Python Library Reference
Release 2.4.2

Guido van Rossum

Fred L. Drake, Jr., editor

28 September 2005

Python Software Foundation
Email: docs@python.org

Copyright(© 2001-2004 Python Software Foundation. All rights reserved.

Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applications,
from simple text processing scripts to interactive Web browsers.

While thePPython Reference Manudescribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability. This
library contains built-in modules (written in C) that provide access to system functionality such as file /O that would
otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules (which

may or may not be available, depending on whether the underlying platform supports them and on the configuration
choices made at compile time). It also documents the standard types of the language and its built-in functions and
exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuatmains the highest authority on syntactic and semantic questions.
Finally, the manual entitleBxtending and Embedding the Python Interpretescribes how to add new extensions to
Python and how to embed it in other applications.

CONTENTS

1 Introduction 1

2 Built-In Objects 3
2.1 Built-in FUNCLiONS e e e 3
2.2 Non-essential Built-in Functions. L 15
2.3 BUIlt-iNTypes o e e 16
2.4 BUIlt-INEXCEPLIONS o o e e e e e e e e e 35
25 Built-inConstants. e e e e e e e 40

3 Python Runtime Services 43
3.1 sys — System-specific parametersand functions. 43
3.2 gc — Garbage Collectorinterface. e 49
3.3 weakref —Weakreferences. 51
3.4 fpectl —Floating pointexceptioncontrol Lo 57
3.5 atexit —Exithandlers. 58
3.6 types — Namesforbuilt-intypes. e 59
3.7 UserDict — Class wrapper for dictionaryobjects 62
3.8 UserList —Classwrapperforlistobjects, 62
3.9 UserString — Classwrapper forstringobjects., 63
3.10 operator — Standard operatorsasfunctions.. Lo oL 63
3.11 inspect —Inspectliveobjects. e 68
3.12 traceback — Printorretrieve astacktraceback. oL 73
3.13 linecache —Randomaccesstotextlines. 74
3.14 pickle — Python objectserialization 75
3.15 cPickle — Afasterpickle 85
3.16 copy _reg — Registempickle supportfunctions. 85
3.17 shelve — Python objectpersistence. e 85
3.18 copy — Shallow anddeepcopyoperations 88
3.19 marshal — Internal Python object serialization. 89
3.20 warnings —Warningcontrol. L L e 90
3.21 imp — Accessthemport internals. 92
3.22 zipimport — Import modules from Ziparchives. 0. 95
3.23 pkgutii — Package extension utility oL 97
3.24 modulefinder —Find modulesusedbyascript 97
3.25 code — Interpreterbaseclasses 98
3.26 codeop — Compile Pythoncode e 100
3.27 pprint —Dataprettyprinter e e e e 101
3.28 repr — Alternaterepr() implementation. e 103
3.29 new — Creation of runtime internal objects. o 105

3.30 site — Site-specific configurationhook 106
3.31 user — User-specific configurationhook 107
3.32 __builtin __—Built-inobjects 107
3.33 __main __ —Top-level scriptenvironment. 108
3.34 __future __— Future statementdefinitions o oo oo 108
String Services 111
4.1 string —Commonstringoperations e e 111
4.2 re —Regular expressionoperations. e e e e 116
4.3 struct — Interpretstrings as packed binarydata 126
4.4 difflib — Helpers forcomputingdeltas 129
4.5 fpformat — Floating point conversions.o 137
4.6 StringlO — Read and write stringsasfiles. o oo oo 138
4.7 cStringlO — Fasterversion oBtringlO 138
4.8 textwrap — Textwrappingandfilling. 139
4.9 codecs — Codecregistryandbaseclasses. 141
4.10 unicodedata — Unicode Database. e 150
4.11 stringprep — Internet String Preparation. 151
Miscellaneous Services 153
5.1 pydoc — Documentation generator and online help system. 153
5.2 doctest — Testinteractive Pythonexamples. 154
5.3 unittest —Unittestingframework. 178
5.4 test — Regressiontests packageforPython., 190
5.5 test.test _support — Utility functionsfortests. 192
5.6 decimal — Decimal floating point arithmetic L. 193
5.7 math — Mathematical functions. e 210
5.8 cmath — Mathematical functions for complexnumbers 212
5.9 random — Generate pseudo-randomnumbers. o oo 214
5.10 whrandom — Pseudo-random number generator. o e 216
5.11 bisect — Array bisectionalgorithm L 217
5.12 collections — High-performance container datatypes 218
5.13 heapq —Heap queue algorithm. 222
5.14 array — Efficientarraysofnumericvalues 224
5.15 sets — Unordered collections of uniqueelements. 227
5.16 itertools — Functions creating iterators for efficientlooping. 230
5.17 ConfigParser = — Configurationfileparser. 239
5.18 fileinput — lterate over lines from multiple input streams 242
5.19 calendar — General calendar-related functions. 243
5.20 cmd— Support for line-oriented command interpreters. oL 244
5.21 shlex — Simplelexicalanalysis e 247
Generic Operating System Services 251
6.1 o0s — Miscellaneous operating systeminterfaces. o oo 251
6.2 os.path — Common pathname manipulations. 270
6.3 dircache — Cacheddirectorylistings. e 273
6.4 stat — Interpretingstat() results. L 273
6.5 statcache — Anoptimization ofos.stat() L 275
6.6 statvfs — Constants used withs.statvfs() o 276
6.7 fileemp —File and Directory CompariSons v v it i 277
6.8 subprocess — Subprocessmanagement e 278
6.9 popen2 — Subprocesses with accessible l/Ostreams. 284
6.10 datetime —Basicdate andtimetypes. 286
6.11 time —Timeaccessand CoNVErSIONS o v v v v it bt e e e e 303

6.12 sched —Eventscheduler. e 308
6.13 mutex — Mutual exclusion support. e e e 310
6.14 getpass — Portable passwordinput. 310
6.15 curses — Terminal handling for character-celldisplays. 310
6.16 curses.textpad — Text input widget for curses programs, 325
6.17 curses.wrapper — Terminal handler for cursesprograms 326
6.18 curses.ascii — Utilities for ASCll characters 327
6.19 curses.panel — A panelstack extensionforcurses.. 329
6.20 getopt — Parser forcommand lineoptions. oo 330
6.21 optparse — More powerful command line optionparser 332
6.22 tempfile = — Generate temporary files and directories. 359
6.23 errno — Standard errnosystemsymbols. L oL o 361
6.24 glob — UNix style pathname patternexpansion L 367
6.25 fnmatch — UNIX filename patternmatching oL 368
6.26 shutii — High-levelfile operations L 368
6.27 locale — Internationalizationservices 370
6.28 gettext — Multilingual internationalization services., 375
6.29 logging — Logging facility for Python. 385
6.30 platform — Access to underlying platform’s identifyingdata. 406
Optional Operating System Services 409
7.1 signal — Sethandlers forasynchronousevents. 409
7.2 socket — Low-level networkinginterface. o 411
7.3 select — Waiting for I/O completion. L 421
7.4 thread — Multiplethreadsofcontrol. 422
7.5 threading — Higher-level threadinginterface. 424
7.6 dummy_thread — Drop-inreplacement forthtaread module 431
7.7 dummy_threading — Drop-in replacement for théareading module 432
7.8 Queue —Asynchronizedqueueclass. 432
7.9 mmap— Memory-mapped file support 433
7.10 anydbm — Generic access to DBM-styledatabases 434
7.11 dbhash — DBM-style interface to the BSD database libraty. 435
7.12 whichdb — Guess which DBM module created adatabase. 436
7.13 bsddb — Interfaceto Berkeley DB library 436
7.14 dumbdbm— Portable DBM implementation L oo 439
7.15 zlib — Compression compatible witheip L L 440
7.16 gzip — Supportforgzipfiles e 442
7.17 bz2 — Compression compatible withwip2 o o 443
7.18 zipfile — Workwith ZIP archives. 445
7.19 tarfile — Read and write tar archivefiles. Lo Lo 448
7.20 readline — GNUreadlineinterface. 453
7.21 rlcompleter — Completion function for GNU readline. 456
Unix Specific Services 459
8.1 posix — The mostcommon POSIX systemcalls., 459
8.2 pwd—Thepassworddatabase. 460
8.3 grp —Thegroupdatabase 461
8.4 crypt —Functiontocheck MiX passwords. o 462
8.5 dl —CallCfunctionsinsharedobjects 462
8.6 dbm— Simple “database”interface. 463
8.7 gdbm— GNU'sreinterpretationofdbm. L 464
8.8 termios — POSIXstylettycontrol. 465
8.9 tty — Terminalcontrolfunctions. 466
8.10 pty — Pseudo-terminal utilities 467

10

11

12

8.11 fentl — Thefentl() andioctl() systemcalls. 467

8.12 pipes — Interfacetoshell pipelines 469
8.13 posixfile — File-like objects with locking support 470
8.14 resource — Resource usage information. L Lo 472
8.15 nis — Interfaceto Sun’s NIS (Yellow Pages), 474
8.16 syslog — UNix sysloglibraryroutines e 475
8.17 commands— Utilities forrunningcommands oo 476
The Python Debugger 477
9.1 DebuggerCommands e e e e 478
9.2 HowItWOrks e e 481
The Python Profiler 483
10.1 Introductiontothe profiler 483
10.2 How Is This Profiler Different From The Old Profiler?. 483
10.3 InstantUsers Manual. e e 484
10.4 What Is Deterministic Profiling?. 486
10.5 Reference Manual e 486
10.6 LimitationS. o o o e e e 489
10.7 Calibration. e e 489
10.8 Extensions — Deriving Better Profilers.o o 490
10.9 hotshot — High performance logging profiler 491
10.10timeit — Measure execution time of small code snippets 492
Internet Protocols and Support 497
11.1 webbrowser — Convenient Web-browser controller. 497
11.2 cgi — Common Gateway Interface support.. e 499
11.3 cgitb — Traceback managerforCGlscripts. 506
11.4 urlib —OpenarbitraryresourcesbyURL 507
11.5 urllib2 — extensible library foropeningURLS oo 512
11.6 httplib — HTTP protocolclient. 522
11.7 ftplib — FTP protocolclient. e 526
11.8 gopherlib — Gopher protocolclient 530
11.9 poplib —POP3protocolclient. e 530
11.10imaplib — IMAP4 protocol client e 532
11.11nntplib — NNTP protocol client. 537
11.12smtplib — SMTP protocol client. 541
11.13smtpd — SMTP Server. e e e e e e e 545
11.14telnetlib —Telnetclient 545
11.15urlparse — Parse URLsintocomponents. i i 548
11.16SocketServer — A framework for network servers. Lo 549
11.17BaseHTTPServer —BasicHTTP server o i ittt 553
11.18SimpleHTTPServer — Simple HTTP requesthandler 555
11.19CGIHTTPServer — CGl-capable HTTPrequesthandler 556
11.20cookielib — Cookie handling for HTTP clients. 557
11.21Cookie — HTTP state management. i i i i it e e e e e 564
11.22xmirpclib — XML-RPCclientaccess i 569
11.23SimpleXMLRPCServer — Basic XML-RPCserver., 573
11.24DocXMLRPCServer — Self-documenting XML-RPC server. 575
11.25asyncore — Asynchronous sockethandler. 576
11.26asynchat — Asynchronous socket command/response handler. 579
Internet Data Handling 583
12.1 formatter = — Generic outputformatting o 583
12.2 email — Anemail and MIME handlingpackage 587

13

14

15

16

12.3 mailcap — Mailcap file handling.. e 616

12.4 mailbox — Read various mailboxformats o oo 616
12.5 mhlib — Accessto MH mailboxes 618
12.6 mimetools — Tools for parsing MIME messages 620
12.7 mimetypes — Map filenamesto MIME types. 622
12.8 MimeWriter — Generic MIME filewriter 624
12.9 mimify — MIME processingof mailmessages. e 625
12.10multifile — Support for files containing distinctparts. o oL 626
12.11rfc822 —Parse RFC 2822 mailheaders. 628
12.12base64 — RFC 3548: Basel6, Base32, Base64 Data Encodings 632
12.13binascii — Convert between binaryamBCll e 633
12.14binhex — Encode and decode binhex4files o oo 635
12.15quopri — Encode and decode MIME quoted-printabledata 636
12.16uu — Encode and decode uuencodefiles L L Lo o 636
12.17xdrlib —Encode and decode XDRdata. e 637
12.18netrc —netrcfile processing. L e e 640
12.19robotparser — Parserforrobots.txt 641
12.20csv — CSV File Readingand Writing. o o i 641
Structured Markup Processing Tools 647
13.1 HTMLParser — Simple HTML and XHTML parser. v v i .. 647
13.2 sgmllib — Simple SGML parser. i i e e 649
13.3 htmllib — AparserforHTMLdocuments i i i i i 652
13.4 htmlentitydefs — Definitions of HTML general entities 653
13.5 xml.parsers.expat — Fast XML parsingusingExpat 653
13.6 xml.dom — The Document Object Model APIL., 662
13.7 xml.dom.minidom — Lightweight DOM implementation. 672
13.8 xml.dom.pulldom — Support for building partial DOMtrees 677
13.9 xml.sax — Supportfor SAX2 parsers. o 677
13.10xml.sax.handler — BaseclassesforSAXhandlers 679
13.11xml.sax.saxutils — SAXUtilities 683
13.12xml.sax.xmlreader — Interface for XML parsers.o 684
13.13xmllib — A parserfor XML documents. 688
Multimedia Services 693
14.1 audioop — Manipulaterawaudiodata 693
14.2 imageop — Manipulaterawimagedata 696
14.3 aifc — Read and write AIFFand AIFCfiles. L oo 697
14.4 sunau — Read and write Sun AUfiles 699
145 wave — Read and write WAV files. e 702
14.6 chunk —Read IFFchunkeddata. 703
14.7 colorsys — Conversions between colorsystems. 705
14.8 rghimg — Read and write “SGIRGB"files 705
14.9 imghdr — Determine thetypeofanimage 706
14.10sndhdr — Determine type of soundfileo 707
14.110ssaudiodev — Access to OSS-compatible audiodevices. 707
Cryptographic Services 713
15.1 hmac — Keyed-Hashing for Message Authentication. 713
15.2 md5— MD5 message digestalgorithm. L 713
15.3 sha — SHA-1 message digest algorithm. 715
Graphical User Interfaces with Tk 717
16.1 Tkinter — Pythoninterfaceto Tcl/Tk. .. 717
16.2 Tix — Extensionwidgetsfor TK. 729

17

18

19

20

21

22

16.3 ScrolledText ~ —Scrolled TextWidget. e

16.4 turtle —TurtlegraphicsforTk e
16.5 Idle o e
16.6 Other Graphical User Interface Packages i
Restricted Execution 741
17.1 rexec — Restricted executionframework L L oL o
17.2 Bastion — Restrictingaccesstoobjects L o e
Python Language Services 747
18.1 parser — Access Pythonparsetrees. o e

18.2 symbol — Constants used with Python parsetrees
18.3 token — Constants used with Pythonparsetrees
18.4 keyword — Testing for Pythonkeywords
18.5 tokenize — Tokenizer for Pythonsource.
18.6 tabnanny — Detection of ambiguous indentation L.
18.7 pyclbr — Python class browser support L
18.8 py_compile — Compile Pythonsourcefiles.
18.9 compileall ~— Byte-compile Pythonlibraries
18.10dis — Disassembler for Pythonbytecode.
18.11 pickletools — Tools for pickle developers..
18.12distutils — Building and installing Python modules.

Python compiler package 771

19.1 Thebasicinterface e
19.2 Limitations. L e e e e
19.3 Python Abstract Syntax. e e e
19.4 UsingVisitorsto Walk ASTS e e
19.5 Bytecode Generation. e e e e

SGI IRIX Specific Services 779

20.1 al —Audiofunctionsonthe SGI e
20.2 AL— Constantsusedwithtted module
20.3 cd — CD-ROM access on SGISyStems i i ittt e
20.4 fl — FORMS library for graphical userinterfaces.
20.5 FL — Constants used withtife module o
20.6 flp — Functions for loading stored FORMS designs.
20.7 fm — Font Managefinterface. L e
20.8 gl — Graphics Libraryinterface
20.9 DEVICE— Constants used withttgd module,
20.10GL— Constantsused with ttgd module
20.11limgfile — Supportfor SGlimglibfiles
20.12jpeg — Read andwrite JPEGfiles. e

SunOS Specific Services 797

21.1 sunaudiodev — Accessto Sunaudiohardware.o
21.2 SUNAUDIODEVW- Constants used witbunaudiodev

MS Windows Specific Services 799

22.1 msvcert — Useful routines fromthe MS VErruntime
22.2 _winreg —WINdOWS registry aCCeSS v v v v i i e e e e e e e e
22.3 winsound — Sound-playing interface forWindows. o o oL,

Undocumented Modules 807

Al Frameworks e e e e e

Vi

A.2 Miscellaneous useful utilities
A.3 Platform specific modules
A.4 Multimedia
AL Obsolete e e e
A.6 SGl-specific Extension modules

B Reporting Bugs

C History and License
C.1 Historyofthesoftware
C.2 Terms and conditions for accessing or otherwise using Python
C.3 Licenses and Acknowledgements for Incorporated Software

Module Index

Index

Vii

viii

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of anmport statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’haveto read it like a novel — you can also browse the table of contents (in front of the manual),

or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see maddten) and read a section or two. Regardless of

the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions
and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-In Objects

Names for built-in exceptions and functions and a number of constants are found in a separate symbol table. This
table is searched last when the interpreter looks up the meaning of a name, so local and global user-defined names can
override built-in names. Built-in types are described together here for easy reférence.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operators that have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choice.) See chapter 5 of the
Python Reference Manufdr the complete picture on operator priorities.

2.1 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

—_import __(name[, globals[, Iocals[, fromlist]]])
This function is invoked by thenport statement. It mainly exists so that you can replace it with another func-
tion that has a compatible interface, in order to change the semanticsiofghg statement. For examples
of why and how you would do this, see the standard library modhtesks andrexec . See also the built-in
moduleimp, which defines some useful operations out of which you can build your_awmport __()

function.

For example, the statemenimport spam ’ results in the following call: __import __('spam’,
globals(), locals(), [I) ; the statement ffom spam.ham import eggs ' results in
‘__import __('spam.ham’, globals(), locals(), ['eggs’]) . Note that even though

locals() and['eggs’] are passed in as arguments, thémport __() function does not set the local
variable nameckggs ; this is done by subsequent code that is generated for the import statement. (In fact,
the standard implementation does not uséoitals argument at all, and uses bfobalsonly to determine the
package context of thenport statement.)

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up till the
first dot) is returnedpotthe module named bhyame However, when a non-empigomlistargument is given, the
module named byameis returned. This is done for compatibility with the bytecode generated for the different
kinds of import statement; when usingnport spam.ham.eggs ', the top-level packagepam must be
placed in the importing namespace, but when usfrgm spam.ham import eggs ', the spam.ham
subpackage must be used to find dggs variable. As a workaround for this behavior, ugtattr() to
extract the desired components. For example, you could define the following helper:

IMost descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.

def my_import(hame):
mod = __import__(name)
components = name.split(".")
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

basestring ()
This abstract type is the superclass $&r andunicode . It cannot be called or instantiated, but it can be

used to test whether an object is an instancstiof or unicode . isinstance(obj, basestring) is
equivalent tasinstance(obj, (str, unicode)) . New in version 2.3.
bool ([x])

Convert a value to a Boolean, using the standard truth testing procedwés fiilse or omitted, this returns
False ; otherwise it returnJrue . bool is also a class, which is a subclassmif . Classbool cannot be
subclassed further. Its only instances baégse andTrue .

New in version 2.2.1. Changed in version 2.3: If no argument is given, this function rétalses .

callable (objec)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a call
fails, but if it is false, callingobjectwill never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they havecall __() method.

chr (i)
Return a string of one character whosgcil code is the integer For examplechr(97) returns the string
'a’ . Thisis the inverse ofrd() . The argument must be in the range [0..255], inclusiXedueError will
be raised ifi is outside that range.

classmethod (function
Return a class method féunction

A class method receives the class as implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, ...): ..

The @classmethod form is a function decorator — see the description of function definitions in chapter 7 of
the Python Reference Manufdr details.

It can be called either on the class (suchCaf)) or on an instance (such &).f()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed as
the implied first argument.

Class methods are different tharr€or Java static methods. If you want those, stagicmethod() in this
section. New in version 2.2. Changed in version 2.4: Function decorator syntax added.

cmp(X, Y)
Compare the two objectsandy and return an integer according to the outcome. The return value is negative if
X <y, zeroifx == yand strictly positive ifx > .

compile (string, filename, kinEi flags[, donLinherit]])
Compile thestringinto a code object. Code objects can be executed lBxaa statement or evaluated by a call
toeval() . Thefilenameargument should give the file from which the code was read; pass some recognizable

4 Chapter 2. Built-In Objects

value if it wasn't read from a file'€string>’ is commonly used). Thkind argument specifies what kind of
code must be compiled; it can lexec’ if string consists of a sequence of statemetagal’ if it consists

of a single expression, &ingle’ if it consists of a single interactive statement (in the latter case, expression
statements that evaluate to something else Mame will be printed).

When compiling multi-line statements, two caveats apply: line endings must be represented by a single newline
character'fn’), and the input must be terminated by at least one newline character. If line endings are
represented br\n’ , use the stringeplace() = method to change them into’

The optional argumenttagsanddont_inherit (which are new in Python 2.2) control which future statements
(see PEP 236) affect the compilationstfing. If neither is present (or both are zero) the code is compiled with
those future statements that are in effect in the code that is calling compile. flagfsargument is given and
dont_inheritis not (or is zero) then the future statements specified bjldgsargument are used in addition to
those that would be used anywaydtint_inherit is a non-zero integer then tflagsargument is it — the future
statements in effect around the call to compile are ignored.

