mod-
ules, images, etc.

manuals/Book/Makefile.include

This Makefile is empty by default. It can be used by advanced users to redefine default
manual compilation rules. See Section 7.3 for more details.

Makefile.DB

This Makefile contains the rules to actually transform source XML DocBook files to any
desired output format (PDF, HTML, etc.). Advanced users may choose to develop their
own Makefile.XXX to support another DTD. See Section 7.4 for more details on how to
do that.

To determine which Makefile is used to generate output formats, the system looks for
the <makefile> element(s) in conf/repository.xml and sets the OUTPUTSvariable ac-
cordingly in the root Makefile.include described below.

Makefile.include

This Makefile is automatically generated by the root Makefile. It contains useful in-
formation for all other Makefiles, extracted from the environment and notably from the
main configuration file conf/reposqitory.xml . It also contains some generic functions
and rules.

7.2. The Way a Manual is Generated
To understand the process leading to the generation of a final document, we’ll detail here
the steps taken to generate an HTML file.

In Figure 7-3 we represent the way from the master.top.xml skeleton guidelines to the final
HTML book.

55

Chapter 7. Programmer’s Reference manual

master.top.xml

master2master.plget_DB_mod_deps.pl

<book>.flat.xml

<book>.html

master.xml

<book>.mod.dependencies<book>.index.dependencies

get_DB_img_deps.pl

<book>.img.dependenciesXSL_XHTML_CHUNK

images/
scheme.dia

xx/
screen.png
photo.jpg

<book>.img.deps

manuals/images/xx/
scheme.eps
screen.png
photo.png

entities
modules/xx/modules.ent

entities/xx/catalog
manuals/<book>/xx/local.ents

<book>.mod.deps<book>.index.deps

i18n.xx

i18n

conf/DocBook.xml

Figure 7-3. Distributing Makefiles

We can distinguish two main steps:

1.

Generation of the <book>.flat.xml source file

This file contains all the XML source code necessary to compile the document. It is
“flat” because all modules and entities have been expanded into it. To do so it’s been
necessary to:

• Compute a possible index,

• Check that all needed modules are available.

• Catalog all entities.

2.

Actual HTML Compilation

This includes the generation of all necessary images which names are extracted from
<book>.flat.xml .

7.3. Adding/changing Manuals Rules
It may happen that the rules provided to prepare the master.flat.xml are not suited for a
particular need. Or the user may want to override some rules for generating output formats.

56

Chapter 7. Programmer’s Reference manual

Borges provides a means to do that easily. One just need to write a custom or tweaked rule
in manuals/<Book>/Makefile.include . That will add extra functionality for generating
output formats or overwrite default rules.

7.4. Supporting Another DTD than DocBook
To Be Written

7.5. Notes on Borges Installation
All is done so that the Borges backend can easily be installed anywhere on a system, in-
cluding in a user’s home directory. Efforts are also made so that it can be installed on other
platforms than Mandrake Linux . If you try to install Borges on GNU/Linux and it doesn’t
work, we’ll be glad to hear from you.

7.5.1. Installing Borges on an Unusual Path
According to the “Filesystem Hierarchy Standards”, Borges installs itself by defaults into
/usr/share/Borges/ when running the make install command in Borges repository. Chang-
ing the DESTDIRparameter will overwrite this behavior.

Example 7-1. Installing Borges in Home Dir

$ make install DESTDIR=~/BORGES

7.5.2. Adapting Borges to unusual Environment
Borges is developped under Mandrake Linux and expects various files to be available at a
specific location. The first step is to make sure all the dependencies listed at Section 2.1.3 are
correctly installed and working. If your PATHis correctly set, Borges should be able to acces
the various executables he needs.

We will now review the external files Borges needs to work.

7.5.2.1. DTDs and StyleSheets

The template repository and sample files provided with Borges currently refer directly to
files in your local filesystem. Catalogs are not currently used but nothing prevents you from
using them. To adapt the paths to your local configuration, you’ll have to edit files

template/drivers/docbook-index.dsssl
template/drivers/docbook-jadetex.dsssl
template/drivers/docbook-xhtml-chunk.xsl
template/drivers/docbook-xhtml.xsl
Sample/master.top.xml

Note: It is recommended to use URI references and catalogs whenever possible, to allow docu-
ments generation to work on systems where DocBook is not at the expected place.