Future statements are specified by bits which can be bitwise or-ed together to specify multiple statements. The
bitfield required to specify a given feature can be found astmepiler _flag attribute on the_Feature
instance in the__future __ module.

complex ([real[, imag]])
Create a complex number with the valgal + imagtj or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type
(including complex). Ifimagis omitted, it defaults to zero and the function serves as a numeric conversion
function likeint() ,long() andfloat() . If both arguments are omitted, retui@s.

delattr (object, namg
This is a relative oetattr() . The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(%, ' foobar) is equivalenttalel x. foobar.

dict ([mapping—or—sequenc]e)
Return a new dictionary initialized from an optional positional argument or from a set of keyword arguments.
If no arguments are given, return a new empty dictionary. If the positional argument is a mapping object, return
a dictionary mapping the same keys to the same values as does the mapping object. Otherwise the positional
argument must be a sequence, a container that supports iteration, or an iterator object. The elements of the
argument must each also be of one of those kinds, and each must in turn contain exactly two objects. The first
is used as a key in the new dictionary, and the second as the key’s value. If a given key is seen more than once,
the last value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated values are added as items to the
dictionary. If a key is specified both in the positional argument and as a keyword argument, the value associated
with the keyword is retained in the dictionary. For example, these all return a dictionary edtaihéd:

2, "two" 3}

edict({'one: 2, 'two: 3}

edict({'one: 2, 'two: 3}.items())
edict({'one”. 2, 'two". 3}.iteritems())
edict(zip((one’, 'two’), (2, 3)))
edict([['two’, 3], ['one’, 2]])

edict(one=2, two=3)

edict([([one’, 'two’][i-2], i) for i in (2, 3)])

New in version 2.2. Changed in version 2.3: Support for building a dictionary from keyword arguments added.

2.1. Built-in Functions 5

dir ([object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts to
return a list of valid attributes for that object. This information is gleaned from the objeatict __ attribute,
if defined, and from the class or type object. The list is not necessarily complete. If the object is a module object,
the list contains the names of the module’s attributes. If the object is a type or class object, the list contains the
names of its attributes, and recursively of the attributes of its bases. Otherwise, the list contains the object’s
attributes’ names, the names of its class’s attributes, and recursively of the attributes of its class’s base classes.
The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir()

[__builtins__’, °__doc__’, '__name__’, ’struct]

>>> dir(struct)

[__doc_', '__name__’, ’'calcsize’, 'error’, 'pack’, 'unpack’]

Note: Becausalir() is supplied primarily as a convenience for use at an interactive prompt, it tries to supply
an interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases.

divmod (a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic operators apply.
For plain and long integers, the result is the samgad b, a % b) . For floating point numbers the result
is(q, a % b),whereqis usuallymath.floor(a / b) butmay be 1 less than that. Inany cgsé b +
a % bisverycloset@, if a % bis non-zero it has the same signasand0 <= abs(a % b) < abs(b).

Changed in version 2.3: Usirdivmod() with complex numbers is deprecated.

enumerate (iterable
Return an enumerate objeciterable must be a sequence, an iterator, or some other object which supports
iteration. Thenext() method of the iterator returned l®numerate() returns a tuple containing a count
(from zero) and the corresponding value obtained from iterating ibeble enumerate() is useful for
obtaining an indexed serie€, seq[0]) , (1, seq[l]) , (2, seq[2]) ,.... New in version 2.3.

eval (expressio[1, globals[, Iocals]])
The arguments are a string and optional globals and locals. If prowgzhlsmust be a dictionary. If provided,
localscan be any mapping object. Changed in version 2.4: formecgiswas required to be a dictionary.

Theexpressiorargument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using theglobalsandlocals dictionaries as global and local name space. Ifglabalsdictionary is present

and lacks ”__builtins__’, the current globals are copied inggobalsbeforeexpressioris parsed. This means

that expressiomormally has full access to the standardbuiltin -~ __ module and restricted environments

are propagated. If thiecalsdictionary is omitted it defaults to thglobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment wéneaik is called. The return value is the result of

the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval('x+1’)
2

This function can also be used to execute arbitrary code objects (such as those creatagdit®()). In this
case pass a code object instead of a string. The code object must have been compiledgva$singas the
kind argument.

Hints: dynamic execution of statements is supported byettex statement. Execution of statements from

a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for esaly or
execfile()

6 Chapter 2. Built-In Objects

execfile (fiIenameE, gIobaIs[, Iocals]])
This function is similar to thexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new modufe.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using ghebalsandlocals dictionaries as global and local names-

pace. If provided]ocalscan be any mapping object. Changed in version 2.4: fornledsls was required

to be a dictionary. If thdocalsdictionary is omitted it defaults to thglobalsdictionary. If both dictionaries

are omitted, the expression is executed in the environment velxexcfile() is called. The return value is

None.

Warning: The defaultocalsact as described for functidacals() below: modifications to the defauticals
dictionary should not be attempted. Pass an exgbcils dictionary if you need to see effects of the code on
locals after functionexecfile() returns. execfile() cannot be used reliably to modify a function’s
locals.

file (filenamd, modd, bufsizd])
Return a new file object (described in section 2.3MI¢'Objects). The first two arguments are the same as for
stdio 's fopen() : filenameis the file name to be openemhodeindicates how the file is to be opened:
for reading,w’ for writing (truncating an existing file), arid’ opens it for appending (which @omeUnNix
systems means thall writes append to the end of the file, regardless of the current seek position).

Modes’r+' ,'w+’ and’'a+’ open the file for updating (note that+' truncates the file). Appentd’ to
the mode to open the file in binary mode, on systems that differentiate between binary and text files (else it is
ignored). If the file cannot be opend@Error s raised.

In addition to the standartbpen() valuesmodemay be’U’ or'rU’ . If Python is built with universal
newline support (the default) the file is opened as a text file, but lines may be terminated by\any ofthe

Unix end-of-line convention\r’ , the Macintosh convention dwr\n’ , the Windows convention. All of
these external representations are seetnas by the Python program. If Python is built without universal
newline suppormode’U’ is the same as normal text mode. Note that file objects so opened also have an
attribute callednewlines which has a value oNone (if no newlines have yet been seeflfy ,'\r ,

\nn’ , or a tuple containing all the newline types seen.

If modeis omitted, it defaults t&’ . When opening a binary file, you should appéodd to themodevalue

for improved portability. (It's useful even on systems which don't treat binary and text files differently, where

it serves as documentation.) The optiobafsizeargument specifies the file’s desired buffer size: 0 means
unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately) that size. A
negativebufsizemeans to use the system default, which is usually line buffered for tty devices and fully buffered
for other files. If omitted, the system default is used.

Thefile() constructor is new in Python 2.2 and is an aliasdpen() . Both spellings are equivalent. The
intent is foropen() to continue to be preferred for use as a factory function which returns dileew object.
The spellingfile is more suited to type testing (for example, writingjhistance(f, file)).

filter (function, lis)
Construct a list from those elementslidt for which functionreturns true.list may be either a sequence, a
container which supports iteration, or an iteratoridt is a string or a tuple, the result also has that type;
otherwise it is always a list. functionis None, the identity function is assumed, that is, all elementssbthat
are false (zero or empty) are removed.

Note that filter(function, list) is equivalent to [item for item in list if
function(item)] if function is notNone and[item for item in list if item] if function is
None.

2|t is used relatively rarely so does not warrant being made into a statement.

3Specifying a buffer size currently has no effect on systems that don’'tseveuf() . The interface to specify the buffer size is not done
using a method that calletvbuf() , because that may dump core when called after any I/O has been performed, and there’s no reliable way to
determine whether this is the case.

2.1. Built-in Functions 7

float ([x])
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed
decimal or floating point number, possibly embedded in whitespace. Otherwise, the argument may be a plain
or long integer or a floating point number, and a floating point number with the same value (within Python’s
floating point precision) is returned. If no argument is given, retOtis.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

frozenset ([iterable])
Return a frozenset object whose elements are taken itenable Frozensets are sets that have no update
methods but can be hashed and used as members of other sets or as dictionary keys. The elements of a frozenset
must be immutable themselves. To represent sets of sets, the inner sets shouldralseniset objects. If
iterableis not specified, returns a new empty $edzenset([]) . New in version 2.4.

getattr (object, namE, default])
Return the value of the named attributedafiject namemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For examgpgiattr(x, 'foobar’)

is equivalent tax.foobar . If the named attribute does not exidgfaultis returned if provided, otherwise
AttributeError is raised.
globals ()

Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namg
The arguments are an object and a string. The res(ltus if the string is the name of one of the object’s
attributes,False if not. (This is implemented by callingetattr(object namg and seeing whether it
raises an exception or not.)

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated. New in
version 2.2,

hex (X)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression.
Changed in version 2.4: Formerly only returned an unsigned literal..

id (objec)
Return the “identity” of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects with non-overlapping lifetimes may have the same
id() value. (Implementation note: this is the address of the object.)

input ([prompt])
Equivalent teeval(raw _input(prompd) . Warning: This function is not safe from user errors! It expects
a valid Python expression as input; if the input is not syntactically val®irgaxError will be raised. Other
exceptions may be raised if there is an error during evaluation. (On the other hand, sometimes this is exactly
what you need when writing a quick script for expert use.)

If the readline module was loaded, thenput() will use it to provide elaborate line editing and history

8 Chapter 2. Built-In Objects

features.
Consider using theaw _input() function for general input from users.

int ([x[radix]])

Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespaadiXfia@ameter gives

the base for the conversion and may be any integer in the range [2, 36], or zeadlixlfs zero, the proper

radix is guessed based on the contents of string; the interpretation is the same as for integer litachisis|f
specified anc is not a string,TypeError is raised. Otherwise, the argument may be a plain or long integer

or a floating point number. Conversion of floating point numbers to integers truncates (towards zero). If the
argument is outside the integer range a long object will be returned instead. If no arguments are given, returns
0.

isinstance (object, classinfp

Return true if theobjectargument is an instance of tlekassinfoargument, or of a (direct or indirect) subclass
thereof. Also return true iflassinfois a type object andbjectis an object of that type. kbbjectis not a class
instance or an object of the given type, the function always returns falstasinfois neither a class object

nor a type object, it may be a tuple of class or type objects, or may recursively contain other such tuples (other
sequence types are not acceptedklafsinfois not a class, type, or tuple of classes, types, and such tuples, a
TypeError exception is raised. Changed in version 2.2: Support for a tuple of type information was added.

issubclass (class, classinfp

Return true ifclassis a subclass (direct or indirect) ofassinfo A class is considered a subclass of itself.
classinfomay be a tuple of class objects, in which case every entgjassinfowill be checked. In any other
case, aypeError exception is raised. Changed in version 2.3: Support for a tuple of type information was
added.

iter (o[, sentineﬂ)

Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argumentust be a collection object which supports the iteration protocol
(the __iter __() method), or it must support the sequence protocol (thgetitem __() method with

integer arguments starting @). If it does not support either of those protocolgjpeError s raised. If

the second argumensentine] is given, theno must be a callable object. The iterator created in this case
will call o with no arguments for each call to itext() method; if the value returned is equalgentine]
Stoplteration will be raised, otherwise the value will be returned. New in version 2.2.

len (9

Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list ([sequenc}e)
Return a list whose items are the same and in the same ordeigasncs items. sequencenay be either a
sequence, a container that supports iteration, or an iterator objeetqufncés already a list, a copy is made
and returned, similar teequendg] . For instanceljst('abc’) returng’a’, 'b’, 'c’] andlist(
1, 2, 3)) returns[1, 2, 3] . If noargumentis given, returns a new empty ljt,

locals ()

Update and return a dictionary representing the current local symbol ts#dening: The contents of this
dictionary should not be modified; changes may not affect the values of local variables used by the interpreter.

long ([x[radix]])

Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed number
of arbitrary size, possibly embedded in whitespace. rHuix argument is interpreted in the same way as for

int() , and may only be given whenis a string. Otherwise, the argument may be a plain or long integer or a
floating point number, and a long integer with the same value is returned. Conversion of floating point numbers
to integers truncates (towards zero). If no arguments are given, ré&urns

map(function, list, ..)

2.1. Built-in Functions 9

Apply functionto every item oflist and return a list of the results. If additioni@t arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter than
another it is assumed to be extended wiitine items. Iffunctionis None, the identity function is assumed; if
there are multiple list argumentsiap() returns a list consisting of tuples containing the corresponding items
from all lists (a kind of transpose operation). Tl& arguments may be any kind of sequence; the result is
always a list.

max(s[, args...])
With a single argumerg, return the largest item of a non-empty sequence (such as a string, tuple or list). With
more than one argument, return the largest of the arguments.

min (s[, args...])
With a single argumerg, return the smallest item of a non-empty sequence (such as a string, tuple or list). With
more than one argument, return the smallest of the arguments.

object ()
Return a new featureless objeabject() is a base for all new style classes. It has the methods that are
common to all instances of new style classes. New in version 2.2.

Changed in version 2.3: This function does not accept any arguments. Formerly, it accepted arguments but
ignored them.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Changed in
version 2.4: Formerly only returned an unsigned literal..

open (filename{, mode{, bufsize]])
An alias for thefile() function above.

ord (¢
Given a string of length one, return an integer representing the Unicode code point of the character when the
argument is a unicode object, or the value of the byte when the argument is an 8-bit string. For example,
ord('a’) returns the integed7, ord(u\u2020’) returns8224 . This is the inverse ofhr() for 8-bit
strings and ofunichr() ~ for unicode objects. If a unicode argument is given and Python was built with UCS2
Unicode, then the character’s code point must be in the range [0..65535] inclusive; otherwise the string length
is two, and al'ypeError will be raised.

pow(X, y[z])
Returnx to the powery; if zis present, returix to the powery, moduloz (computed more efficiently than
pow(x, Yy) % 2). The arguments must have numeric types. With mixed operand types, the coercion rules for
binary arithmetic operators apply. For int and long int operands, the result has the same type as the operands
(after coercion) unless the second argument is negative; in that case, all arguments are converted to float and
a float result is delivered. For examplE)**2 returns100, but 10**-2 returns0.01 . (This last feature
was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types and the second
argument was negative, an exception was raised.) If the second argument is negative, the third argument must
be omitted. Ifzis presentx andy must be of integer types, arydmust be non-negative. (This restriction was
added in Python 2.2. In Python 2.1 and before, floating 3-argupemf) returned platform-dependent results
depending on floating-point rounding accidents.)

property ([fget[, fse{, fdel[, doc]]]])
Return a property attribute for new-style classes (classes that derivobjeat).

fgetis a function for getting an attribute value, likewitgetis a function for setting, anttel a function for
del’ing, an attribute. Typical use is to define a managed attribute x:

10 Chapter 2. Built-In Objects

class C(object):
def __init_ (self): self.__x = None
def getx(self): return self.
def setx(self, value): self.__
def delx(self): del self._ x
X = property(getx, setx, delx, "I'm the X’ property.")

x

= value

x

New in version 2.2.

range ([start,] sto;{, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often tmmedloops.
The arguments must be plain integers. If gtepargument is omitted, it defaults th. If the start argument
is omitted, it defaults t®. The full form returns a list of plain integefsstart, start + step start + 2
* step ..] . If stepis positive, the last element is the largetdrt + i * stepless tharstop if stepis
negative, the last element is the smallsistrt + | * stepgreater tharstop stepmust not be zero (or else
ValueError s raised). Example:

>>> range(10)

[0, 1, 2, 3, 4, 5,6, 7, 8, 9]
>>> range(1, 11)

[1, 2, 3, 4,5, 6, 7, 8 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

>>> range(1, 0)

I

raw _input ([prompt])
If the promptargument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. &dirés read,
EOFError israised. Example:

>>> s = raw_input(’-->)

--> Monty Python's Flying Circus
>>> S

"Monty Python’s Flying Circus"

If the readline module was loaded, theaw _input() will use it to provide elaborate line editing and
history features.

reduce (function, sequent{einitializer])
Apply function of two arguments cumulatively to the items sfquencefrom left to right, so as to reduce
the sequence to a single value. For exampmeluce(lambda x, y: x+y, [1, 2, 3, 4, 5]
calculateq(((1+2)+3)+4)+5) . The left argumenty, is the accumulated value and the right argument,
is the update value from treequencelf the optionalinitializer is present, it is placed before the items of the
sequence in the calculation, and serves as a default when the sequence is emipilizér is not given and
sequenceontains only one item, the first item is returned.

reload (modulg
Reload a previously importedodule The argument must be a module object, so it must have been successfully
imported before. This is useful if you have edited the module source file using an external editor and want to try

2.1. Built-in Functions 11

out the new version without leaving the Python interpreter. The return value is the module object (the same as
themoduleargument).

Whenreload(module) is executed:

ePython modules’ code is recompiled and the module-level code reexecuted, defining a new set of objects
which are bound to hames in the module’s dictionary. irtie function of extension modules is not
called a second time.

eAs with all other objects in Python the old objects are only reclaimed after their reference counts drop to
zero.

eThe names in the module namespace are updated to point to any new or changed objects.

oOther references to the old objects (such as names external to the module) are not rebound to refer to the
new objects and must be updated in each namespace where they occur if that is desired.

There are a number of other caveats:

If a module is syntactically correct but its initialization fails, the firsiport statement for it does not bind
its name locally, but does store a (partially initialized) module objesysimodules . To reload the module
you must firsimport it again (this will bind the name to the partially initialized module object) before you
canreload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — wigh atatement it can test

for the table’s presence and skip its initialization if desired:

try:
cache

except NamekError:
cache = {}

It is legal though generally not very useful to reload built-in or dynamically loaded modules, excepsfor

__main __and__builtin ~ __. In many cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.
If a module imports objects from another module usiram ... import ..., callingreload() for the

other module does not redefine the objects imported from it — one way around this is to re-exefamthe
statement, another is to useport and qualified namesr(odulenamg instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (objec)
Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed teval()

reversed (seq
Return a reverse iteratosegmust be an object which supports the sequence protocol (then__ () method
and the__getitem __() method with integer arguments startind)at New in version 2.4.

round (x[, n])
Return the floating point valuerounded tan digits after the decimal point. Hi is omitted, it defaults to zero.
The result is a floating point number. Values are rounded to the closest multiple of 10 to the powenminus
if two multiples are equally close, rounding is done away from 0O (so. for exampled(0.5) is1.0 and
round(-0.5) is-1.0).

12 Chapter 2. Built-In Objects

set ([iterable])
Return a set whose elements are taken fitenable The elements must be immutable. To represent sets of sets,
the inner sets should Beozenset objects. Ifiterableis not specified, returns a new empty sti([])
New in version 2.4.

setattr (object, name, valye
This is the counterpart @fetattr() . The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For exampleetattr(%, ' foobar, 123) is equivalent tox. foobar = 123.

slice ([start,] stop{, step])
Return a slice object representing the set of indices specifiedriye(start, stop step . Thestartand
steparguments default tblone. Slice objects have read-only data attribusesmt , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however they
are used by Numerical Python and other third party extensions. Slice objects are also generated when extended
indexing syntax is used. For exampla]start:stop:step] "or ‘a[start:stop, i] '

sorted (iterable[, cmp[, ke)[, reverse]]])
Return a new sorted list from the itemsifarable. The optional argumentsmp key, andreversehave the same
meaning as those for thist.sort() method. New in version 2.4.

staticmethod (function
Return a static method fdunction

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f(argl, arg2, ..):. ...

The @staticmethod form is a function decorator — see the description of function definitions in chapter 7 of
the Python Reference Manufdr details.

It can be called either on the class (suchCaf)) or on an instance (such &).f()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java ot. CFor a more advanced concept, see
classmethod() in this section. New in version 2.2. Changed in version 2.4: Function decorator syntax
added.

str([object])
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference witliepr(objec) is thatstr(objec) does not always attempt to return a string that is
acceptable teval() ; its goal is to return a printable string. If no argument is given, returns the empty string,

sum(sequencE: start])
Sumsstart and the items of @equencefrom left to right, and returns the totalstart defaults to0. The
sequencs items are normally numbers, and are not allowed to be strings. The fast, correct way to concatenate
sequence of strings is by callirigjoin(sequence. Note thatsum(range(n), m) is equivalent to
reduce(operator.add, range(n), m) New in version 2.3.

super (type{, object-or-typé)
Return the superclass btfpe If the second argument is omitted the super object returned is unbound. If the
second argument is an objedijnstance(obj, type must be true. If the second argument is a type,
issubclass(type2 type must be truesuper() only works for new-style classes.

A typical use for calling a cooperative superclass method is:

2.1. Built-in Functions 13

class C(B):
def meth(self, arg):
super(C, self).meth(arg)

Note thatsuper is implemented as part of the binding process for explicit dotted attribute lookups such as
‘super(C, self). __getitem __(name) . Accordingly, super is undefined for implicit lookups using
statements or operators such sisger(C, self)[name] . New in version 2.2.

tuple ([sequenc}a)
Return a tuple whose items are the same and in the same oslEENCS items.sequencenay be a sequence,
a container that supports iteration, or an iterator objecedfuencés already a tuple, it is returned unchanged.
For instancetuple(’abc’) returns(’a’, 'b’, 'c) andtuple([1, 2, 3]) returns(l, 2,
3) . If no argument is given, returns a new empty tug)e,

type (objec)
Return the type of ambject The return value is a type object. Th@nstance() built-in function is
recommended for testing the type of an object.

With three argumentsype functions as a constructor as detailed below.

type (name, bases, dict
Return a new type object. This is essentially a dynamic form ofctaes statement. Th@amestring is
the class name and becomes thename__ attribute; thebasestuple itemizes the base classes and becomes
the __bases __ attribute; and thealict dictionary is the namespace containing definitions for class body and
becomes the _dict __ attribute. For example, the following two statements create ideryipal objects:

>>> class X(object):
a=1

>>> X = type('X’, (object,), dict(a=1))
New in version 2.2.

unichr (i)
Return the Unicode string of one character whose Unicode code is the intdgmrexamplepunichr(97)
returns the string’a’ . This is the inverse afrd() for Unicode strings. The valid range for the argument de-
pends how Python was configured — it may be either UCS2 [0..0xFFFF] or UCS4 [0..0x10MBREError
is raised otherwise. New in version 2.0.

unicode ([objec{, encodind, errors]]])
Return the Unicode string version olbjectusing one of the following modes:

If encodingand/orerrors are given,unicode() will decode the object which can either be an 8-bit string
or a character buffer using the codec &rcoding The encodingparameter is a string giving the name of an
encoding; if the encoding is not knowhookupError is raised. Error handling is done accordingetoors;
this specifies the treatment of characters which are invalid in the input encodiegors is ’strict’ (the
default), avalueError s raised on errors, while a value ‘@jnore’ causes errors to be silently ignored,
and a value ofreplace’ causes the official Unicode replacement charatteFFFD to be used to replace
input characters which cannot be decoded. See alswotiiecs module.

If no optional parameters are givempicode() will mimic the behaviour ofstr() except that it returns
Unicode strings instead of 8-bit strings. More preciselglfectis a Unicode string or subclass it will return
that Unicode string without any additional decoding applied.

For objects which provide a_unicode __() method, it will call this method without arguments to create a
Unicode string. For all other objects, the 8-bit string version or representation is requested and then converted
to a Unicode string using the codec for the default encodirigtiict’ mode.

New in version 2.0. Changed in version 2.2: Supportfounicode __() added.

14 Chapter 2. Built-In Objects

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hasliat __ attribute), returns a dictionary
corresponding to the object’s symbol table. The returned dictionary should not be modified: the effects on the
corresponding symbol table are undefifted.

xrange ([start,] stop{, step])
This function is very similar tdange() , but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all simul-
taneously. The advantage xfange() overrange() is minimal (sincexrange() still has to create the
values when asked for them) except when a very large range is used on a memory-starved machine or when all
of the range’s elements are never used (such as when the loop is usually terminataeakth.

Note: xrange() is intended to be simple and fast. Implementations may impose restrictions to achieve this.
The C implementation of Python restricts all arguments to native C longs ("short” Python integers), and also
requires that the number of elements fit in a native C long.

zip ([iterable, ..])
This function returns a list of tuples, where thth tuple contains theth element from each of the argument
sequences or iterables. The returned list is truncated in length to the length of the shortest argument sequence.
When there are multiple arguments which are all of the same lenigif), is similar tomap() with an initial
argument oNone. With a single sequence argument, it returns a list of 1-tuples. With no arguments, it returns
an empty list. New in version 2.0.

Changed in version 2.4: Formerlgip() required at least one argument azig() raised aTypeError
instead of returning an empty list..

2.2 Non-essential Built-in Functions

There are several built-in functions that are no longer essential to learn, know or use in modern Python programming.
They have been kept here to maintain backwards compatibility with programs written for older versions of Python.

Python programmers, trainers, students and bookwriters should feel free to bypass these functions without concerns
about missing something important.

apply (function, arg{, keywordi)
Thefunctionargument must be a callable object (a user-defined or built-in function or method, or a class object)
and theargs argument must be a sequence. Tinectionis called withargs as the argument list; the number
of arguments is the length of the tuple. If the optiokeywordsargument is present, it must be a dictionary
whose keys are strings. It specifies keyword arguments to be added to the end of the argument list. Calling
apply() s different from just callingunctiorn(args) , since in that case there is always exactly one argument.
The use ofaipply() is equivalent tdunction(* args ** keyword$¥. Use ofapply() is not necessary since
the “extended call syntax,” as used in the last example, is completely equivalent.

Deprecated since release 2.R8Ise the extended call syntax instead, as described above.

buffer (objec{, offse[, size]])
Theobjectargument must be an object that supports the buffer call interface (such as strings, arrays, and buffers).
A new buffer object will be created which referencesdhgectargument. The buffer object will be a slice from
the beginning obbject(or from the specifiedffse). The slice will extend to the end abject(or will have a
length given by theizeargument).

coerce (X,Y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations. If coercion is not possible, fBygp&Error

4In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (such as
modules) can be. This may change.

2.2. Non-essential Built-in Functions 15

intern (' string)
Enterstring in the table of “interned” strings and return the interned string — whidtriag itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and
the dictionaries used to hold module, class or instance attributes have interned keys. Changed in version 2.3:
Interned strings are not immortal (like they used to be in Python 2.2 and before); you must keep a reference to
the return value ointern() around to benefit from it.

2.3 Built-in Types

The following sections describe the standard types that are built into the interpreter. Historically, Python’s built-in
types have differed from user-defined types because it was not possible to use the built-in types as the basis for object-
oriented inheritance. With the 2.2 release this situation has started to change, although the intended unification of
user-defined and built-in types is as yet far from complete.

The principal built-in types are numerics, sequences, mappings, files classes, instances and exceptions.

Some operations are supported by several object types; in particular, practically all objects can be compared, tested
for truth value, and converted to a string (with the .* notation, the equivalenepr() function, or the slightly
differentstr() function). The latter function is implicitly used when an object is written byghet statement.
(Information onprint statemenand other language statements can be found ifPtlleon Reference Manuahd

the Python Tutorial)

2.3.1 Truth Value Testing

Any object can be tested for truth value, for use irifanor while condition or as operand of the Boolean operations
below. The following values are considered false:

e None

e False

e zero of any numeric type, for exampl&,OL, 0.0 , 0] .

e any empty sequence, for examgle,, () ,[] .

e any empty mapping, for examplg, .

e instances of user-defined classes, if the class definesvanzero __() or __len __() method, when that

method returns the integer zerolwol valueFalse .°

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always retarriFalse for false andl or True for
true, unless otherwise stated. (Important exception: the Boolean operatidrad ‘and’ always return one of their
operands.)

2.3.2 Boolean Operations — and, or , not

These are the Boolean operations, ordered by ascending priority:

5Additional information on these special methods may be found iPtlieon Reference Manual

16 Chapter 2. Built-In Objects

Operation | Result Notes
x or y | if xis false, thery, elsex (1)
x and vy | if xis false, therx, elsey (1)
not x if xis false, therTrue , elseFalse (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ' has a lower priority than non-Boolean operatorsned a == bis interpreted agot (a == b), and
a == not bisasyntax error.

2.3.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for exampley <= zis equivalenttx < y and

y <= z, except thay is evaluated only once (but in both casdEs not evaluated at all whex < y is found to be

false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
I= not equal Q)
<> not equal (1)
is object identity

is not negated object identity

Notes:
(1) <> and!= are alternate spellings for the same operdtoris the preferred spellings> is obsolescent.

Obijects of different types, except different numeric types and different string types, never compare equal; such objects
are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore,
some types (for example, file objects) support only a degenerate notion of comparison where any two objects of that
type are unequal. Again, such objects are ordered arbitrarily but consistently, ¥he> and>= operators will raise
aTypeError exception when any operand is a complex number.

Instances of a class normally compare as non-equal unless the class definesrtipe _() method. Refer to the
Python Reference Manufdr information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the same
types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priorityg, “and ‘not in ’, are supported only by sequence types
(below).

2.3.4 Numeric Types —int , float ,long , complex

There are four distinct numeric typeplain integers long integers floating point numbersandcomplex numbers
In addition, Booleans are a subtype of plain integers. Plain integers (also justictdigerd are implemented using

2.3. Built-in Types 17

long in C, which gives them at least 32 bits of precision. Long integers have unlimited precision. Floating point
numbers are implemented usidguble in C. All bets on their precision are off unless you happen to know the
machine you are working with.

Complex numbers have a real and imaginary part, which are each implementedasiohg in C. To extract these
parts from a complex numbeyrusezreal andzimag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex and octal numbers) yield plain integers unless the value they denote is too large to be represented as a
plain integer, in which case they yield a long integer. Integer literals with.aor* | * suffix yield long integers (L’ is

preferred becausdl ’ looks too much like eleven!). Numeric literals containing a decimal point or an exponent sign
yield floating point numbers. Appendinpg’or ‘J’ to a numeric literal yields a complex number with a zero real part.

A complex numeric literal is the sum of a real and an imaginary part.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “narrower” type is widened to that of the other, where plain integer is narrower than long integer
is narrower than floating point is narrower than complex. Comparisons between numbers of mixed type use the same
rule® The constructorsit() ,long() ,float) ,andcomplex() can be used to produce numbers of a specific

type.

All numeric types (except complex) support the following operations, sorted by ascending priority (operations in the
same box have the same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
X +y sum ofx andy
X -y difference ofx andy
X *y product ofx andy
X!y guotient ofx andy Q)
X %y remainder ok / y (4)
-X X negated
+X x unchanged
abs(x) absolute value or magnitude »f
int(x) X converted to integer (2)
long(x) x converted to long integer (2)
float(x) x converted to floating point
complex(re, im) | a complex number with real pa#, imaginary partm. im defaults to zero.
c.conjugate() conjugate of the complex number
divmod(%, V) thepair(x I/ 'y, X %Y) 3)(4)
pow(X, Y) x to the powely
X ¥y X to the powery

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/2is 0, (-1)/2is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long
integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see furftiian(s
andceil() inthemath module for well-defined conversions.

(3) See section 2.1, “Built-in Functions,” for a full description.

(4) Complex floor division operator, modulo operator, aiamod()
Deprecated since release 2.3stead convert to float usiraps() if appropriate.

6As a consequence, the Iidgt, 2] s considered equal {d.0, 2.0] , and similarly for tuples.

18 Chapter 2. Built-In Objects

Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2's complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operatiofl * has the same priority as the other unary numeric operatieiigfid ‘-).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same priority):

Operation | Result Notes
X|y bitwise or of x andy
X"y bitwise exclusive oiof x andy
X &Yy bitwiseand of x andy

X << n | xshifted left byn bits 1), (2)
x >> n | xshifted right byn bits), (3)
~X the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and causéadueError to be raised.
(2) A left shift by n bits is equivalent to multiplication byow(2, n) without overflow check.

(3) A right shift by n bits is equivalent to division bgow(2, n) without overflow check.

2.3.5 lterator Types

New in version 2.2.

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the
iteration methods.

One method needs to be defined for container objects to provide iteration support:

__iter __()
Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for those
iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which
supports both breadth-first and depth-first traversal.) This method correspond#ta fter slot of the type
structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together fivemattie
protocot

__iter __()
Return the iterator object itself. This is required to allow both containers and iterators to be used \oth the
andin statements. This method corresponds tottheiter slot of the type structure for Python objects in
the Python/C API.

next ()
Return the next item from the container. If there are no further items, raisgttipdteration exception.
This method corresponds to the _iternext slot of the type structure for Python objects in the Python/C
API.

2.3. Built-in Types 19

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iteratoext() method raiseStoplteration , it will continue to
do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This constraint was
added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

Python’s generators provide a convenient way to implement the iterator protocol. If a container ahjget’s __()
method is implemented as a generator, it will automatically return an iterator object (technically, a generator object)
supplying the__iter __() andnext() methods.

2.3.6 Sequence Types — str , unicode , list , tuple , buffer , xrange

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

String literals are written in single or double quotesizzy’ |, "frobozz" . See chapter 2 of theython Reference
Manual for more about string literals. Unicode strings are much like strings, but are specified in the syntax using
a preceding U’ character:u’'abc’ , u"def' . Lists are constructed with square brackets, separating items with
commasa, b, c] . Tuples are constructed by the comma operator (not within square brackets), with or without
enclosing parentheses, but an empty tuple must have the enclosing parenthesesasuzch @s or () . A single

item tuple must have a trailing comma, suci{@&3

Buffer objects are not directly supported by Python syntax, but can be created by calling the builtin function
buffer() . They don’t support concatenation or repetition.

Xrange objects are similar to buffers in that there is no specific syntax to create them, but they are created using the
xrange() function. They don’t support slicing, concatenation or repetition, and usingiot in , min() or
max() on them is inefficient.

Most sequence types support the following operations. Thé and ‘not in ' operations have the same priori-
ties as the comparison operations. Thédnd *’ operations have the same priority as the corresponding numeric
operations.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the tables andt are sequences of the same typd;andj are integers:

Operation Result Notes
Xin s True if an item ofsis equal tox, elseFalse (1)
x not in s | False ifanitem ofsis equal tox, elseTrue 1)
s+t the concatenation afandt (6)
s * n, n * s | nshallow copies of concatenated (2)
9] i'th item of s, origin O (3)
g i] slice ofsfromi toj 3), @)
g i:j: K slice ofsfromi to j with stepk 3), (5)
len() length ofs
min() smallest item of
max(s) largest item of

Notes:
(1) Whensis a string or Unicode string object tlie andnot in operations act like a substring test. In Python
versions before 2.3 had to be a string of length 1. In Python 2.3 and beyamday be a string of any length.

(2) Values ofn less tharD are treated a8 (which yields an empty sequence of the same typ®.dsote also that the
copies are shallow; nested structures are not copied. This often haunts new Python programmers; consider:

"They must have since the parser can't tell the type of the operands.

20 Chapter 2. Built-In Objects

>>> lists = [[]] * 3
>>> lists

M 0 m

>>> |ists[0].append(3)
>>> lists

(3], 3], [31

What has happened is tHfiff is a one-element list containing an empty list, so all three elemenjff of
* 3 are (pointers to) this single empty list. Modifying any of the elementsstf modifies this single list.
You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> |ists[0].append(3)

>>> lists[1].append(5)

>>> lists[2].append(7)

>>> lists

(3], 18], 71

(3) If i orjis negative, the index is relative to the end of the strieg(s) + iorlen(s) + |jis substituted. But
note thatO is still 0.

(4) The slice ofsfromi toj is defined as the sequence of items with indexich that <= k < j. If i orj is greater
thanlen(s), uselen(s). If i is omitted, usd. If j is omitted, usden(s). If i is greater than or equal {p
the slice is empty.

(5) The slice ofs from i to j with stepk is defined as the sequence of items with instex i + n*k such that
0 < n < L=. In other words, the indices arg i+k , i+2*k , i+3*k and so on, stopping whéris reached
(but never including). If i orj is greater thaten(s), uselen(s). If i orj are omitted then they become
“end” values (which end depends on the sigrkjpfNote,k cannot be zero.

(6) If sandt are both strings, some Python implementations such as CPython can usually perform an in-place op-
timization for assignments of the forsrst+t or st=t. When applicable, this optimization makes quadratic
run-time much less likely. This optimization is both version and implementation dependent. For performance
sensitive code, it is preferable to use #stejoin() method which assures consistent linear concatenation
performance across versions and implementations. Changed in version 2.4: Formerly, string concatenation
never occurred in-place.

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:
capitalize 0

Return a copy of the string with only its first character capitalized.

For 8-bit strings, this method is locale-dependent.
center (width[, fillichar])

Return centered in a string of lengtvidth. Padding is done using the specifiéitchar (default is a space).
Changed in version 2.4: Support for tfikchar argument.

count (sut{, starl[, end]])
Return the number of occurrences of substsngin string § start end . Optional argumentstart andend
are interpreted as in slice notation.

2.3. Built-in Types 21

decode ([encodingi, errors]])
Decodes the string using the codec registerecefaroding encodingdefaults to the default string encoding.

errorsmay be given to set a different error handling scheme. The defdstticst’ , meaning that encoding
errors raisdJnicodeError . Other possible values alignore’ |, 'replace’ and any other name regis-
tered viacodecs.register _error . Newinversion2.2. Changed in version 2.3: Support for other error

handling schemes added.

encode ([encodingi,errors]])
Return an encoded version of the string. Default encoding is the current default string encod-
ing. errors may be given to set a different error handling scheme. The defaultefamrs is
'strict’ , meaning that encoding errors rais&JaicodeError . Other possible values atignore’
replace’ , 'xmlcharrefreplace’ , 'backslashreplace’ and any other name registered via
codecs.register _error . For a list of possible encodings, see section 4.9.2. New in version 2.0.
Changed in version 2.3: Support famlcharrefreplace’ and’backslashreplace’ and other error
handling schemes added.

endswith (suffi>{, starl{, end]])
ReturnTrue if the string ends with the specifiesliffix otherwise returrFalse . With optionalstart, test
beginning at that position. With optionahd stop comparing at that position.

expandtabs ([tabsizd)
Return a copy of the string where all tab characters are expanded using sptalesizds not given, a tab size
of 8 characters is assumed.

find (sut{, starl[, end]])
Return the lowest index in the string where substsabis found, such thagubis contained in the rangstart,
end). Optional argumentstartandendare interpreted as in slice notation. Retutnif subis not found.

index (sut{, starl[, end]])
Like find() , but raisevalueError when the substring is not found.

isalnum
Retl?rn true if all characters in the string are alphanumeric and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

isalpha ()
Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

isdigit ()
Return true if all characters in the string are digits and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

islower ()

Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

isspace ()
Return true if there are only whitespace characters in the string and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

istitle 0

Return true if the string is a titlecased string and there is at least one character, for example uppercase characters
may only follow uncased characters and lowercase characters only cased ones. Return false otherwise.

For 8-bit strings, this method is locale-dependent.

isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false

22 Chapter 2. Built-In Objects

otherwise.
For 8-bit strings, this method is locale-dependent.

join (seq
Return a string which is the concatenation of the strings in the seqseqcehe separator between elements is
the string providing this method.

ljust (width[, fillichar])
Return the string left justified in a string of lengthdth. Padding is done using the speciffdithar (default is

a space). The original string is returneahiidth is less thaden(s). Changed in version 2.4: Support for the
fillchar argument.

lower ()
Return a copy of the string converted to lowercase.

For 8-bit strings, this method is locale-dependent.

Istrip ([chars])
Return a copy of the string with leading characters removed clibesargument is a string specifying the set of
characters to be removed. If omittedNone, thecharsargument defaults to removing whitespace. thars
argument is not a prefix; rather, all combinations of its values are stripped:

>>> ' gpacious .Istrip()
'spacious '

>>> 'www.example.com’.Istrip(cmowz.’)
‘example.com’

Changed in version 2.2.2: Support for ttlearsargument.

replace (old, neV\[, count])

Return a copy of the string with all occurrences of substoltyeplaced bynew If the optional argumertount
is given, only the firstountoccurrences are replaced.

rfind (sub[,start [,end]])
Return the highest index in the string where substsinigis found, such thagubis contained within s[start,end].
Optional argumentstartandendare interpreted as in slice notation. Retttnon failure.

rindex (sul{, starl{, end]])
Like rfind() but raises/alueError when the substringubis not found.

rjust (width[, fillichar])
Return the string right justified in a string of lengghidth. Padding is done using the specifidthar (default

is a space). The original string is returnedhifith is less tharlen(s). Changed in version 2.4: Support for
thefillchar argument.

rsplit ([sep[,maxsplit]])
Return a list of the words in the string, usiegpas the delimiter string. linaxsplitis given, at mostaxsplit
splits are done, theghtmostones. Ifsepis not specified oNone, any whitespace string is a separator. Except
for splitting from the right,rsplit() behaves likesplit() which is described in detail below. New in
version 2.4.

rstrip ([chars])
Return a copy of the string with trailing characters removed. diasargument is a string specifying the set of
characters to be removed. If omittedNone, thecharsargument defaults to removing whitespace. thars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> ' gpacious .rstrip()
spacious’

>>> 'mississippi’.rstrip(ipz’)

'mississ’

2.3. Built-in Types 23

split

Changed in version 2.2.2: Support for ttlearsargument.

([sep[.maxspii]])
Return a list of the words in the string, usiegpas the delimiter string. Ifnaxsplitis given, at mosmaxsplit
splits are done. (thus, the list will have at mosixsplit-1 elements). Imaxsplitis not specified, then there is no
limit on the number of splits (all possible splits are made). Consecutive delimiters are not grouped together and

are deemed to delimit empty strings (for examplg,,2".split(’,’) "returns T'1’, ', '27] .
The separgument may consist of multiple characters (for example, 2, 3'.split(’, ") ' returns
‘T1, '2', '3). Splitting an empty string with a specified separator retuftis * .

If sepis not specified or idlone, a different splitting algorithm is applied. First, whitespace characters (spaces,
tabs, newlines, returns, and formfeeds) are stripped from both ends. Then, words are separated by arbitrary
length strings of whitespace characters. Consecutive whitespace delimiters are treated as a single delimiter
(’1 2 3.split() "returns T1’, '2, '3). Splitting an empty string or a string consisting of

just whitespace returns an empty list.

splitlines ([keepend];)

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unlesskeependss given and true.

startswith (prefix[, starl{, end]])

strip

ReturnTrue if string starts with thegorefix otherwise returfralse . With optionalstart, test string beginning
at that position. With optionand stop comparing string at that position.

([chars])
Return a copy of the string with the leading and trailing characters removedchEreargument is a string
specifying the set of characters to be removed. If omitteName, the charsargument defaults to removing
whitespace. Theharsargument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> spacious ".strip()
'spacious’

>>> 'www.example.com’.strip(’cmowz.’")
‘example’

Changed in version 2.2.2: Support for ttlearsargument.

swapcase ()

title

Return a copy of the string with uppercase characters converted to lowercase and vice versa.
For 8-bit strings, this method is locale-dependent.

0
Return a titlecased version of the string: words start with uppercase characters, all remaining cased characters
are lowercase.

For 8-bit strings, this method is locale-dependent.

translate (table[, deletechari)

Return a copy of the string where all characters occurring in the optional argutaletecharsare removed,
and the remaining characters have been mapped through the given translation table, which must be a string of
length 256.

For Unicode objects, thiganslate() method does not accept the optiodaletecharsargument. Instead,

it returns a copy of the where all characters have been mapped through the given translation table which must
be a mapping of Unicode ordinals to Unicode ordinals, Unicode strind¢ooe. Unmapped characters are

left untouched. Characters mapped\ione are deleted. Note, a more flexible approach is to create a custom
character mapping codec using ttidlecs module (seencodings.cp1251 for an example).

upper ()

Return a copy of the string converted to uppercase.
For 8-bit strings, this method is locale-dependent.

24

Chapter 2. Built-In Objects

zfill - (‘width)
Return the numeric string left filled with zeros in a string of lengttth. The original string is returned ¥idth
is less thalen(s). New in version 2.2.2.

String Formatting Operations

String and Unicode objects have one unique built-in operation%bperator (modulo). This is also known as the
string formatting or interpolationoperator. Giverformat %values(whereformatis a string or Unicode objectyo
conversion specifications iiormat are replaced with zero or more elementsvafues The effect is similar to the
usingsprintf() in the C language. fiormatis a Unicode object, or if any of the objects being converted using the
%sconversion are Unicode objects, the result will also be a Unicode object.