7.5.2.2. Other Control Files

openjade is a tool used for SGML transformations. Borges needs to access some of the files
distributed with openjade . Those files are listed in template/conf/DocBook.xml and their
path must be adapted to your local configuration. This file also holds the access path for the
collateindex.pl DocBook script.

57

Chapter 7. Programmer’s Reference manual

Note: As the local configuration can change from one user to another, inside the same docu-
mentation project, it is possible for users to adapt access path in their own conf/author.xml
configuration file.

58

Chapter 8. Getting Help

Do not forget to consult the Borges Web pages1.

8.1. Bug Reports, Feature Requests, Patches
Visit the Borges pages on SourceForge2. You will be able there to:

• Post bug reports: When ever you think you have discovered a bug in Borges , post a de-
tailed bug report here;

• Ask for support: If you are stuck with a problem and you cannot find the answer in the
documentation, post a support request there;

• Submit patches: You’ve come up with modifications to the source code to fix bugs or add
features to Borges ? You can submit the patches here.

• Ask for new features: If you wish to see more functionalities added to Borges , suggest
them here with your detailed arguments.

8.2. Contact
A mailing list is available, simply send a message to the list manager3 with the command
subscribe borges in the body. You can also contact Borges maintainer4.

You may also try to see if there are people on the #borges IRC channel at irc.mandrakesoft.com .

1. http://www.linux-mandrake.com/en/doc/project/Borges/
2. https://sourceforge.net/projects/borges-dms/
3. mailto:sympa@moondrake.com
4. mailto:documentation@mandrakesoft.com

59

Chapter 8. Getting Help

60

Chapter 9. Sample Module for Tests

passwords introduction

root# head -c 6 /dev/urandom | mimencode

This will print six random characters on the console, suitable for password generation. You
can find mimencode in the metamailer package.

61

Chapter 9. Sample Module for Tests

62

Appendix A. Borges Commands Reminder

This appendix will list all available make commands under Borges, sorted by topic: compi-
lation, revision management, reports generation, etc.

A.1. Compilation

Document Compilation

Issuing
make -C manuals/Doc_Name Doc_Name.output_format [options...]

will compile the whole document named Doc_Name in output_format format. Please
refer to Table 3-1, for more information on supported output formats and below for
more information on [options...] .

Module Compilation

Issuing

make -C manuals/module module_name.output_format [options...]

will compile only the module named module_name in output_format format. Please refer
to Table 3-1, for more information on supported output formats and below for more infor-
mation on [options...] .

Common Compilation Options

The following options can be used with any compilation command, in place of [options...] ,
to change default compilation parameters:

LANG=language

Compilation is done for language language , where language is the two lowercase letter
ISO code for the language in question.

DSSSL_JADETEX=../../drivers/alternative_stylesheet.dsssl

Uses alternative_stylesheet.dsssl as the DSSSL stylesheet. Note that the path
../../drivers/ is mandatory because of the -C option used with the make command.

A.2. Revision Management Commands
All revision management commands

A.3. Reports Generation Commands
All reports generation commands

A.4. Project Management Commands
Add documents, make alltemplates, and the like

63

Appendix A. Borges Commands Reminder

64

Appendix B. GNU Free Documentation License

B.1. GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-
1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document "free"
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing
the same freedoms that the software does. But this License is not limited to software man-
uals; it can be used for any textual work, regardless of subject matter or whether it is pub-
lished as a printed book. We recommend this License principally for works whose purpose
is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by the copy-
right holder saying it can be distributed under the terms of this License. The "Document",
below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a por-
tion of it, either copied verbatim, or with modifications and/or translated into another lan-
guage.

A "Secondary Section" is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall di-
rectly within that overall subject. (For example, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could
be a matter of historical connection with the subject or with related matters, or of legal, com-
mercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, whose contents can be viewed
and edited directly and straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage subsequent modification
by readers is not Transparent. A copy that is not "Transparent" is called "Opaque".

65

Appendix B. GNU Free Documentation License

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML designed for human modification. Opaque formats
include PostScript, PDF, proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools are not gener-
ally available, and the machine-generated HTML produced by some word processors for
output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title Page" means the text near
the most prominent appearance of the work’s title, preceding the beginning of the body of
the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number
of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the Docu-
ment’s license notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition. Copy-
ing with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a publicly-accessible computer-network location contain-
ing a complete Transparent copy of the Document, free of added material, which the gen-
eral network-using public has access to download anonymously at no charge using public-
standard network protocols. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Trans-
parent copy will remain thus accessible at the stated location until at least one year after the
last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribu-
tion and modification of the Modified Version to whoever possesses a copy of it. In addition,
you must do these things in the Modified Version:
66

Appendix B. GNU Free Documentation License

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Docu-
ment, and from those of previous versions (which should, if there were any, be listed
in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for au-
thorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the pub-
lisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled "History", and its title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section entitled "History" in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. In any section entitled "Acknowledgements" or "Dedications", preserve the section’s
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled "Endorsements". Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section as "Endorsements" or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct
from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorse-
ments of your Modified Version by various parties--for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already includes a cover
text for the same cover, previously added by you or by arrangement made by the same entity
you are acting on behalf of, you may not add another; but you may replace the old one, on
explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

67

Appendix B. GNU Free Documentation License

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical In-
variant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original
documents, forming one section entitled "History"; likewise combine any sections entitled
"Acknowledgements", and any sections entitled "Dedications". You must delete all sections
entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent doc-
uments or works, in or on a volume of a storage or distribution medium, does not as a whole
count as a Modified Version of the Document, provided no compilation copyright is claimed
for the compilation. Such a compilation is called an "aggregate", and this License does not
apply to the other self-contained works thus compiled with the Document, on account of
their being thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts
may be placed on covers that surround only the Document within the aggregate. Otherwise
they must appear on covers around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations re-
quires special permission from their copyright holders, but you may include translations of
some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License provided that you also include the original
English version of this License. In case of a disagreement between the translation and the
original English version of this License, the original English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. How-
ever, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

68

Appendix B. GNU Free Documentation License

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See Copyleft1

.

Each version of the License is given a distinguishing version number. If the Document spec-
ifies that a particular numbered version of this License "or any later version" applies to it,
you have the option of following the terms and conditions either of that specified version
or of any later version that has been published (not as a draft) by the Free Software Foun-
dation. If the Document does not specify a version number of this License, you may choose
any version ever published (not as a draft) by the Free Software Foundation.

B.2. How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.1 or any later ver-
sion published by the Free Software Foundation; with the Invariant Sections being LIST THEIR
TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. A copy
of the license is included in the section entitled "GNU Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which
ones are invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts" instead
of "Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU Gen-
eral Public License, to permit their use in free software.

1. http://www.gnu.org/copyleft/
69

Appendix B. GNU Free Documentation License

70

	Borges DMS
	Table of Contents
	Preface
	1. Legal Notice
	2. About Borges Documentation

	Chapter 1. A Revolutionary Concept
	1.1. What is Borges?
	1.1.1. Features

	1.2. Choosing Borges
	1.2.1. Do I need it?
	1.2.2. Is Borges for me?

	1.3. Some Vocabulary
	Author
	Author Initials
	Project
	Superdocument
	Document
	Compilation
	Structuring element
	Module element
	Module
	Original Module
	Translated Module
	Module Status
	Atom
	Atom Revision
	Life Cycle

	Chapter 2. Quick Start Guide
	2.1. Installation
	2.1.1. Where to get it?
	2.1.2. How do I install it?
	2.1.3. Dependencies

	2.2. First Steps
	2.3. Beginning Your Own Project
	2.3.1. Configuring Borges to Start a New Project
	2.3.2. Step by Step Example
	2.3.2.1. Edit the Main Configuration File
	2.3.2.2. Add the Languages to be Used
	2.3.2.3. Define the Document Structure
	2.3.2.4. Insert the New Document
	2.3.2.5. List Initial Contributors
	2.3.2.6. Define Entities
	2.3.2.7. Generate the Writers' Guidelines
	2.3.2.8. Assign Tasks to Contributors
	2.3.2.9. Write the Modules and Create Images
	2.3.2.10. Check the Result