If formatrequires a single argumenluesmay be a single non-tuple objétDtherwiseyaluesmust be a tuple with
exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The % character, which marks the start of the specifier.
2. Mapping key (optional), consisting of a parenthesised sequence of characters (for exsonpdeame)).
3. Conversion flags (optional), which affect the result of some conversion types.

4. Minimum field width (optional). If specified as ah’*(asterisk), the actual width is read from the next element
of the tuple invalues and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a'‘ (dot) followed by the precision. If specified a&’*(an asterisk), the actual
width is read from the next element of the tuplevadues and the value to convert comes after the precision.

6. Length modifier (optional).

7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in thenstritipclude a paren-
thesised mapping key into that dictionary inserted immediately aftel9theharacter. The mapping key selects the
value to be formatted from the mapping. For example:

>>> print '%(language)s has %(#)03d quote types.” % \
{language’: "Python", "#": 2}
Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

‘#' | The value conversion will use the “alternate form” (where defined below).

‘0’ | The conversion will be zero padded for numeric values.

- The converted value is left adjusted (overrides Biecbnversion if both are given).

(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.
‘+' | Asign character ¢ or ‘- ") will precede the conversion (overrides a "space” flag).

8To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

2.3. Built-in Types 25

The length modifier may ble, | , andL may be present, but are ignored as they are not necessary for Python.

The conversion types are:

Conversion | Meaning Notes
‘d’ Signed integer decimal.
i’ Signed integer decimal.
‘o’ Unsigned octal. Q)
‘u’ Unsigned decimal.
‘X’ Unsigned hexadecimal (lowercase). (2)
‘X Unsigned hexadecimal (uppercase). (2)
‘e’ Floating point exponential format (lowercase).
‘B Floating point exponential format (uppercase).
‘“fr Floating point decimal format.
‘F Floating point decimal format.
‘g’ Same ase’ if exponent is greater than -4 or less than precisibnptherwise.
‘G Same asE’ if exponent is greater than -4 or less than precisiéfhptherwise.
‘c’ Single character (accepts integer or single character string).
‘r’ String (converts any python object usirepr()). 3)
‘s’ String (converts any python object usisty()). (4)
‘9% No argument is converted, results in% tharacter in the result.

Notes:
(1) The alternate form causes a leading ze@)(to be inserted between left-hand padding and the formatting of the
number if the leading character of the result is not already a zero.

(2) The alternate form causes a leadiy’ or’0X’ (depending on whether thg™or ‘ X' format was used) to be
inserted between left-hand padding and the formatting of the number if the leading character of the result is not
already a zero.

(3) The%r conversion was added in Python 2.0.

(4) If the object or format provided is@nicode string, the resulting string will also hénicode .

Since Python strings have an explicit lendg¥s conversions do not assume tA&@t is the end of the string.

For safety reasons, floating point precisions are clipped t&/&0;onversions for numbers whose absolute value is
over 1e25 are replaced Bggconversions. All other errors raise exceptions.

Additional string operations are defined in standard modstlésg andre .
XRange Type
Thexrange type is animmutable sequence which is commonly used for looping. The advantagamafitge type

is that anxrange object will always take the same amount of memory, no matter the size of the range it represents.
There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration, anertf)e function.
Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. Other mutable sequence types
(when added to the language) should also support these operations. Strings and tuples are immutable sequence types:

9These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use and
without having to know the exact precision of floating point values on a particular machine.

26 Chapter 2. Built-In Objects

such objects cannot be modified once created. The following operations are defined on mutable sequence types (where
X is an arbitrary object):

Operation Result Notes
gi] = x itemi of sis replaced by
Jgirj] = t slice ofsfromitoj is replaced by
del di:j] sameag|i:j] =[]
qgi:j:kl =t the elements off i: j: k] are replaced by those of (8}
del di:j: K] removes the elements dfi: j: k] from the list
sappend(X) same asllen(selen(9] = [X (2)
sextend(X) same agllen(9s)len(9] = X 3)
s.count(X) return number of's for whichg[i] == X
sindex(x[, i[, i]lD return smallesk such tha] K| == xandi <= k < j (4)
sinsert(i, X) sameag|i:i] = [X (5)
s.pop([i]) sameax = g i]; del di]; return X (6)
sremove(X) same aslel 9 s.index(X)] (4)
s.reverse() reverses the items afin place (7
s.sort([cmr{, ke){, reversd]]) | sortthe items o§in place (7), (8), (9), (10)

Notes:

(1) t must have the same length as the slice it is replacing.

(2) The C implementation of Python has historically accepted multiple parameters and implicitly joined them into a
tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

(3) xcan be any iterable object.

(4) RaisesvalueError whenxis not found ins. When a negative index is passed as the second or third parameter
totheindex() method, the list length is added, as for slice indices. If it is still negative, it is truncated to zero,
as for slice indices. Changed in version 2.3: Previoushjex() didn’t have arguments for specifying start
and stop positions.

(5) When a negative index is passed as the first parameter tongee() method, the list length is added, as for
slice indices. Ifitis still negative, it is truncated to zero, as for slice indices. Changed in version 2.3: Previously,
all negative indices were truncated to zero.

(6) Thepop() method is only supported by the list and array types. The optional argurdefaults to-1 , so that
by default the last item is removed and returned.

(7) Thesort() andreverse() methods modify the list in place for economy of space when sorting or reversing
a large list. To remind you that they operate by side effect, they don't return the sorted or reversed list.
(8) Thesort() method takes optional arguments for controlling the comparisons.

cmpspecifies a custom comparison function of two arguments (list items) which should return a negative, zero
or positive number depending on whether the first argument is considered smaller than, equal to, or larger than
the second argumentcrp=lambda x, y: cmp(x.lower(), y.lower()) '

key specifies a function of one argument that is used to extract a comparison key from each list element:
‘key=str.lower ’

reverses a boolean value. If set fbrue , then the list elements are sorted as if each comparison were reversed.

In general, thé&keyandreverseconversion processes are much faster than specifying an equisadpfunction.
This is becausempis called multiple times for each list element whikeyandreversetouch each element only
once.

Changed in version 2.3: Support fdone as an equivalent to omittingmpwas added.
Changed in version 2.4: Support feeyandreversewas added.

2.3. Built-in Types 27

(9) Starting with Python 2.3, theort() method is guaranteed to be stable. A sort is stable if it guarantees not to
change the relative order of elements that compare equal — this is helpful for sorting in multiple passes (for
example, sort by department, then by salary grade).

(10) While a list is being sorted, the effect of attempting to mutate, or even inspect, the list is undefined. The C
implementation of Python 2.3 and newer makes the list appear empty for the duration, andahis&sror
if it can detect that the list has been mutated during a sort.

2.3.7 Set Types — set , frozenset

A setobject is an unordered collection of immutable values. Common uses include membership testing, removing
duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and sym-
metric difference. New in version 2.4,

Like other collections, sets supportin - set len(se) , andfor x in set Being an unordered collection, sets
do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.

There are currently two builtin set typeset andfrozenset . Theset type is mutable — the contents can be
changed using methods lilkkeld() andremove() . Since it is mutable, it has no hash value and cannot be used

as either a dictionary key or as an element of another set.frbhenset type is immutable and hashable — its
contents cannot be altered after is created; however, it can be used as a dictionary key or as an element of another set.

Instances ofet andfrozenset provide the following operations:

Operation Equivalent | Result
len() cardinality of ses
X in s testx for membership irs
X not in s testx for non-membership is
sissubset(t) s<=t test whether every elementdnis int
s.issuperset(t) s>=t test whether every elementtis in s
s.union(t) s—t new set with elements from borandt
s.intersection(t) s&t new set with elements commondgandt
s.difference(t) s-t new set with elements isbut not int
s.symmetric _difference(t) st new set with elements in eithsior t but not both
s.copy() new set with a shallow copy af
Note, the non-operator versions ofunion() , intersection() , difference() , and
symmetric _difference() ,issubset() , andissuperset() methods will accept any iterable as an argu-
ment. In contrast, their operator based counterparts require their arguments to be sets. This precludes error-prone con-
structions likeset('abc’) & ’cbs’ in favor of the more readabket('abc’).intersection(’cbs’)

Bothset andfrozenset support set to set comparisons. Two sets are equal if and only if every element of each
set is contained in the other (each is a subset of the other). A set is less than another set if and only if the first setis a
proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and only if the first set
is a proper superset of the second set (is a superset, but is not equal).

Instances obet are compared to instancesfabzenset based on their members. For exampist('abc’)
== frozenset('abc’) "returnsTrue .

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two disjoint
sets are not equal and are not subsets of each othed] 86 the following returnFalse : a<b, a==b, or a>b.
Accordingly, sets do not implement the cmp__ method.

Since sets only define partial ordering (subset relationships), the output ligtteert() method is undefined
for lists of sets.

Set elements are like dictionary keys; they need to define baftash __ and__eq__ methods.

28 Chapter 2. Built-In Objects

Binary operations that miset instances withfrozenset return the type of the first operand. For example:
‘frozenset(’ab’) | set(’bc’) ' returns an instance dfozenset

The following table lists operations available f@t that do not apply to immutable instancedmmizenset

Operation Equivalent | Result
s.update(t) s—=t return ses with elements added from
s.intersection _update(t) S&=t return ses keeping only elements also foundtin
s.difference _update(t) s-= return ses after removing elements found in
s.symmetric _difference _update(t) s"=t return ses with elements frons or t but not both
sadd(x) add element to sets
sremove(X) removex from sets; raises KeyError if not present
sdiscard(X) removes from setsif present
s.pop() remove and return an arbitrary element frgmaisesKeyError if e
s.clear() remove all elements from sst
Note, the non-operator versions of tingdate() , intersection _update() ,difference _update() ,and
symmetric _difference _update() methods will accept any iterable as an argument.

The design of the set types was based on lessons learned framtshemodule.
See Also:

Modulesets (section??):
Differences between treets module and the built-in set types.

2.3.8 Mapping Types — classdict

A mappingobject maps immutable values to arbitrary objects. Mappings are mutable objects. There is currently only
one standard mapping type, tbitionary. A dictionary’s keys are almost arbitrary values. Only values containing
lists, dictionaries or other mutable types (that are compared by value rather than by object identity) may not be used
as keys. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal
(such adl and1.0) then they can be used interchangeably to index the same dictionary entry.

Dictionaries are created by placing a comma-separated lidtepf value pairs within braces, for example:
{jack’: 4098, ’'sjoerd: 4127} or{4098: ‘jack’, 4127: ’sjoerd’}

The following operations are defined on mappings (wleeaedb are mappingsk is a key, ands andx are arbitrary
objects):

2.3. Built-in Types 29

Operation Result Notes
len(a) the number of items ia
al K] the item ofa with key k (1)
akl = v seta[k] tov
del a[kK] removea k] froma Q)
a.clear() remove all items frona
a.copy() a (shallow) copy of
a.has _key(k) True if ahas a ke, elseFalse
kin a Equivalent toa.has key(K) (2)
k not in a Equivalent tonot a.has key(k) (2)
a.items() a copy ofa’s list of (key, value pairs 3)
a.keys() a copy ofa’s list of keys 3)
a.update(b]) updates (and overwrites) key/value pairs from (9)
a.fromkeys(sed, value]) Creates a new dictionary with keys frasagand values set tealue @)
a.values() a copy ofa’s list of values 3)
a.get(k[, x|) a[K] if k in a, elsex (4)
a.setdefault(K|, x]) al K] if k in &, elsex (also setting it) (5)
a.pop(k[, x|) a[k] if k in a, elsex (and remove k) (8)
a.popitem() remove and return an arbitrargefy, value pair (6)
a.iteritems() return an iterator ovekey, value pairs 2), 3)
a.iterkeys() return an iterator over the mapping’s keys 2), 3)
a.itervalues() return an iterator over the mapping’s values (2), (3)

Notes:

(1) Raises &KeyError exception ifk is not in the map.
(2) New in version 2.2.

(3) Keys and values are listed in an arbitrary order which is non-random, varies across Python implementations,
and depends on the dictionary’s history of insertions and deletionstenifs() , keys() , values() ,

iteritems() , iterkeys() , and itervalues() are called with no intervening modifications to
the dictionary, the lists will directly correspond. This allows the creation wélug key) pairs using
zip() :‘pairs = zip(avalues(), a.keys()) '. The same relationship holds for thierkeys()

and itervalues() methods: pairs = zip(a.tervalues(), a.iterkeys()) ' provides the

same value fopairs . Another way to create the same list {gairs = [(v, k) for (k, v) in
a.iteritems()] '

(4) Never raises an exceptionkfis not in the map, instead it returrsx is optional; wherx is not provided and is
not in the mapNone is returned.

(5) setdefault() is like get() , except that ik is missingx is both returned and inserted into the dictionary as
the value ok. x defaults toNone

(6) popitem() s useful to destructively iterate over a dictionary, as often used in set algorithms. If the dictionary
is empty, callingpopitem() raises &KeyError

(7) fromkeys() is a class method that returns a new dictionagjuedefaults toNone. New in version 2.3.
(8) pop() raises &KeyError when no default value is given and the key is not found. New in version 2.3.

(9) update() accepts either another mapping object or an iterable of key/value pairs (as a tuple or other iterable of
length two). If keyword arguments are specified, the mapping is then is updated with those key/value pairs:
‘d.update(red=1, blue=2) . Changed in version 2.4: Allowed the argument to be an iterable of
key/value pairs and allowed keyword arguments.

30 Chapter 2. Built-In Objects

2.3.9 File Objects

File objects are implemented using G&lio package and can be created with the built-in construfil()
described in section 2.1, “Built-in Function¥” File objects are also returned by some other built-in functions and
methods, such ass.popen() andos.fdopen() and themakefile() method of socket objects.

When a file operation fails for an I/0O-related reason, the excep@&mror is raised. This includes situations where
the operation is not defined for some reason, $ikek() on a tty device or writing a file opened for reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written any more. Any operation which requires that the file be
open will raise &/alueError after the file has been closed. Callidgse() = more than once is allowed.

flush ()
Flush the internal buffer, liketdio s fflush() . This may be a no-op on some file-like objects.

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from
the operating system. This can be useful for other, lower level interfaces that use file descriptors, such as the
fcntl module oros.read() and friends.Note: File-like objects which do not have a real file descriptor
shouldnot provide this method!

isatty ()
ReturnTrue if the file is connected to a tty(-like) device, eBalse . Note: If a file-like object is not associated
with a real file, this method shoultbtbe implemented.

next ()
A file object is its own iterator, for exampleer(f) returnsf (unlessf is closed). When a file is used as an
iterator, typically in aor loop (for examplefor line in f. print line), thenext() method is
called repeatedly. This method returns the next input line, or r@sgsiteration whenEeoF is hit. In

order to make dor loop the most efficient way of looping over the lines of a file (a very common operation),
thenext() method uses a hidden read-ahead buffer. As a consequence of using a read-ahead buffer, com-
biningnext() with other file methods (likeeadline()) does not work right. However, usirsgek() to
reposition the file to an absolute position will flush the read-ahead buffer. New in version 2.3.

read ([size])
Read at mossizebytes from the file (less if the read h®F before obtainingizebytes). If thesizeargument
is negative or omitted, read all data urgibr is reached. The bytes are returned as a string object. An empty
string is returned wheBoF is encountered immediately. (For certain files, like ttys, it makes sense to continue
reading after aEoOFis hit.) Note that this method may call the underlying C funcfi@ad() = more than once
in an effort to acquire as close fizebytes as possible. Also note that when in non-blocking mode, less data
than what was requested may be returned, even sizeparameter was given.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the string (but may be absent when a
file ends with an incomplete liné}. If the sizeargument is present and non-negative, it is a maximum byte count
(including the trailing newline) and an incomplete line may be returned. An empty string is returlyaghen
EOFis encountered immediatelote: Unlike stdio 's fgets() , the returned string contains null characters
(\0") if they occurred in the input.

readlines ([sizehinﬂ)
Read untilEoF using readline() and return a list containing the lines thus read. If the opti@mhint
argument is present, instead of reading ugd®, whole lines totalling approximatelsizehintbytes (possibly

1%le() is new in Python 2.2. The older built-spen() is an alias fofile()

11The advantage of leaving the newline on is that returning an empty string is then an unamigigedngication. It is also possible (in cases
where it might matter, for example, if you want to make an exact copy of a file while scanning its lines) to tell whether the last line of a file ended
in a newline or not (yes this happens!).

2.3. Built-in Types 31

after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may choose to
ignoresizehintif it cannot be implemented, or cannot be implemented efficiently.

xreadlines ()
This method returns the same thingites(f) . New in version 2.1. Deprecated since release 2.3Jse
‘for line in file’ instead.

seek (offse{, whencd)
Set the file’s current position, liketdio 's fseek() . Thewhenceargument is optional and defaults @
(absolute file positioning); other values dréseek relative to the current position) abdseek relative to the
file's end). There is no return value. Note that if the file is opened for appending (moder 'a+’), any
seek() operations will be undone at the next write. If the file is only opened for writing in append mode
(mode’a’), this method is essentially a no-op, but it remains useful for files opened in append mode with
reading enabled (moda+’). If the file is opened in text mode (modé), only offsets returned biell()
are legal. Use of other offsets causes undefined behavior.

Note that not all file objects are seekable.

tell ()
Return the file’s current position, likgdio s ftell()

truncate ([size])
Truncate the file’s size. If the optionalzeargument is present, the file is truncated to (at most) that size.
The size defaults to the current position. The current file position is not changed. Note that if a specified
size exceeds the file’s current size, the result is platform-dependent: possibilities include that file may remain
unchanged, increase to the specified size as if zero-filled, or increase to the specified size with undefined new
content. Availability: Windows, many Nix variants.

write (str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually show up in the
file until theflush() orclose() method is called.

writelines (sequence
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typically a list
of strings. There is no return value. (The name is intended to mmatatiines() ; writelines() does
not add line separators.)

Files support the iterator protocol. Each iteration returns the same redilé.esadline() , and iteration ends
when thereadline() method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but should
be implemented if they make sense for the particular object.

closed
bool indicating the current state of the file object. This is a read-only attributejdke() = method changes
the value. It may not be available on all file-like objects.

encoding
The encoding that this file uses. When Unicode strings are written to a file, they will be converted to byte strings
using this encoding. In addition, when the file is connected to a terminal, the attribute gives the encoding that
the terminal is likely to use (that information might be incorrect if the user has misconfigured the terminal). The
attribute is read-only and may not be present on all file-like objects. It may alSohe, in which case the file
uses the system default encoding for converting Unicode strings.

New in version 2.3.
mode

The 1/0 mode for the file. If the file was created using tipen() built-in function, this will be the value of
themodeparameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created usirapen() , the name of the file. Otherwise, some string that indicates the

32 Chapter 2. Built-In Objects

source of the file object, of the fornx...> . This is a read-only attribute and may not be present on all
file-like objects.

newlines
If Python was built with the-with-universal-newlinesoption toconfigure (the default) this read-only attribute
exists, and for files opened in universal newline read mode it keeps track of the types of newlines encountered
while reading the file. The valuesitcantakedre ,\n’ ,\nn’ , None (unknown, no newlines read yet)
or a tuple containing all the newline types seen, to indicate that multiple newline conventions were encountered.
For files not opened in universal newline read mode the value of this attribute ilbbe.

softspace
Boolean that indicates whether a space character needs to be printed before another value wherptising the
statement. Classes that are trying to simulate a file object should also have a vetifidpace attribute,
which should be initialized to zero. This will be automatic for most classes implemented in Python (care may
be needed for objects that override attribute access); types implemented in C will have to provide a writable
softspace attribute. Note: This attribute is not used to control thint statement, but to allow the
implementation oprint to keep track of its internal state.

2.3.10 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute acaassiame wheremis a module anshameaccesses a name
defined inm's symbol table. Module attributes can be assigned to. (Note thatpert statement is not, strictly
speaking, an operation on a module objéantport foo does not require a module object nanfiedto exist, rather
it requires an (externafjefinitionfor a module nametbo somewhere.)

A special member of every module is dict __. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment ta thiet __
attribute is not possible (you can write __dict __['a]l = 1 , which definesn.a to bel, but you can't write

m. __dict __ = {}). Modifying __dict __ directly is not recommended.

Modules built into the interpreter are written like thismodule ’'sys’ (built-in)> . If loaded from a file,
they are written asmodule 'os’ from ’/usr/local/lib/python2.4/0s.pyc’>

Classes and Class Instances

See chapters 3 and 7 of tRgthon Reference Manufdr these.

Functions
Function objects are created by function definitions. The only operation on a function object is to call it:
fund argument-lisy .

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

See thePython Reference Manufdr more information.

2.3. Built-in Types 33

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance methimals_self is the object on
which the method operates, andm _func is the function implementing the method. Callim§arg-1, arg-2,
.., arg-n) is completely equivalent to calling.im _func(m.im _self, arg-1, arg-2, ..., arg-n.

Class instance methods are eitheandor unboundreferring to whether the method was accessed through an instance
or a class, respectively. When a method is unboundmitsself attribute will beNone and if called, an explicit

self object must be passed as the first argument. In this saffe, must be an instance of the unbound method’s
class (or a subclass of that class), otherwiSgeError is raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function objentgth.im _func), setting method attributes on either bound or
unbound methods is disallowed. Attempting to set a method attribute resulfype&rror being raised. In order

to set a method attribute, you need to explicitly set it on the underlying function object:

class C:
def method(self):
pass

c =C()
c.method.im_func.whoami = 'my name is ¢’

See thePython Reference Manufdr more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don’t contain a reference to their global execution envi-
ronment. Code objects are returned by the buitempile() function and can be extracted from function objects
through theifunc _code attribute.

A code object can be executed or evaluated by passing it (instead of a source stringgtedhstatement or the
built-in eval() function.

See thePython Reference Manufdr more information.

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in fiypetfpn . There
are no special operations on types. The standard mdoghie defines names for all standard built-in types.

Types are written like thisctype ’'int’>

The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, namédione (a built-in name).

It is written asNone.

34 Chapter 2. Built-In Objects

The Ellipsis Object

This object is used by extended slice notation (see”iyteon Reference Manyallt supports no special operations.
There is exactly one ellipsis object, nanteldpsis (a built-in name).

It is written asEllipsis

Boolean Values

Boolean values are the two constant objdeadse andTrue . They are used to represent truth values (although

other values can also be considered false or true). In numeric contexts (for example when used as the argument to an
arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in fupetigh can be used to

cast any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing above).

They are written afalse andTrue , respectively.

Internal Objects

See thePython Reference Manu#dr this information. It describes stack frame objects, traceback objects, and slice
objects.

2.3.11 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of
these are not reported by th&() built-in function.

__dict __
A dictionary or other mapping object used to store an object’s (writable) attributes.

__methods __
Deprecated since release 2.2Use the built-in functiordir() to get a list of an object’s attributes. This
attribute is no longer available.

__members__
Deprecated since release 2.2Use the built-in functiordir() to get a list of an object’s attributes. This
attribute is no longer available.

__class __
The class to which a class instance belongs.

__bases __
The tuple of base classes of a class object. If there are no base classes, this will be an empty tuple.

__hame__
The name of the class or type.

2.4 Built-in Exceptions

Exceptions should be class objects. The exceptions are defined in the re@defgions . This module never
needs to be imported explicitly: the exceptions are provided in the built-in namespace as wekkzseihieons
module.

Note: In past versions of Python string exceptions were supported. In Python 1.5 and newer versions, all standard
exceptions have been converted to class objects and users are encouraged to do the same. String exceptions will raise
aPendingDeprecationWarning . In future versions, support for string exceptions will be removed.

2.4. Built-in Exceptions 35

Two distinct string objects with the same value are considered different exceptions. This is done to force programmers
to use exception names rather than their string value when specifying exception handlers. The string value of all built-
in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined by library
modules.

For class exceptions, intay statement with amxcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes fronit wehibdrived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to theaise statement. For string exceptions, the associated value itself will be stored in the variable
named as the second argument oféakeept clause (if any). For class exceptions, that variable receives the exception
instance. If the exception class is derived from the standard rootEiasption , the associated value is present as

the exception instance&rgs attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from thexception base class. More information on defining exceptions is available in the
Python Tutorialunder the heading “User-defined Exceptions.”

The following exceptions are only used as base classes for other exceptions.

exceptionException
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforcedsiffje function, when applied to an
instance of this class (or most derived classes) returns the string value of the argument or arguments, or an empty
string if no arguments were given to the constructor. When used as a sequence, this accesses the arguments given
to the constructor (handy for backward compatibility with old code). The arguments are also available on the
instance’sargs attribute, as a tuple.

exceptionStandardError
The base class for all built-in exceptions exc&pbplteration and SystemExit . StandardError
itself is derived from the root clagsxception

exceptionArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic @verflowError
ZeroDivisionError , FloatingPointError

exceptionLookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError , KeyError . This can be raised directly sys.setdefaultencoding()

exceptionEnvironmentError
The base class for exceptions that can occur outside the Python syStermor , OSError . When exceptions
of this type are created with a 2-tuple, the first item is available on the instarcets attribute (it is assumed
to be an error number), and the second item is available osttbor attribute (it is usually the associated
error message). The tuple itself is also available oratigs attribute. New in version 1.5.2.

When anEnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on tfilename attribute. However, for backwards compatibility, the
args attribute contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute isNone when this exception is created with other than 3 argumentseffhne and
strerror attributes are alsblone when the instance was created with other than 2 or 3 arguments. In this
last caseargs contains the verbatim constructor arguments as a tuple.

36 Chapter 2. Built-In Objects

The following exceptions are the exceptions that are actually raised.

exceptionAssertionError
Raised when aassert statement fails.

exceptionAttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references or
attribute assignments at allypeError is raised.)

exceptionEOFError
Raised when one of the built-in functionsgut() or raw _input()) hits an end-of-file conditiongOF)
without reading any data. (N.B.: thead() andreadline() methods of file objects return an empty string
when they hitEOF.)

exceptionFloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with thewith-fpectl option, or theWANT.SIGFPE_HANDLERsymbol is defined in the
‘pyconfig.h’ file.

exceptionlOError
Raised when an 1/O operation (such gwimt statement, the built-iopen() function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived froenvironmentError . See the discussion above for more information on exception
instance attributes.

exceptionimportError
Raised when aimport statement fails to find the module definition or whefniam ... import fails to
find a name that is to be imported.

exceptionindexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integdiypeError s raised.)

exceptionKeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exceptionKeyboardinterrupt
Raised when the user hits the interrupt key (norm@introl-C or Delete). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in fundtipot() orraw _input() is waiting
for input also raise this exception.

exceptionMemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture @dloc() function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

exceptionNameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is an error message that includes the name that could not be found.

exceptionNotimplementedError
This exception is derived frorRuntimeError . In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method. New in version 1.5.2.

exceptionOSError
This class is derived frof&BnvironmentError and is used primarily as thes module’'sos.error excep-
tion. SeeEnvironmentError above for a description of the possible associated values. New in version
15.2.

2.4. Built-in Exceptions 37

exceptionOverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiddemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’'t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits than
raise an exception.

exceptionReferenceError
This exception is raised when a weak reference proxy, created byethleref .proxy() function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see theweakref module. New in version 2.2: Previously known as theakref .ReferenceError
exception.

exceptionRuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

exceptionStoplteration
Raised by an iterator'sext() method to signal that there are no further values. This is derived from
Exception rather thanStandardError , since this is not considered an error in its normal application.
New in version 2.2.

exceptionSyntaxError
Raised when the parser encounters a syntax error. This may occuriimpant statement, in amexec
statement, in a call to the built-in functi@val() orinput() , or when reading the initial script or standard
input (also interactively).

Instances of this class have attribufilesname , lineno , offset andtext for easier access to the details.
str() of the exception instance returns only the message.

exceptionSystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version of

the Python interpretesys.version ;itis also printed at the start of an interactive Python session), the exact
error message (the exception’s associated value) and if possible the source of the program that triggered the
error.

exceptionSystemExit

This exception is raised by thys.exit() function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
C'sexit() function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

Instances have an attributede which is set to the proposed exit status or error message (defaulthgyis).
Also, this exception derives directly froBixception and notStandardError , since it is not technically
an error.

A call to sys.exit() is translated into an exception so that clean-up handferally clauses ofry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. _exit() function can be used if it is absolutely positively necessary to exit immediately (for
example, in the child process after a calfack()).

exceptionTypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is a
string giving details about the type mismatch.

exceptionUnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to that

38 Chapter 2. Built-In Objects

variable. This is a subclass BameError . New in version 2.0.

exceptionUnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subcladgetrror . New in
version 2.0.

exceptionUnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subcldsécofieError . New in
version 2.3.

exceptionUnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subcldsécofleError . New in
version 2.3.

exceptionUnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subcldsgcotleError . New in
version 2.3.

exceptionValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception skncleakrror

exceptionWindowsError
Raised when a Windows-specific error occurs or when the error number does not corresporedriman

value. Theerrno andstrerror values are created from the return values of@etLastError() and
FormatMessage() functions from the Windows Platform API. This is a subclas©O&Error . New in
version 2.0.

exceptionZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; seestrengs module for more information.

exceptionWarning
Base class for warning categories.

exceptionUserWarning
Base class for warnings generated by user code.

exceptionDeprecationWarning
Base class for warnings about deprecated features.

exceptionPendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exceptionSyntaxWarning
Base class for warnings about dubious syntax

exceptionRuntimeWarning
Base class for warnings about dubious runtime behavior.

exceptionFutureWarning
Base class for warnings about constructs that will change semantically in the future.

The class hierarchy for built-in exceptions is:

2.4. Built-in Exceptions 39

Exception

+-- SystemExit
+-- Stoplteration
+-- StandardError

| +-- Keyboardinterrupt

| +-- ImportError

| +-- EnvironmentError

| | +-- I0Error

| | +-- OSError

| | +-- WindowsError
| +-- EOFETrror

| +-- RuntimeError

| | +-- NotlmplementedError
| +-- NameError

| | +-- UnboundLocalError

| +-- AttributeError

| +-- SyntaxError

| | +-- IndentationError

| | +-- TabError

| +-- TypeError

| +-- AssertionError

| +-- LookupError

| | +-- IndexError

| | +-- KeyError

| +-- ArithmeticError

| | +-- OverflowError

| | +-- ZeroDivisionError

| | +-- FloatingPointError

| +-- ValueError

| | +-- UnicodeError

| | +-- UnicodeEncodeError
| | +-- UnicodeDecodeError
| | +-- UnicodeTranslateError
| +-- ReferenceError

| +-- SystemError

| +-- MemoryError

+---Warning

+-- UserWarning

+-- DeprecationWarning

+-- PendingDeprecationWarning

+-- SyntaxWarning

+-- OverflowWarning (not generated in 2.4; won't exist in 2.5)
+-- RuntimeWarning

+-- FutureWarning

2.5 Built-in Constants

A small number of constants live in the built-in namespace. They are:

False

The false value of thbool type. New in version 2.3.

True

The true value of theool type. New in version 2.3.

40

Chapter 2. Built-In Objects

None
The sole value ofypes .NoneType . None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function.

Notlmplemented
Special value which can be returned by the “rich comparison” special methoég (() , —_It __() , and
friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
Special value used in conjunction with extended slicing syntax.

2.5. Built-in Constants 41

42

CHAPTER
THREE

Python Runtime Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its inter-
action with its environment. Here’s an overview:

sys
gc
weakref
fpectl
atexit
types
UserDict
UserList
UserString
operator
inspect
traceback
linecache
pickle
cPickle

copy _reg
shelve

copy
marshal
warnings
imp
zipimport
pkguti
modulefinder
code
codeop
pprint

repr

new

site

user
__builtin
__main __
__future __

Access system-specific parameters and functions.
Interface to the cycle-detecting garbage collector.
Support for weak references and weak dictionaries.
Provide control for floating point exception handling.
Register and execute cleanup functions.

Names for built-in types.

Class wrapper for dictionary objects.

Class wrapper for list objects.

Class wrapper for string objects.

All Python’s standard operators as built-in functions.
Extract information and source code from live objects.
Print or retrieve a stack traceback.

This module provides random access to individual lines from text files.
Convert Python objects to streams of bytes and back.
Faster version gpickle , but not subclassable.
Registempickle support functions.

Python object persistence.

Shallow and deep copy operations.

Convert Python objects to streams of bytes and back (with different constraints).
Issue warning messages and control their disposition.
Access the implementation of tiport statement.
support for importing Python modules from ZIP archives.
Utilities to support extension of packages.

Find modules used by a script.

Base classes for interactive Python interpreters.
Compile (possibly incomplete) Python code.

Data pretty printer.

Alternaterepr() implementation with size limits.
Interface to the creation of runtime implementation objects.
A standard way to reference site-specific modules.

A standard way to reference user-specific modules.

The module that provides the built-in namespace.

The environment where the top-level script is run.

Future statement definitions

3.1 sys — System-specific parameters and functions

43

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv
The list of command line arguments passed to a Python saigiv[0] is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed usingth@and
line option to the interpreteargv[0] is set to the stringc’ . If no script name was passed to the Python
interpreterargv has zero length.

byteorder
An indicator of the native byte order. This will have the valbig' on big-endian (most-signigicant byte first)
platforms, andlittle’ on little-endian (least-significant byte first) platforms. New in version 2.0.

builtin ~ _module _names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This informa-
tion is not available in any other way modules.keys() only lists the imported modules.)

copyright

A string containing the copyright pertaining to the Python interpreter.
dilhandle

Integer specifying the handle of the Python DLL. Availability: Windows.

displayhook (value
If valueis notNone, this function prints it tesys.stdout , and saves it in__builtin

sys.displayhook is called on the result of evaluating an expression entered in an interactive Python
session. The display of these values can be customized by assigning another one-argument function to
sys.displayhook

excepthook (type, value, tracebagk
This function prints out a given traceback and exceptiosygstderr

When an exception is raised and uncaught, the interpreter sy@lexcepthook with three arguments,

the exception class, exception instance, and a traceback object. In an interactive session this happens just
before control is returned to the prompt; in a Python program this happens just before the program exits.
The handling of such top-level exceptions can be customized by assigning another three-argument function
to sys.excepthook

__displayhook

__excepthook __
These objects contain the original valuesdigplayhook andexcepthook at the start of the program.
They are saved so thdisplayhook andexcepthook can be restored in case they happen to get replaced
with broken objects.

exc _info ()
This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception” is
defined as “executing or having executed an except clause.” For any stack frame, only information about the
most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containingNloree values is returned.
Otherwise, the values returned drype value tracebach . Their meaning istypegets the exception type

of the exception being handled (a class object)uegets the exception parameter @ssociated valuer the

second argument t@ise , which is always a class instance if the exception type is a class oljjacg®pack

gets a traceback object (see the Reference Manual) which encapsulates the call stack at the point where the
exception originally occurred.

If exc _clear() is called, this function will return threlone values until either another exception is raised
in the current thread or the execution stack returns to a frame where another exception is being handled.

44 Chapter 3. Python Runtime Services

Warning: Assigning thetracebackreturn value to a local variable in a function that is handling an exception

will cause a circular reference. This will prevent anything referenced by a local variable in the same function
or by the traceback from being garbage collected. Since most functions don’t need access to the traceback, the
best solution is to use something likectype, value = sys.exc _info()[:2] to extract only the
exception type and value. If you do need the traceback, make sure to delete it after use (best dotry with a

... finally statement) or to caltxc _info() in a function that does not itself handle an exceptiNote:
Beginning with Python 2.2, such cycles are automatically reclaimed when garbage collection is enabled and
they become unreachable, but it remains more efficient to avoid creating cycles.

exc _clear ()
This function clears all information relating to the current or last exception that occurred in the current thread.
After calling this functiongxc _info() will return threeNone values until another exception is raised in the
current thread or the execution stack returns to a frame where another exception is being handled.

This function is only needed in only a few obscure situations. These include logging and error handling systems
that report information on the last or current exception. This function can also be used to try to free resources
and trigger object finalization, though no guarantee is made as to what objects will be freed, if any. New in
version 2.3.

exc _type
exc _value
exc _traceback
Deprecated since release 1.%Jseexc _info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being hand&d, type is set toNone and the other two are

undefined.

exec _prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is alsd/usr/local’ . This can be set at build time with theexec-prefixargument to the
configure script. Specifically, all configuration files (e.g. th®c¢onfig.h’ header file) are installed in the di-
rectoryexec _prefix + '/lib/python versioriconfig’ , and shared library modules are installed in
exec _prefix + '/lib/python versiorlib-dynload’ , Whereversionis equal toversion[:3]

executable

A string giving the name of the executable binary for the Python interpreter, on systems where this makes sense.

exit ([arg])
Exit from Python. This is implemented by raising tBgstemExit exception, so cleanup actions specified by
finally clauses otry statements are honored, and it is possible to intercept the exit attempt at an outer level.
The optional argumerarg can be an integer giving the exit status (defaulting to zero), or another type of object.
If it is an integer, zero is considered “successful termination” and any nonzero value is considered “abnormal
termination” by shells and the like. Most systems require it to be in the range 0-127, and produce undefined
results otherwise. Some systems have a convention for assigning specific meanings to specific exit codes, but
these are generally underdevelopeaix) programs generally use 2 for command line syntax errors and 1 for
all other kind of errors. If another type of object is pasdedne is equivalent to passing zero, and any other
object is printed tesys.stderr and results in an exit code of 1. In particulgys.exit("some error
message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify a clean-
up action at program exit. When set, it should be a parameterless function. This function will be called when
the interpreter exits. Only one function may be installed in this way; to allow multiple functions which will be
called at termination, use tlegexit module.Note: The exit function is not called when the program is killed
by a signal, when a Python fatal internal error is detected, or wosen_exit() is called.Deprecated since
release 2.4Useatexit instead.

getcheckinterval 0

3.1. sys — System-specific parameters and functions 45

Return the interpreter’s “check interval”; ssetcheckinterval() . New in version 2.3.

getdefaultencoding 0
Return the name of the current default string encoding used by the Unicode implementation. New in version
2.0.

getdlopenflags 0
Return the current value of the flags that are usedilligoen() calls. The flag constants are defined in dhe
andDLFCNmodules. Availability: WNix. New in version 2.2.

getfilesystemencoding 0
Return the name of the encoding used to convert Unicode filenames into system file naidesg df the
system default encoding is used. The result value depends on the operating system:
¢On Windows 9x, the encoding is “mbcs”.
¢On Mac OS X, the encoding is “utf-8".

¢On Unix, the encoding is the user’s preference according to the resultlahglinfo(CODESET), or None
if the nl_langinfo(CODESET) failed.

eOn Windows NT+, file names are Unicode natively, so no conversion is performed.

getfilesystemencoding still returns “mbcs”, as this is the encoding that applications should
use when they explicitly want to convert Unicode strings to byte strings that are equivalent when used as
file names.

New in version 2.3.

getrefcount (objec)
Return the reference count of tleject The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argumgettrésicount()

getrecursionlimit 0
Return the current value of the recursion limit, the maximum depth of the Python interpreter stack. This limit
prevents infinite recursion from causing an overflow of the C stack and crashing Python. It can be set by
setrecursionlimit()

_getframe ([depth])
Return a frame object from the call stack. If optional intedepthis given, return the frame object that many
calls below the top of the stack. If that is deeper than the call stéakieError s raised. The default for
depthis zero, returning the frame at the top of the call stack.

This function should be used for internal and specialized purposes only.

getwindowsversion ()
Return a tuple containing five components, describing the Windows version currently running. The elements
aremajor, minor, build, platform, andtext textcontains a string while all other values are integers.

platformmay be one of the following values:

Constant | Platform
VER_PLATFORMWIN32s Win32s on Windows 3.1
VER_PLATFORMWIN32_WINDOWS Windows 95/98/ME
VER_PLATFORMWIN32_NT Windows NT/2000/XP
VER_PLATFORMWIN32_CE Windows CE

This function wraps the Win3&etVersionEx() function; see the Microsoft documentation for more infor-
mation about these fields.

Availability: Windows. New in version 2.3.

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each version, including
proper support for non-production releases. For example, to test that the Python interpreter is at least version
1.5.2, use:

46 Chapter 3. Python Runtime Services

if sys.hexversion >= 0x010502FO:
use some advanced feature

else:
use an alternative implementation or warn the user

This is called hexversion ' since it only really looks meaningful when viewed as the result of passing it to
the built-inhex() function. Theversion _info value may be used for a more human-friendly encoding of
the same information. New in version 1.5.2.

last _type

last _value

last _traceback
These three variables are not always defined; they are set when an exception is not handled and the interpreter
prints an error message and a stack traceback. Their intended use is to allow an interactive user to import a
debugger module and engage in post-mortem debugging without having to re-execute the command that caused
the error. (Typical use ismport pdb; pdb.pm() ' to enter the post-mortem debugger; see chapter 9, “The
Python Debugger,” for more information.)

The meaning of the variables is the same as that of the return valuegfoninfo() above. (Since there is
only one interactive thread, thread-safety is not a concern for these variables, unéke fdype etc.)

maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2**31-1. The largest
negative integer ismaxint-1 — the asymmetry results from the use of 2's complement binary arithmetic.
maxunicode

An integer giving the largest supported code point for a Unicode character. The value of this depends on the
configuration option that specifies whether Unicode characters are stored as UCS-2 or UCS-4.

modules
This is a dictionary that maps module names to modules which have already been loaded. This can be manip-
ulated to force reloading of modules and other tricks. Note that removing a module from this dictionaty is
the same as callinggload() on the corresponding module object.

path

A list of strings that specifies the search path for modules. Initialized from the environment variable PYTHON-
PATH, plus an installation-dependent default.

As initialized upon program startup, the first item of this |gath[0] , is the directory containing the script

that was used to invoke the Python interpreter. If the script directory is not available (e.g. if the interpreter is
invoked interactively or if the script is read from standard inpp&th[0] is the empty string, which directs
Python to search modules in the current directory first. Notice that the script directory is insefoeethe
entries inserted as a result of PYTHONPATH.