	2.3.3. Final Notes

	Chapter 3. User's Reference manual
	3.1. Documents Writing
	3.1.1. Configuration Files
	3.1.1.1. conf/author.xml
	3.1.1.2. conf/authors.xml
	3.1.1.3. conf/manualdefault.xml
	3.1.1.4. manuals/MyBook/conf.xml
	3.1.1.5. conf/repository.xml
	3.1.1.6. master.top.xml and the Revision System

	3.1.2. Document Creation Features
	3.1.2.1. Global Entities
	3.1.2.2. Images
	3.1.2.3. Index Support
	3.1.2.4. Specialized Books for Different Needs
	3.1.2.5. Miltilingual Documents
	3.1.2.6. Document Validation
	3.1.2.7. Making Translated Paragraphs Transparent to the Revision System

	3.1.3. Document modification features
	3.1.4. Adding new languages to the system

	3.2. Generating Final Documents
	3.2.1. Single Manual Generation
	3.2.2. Generating Multiple Documents at One Time
	3.2.2.1. For the Whole Project
	3.2.2.2. For a Documents Subset
	3.2.2.3. For one superdocument
	3.2.2.4. For one document

	3.2.3. Generating a Single Module
	3.2.4. OMF Support

	3.3. Output Style Customizations
	3.3.1. Customizing Existing Formats
	3.3.2. Creating a New Customization Layer

	3.4. Revision Management
	3.4.1. Module Life Cycle
	3.4.1.1. The underlying philosophy
	3.4.1.2. Module Status in Practice
	3.4.1.3. Assigning tasks
	3.4.1.4. Customizing the Modules Workflow

	3.4.2. InterLanguage Module Synchronization
	3.4.2.1. The Idea Behind Atom Revisions
	3.4.2.2. Authors Duties
	3.4.2.3. How Translators Synchronize Modules

	3.4.3. Project Major Release
	3.4.4. Generating Reports
	3.4.4.1. Global Project Report
	3.4.4.2. SuperDocument Report
	3.4.4.3. Module report
	3.4.4.4. ID Changes Report
	3.4.4.5. Content Changes Report

	Chapter 4. Features for the Project Manager
	4.1. Server Side Repository
	4.2. Automatically Compile and Publish Reports
	4.3. Sending Mails to Authors
	4.3.1. Adding Information on the Mail Footer

	4.4. Accounting Reports
	4.4.1. Project Report
	4.4.2. Authors Report

	Chapter 5. Borges and XML Editors
	5.1. Which Editor Should I Use?
	5.2. Emacs+PSGML
	5.2.1. Installing PSGML
	5.2.2. DTDAwareness
	5.2.3. Basic PSGML Commands

	Chapter 6. Borges and CVS Integration
	6.1. Starting a New Project on CVS
	6.2. What changes when using CVS
	6.2.1. Commands with Modified Behavior
	6.2.2. New Useful Commands

	Chapter 7. Programmer's Reference manual
	7.1. Makefiles
	7.1.1. Borges source Makefile
	7.1.2. Documentation Projects Makefiles
	7.1.2.1. What Goes Where
	7.1.2.2. Who Calls Who

	7.1.3. Makefiles in Action

	7.2. The Way a Manual is Generated
	7.3. Adding/changing Manuals Rules
	7.4. Supporting Another DTD than DocBook
	7.5. Notes on Borges Installation
	7.5.1. Installing Borges on an Unusual Path
	7.5.2. Adapting Borges to unusual Environment
	7.5.2.1. DTDs and StyleSheets
	7.5.2.2. Other Control Files

	Chapter 8. Getting Help
	8.1. Bug Reports, Feature Requests, Patches
	8.2. Contact

	Chapter 9. Sample Module for Tests
	Appendix A. Borges Commands Reminder
	A.1. Compilation
	A.2. Revision Management Commands
	A.3. Reports Generation Commands
	A.4. Project Management Commands

	Appendix B. GNU Free Documentation License
	B.1. GNU Free Documentation License
	0. PREAMBLE
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE

	B.2. How to use this License for your documents