A program is free to modify this list for its own purposes.
Changed in version 2.3: Unicode strings are no longer ignored.

platform
This string contains a platform identifier, elgunos5’ or’linuxl’ . This can be used to append platform-
specific components feath , for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed,;
by default, this is the stringustr/local’ . This can be set at build time with theprefix argument to
the configure script. The main collection of Python library modules is installed in the direqiogfix +
‘llib/python versiori while the platform independent header files (all exceptdnfig.h’) are stored in
prefix + ’'/linclude/python versiori , whereversionis equal toversion[:3]

3.1. sys — System-specific parameters and functions a7

psl

ps2
Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the interpreter
is in interactive mode. Their initial values in this case &®> ' and'... . If a non-string object is
assigned to either variable, gtr() is re-evaluated each time the interpreter prepares to read a new interactive
command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter checks for periodic
things such as thread switches and signal handlers. The defa0ld jsmeaning the check is performed every
100 Python virtual instructions. Setting it to a larger value may increase performance for programs using threads.
Setting it to a valuee= 0 checks every virtual instruction, maximizing responsiveness as well as overhead.

setdefaultencoding (namg
Set the current default string encoding used by the Unicode implementatialmmiédoes not match any
available encodingd,.ookupError is raised. This function is only intended to be used bydive module
implementation and, where needed difecustomize . Once used by theite module, it is removed from
thesys module’s namespace. New in version 2.0.

setdlopenflags (n
Set the flags used by the interpreter fliopen() calls, such as when the interpreter loads extension
modules. Among other things, this will enable a lazy resolving of symbols when importing a mod-
ule, if called assys.setdlopenflags(0) . To share symbols across extension modules, call as
sys.setdlopenflags(dl.RTLD _NOW | dI.RTLD _GLOBAL). Symbolic names for the flag modules
can be either found in the! module, or in thdDLFCNmodule. IfDLFCNis not available, it can be generated
from ‘/usr/include/difcn.h’ using theh2py script. Availability: UNiX. New in version 2.2.

setprofile (profilefung
Set the system’s profile function, which allows you to implement a Python source code profiler in Python. See
chapter 10 for more information on the Python profiler. The system’s profile function is called similarly to the
system’s trace function (seettrace()), but it isn’t called for each executed line of code (only on call and
return, but the return event is reported even when an exception has been set). The function is thread-specific,
but there is no way for the profiler to know about context switches between threads, so it does not make sense
to use this in the presence of multiple threads. Also, its return value is not used, so it can simpliXogtern

setrecursionlimit (limit)
Set the maximum depth of the Python interpreter stackmd. This limit prevents infinite recursion from
causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when she has a program
that requires deep recursion and a platform that supports a higher limit. This should be done with care, because
a too-high limit can lead to a crash.

settrace (tracefung
Set the system’s trace function, which allows you to implement a Python source code debugger in Python.
See section 9.2, “How It Works,” in the chapter on the Python debugger. The function is thread-specific; for a
debugger to support multiple threads, it must be registered ssitigice() for each thread being debugged.
Note: The settrace() function is intended only for implementing debuggers, profilers, coverage tools and
the like. Its behavior is part of the implementation platform, rather than part of the language definition, and thus
may not be available in all Python implementations.

settscdump (on_flag)
Activate dumping of VM measurements using the Pentium timestamp counter, fieg is true. Deactivate
these dumps ibn_flag is off. The function is available only if Python was compiled withvith-tsc. To
understand the output of this dump, re&githon/ceval.c’ in the Python sources. New in version 2.4.

stdin
stdout
stderr

48 Chapter 3. Python Runtime Services

File objects corresponding to the interpreter’s standard input, output and error stre@tims. is used for

all interpreter input except for scripts but including calldriput() andraw _input() . stdout is used

for the output ofprint and expression statements and for the promptemit() andraw _input()

The interpreter’s own prompts and (almost all of) its error messages gléor . stdout andstderr

needn’t be built-in file objects: any object is acceptable as long as it ha#e) method that takes a

string argument. (Changing these objects doesn’t affect the standard 1/0 streams of processes executed by
os.popen() ,os.system() ortheexec*() family of functions in theos module.)

__stdin __

__stdout

__stderr __
These objects contain the original valuesstfin , stderr andstdout at the start of the program. They
are used during finalization, and could be useful to restore the actual files to known working file objects in case
they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback infor-
mation printed when an unhandled exception occurs. The defal008. When set td or less, all traceback
information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter plus additional information on the build num-
ber and compiler used. It has a value of the farmersion (# build_number build_date build_time)
[compilef’ . The first three characters are used to identify the version in the installation directories (where
appropriate on each platform). An example:
>>> import sys
>>> sys.version
'1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bhit (Intel)]

api _version
The C API version for this interpreter. Programmers may find this useful when debugging version conflicts
between Python and extension modules. New in version 2.3.

version _info
Atuple containing the five components of the version numivegjor, minor, micro, releaselevelandserial. All
values excepteleaselevedire integers; the release levelaipha’ |, ’beta’ |, ’candidate’ , or’final
Theversion _info value corresponding to the Python version 2.QRis 0, 0, ‘final’, 0) . New
in version 2.0.

warnoptions
This is an implementation detail of the warnings framework; do not modify this value. Referwathéegs
module for more information on the warnings framework.

winver
The version number used to form registry keys on Windows platforms. This is stored as string resource 1000 in
the Python DLL. The value is normally the first three charactereddion . Itis provided in thesys module
for informational purposes; modifying this value has no effect on the registry keys used by Python. Availability:
Windows.

See Also:

Modulesite (section 3.30):
This describes how to use .pth files to exteyd.path

3.2 gc — Garbage Collector interface

3.2. gc — Garbage Collector interface 49

This module provides an interface to the optional garbage collector. It provides the ability to disable the collector, tune
the collection frequency, and set debugging options. It also provides access to unreachable objects that the collector
found but cannot free. Since the collector supplements the reference counting already used in Python, you can disable
the collector if you are sure your program does not create reference cycles. Automatic collection can be disabled by
calling gc.disable() . To debug a leaking program cajt.set _debug(gc.DEBUG _LEAK). Notice that this
includesgc. DEBUG_SAVEALL, causing garbage-collected objects to be saved in gc.garbage for inspection.

Thegc module provides the following functions:

enable ()
Enable automatic garbage collection.

disable ()
Disable automatic garbage collection.

isenabled ()
Returns true if automatic collection is enabled.

collect ()
Run a full collection. All generations are examined and the number of unreachable objects found is returned.

set _debug (flag9
Set the garbage collection debugging flags. Debugging information will be writeyststderr . See below
for a list of debugging flags which can be combined using bit operations to control debugging.

get _debug ()
Return the debugging flags currently set.

get _objects ()
Returns a list of all objects tracked by the collector, excluding the list returned. New in version 2.2.

set _threshold (threshold(ﬁ, thresholdi, thresholdﬂ])
Set the garbage collection thresholds (the collection frequency). StttegholdOto zero disables collection.

The GC classifies objects into three generations depending on how many collection sweeps they have survived.
New objects are placed in the youngest generation (gene@tidhan object survives a collection it is moved

into the next older generation. Since generafiois the oldest generation, objects in that generation remain
there after a collection. In order to decide when to run, the collector keeps track of the number object allocations
and deallocations since the last collection. When the number of allocations minus the number of deallocations
exceedshresholdQ collection starts. Initially only generatidhis examined. If generatiobhas been examined

more thanthreshold1times since generatioh has been examined, then generatiois examined as well.
Similarly, threshold2controls the number of collections of generatibbefore collecting generatidh

get _threshold ()
Return the current collection thresholds as a tuplétbfesholdQ threshold]l threshold? .

get _referrers (*objs)
Return the list of objects that directly refer to any of objs. This function will only locate those containers which
support garbage collection; extension types which do refer to other objects but do not support garbage collection
will not be found.

Note that objects which have already been dereferenced, but which live in cycles and have not yet been collected
by the garbage collector can be listed among the resulting referrers. To get only currently live objects, call
collect() before callingget _referrers()

Care must be taken when using objects returnegdty_referrers() because some of them could still be
under construction and hence in a temporarily invalid state. Avoid g referrers() for any purpose
other than debugging.

New in version 2.2.

get _referents (*objs)
Return a list of objects directly referred to by any of the arguments. The referents returned are those objects

50 Chapter 3. Python Runtime Services

visited by the arguments’ C-levig) _traverse methods (if any), and may not be all objects actually directly
reachabletp _traverse methods are supported only by objects that support garbage collection, and are only
required to visit objects that may be involved in a cycle. So, for example, if an integer is directly reachable from
an argument, that integer object may or may not appear in the result list.

New in version 2.3.
The following variable is provided for read-only access (you can mutate its value but should not rebind it):

garbage
A list of objects which the collector found to be unreachable but could not be freed (uncollectable objects). By
default, this list contains only objects with_del __() methods: Objects that have_del __() methods
and are part of a reference cycle cause the entire reference cycle to be uncollectable, including objects not
necessarily in the cycle but reachable only from it. Python doesn’t collect such cycles automatically because, in
general, itisn’'t possible for Python to guess a safe order in which to runttel __() methods. If you know
a safe order, you can force the issue by examiningydrbagelist, and explicitly breaking cycles due to your
objects within the list. Note that these objects are kept alive even so by virtue of beinggartiegelist, so
they should be removed frogarbagetoo. For example, after breaking cycles,all gc.garbagel[:] to
empty the list. It's generally better to avoid the issue by not creating cycles containing objects déth __()
methods, angarbagecan be examined in that case to verify that no such cycles are being created.

If DEBUGSAVEALLIs set, then all unreachable objects will be added to this list rather than freed.
The following constants are provided for use wsttt _debug() :

DEBUGSTATS
Print statistics during collection. This information can be useful when tuning the collection frequency.

DEBUGCOLLECTABLE
Print information on collectable objects found.

DEBUGUNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be freed by the
collector). These objects will be added to tewbage list.

DEBUGINSTANCES
WhenDEBUGCOLLECTABLEr DEBUGUNCOLLECTABLIS set, print information about instance objects
found.

DEBUGOBJECTS
WhenDEBUGCOLLECTABLErDEBUGUNCOLLECTABLIE set, print information about objects other than
instance objects found.

DEBUGSAVEALL
When set, all unreachable objects found will be appendegdtioagerather than being freed. This can be useful
for debugging a leaking program.

DEBUGLEAK
The debugging flags necessary for the collector to print information about a leaking program (equal to
DEBUGCOLLECTABLE | DEBUGUNCOLLECTABLE | DEBUGNSTANCES | DEBUGOBJECTS
| DEBUG_SAVEALL.

3.3 weakref — Weak references

New in version 2.1.
Theweakref module allows the Python programmer to crea&ak reference® objects.

In the following, the ternreferentmeans the object which is referred to by a weak reference.

1Prior to Python 2.2, the list contained all instance objects in unreachable cycles, not only thosedeith__() methods.

3.3. weakref — Weak references 51

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a referent
are weak references, garbage collection is free to destroy the referent and reuse its memory for something else. A
primary use for weak references is to implement caches or mappings holding large objects, where it's desired that a
large object not be kept alive solely because it appears in a cache or mapping. For example, if you have a number of
large binary image objects, you may wish to associate a hame with each. If you used a Python dictionary to map names
to images, or images to names, the image objects would remain alive just because they appeared as values or keys in
the dictionaries. Th&VeakKeyDictionary = and WeakValueDictionary classes supplied by theeakref

module are an alternative, using weak references to construct mappings that don’t keep objects alive solely because
they appear in the mapping objects. If, for example, an image object is a valu&/gakValueDictionary)

then when the last remaining references to that image object are the weak references held by weak mappings, garbage
collection can reclaim the object, and its corresponding entries in weak mappings are simply deleted.

WeakKeyDictionary and WeakValueDictionary use weak references in their implementation, setting up
callback functions on the weak references that notify the weak dictionaries when a key or value has been reclaimed by
garbage collection. Most programs should find that using one of these weak dictionary types is all they need — it's not
usually necessary to create your own weak references directly. The low-level machinery used by the weak dictionary
implementations is exposed by thveakref module for the benefit of advanced uses.

Not all objects can be weakly referenced; those objects which can include class instances, functions written in Python

(but not in C), methods (both bound and unbound), sets, frozensets, file objects, generators, type objects, DBcursor
objects from théosddb module, sockets, arrays, deques, and regular expression pattern objects. Changed in version

2.4: Added support for files, sockets, arrays, and patterns.

Several builtin types such dist anddict do not directly support weak references but can add support through
subclassing:

class Dict(dict):
pass

obj = Dict(red=1, green=2, blue=3) # this object is weak referencable

Extension types can easily be made to support weak references; see section 3.3.3, “Weak References in Extension
Types,” for more information.

classref (objec{, callback])
Return a weak reference tibject The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will close to be
returned. Ifcallbackis provided and nolNone, it will be called when the object is about to be finalized,;
the weak reference object will be passed as the only parameter to the callback; the referent will no longer be
available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they are
handled in exactly the same way as exceptions raised from an ohjectd __() method.

Weak references are hashable if tigectis hashable. They will maintain their hash value even afteotject
was deleted. Ihash() is called the first time only after thabjectwas deleted, the call will raisEypeError

Weak references support tests for equality, but not ordering. If the referents are still alive, two references have
the same equality relationship as their referents (regardless oélivack. If either referent has been deleted,
the references are equal only if the reference objects are the same object.

Changed in version 2.4: This is now a subclassable type rather than a factory function; it derivebjérom .
proxy (objec{, callback])

Return a proxy tmbjectwhich uses a weak reference. This supports use of the proxy in most contexts instead
of requiring the explicit dereferencing used with weak reference objects. The returned object will have a type

52 Chapter 3. Python Runtime Services

of eitherProxyType or CallableProxyType , depending on wheth@hbjectis callable. Proxy objects are

not hashable regardless of the referent; this avoids a number of problems related to their fundamentally mutable
nature, and prevent their use as dictionary kegdlbackis the same as the parameter of the same name to the
ref() function.

getweakrefcount (objec)
Return the number of weak references and proxies which refajext

getweakrefs (objec)
Return a list of all weak reference and proxy objects which refebfject

classWeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no longer a
strong reference to the key. This can be used to associate additional data with an object owned by other parts of
an application without adding attributes to those objects. This can be especially useful with objects that override
attribute accesses.

Note: Caution: BecauseWeakKeyDictionary s built on top of a Python dictionary, it must not change size
when iterating over it. This can be difficult to ensure faMaakKeyDictionary = because actions performed

by the program during iteration may cause items in the dictionary to vanish "by magic” (as a side effect of
garbage collection).

classWeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong refer-
ence to the value exists any more.

Note: Caution: Because\WeakValueDictionary is built on top of a Python dictionary, it must not change
size when iterating over it. This can be difficult to ensure fa/aakValueDictionary because actions
performed by the program during iteration may cause items in the dictionary to vanish "by magic” (as a side
effect of garbage collection).

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

exceptionReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This is the same as
the standardReferenceError exception.

See Also:

PEP 0205, YWeak Referencés
The proposal and rationale for this feature, including links to earlier implementations and information about
similar features in other languages.

3.3.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

3.3. weakref — Weak references 53

>>> import weakref
>>> class Object:

pass
>>> 0 = Object()
>>> r = weakref.ref(o)

>>> 02 = 1()
>>> 0 iS 02
True

If the referent no longer exists, calling the reference object retlome:

>>> del o, 02
>>> print r()
None

Testing that a weak reference object is still live should be done using the expresf§jois not None . Nor-
mally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
o =r()
if o is None:
referent has been garbage collected
print "Object has been deallocated; can't frobnicate."
else:
print "Object is still live!"
0.do_something_useful()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause a weak
reference to become invalidated before the weak reference is called; the idiom shown above is safe in threaded appli-
cations as well as single-threaded applications.

Specialized versions ok&f objects can be created through subclassing. This is used in the implementation of the
WeakValueDictionary to reduce the memory overhead for each entry in the mapping. This may be most useful
to associate additional information with a reference, but could also be used to insert additional processing on calls to
retrieve the referent.

This example shows how a subclasseff can be used to store additional information about an object and affect the
value that's returned when the referent is accessed:

54 Chapter 3. Python Runtime Services

import weakref

class ExtendedRef(weakref.ref):
def __init__(self, ob, callback=None, **annotations):
super(ExtendedRef, self).__init_ (ob, callback)
self.__counter = 0
for k, v in annotations.iteritems():
setattr(self, k, v)

def __ call__(self):
""Return a pair containing the referent and the number of
times the reference has been called.

ob = super(ExtendedRef, self).__ call_ ()
if ob is not None:

self.__counter += 1

ob = (ob, self.__counter)
return ob

3.3.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The IDs
of the objects can then be used in other data structures without forcing the objects to remain alive, but the objects can
still be retrieved by ID if they do.

import weakref
_id2obj_dict = weakref.WeakValueDictionary()

def remember(obj):
oid = id(obj)
_id2obj_dict[oid] = obj
return oid

def id2obj(oid):
return _id2obj_dict[oid]

3.3.3 Weak References in Extension Types

One of the goals of the implementation is to allow any type to participate in the weak reference mechanism without
incurring the overhead on those objects which do not benefit by weak referencing (such as numbers).

For an object to be weakly referencable, the extension must incl@g©hject* field in the instance structure for
the use of the weak reference mechanism; it must be initializ&tUoL by the object’s constructor. It must also set
thetp _weaklistoffset field of the corresponding type object to the offset of the field. Also, it needs to add
Py_TPFLAGS HAVE_ WEAKREF® the tp flags slot. For example, the instance type is defined with the following
structure:

3.3. weakref — Weak references 55

typedef struct {
PyObject HEAD

PyClassObject *in_class; /* The class object */
PyObject *in_dict; /* A dictionary */
PyObject *in_weakreflist; /* List of weak references */

} PylnstanceObject;

The statically-declared type object for instances is defined this way:

PyTypeObject Pylnstance_Type = {
PyObject HEAD_INIT(&PyType_Type)
0,
"module.instance",

[* Lots of stuff omitted for brevity... */

Py TPFLAGS_DEFAULT | Py TPFLAGS_HAVE_WEAKREFS /* tp_flags */

0, [* tp_doc */

0, [* tp_traverse */

0, [* tp_clear */

0, I* tp_richcompare */

offsetof(PyInstanceObject, in_weakreflist), /* tp_weaklistoffset */

The type constructor is responsible for initializing the weak reference ItioL:

static PyObject *
instance_new() {
[* Other initialization stuff omitted for brevity */

self->in_weakreflist = NULL;

return (PyObject *) self;

The only further addition is that the destructor needs to call the weak reference manager to clear any weak references.
This should be done before any other parts of the destruction have occurred, but is only required if the weak reference
listis nonNULL:

static void
instance_dealloc(PylnstanceObject *inst)

[* Allocate temporaries if needed, but do not begin
destruction just yet.
*/

if (inst->in_weakreflist != NULL)
PyObiject_ClearWeakRefs((PyObject *) inst);

/* Proceed with object destruction normally. */

56 Chapter 3. Python Runtime Services

3.4 fpectl — Floating point exception control

Most computers carry out floating point operations in conformance with the so-called IEEE-754 standard. On any real
computer, some floating point operations produce results that cannot be expressed as a normal floating point value.
For example, try

>>> jmport math

>>> math.exp(1000)

inf

>>> math.exp(1000) / math.exp(1000)
nan

(The example above will work on many platforms. DEC Alpha may be one exception.) "Inf” is a special, non-numeric
value in IEEE-754 that stands for "infinity”, and "nan” means "not a number.” Note that, other than the non-numeric
results, nothing special happened when you asked Python to carry out those calculations. That is in fact the default
behaviour prescribed in the IEEE-754 standard, and if it works for you, stop reading now.

In some circumstances, it would be better to raise an exception and stop processing at the point where the faulty
operation was attempted. Tiygectl module is for use in that situation. It provides control over floating point
units from several hardware manufacturers, allowing the user to turn on the genera®iF®E whenever any of

the IEEE-754 exceptions Division by Zero, Overflow, or Invalid Operation occurs. In tandem with a pair of wrapper
macros that are inserted into the C code comprising your python sySI6G#®PE is trapped and converted into the
PythonFloatingPointError exception.

Thefpectl module defines the following functions and may raise the given exception:

turnon _sigfpe ()
Turn on the generation &IGFPE, and set up an appropriate signal handler.

turnoff _sigfpe ()
Reset default handling of floating point exceptions.

exceptionFloatingPointError
After turnon _sigfpe() has been executed, a floating point operation that raises one of the IEEE-754 ex-
ceptions Division by Zero, Overflow, or Invalid operation will in turn raise this standard Python exception.

3.4.1 Example

The following example demonstrates how to start up and test operationfpiegtte module.

3.4. fpectl — Floating point exception control 57

>>> import fpectl

>>> import fpetest

>>> fpectl.turnon_sigfpe()
>>> fpetest.test()

overflow PASS
FloatingPointError: Overflow

div by 0 PASS

FloatingPointError: Division by zero
[more output from test elided]

>>> jmport math

>>> math.exp(1000)

Traceback (most recent call last):
File "<stdin>", line 1, in ?

FloatingPointError: in math_1

3.4.2 Limitations and other considerations

Setting up a given processor to trap IEEE-754 floating point errors currently requires custom code on a per-architecture
basis. You may have to modifpectl to control your particular hardware.

Conversion of an IEEE-754 exception to a Python exception requires that the wrapper macros
PyFPE_START_PROTECTand PyFPE_END PROTECTbe inserted into your code in an appropriate fash-
ion. Python itself has been modified to supportfipectt module, but many other codes of interest to numerical
analysts have not.

Thefpectl module is not thread-safe.
See Also:

Some files in the source distribution may be interesting in learning more about how this module operates. The include
file ‘Include/pyfpe.h’ discusses the implementation of this module at some lengtfodules/fpetestmodule.c’ gives
several examples of use. Many additional examples can be fourbjexcts/floatobject.c’.

3.5 atexit — Exit handlers

New in version 2.0.

Theatexit module defines a single function to register cleanup functions. Functions thus registered are automati-
cally executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal, when a Python
fatal internal error is detected, or whes. _exit() is called.

This is an alternate interface to the functionality provided bystygexitfunc variable.

Note: This module is unlikely to work correctly when used with other code thatsystexitfunc . In partic-
ular, other core Python modules are free to asxit without the programmer’s knowledge. Authors who use
sys.exitfunc should convert their code to usgexit instead. The simplest way to convert code that sets
sys.exitfunc is to importatexit ~ and register the function that had been bounsymexitfunc

register (func[, *args[, **kargs]])
Registerfuncas a function to be executed at termination. Any optional arguments that are to be pdssed to
must be passed as argumentsegister()

At normal program termination (for instance sijs.exit() is called or the main module’s execution com-

58 Chapter 3. Python Runtime Services

pletes), all functions registered are called in last in, first out order. The assumption is that lower level modules
will normally be imported before higher level modules and thus must be cleaned up later.

If an exception is raised during execution of the exit handlers, a traceback is printed Gyd¢siExit is
raised) and the exception information is saved. After all exit handlers have had a chance to run the last exception
to be raised is re-raised.

See Also:

Modulereadline (section 7.20):
Useful example oétexit to read and writeeadline history files.

3.5.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it is imported
and save the counter’s updated value automatically when the program terminates without relying on the application
making an explicit call into this module at termination.

try:

_count = int(open("/tmp/counter”).read())
except IOError:

—count = 0

def incrcounter(n):
global _count
_count = _count + n

def savecounter():
open("/tmp/counter”, "w").write("%d" % _count)

import atexit
atexit.register(savecounter)

Positional and keyword arguments may also be passesyister() to be passed along to the registered function
when it is called:

def goodbye(name, adjective):
print 'Goodbye, %s, it was %s to meet you.'” % (name, adjective)

import atexit
atexit.register(goodbye, 'Donny’, ’nice’)

or:
atexit.register(goodbye, adjective="nice’, name='Donny’)

3.6 types — Names for built-in types

This module defines names for some object types that are used by the standard Python interpreter, but not for the types
defined by various extension modules. Also, it does not include some of the types that arise during processing such
thelistiterator type. It is safe to usdrom types import * ' — the module does not export any names
besides the ones listed here. New names exported by future versions of this module will allByykih *

Typical use is for functions that do different things depending on their argument types, like the following:

3.6. types — Names for built-in types 59

from types import *
def delete(mylist, item):
if type(item) is IntType:
del mylist[item]
else:
mylist.remove(item)

Starting in Python 2.2, built-in factory functions suchiag) andstr() are also names for the corresponding
types. This is now the preferred way to access the type instead of usitygpp®e module. Accordingly, the example
above should be written as follows:

def delete(mylist, item):
if isinstance(item, int):
del mylist[item]
else:
mylist.remove(item)

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returnedype()).
BooleanType

The type of thebool valuesTrue andFalse ; this is an alias of the built-itbool() function. New in
version 2.3.

IntType
The type of integers (e.d.).

LongType
The type of long integers (e.gL).

FloatType
The type of floating point numbers (e.5.0).

ComplexType
The type of complex numbers (e.d.0j). This is not defined if Python was built without complex number
support.

StringType
The type of character strings (e!§pam’).
UnicodeType

The type of Unicode character strings (euSpam’). This is not defined if Python was built without Unicode
support.

TupleType

The type of tuples (e.d1, 2, 3, 'Spam’)).
ListType

The type of lists (e.g[0, 1, 2, 3]).

DictType
The type of dictionaries (e.g'Bacon’. 1, 'Ham’: 0}).

60 Chapter 3. Python Runtime Services

DictionaryType
An alternate name fdDictType

FunctionType

The type of user-defined functions and lambdas.
LambdaType

An alternate name fdfunctionType
GeneratorType

The type of generator-iterator objects, produced by calling a generator function. New in version 2.2.
CodeType

The type for code objects such as returnec¢bmpile()
ClassType

The type of user-defined classes.
InstanceType

The type of instances of user-defined classes.
MethodType

The type of methods of user-defined class instances.
UnboundMethodType

An alternate name fdvlethodType .

BuiltinFunctionType
The type of built-in functions likéen() or sys.exit()

BuiltinMethodType
An alternate name fdBuiltinFunction

ModuleType
The type of modules.

FileType
The type of open file objects suchsgs.stdout

XRangeType
The type of range objects returnedxnange()

SliceType
The type of objects returned Ilsjice()

EllipsisType
The type ofEllipsis

TracebackType
The type of traceback objects such as foundyis.exc _traceback

FrameType
The type of frame objects such as foundbrtb _frame if tb is a traceback object.

BufferType
The type of buffer objects created by theffer() function.

StringTypes
A sequence containingtringType andUnicodeType used to facilitate easier checking for any string ob-
ject. Using this is more portable than using a sequence of the two string types constructed elsewhere since it only
containdJnicodeType if it has been built in the running version of Python. For exam@iestance(s,
types.StringTypes) . New in version 2.2.

3.6. types — Names for built-in types 61

3.7 UserDict — Class wrapper for dictionary objects

The module defines a miximictMixin , defining all dictionary methods for classes that already have a minimum
mapping interface. This greatly simplifies writing classes that need to be substitutable for dictionaries (such as the
shelve module).

This also module defines a clatkserDict |, that acts as a wrapper around dictionary objects. The need for this class
has been largely supplanted by the ability to subclass directly ffisin (a feature that became available starting
with Python version 2.2). Prior to the introductiondi€t , theUserDict class was used to create dictionary-like
sub-classes that obtained new behaviors by overriding existing methods or adding new ones.

TheUserDict module defines thEserDict class andictMixin

classUserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via thedata attribute ofUserDict instances. Ifnitialdata is provided,data is initialized with its contents;
note that a reference toitialdata will not be kept, allowing it be used for other purposiiate: For backward
compatibility, instances dfiserDict are not iterable.

classlterableUserDict ([initialdata])
Subclass oUserDict that supports direct iteration (e.fpr key in myDict).

In addition to supporting the methods and operations of mappings (see section 2J3&Dict and
IterableUserDict instances provide the following attribute:

data
A real dictionary used to store the contents oftthserDict class.

classDictMixin ()
Mixin defining all dictionary methods for classes that already have a minimum dictionary interface including
__getitem __() ,__setitem __() ,__delitem __() ,andkeys()

This mixin should be used as a superclass. Adding each of the above methods adds progressively more func-

tionality. For instance, defining all but_delitem __ will preclude onlypop andpopitem from the full
interface.
In addition to the four base methods, progressively more efficiency comes with defingogtains ()

__iter __() , anditeritems()
Since the mixin has no knowledge of the subclass constructor, it does not define __() or copy()

3.8 UserList — Class wrapper for list objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to work
with versions of Python earlier than Python 2.2, please consider subclassing directly from thelsiilt-itype.

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to lists.

TheUserList module defines thEserList class:

classUserList ([Iist])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessiblel@ia the
attribute ofUserList instances. The instance’s contents are initially set to a copigtofdefaulting to the
empty list[] . list can be either a regular Python list, or an instancesdrList (or a subclass).

In addition to supporting the methods and operations of mutable sequences (see sectiods28.8) instances
provide the following attribute:

62 Chapter 3. Python Runtime Services

data
A real Python list object used to store the contents oftkerList class.

Subclassing requirements: Subclasses dfJserList are expect to offer a constructor which can be called with

either no arguments or one argument. List operations which return a new sequence attempt to create an instance of the
actual implementation class. To do so, it assumes that the constructor can be called with a single parameter, which is
a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this class will
need to be overridden; please consult the sources for information about the methods which need to be provided in that
case.

Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with no parameters,
and offer a mutabldata attribute. Earlier versions of Python did not attempt to create instances of the derived class.

3.9 UserString — Class wrapper for string objects

Note: This UserString class from this module is available for backward compatibility only. If you are writing
code that does not need to work with versions of Python earlier than Python 2.2, please consider subclassing directly
from the built-instr type instead of usintserString (there is no built-in equivalent télutableString).

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own string-
like classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is especially
the case foMutableString

TheUserString module defines the following classes:

classUserString ([sequenc}a)
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible via ttata attribute ofUserString instances. The instance’s
contents are initially set to a copy séquencesequencean be either a regular Python string or Unicode string,
an instance ofJserString (or a subclass) or an arbitrary sequence which can be converted into a string using
the built-instr() function.

classMutableString ([sequenc})
This class is derived from thdserString above and redefines strings to ineitable Mutable strings can’t
be used as dictionary keys, because dictionaries reguimaitableobjects as keys. The main intention of this
class is to serve as an educational example for inheritance and necessity to remove (overridedshe__()
method in order to trap attempts to use a mutable object as dictionary key, which would be otherwise very error
prone and hard to track down.

In addition to supporting the methods and operations of string and Unicode objects (see section 2.3.6, “String Meth-
ods”),UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content dfsleeString class.

3.10 operator — Standard operators as functions.

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of Python.
For examplepperator.add(x, V) is equivalent to the expressiorty . The function names are those used for
special class methods; variants without leading and trailing are also provided for convenience.

3.9. UserString — Class wrapper for string objects 63

The functions fall into categories that perform object comparisons, logical operations, mathematical operations, se-
guence operations, and abstract type tests.

The object comparison functions are useful for all objects, and are named after the rich comparison operators they
support:

It (a, b

le (a,b

eq(a, b

ne(a, b

ge(a, b

gt (a, b

__It __(a,b

_le__(a/b

_eq__(a,b

__ne__(a/b

__ge__(a/b

__ot__(ab
Perform “rich comparisons” betweenandb. Specifically,lt(a, b) is equivalenttaa < b, le(a, b) is
equivalenttoa <= b, eq(a, b) isequivalenttaa == b, ne(a, b) isequivalentta !'= b, gt(a, b)
is equivalent tca > b andge(a, b) is equivalent tca >= b. Note that unlike the built-icmp() , these
functions can return any value, which may or may not be interpretable as a Boolean value. Bgthtime
Reference Manudbr more information about rich comparisons. New in version 2.2.

The logical operations are also generally applicable to all objects, and support truth tests, identity tests, and boolean
operations:

not _(0)

__not __(0)
Return the outcome afot o. (Note that there is na_not __() method for object instances; only the inter-
preter core defines this operation. The result is affected by thenzero __() and__len __() methods.)

truth (o)
ReturnTrue if ois true, and-alse otherwise. This is equivalent to using theol constructor.
is _(a,b

Returna is b. Tests object identity. New in version 2.3.

is _not (a, b
Returna is not b. Tests object identity. New in version 2.3.

The mathematical and bitwise operations are the most numerous:

abs(0)
__abs__(0)
Return the absolute value of

add(a, b
__add__(a,b
Returna + b, for aandb numbers.

and _(a, b
__and__(a, b
Return the bitwise and & andb.

div (a, b
__div __(a,b
Returna/ bwhen__future __.division is not in effect. This is also known as “classic” division.

floordiv (&, b
__floordiv. __(a,b

64 Chapter 3. Python Runtime Services

Returna// b. New in version 2.2.

inv (0)

invert (0)

__inv __(0)

__invert __(0)
Return the bitwise inverse of the number This is equivalent to"o. The namesinvert() and
__invert __() were added in Python 2.0.

Ishift (a, b
__Ishift __(a,b
Returna shifted left byb.

mod(a, b)
__mod__(a,b
Returna %b.

mul (a, b)
__mul__(a,b
Returna* b, for aandb numbers.

neg(o)
__neg__(0)
Returno negated.

or (a, b
_or__(ab
Return the bitwise or o andb.

pos (0)
__pos__(0)
Returno positive.

pow(a, b)
__pow__(a,b
Returna** b, for aandb numbers. New in version 2.3.

rshift (&, b
__rshift __(a, b
Returna shifted right byb.

sub (a, b)
__sub__(a,b
Returna - b.

truediv (a, b
__truediv __(a, b
Returna/ bwhen__future __.division is in effect. This is also known as division. New in version 2.2.

xor (a, b)
__xor __(a,b
Return the bitwise exclusive or afandb.

Operations which work with sequences include:

concat (a, b
__concat __(a,b
Returna + b for a andb sequences.

contains (a, b
__contains __(a,b
Return the outcome of the tdsin a. Note the reversed operands. The nameontains __() was added

3.10. operator — Standard operators as functions. 65

in Python 2.0.

countOf (a,b)
Return the number of occurrenceshah a.

delitem (a, b
__delitem __(a,b)
Remove the value af at indexb.

delslice (a, b, 9
__delslice __(a,b,9
Delete the slice of from indexb to indexc-1 .

getitem (a, b)
__getitem __(a,b)
Return the value o at indexb.

getslice (a, b, 9
__getslice __(a,b,9
Return the slice o& from indexb to indexc-1 .

indexOf (a, b)
Return the index of the first of occurrenceloi a.

repeat (a, b
__repeat __(a,b
Returna* b whereais a sequence artdis an integer.

sequencelncludes (..)
Deprecated since release 2.Qsecontains() instead.

Alias for contains()

setitem (a,b, 9
__setitem __(a,b,9
Set the value o& at indexb to c.

setslice (a,b,c,y
__setslice __(a,b,c,v
Set the slice o& from indexb to indexc-1 to the sequence

Theoperator module also defines a few predicates to test the type of objdote: Be careful not to misinterpret
the results of these functions; ongCallable() has any measure of reliability with instance objects. For example:

>>> class C:
pass

>>> import operator

>>> 0 = C()

>>> operator.isMappingType(0)
True

isCallable (0)
Deprecated since release 2.Qse thecallable() built-in function instead.

Returns true if the objectcan be called like a function, otherwise it returns false. True is returned for functions,
bound and unbound methods, class objects, and instance objects which suppodahe __() method.

isMappingType (0)
Returns true if the objed supports the mapping interface. This is true for dictionaries and all instance objects
defining __getitem __. Warning: There is no reliable way to test if an instance supports the complete

66 Chapter 3. Python Runtime Services

mapping protocol since the interface itself is ill-defined. This makes this test less useful than it otherwise might
be.

isNumberType (0)
Returns true if the objed represents a number. This is true for all numeric types implementedWa@hing:
There is no reliable way to test if an instance supports the complete numeric interface since the interface itself
is ill-defined. This makes this test less useful than it otherwise might be.

isSequenceType (0)
Returns true if the objeat supports the sequence protocol. This returns true for all objects which define se-
guence methods in C, and for all instance objects definingetitem __. Warning: There is no reliable way
to test if an instance supports the complete sequence interface since the interface itself is ill-defined. This makes
this test less useful than it otherwise might be.

Example: Build a dictionary that maps the ordinals fr@rto 255 to their character equivalents.

>>> import operator

>>>d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

Theoperator module also defines tools for generalized attribute and item lookups. These are useful for making
fast field extractors as arguments foap() , sorted() , itertools.groupby() , or other functions that expect
a function argument.

attrgetter (attr)
Return a callable object that fetcha#ir from its operand. After, f=attrgetter('name’) ’, the call
‘f(b) ’returns b.name’. New in version 2.4.

itemgetter (item)
Return a callable object that fetchiéem from its operand. After,f=itemgetter(2) ', the call f(b) '
returns b[2] ’. New in version 2.4.

Examples:

>>> from operator import *

>>> inventory = [(‘apple’, 3), (banana’, 2), (‘pear’, 5), (‘orange’, 1)]
>>> getcount = itemgetter(1)

>>> map(getcount, inventory)

[3, 2, 5, 1]

>>> sorted(inventory, key=getcount)

[Corange’, 1), (banana’, 2), (‘apple’, 3), (pear, 5)]

3.10.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions in the
operator module.

3.10. operator — Standard operators as functions. 67

Operation Syntax Function
Addition a+b add(a, b)
Concatenation seql + seq2 | concat(seql seq3l
Containment Test 0 in seq contains(seq O0)
Division al b div(a, b) # without__future __.division
Division al b truediv(a, b) # with __future __.division
Division all b floordiv(a, b)
Bitwise And aé&hb and_(a, b)
Bitwise Exclusive Or a" b xor(a, b)
Bitwise Inversion | invert(a)
Bitwise Or al b or _(a b)
Exponentiation a** b pow(a, b)
Identity ais b is _(a b)
Identity aisnot b is _not(a, b)
Indexed Assignment o[kl = v setitem(o, k, V)
Indexed Deletion del o[K] delitem(o, K)
Indexing o[K] getitem(o, k)
Left Shift a<<b Ishift(&, b)
Modulo a%b mod(a, b)
Multiplication a* b mul(a, b)
Negation (Arithmetic) - a neg(a)
Negation (Logical) not a not _(a)
Right Shift a>>b rshift(a, b)
Sequence Repitition seq* i repeat(seq i)
Slice Assignment seq i: j] =values| setslice(seq i, j, valueg
Slice Deletion del seqi:|j] delslice(seq i, j)
Slicing seq i: j] getslice(seq i, j)
String Formatting s %o mod(s, 0)
Subtraction a-»b sub(a, b)
Truth Test o] truth(o)
Ordering a<hb lt(a b)
Ordering a<=b le(a, b)
Equality a==b eq(a b)
Difference al=b ne(a, b)
Ordering a>=b ge(a, b)
Ordering a>hb gt(a, b)

3.11 inspect — Inspect live objects

New in version 2.1.

Theinspect module provides several useful functions to help get information about live objects such as modules,
classes, methods, functions, tracebacks, frame objects, and code objects. For example, it can help you examine the
contents of a class, retrieve the source code of a method, extract and format the argument list for a function, or get all
the information you need to display a detailed traceback.

There are four main kinds of services provided by this module: type checking, getting source code, inspecting classes
and functions, and examining the interpreter stack.

68 Chapter 3. Python Runtime Services

3.11.1 Types and members

The getmembers()

function retrieves the members of an object such as a class or module. The eleven functions
whose names begin with “is” are mainly provided as convenient choices for the second argugetmisimbers()
They also help you determine when you can expect to find the following special attributes:

Type Attribute Description Notes
module | __doc__ documentation string
__file__ filename (missing for built-in modules)
class | __doc__ documentation string
__module__ name of module in which this class was defined
method | __doc__ documentation string
__name__ name with which this method was defined
im_class class object that asked for this method Q)
im_func function object containing implementation of method
im_self instance to which this method is bound,Mone
function | __doc__ documentation string
__hame__ name with which this function was defined
func_code code object containing compiled function bytecode
func_defaults tuple of any default values for arguments
func_doc (same as__doc__)
func_globals global namespace in which this function was defined
func_name (same as__name__)
traceback| tb_frame frame object at this level
tb_lasti index of last attempted instruction in bytecode
tb_lineno current line number in Python source code
tb_next next inner traceback object (called by this level)
frame | f_back next outer frame object (this frame’s caller)
f_builtins built-in namespace seen by this frame
f_code code object being executed in this frame
f_exc_traceback| traceback if raised in this frame, bione
f_exc_type exception type if raised in this frame, Nione
f_exc_value exception value if raised in this frame, Wone
f_globals global namespace seen by this frame
f_lasti index of last attempted instruction in bytecode
f_lineno current line number in Python source code
f_locals local namespace seen by this frame
f_restricted 0 or 1 if frame is in restricted execution mode
f_trace tracing function for this frame, dione
code co_argcount number of arguments (not including * or ** args)
co_code string of raw compiled bytecode
co_consts tuple of constants used in the bytecode
co_filename name of file in which this code object was created
co_firstlineno number of first line in Python source code
co_flags bitmap: 1=optimized 2=newlocald 4=*arg| 8=**arg
co_Inotab encoded mapping of line numbers to bytecode indices
co_name name with which this code object was defined
co_names tuple of names of local variables
co_nlocals number of local variables
co_stacksize virtual machine stack space required
co_varnames tuple of names of arguments and local variables
builtin | __doc__ documentation string
__name__ original name of this function or method
__self__ instance to which a method is bound,Ndone

3.11. inspect

— Inspect live objects

69

Note:

(1) Changed in version 2.2n _class used to refer to the class that defined the method.

getmembers (objec{, predicatd)
Return all the members of an object in a list of (name, value) pairs sorted by name. If the optexiehte
argument is supplied, only members for which the predicate returns a true value are included.

getmoduleinfo (path
Return a tuple of values that describe how Python will interpret the file identifigghtiyif it is a module, or
None if it would not be identified as a module. The return tupl¢ iame suffix mode mtypg , where
nameis the name of the module without the name of any enclosing packafjiis the trailing part of the file
name (which may not be a dot-delimited extensionpdeis theopen() mode that would be used’(or
rb’), andmtypeis an integer giving the type of the modulatypewill have a value which can be compared
to the constants defined in ti@p module; see the documentation for that module for more information on
module types.

getmodulename (path
Return the name of the module named by thegfdéh without including the names of enclosing packages. This
uses the same algorithm as the interpreter uses when searching for modules. If the name cannot be matched
according to the interpreter’s ruldspne is returned.

ismodule (objec)
Return true if the object is a module.

isclass (objec)
Return true if the object is a class.

ismethod (objec)
Return true if the object is a method.

isfunction (objec)
Return true if the object is a Python function or unnamed (lambda) function.

istraceback (objec)
Return true if the object is a traceback.

isframe (objec)
Return true if the object is a frame.

iscode (objec)
Return true if the object is a code.

isbuiltin (objec)
Return true if the object is a built-in function.

isroutine (objec)
Return true if the object is a user-defined or built-in function or method.

ismethoddescriptor (objech
Return true if the object is a method descriptor, but not if ismethod() or isclass() or isfunction() are true.

This is new as of Python 2.2, and, for example, is true of irhdd__. An object passing this test has aget__
attribute but not a__set__ attribute, but beyond that the set of attributes variesaame__ is usually sensible,
and__doc__ ofteniis.

Methods implemented via descriptors that also pass one of the other tests return false from the ismethoddescrip-
tor() test, simply because the other tests promise more — you can, e.g., count on havingftime iattribute
(etc) when an object passes ismethod().

isdatadescriptor (objec)
Return true if the object is a data descriptor.

70 Chapter 3. Python Runtime Services

Data descriptors have both_.a get _ and a__set__ attribute. Examples are properties (defined in Python)

and getsets and members (defined in C). Typically, data descriptors will alsa_haeee _ and __doc__

attributes (properties, getsets, and members have both of these attributes), but this is not guaranteed. New in
version 2.3.

3.11.2 Retrieving source code

getdoc (objec)
Get the documentation string for an object. All tabs are expanded to spaces. To clean up docstrings that are
indented to line up with blocks of code, any whitespace than can be uniformly removed from the second line
onwards is removed.

getcomments (objec)
Return in a single string any lines of comments immediately preceding the object’s source code (for a class,
function, or method), or at the top of the Python source file (if the object is a module).

getfile (objec)
Return the name of the (text or binary) file in which an object was defined. This will fail wiypaError if
the object is a built-in module, class, or function.

getmodule (objec)
Try to guess which module an object was defined in.

getsourcefile (objec)
Return the name of the Python source file in which an object was defined. This will fail WigheError if
the object is a built-in module, class, or function.

getsourcelines (objec)
Return a list of source lines and starting line number for an object. The argument may be a module, class,
method, function, traceback, frame, or code object. The source code is returned as a list of the lines correspond-
ing to the object and the line number indicates where in the original source file the first line of code was found.
An IOError s raised if the source code cannot be retrieved.

getsource (objec)
Return the text of the source code for an object. The argument may be a module, class, method, function,
traceback, frame, or code object. The source code is returned as a single stril@Eror s raised if the
source code cannot be retrieved.

3.11.3 Classes and functions

getclasstree (classeg, unique])
Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it contains classes
derived from the class whose entry immediately precedes the list. Each entry is a 2-tuple containing a class and
a tuple of its base classes. If thaiqueargument is true, exactly one entry appears in the returned structure
for each class in the given list. Otherwise, classes using multiple inheritance and their descendants will appear
multiple times.

getargspec (fung
Get the names and default values of a function’s arguments. A tuple of four things is refuangsl: varargs
varkw, defaultd . argsis a list of the argument names (it may contain nested ligtgargsandvarkware the
names of the¢ and** arguments oNone. defaultsis a tuple of default argument values or None if there are
no default arguments; if this tuple haglements, they correspond to the lagiements listed ilargs

getargvalues (frame
Get information about arguments passed into a particular frame. A tuple of four things is ret(argd:
varargs varkw, localg) . argsis a list of the argument names (it may contain nested listgyargs and
varkware the names of theand** arguments oNone. localsis the locals dictionary of the given frame.

3.11. inspect — Inspect live objects 71

formatargspec (args[, varargs, varkw, defaults, argformat, varargsformat, varkwformat, defaultfo}bnat
Format a pretty argument spec from the four values returnegebgrgspec() . The other four arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

formatargvalues (args[, varargs, varkw, locals, argformat, varargsformat, varkwformat, vaIuefoﬂmat
Format a pretty argument spec from the four values returnegbtargvalues() . The other four arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

getmro (cls)
Return a tuple of class cls’s base classes, including cls, in method resolution order. No class appears more
than once in this tuple. Note that the method resolution order depends on cls’s type. Unless a very peculiar
user-defined metatype is in use, cls will be the first element of the tuple.

3.11.4 The interpreter stack

When the following functions return “frame records,” each record is a tuple of six items: the frame object, the filename,
the line number of the current line, the function name, a list of lines of context from the source code, and the index of
the current line within that list.

Warning: Keeping references to frame objects, as found in the first element of the frame records these functions
return, can cause your program to create reference cycles. Once a reference cycle has been created, tje lifespan
of all objects which can be accessed from the objects which form the cycle can become much longerjeven if
Python’s optional cycle detector is enabled. If such cycles must be created, it is important to ensure they are
explicitly broken to avoid the delayed destruction of objects and increased memory consumption which ogcurs.
Though the cycle detector will catch these, destruction of the frames (and local variables) can be made dgtermin-
istic by removing the cycle in finally clause. This is also important if the cycle detector was disabled when
Python was compiled or usirgg .disable() . For example:

def handle_stackframe_without_leak():

frame = inspect.currentframe()

try:

do something with the frame
finally:

del frame

The optionakontextargument supported by most of these functions specifies the number of lines of context to return,
which are centered around the current line.

getframeinfo (frame{, context])
Get information about a frame or traceback object. A 5-tuple is returned, the last five elements of the frame’s
frame record.

getouterframes (frame[, contexﬂ)
Get a list of frame records for a frame and all outer frames. These frames represent the calls that lead to the
creation offrame The first entry in the returned list represefreame the last entry represents the outermost
call onframés stack.

getinnerframes (tracebacl{, contexﬂ)
Get a list of frame records for a traceback’s frame and all inner frames. These frames represent calls made
as a consequence fsthme The first entry in the list represertimceback the last entry represents where the
exception was raised.

currentframe ()
Return the frame object for the caller’s stack frame.

stack ([contexﬂ)

72 Chapter 3. Python Runtime Services

Return a list of frame records for the caller’s stack. The first entry in the returned list represents the caller; the
last entry represents the outermost call on the stack.

trace ([contexl])
Return a list of frame records for the stack between the current frame and the frame in which an exception
currently being handled was raised in. The first entry in the list represents the caller; the last entry represents
where the exception was raised.

3.12 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print stack
traces under program control, such as in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the vasyasldes _traceback
(deprecated) anslys.last _traceback and returned as the third item frosgs.exc _info()

The module defines the following functions:

print _tb (tracebacl{, Iimit[, file]])
Print up tolimit stack trace entries frormaceback If limit is omitted orNone, all entries are printed. file
is omitted orNone, the output goes teys.stderr ; otherwise it should be an open file or file-like object to
receive the output.

print _exception (type, value, traceba{klimit[, file]])
Print exception information and up tamit stack trace entries fronracebackto file. This differs from
print _tb() in the following ways: (1) iftracebackis notNone, it prints a headerTraceback (most
recent call last): " (2) it prints the exceptiorntype and value after the stack trace; (3) ifypeis
SyntaxError andvaluehas the appropriate format, it prints the line where the syntax error occurred with a
caret indicating the approximate position of the error.

print _exc ([limit[, file]])
This is a shorthand for print _exception(sys.exc _type, sys.exc _value,
sys.exc _traceback, limit, file). (In fact, it usessys.exc _info() to retrieve the same infor-
mation in a thread-safe way instead of using the deprecated variables.)

format _exc ([limit[, file]])
This is likeprint _exc(limit) but returns a string instead of printing to a file. New in version 2.4.

print _last ([limit[, file]])
This is a shorthand for print _exception(sys.last _type, sys.last _value,
sys.last _traceback, limit, file) .

print _stack ([f[, imit[, file]]])
This function prints a stack trace from its invocation point. The optidnatgument can be used to spec-
ify an alternate stack frame to start. The optiohalit and file arguments have the same meaning as for
print _exception()

extract _tb (tracebacl[, Iimit])
Return a list of up tdimit “pre-processed” stack trace entries extracted from the traceback trajeeback
It is useful for alternate formatting of stack traces.liffiit is omitted orNone, all entries are extracted. A
“pre-processed” stack trace entry is a quadrufilename line number function nametexy representing the
information that is usually printed for a stack trace. Thxtis a string with leading and trailing whitespace
stripped; if the source is not available ithine.

extract _stack ([f[, Iimit]])
Extract the raw traceback from the current stack frame. The return value has the same format as for
extract _th() . The optionaF andlimit arguments have the same meaning apfoit _stack()

3.12. traceback — Print or retrieve a stack traceback 73

format _list (list)
Given a list of tuples as returned lextract _tb() orextract _stack() , return a list of strings ready
for printing. Each string in the resulting list corresponds to the item with the same index in the argument list.
Each string ends in a newline; the strings may contain internal newlines as well, for those items whose source
text line is notNone.

format _exception _only (type, valug
Format the exception part of a traceback. The arguments are the exception type and value such as given by
sys.last _type andsys.last _value . The return value is a list of strings, each ending in a newline.
Normally, the list contains a single string; however, 8mntaxError exceptions, it contains several lines
that (when printed) display detailed information about where the syntax error occurred. The message indicating
which exception occurred is the always last string in the list.

format _exception (type, value, tb, Iimit])
Format a stack trace and the exception information. The arguments have the same meaning as the corresponding
arguments t@rint _exception() . The return value is a list of strings, each ending in a newline and some
containing internal newlines. When these lines are concatenated and printed, exactly the same text is printed as
doesprint _exception()

format _tb (tb[, limit]

A shorthand foformat _list(extract _tb(th, limit)) .
format _stack ([f[,limit]])
A shorthand foformat _list(extract _stack(f, limit)) .

tb _lineno (th)
This function returns the current line number set in the traceback object. This function was necessary because
in versions of Python prior to 2.3 when th® flag was passed to Python tlietb _lineno was not updated
correctly. This function has no use in versions past 2.3.

3.12.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refectaléhenodule.

import sys, traceback

def run_user_code(envdir):
source = raw_input(">>> ")

try:
exec source in envdir
except:
print "Exception in user code:"
print ’-"*60
traceback.print_exc(file=sys.stdout)
print ’-*60
envdir = {}
while 1:

run_user_code(envdir)

3.13 linecache — Random access to text lines

74 Chapter 3. Python Runtime Services

Thelinecache module allows one to get any line from any file, while attempting to optimize internally, using a
cache, the common case where many lines are read from a single file. This is usedrbgd¢hack module to
retrieve source lines for inclusion in the formatted traceback.

Thelinecache module defines the following functions:

getline (filename, linenp
Get linelinenofrom file namedilename This function will never throw an exception — it will retuth on
errors (the terminating newline character will be included for lines that are found).

If a file namedfilenameis not found, the function will look for it in the module search patys.path

clearcache ()
Clear the cache. Use this function if you no longer need lines from files previously reacdyesing()

checkcache ([filename])
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you require
the updated version. filenameis omitted, it will check the whole cache entries.

Example:

>>> jmport linecache
>>> linecache.getline('/etc/passwd’, 4)
'sys:x:3:3:sys:/dev:/bin/sh\n’

3.14 pickle — Python object serialization

Thepickle module implements a fundamental, but powerful algorithm for serializing and de-serializing a Python
object structure. “Pickling” is the process whereby a Python object hierarchy is converted into a byte stream, and
“unpickling” is the inverse operation, whereby a byte stream is converted back into an object hierarchy. Pickling (and
unpickling) is alternatively known as “serialization”, “marshallirfggt “flattening”, however, to avoid confusion, the
terms used here are “pickling” and “unpickling”.

This documentation describes both fliekle module and thePickle module.

3.14.1 Relationship to other Python modules

Thepickle module has an optimized cousin called 8itickle module. As its name impliesPickle is written

in C, so it can be up to 1000 times faster thmckle . However it does not support subclassing of Biekler()
andUnpickler() classes, because @ickle these are functions, not classes. Most applications have no need
for this functionality, and can benefit from the improved performancePidkle . Other than that, the interfaces of

the two modules are nearly identical; the common interface is described in this manual and differences are pointed
out where necessary. In the following discussions, we use the term “pickle” to collectively descntiektbe and

cPickle modules.

The data streams the two modules produce are guaranteed to be interchangeable.

Python has a more primitive serialization module caltedrshal , but in generabickle should always be the
preferred way to serialize Python objeatsarshal exists primarily to support Python'spyc’ files.

Thepickle module differs frommarshal several significant ways:

e Thepickle module keeps track of the objects it has already serialized, so that later references to the same
object won't be serialized agaimarshal doesn’t do this.

2Don’t confuse this with thenarshal module

3.14. pickle — Python object serialization 75

This has implications both for recursive objects and object sharing. Recursive objects are objects that contain
references to themselves. These are not handled by marshal, and in fact, attempting to marshal recursive objects
will crash your Python interpreter. Object sharing happens when there are multiple references to the same object
in different places in the object hierarchy being serializgidkle stores such objects only once, and ensures

that all other references point to the master copy. Shared objects remain shared, which can be very important
for mutable objects.

e marshal cannot be used to serialize user-defined classes and their instandds. can save and restore
class instances transparently, however the class definition must be importable and live in the same module as
when the object was stored.

e Themarshal serialization format is not guaranteed to be portable across Python versions. Because its primary
job in life is to support ‘pyc’ files, the Python implementers reserve the right to change the serialization format
in non-backwards compatible ways should the need arisepitkée serialization format is guaranteed to be
backwards compatible across Python releases.

Warning: Thepickle module is not intended to be secure against erroneous or maliciously constructegl data.
Never unpickle data received from an untrusted or unauthenticated source.

Note that serialization is a more primitive notion than persistence; althpiele reads and writes file objects, it

does not handle the issue of haming persistent objects, nor the (even more complicated) issue of concurrent access
to persistent objects. Thackle module can transform a complex object into a byte stream and it can transform

the byte stream into an object with the same internal structure. Perhaps the most obvious thing to do with these byte
streams is to write them onto a file, but it is also conceivable to send them across a network or store them in a database.
The moduleshelve provides a simple interface to pickle and unpickle objects on DBM-style database files.

3.14.2 Data stream format

The data format used Ipickle is Python-specific. This has the advantage that there are no restrictions imposed by
external standards such as XDR (which can't represent pointer sharing); however it means that non-Python programs
may not be able to reconstruct pickled Python objects.

By default, thepickle data format uses a printablescii representation. This is slightly more voluminous than a
binary representation. The big advantage of using printablell (and of some other characteristicspékle s
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

There are currently 3 different protocols which can be used for pickling.

e Protocol version 0 is the original ASCII protocol and is backwards compatible with earlier versions of Python.
e Protocol version 1 is the old binary format which is also compatible with earlier versions of Python.

e Protocol version 2 was introduced in Python 2.3. It provides much more efficient pickling of new-style classes.

Refer to PEP 307 for more information.

If a protocolis not specified, protocol 0 is used.plifotocolis specified as a negative valueliGHEST_PROTOCQL
the highest protocol version available will be used.

Changed in version 2.3: THen parameter is deprecated and only provided for backwards compatibility. You should
use theprotocolparameter instead.

A binary format, which is slightly more efficient, can be chosen by specifying a true value foirtteggument to
the Pickler constructor or thelump() anddumps() functions. Aprotocolversion ¢= 1 implies use of a binary
format.

76 Chapter 3. Python Runtime Services

3.14.3 Usage

To serialize an object hierarchy, you first create a pickler, then you call the picitierip() method. To de-serialize
a data stream, you first create an unpickler, then you call the unpiclda) method. Thepickle module
provides the following constant:

HIGHEST_PROTOCOL
The highest protocol version available. This value can be passepra®aolvalue. New in version 2.3.

Thepickle module provides the following functions to make this process more convenient:

dump(obj, file[, protocol, bin]])
Write a pickled representation objto the open file objedtle. This is equivalent t®ickler(file, protocol
bin).dump(obj) .
If the protocol parameter is omitted, protocol 0 is used. pifotocol is specified as a negative value or
HIGHEST_PROTOCAQLthe highest protocol version will be used.

Changed in version 2.3: Th@otocolparameter was added. Thia parameter is deprecated and only provided
for backwards compatibility. You should use thi®tocol parameter instead.

If the optionalbin argument is true, the binary pickle format is used; otherwise the (less efficient) text pickle
format is used (for backwards compatibility, this is the default).

file must have avrite() method that accepts a single string argument. It can thus be a file object opened for
writing, aStringlO object, or any other custom object that meets this interface.

load (file)
Read a string from the open file objdité and interpret it as a pickle data stream, reconstructing and returning
the original object hierarchy. This is equivalentdapickler(file).load()

file must have two methodsread() method that takes an integer argument, areballine() method that
requires no arguments. Both methods should return a string. filagan be a file object opened for reading, a
StringlO object, or any other custom object that meets this interface.

This function automatically determines whether the data stream was written in binary mode or not.

dumps(obj[, protoco[, bin]])
Return the pickled representation of the object as a string, instead of writing it to a file.

If the protocol parameter is omitted, protocol O is used. pifotocol is specified as a negative value or
HIGHEST_PROTOCAQIthe highest protocol version will be used.

Changed in version 2.3: Th®otocolparameter was added. Thia parameter is deprecated and only provided
for backwards compatibility. You should use thi@tocol parameter instead.

If the optionalbin argument is true, the binary pickle format is used; otherwise the (less efficient) text pickle
format is used (this is the default).

loads (string)
Read a pickled object hierarchy from a string. Characters in the string past the pickled object’s representation
are ignored.

Thepickle module also defines three exceptions:

exceptionPickleError
A common base class for the other exceptions defined below. This inherit&fcoaption

exceptionPicklingError
This exception is raised when an unpicklable object is passed tiuthe() method.

exceptionUnpicklingError
This exception is raised when there is a problem unpickling an object. Note that other exceptions may
also be raised during unpickling, including (but not necessarily limited\tt)outeError , EOFETrror ,
ImportError , andindexError

3.14. pickle — Python object serialization 77

Thepickle module also exports two callabfe®ickler andUnpickler

classPickler (file[, protoco[, bin]])
This takes a file-like object to which it will write a pickle data stream.

If the protocolparameter is omitted, protocol 0 is usedptbtocolis specified as a negative value, the highest
protocol version will be used.

Changed in version 2.3: THen parameter is deprecated and only provided for backwards compatibility. You
should use therotocolparameter instead.

Optionalbin if true, tells the pickler to use the more efficient binary pickle format, otherwisa $tmel format
is used (this is the default).

file must have avrite() =~ method that accepts a single string argument. It can thus be an open file object, a
StringlO object, or any other custom object that meets this interface.

Pickler objects define one (or two) public methods:

dump(obj)
Write a pickled representation objto the open file object given in the constructor. Either the binamysarii
format will be used, depending on the value of tieflag passed to the constructor.

clear _memd)
Clears the pickler's “memo”. The memo is the data structure that remembers which objects the pickler has
already seen, so that shared or recursive objects pickled by reference and not by value. This method is useful
when re-using picklers.

Note: Prior to Python 2.3¢clear _memo() was only available on the picklers createddsickle . In the
pickle module, picklers have an instance variable catfezimowhich is a Python dictionary. So to clear the
memo for apickle module pickler, you could do the following:

mypickler.memo.clear()

Code that does not need to support older versions of Python should simaliease _memo() .

It is possible to make multiple calls to tlteimp() method of the sam®ickler instance. These must then be
matched to the same number of calls toltheed() method of the correspondindnpickler instance. If the same
object is pickled by multiplelump() calls, theload() will all yield references to the same objéct.

Unpickler objects are defined as:

classUnpickler (file)
This takes a file-like object from which it will read a pickle data stream. This class automatically determines
whether the data stream was written in binary mode or not, so it does not need a flag &idkldre factory.

file must have two methodsraead() method that takes an integer argument, areballine() method that
requires no arguments. Both methods should return a string. fll@esan be a file object opened for reading, a
StringlO object, or any other custom object that meets this interface.

Unpickler objects have one (or two) public methods:

load ()
Read a pickled object representation from the open file object given in the constructor, and return the reconsti-
tuted object hierarchy specified therein.

3In thepickle module these callables are classes, which you could subclass to customize the behavior. HowevePidhlthe module
these callables are factory functions and so cannot be subclassed. One common reason to subclass is to control what objects can actually be
unpickled. See section 3.14.6 for more details.

4Warning this is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify an object
and then pickle it again using the safikler instance, the object is not pickled again — a reference to it is pickled andripekler
will return the old value, not the modified one. There are two problems here: (1) detecting changes, and (2) marshalling a minimal set of changes.
Garbage Collection may also become a problem here.

78 Chapter 3. Python Runtime Services

noload ()
This is just likeload() except that it doesn't actually create any objects. This is useful primarily for finding
what's called “persistent ids” that may be referenced in a pickle data stream. See section 3.14.5 below for more
details.

Note: thenoload() method is currently only available dinpickler objects created with thePickle
module.pickle moduleUnpickler s do not have theoload() method.

3.14.4 What can be pickled and unpickled?

The following types can be pickled:

e None, True , andFalse

e integers, long integers, floating point numbers, complex numbers
¢ normal and Unicode strings

e tuples, lists, sets, and dictionaries containing only picklable objects
¢ functions defined at the top level of a module

¢ built-in functions defined at the top level of a module

e classes that are defined at the top level of a module

e instances of such classes whasedict __ or __setstate __() is picklable (see section 3.14.5 for details)

Attempts to pickle unpicklable objects will raise tRecklingError exception; when this happens, an unspecified
number of bytes may have already been written to the underlying file.

Note that functions (built-in and user-defined) are pickled by “fully qualified” name reference, not by value. This
means that only the function name is pickled, along with the name of module the function is defined in. Neither the
function’s code, nor any of its function attributes are pickled. Thus the defining module must be importable in the
unpickling environment, and the module must contain the named object, otherwise an exception will be raised.

Similarly, classes are pickled by named reference, so the same restrictions in the unpickling environment apply. Note
that none of the class’s code or data is pickled, so in the following example the class a#ttibutés not restored in
the unpickling environment:

class Foo:
attr = 'a class attr’

picklestring = pickle.dumps(Foo)

These restrictions are why picklable functions and classes must be defined in the top level of a module.

Similarly, when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods to the class and still
load objects that were created with an earlier version of the class. If you plan to have long-lived objects that will see
many versions of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can
be made by the class’s setstate __() method.

5The exception raised will likely be dmportError or anAttributeError but it could be something else.

3.14. pickle — Python object serialization 79

3.14.5 The pickle protocol

This section describes the “pickling protocol” that defines the interface between the pickler/unpickler and the objects

that are being serialized. This protocol provides a standard way for you to define, customize, and control how your

objects are serialized and de-serialized. The description in this section doesn’t cover specific customizations that you
can employ to make the unpickling environment slightly safer from untrusted pickle data streams; see section 3.14.6
for more details.

Pickling and unpickling normal class instances

When a pickled class instance is unpickled, itsnit __() method is normallynotinvoked. If it is desirable that
the__init __() method be called on unpickling, an old-style class can define a methgetinitargs _ 0,
which should return &uple containing the arguments to be passed to the class constructor (irit __()). The
__getinitargs __() method is called at pickle time; the tuple it returns is incorporated in the pickle for the
instance.

New-style types can provide_.a getnewargs __() method that is used for protocol 2. Implementing this method

is needed if the type establishes some internal invariants when the instance is created, or if the memory allocation is
affected by the values passed to thenew__() method for the type (as it is for tuples and strings). Instances of a
new-style typeC are created using

obj = C._new_ (C, * arg9

whereargsis the result of calling__getnewargs __() on the original object; if there is no_getnewargs __() ,
an empty tuple is assumed.

Classes can further influence how their instances are pickled; if the class defines the megbtstate __() ,itis
called and the return state is pickled as the contents for the instance, instead of the contents of the instance’s dictionary.
If there is no__getstate __() method, the instance’s_dict __is pickled.

Upon unpickling, if the class also defines the methadetstate __() , it is called with the unpickled stafelf

there is no__setstate __() method, the pickled state must be a dictionary and its items are assigned to the new
instance’s dictionary. If a class defines bathgetstate __() and__setstate __() , the state object needn't

be a dictionary and these methods can do what they vant.

Warning: For new-style classes, if_getstate __() returns a false value, the setstate __() method
will not be called.

Pickling and unpickling extension types

When thePickler encounters an object of a type it knows nothing about — such as an extension type — it looks in
two places for a hint of how to pickle it. One alternative is for the object to implementaduce __() method. If
provided, at pickling time__reduce __() will be called with no arguments, and it must return either a string or a
tuple.

If a string is returned, it names a global variable whose contents are pickled as normal. The string returned by
__reduce __should be the object’s local name relative to its module; the pickle module searches the module names-
pace to determine the object’s module.

When a tuple is returned, it must be between two and five elements long. Optional elements can either be omitted, or
None can be provided as their value. The semantics of each element are:

6These methods can also be used to implement copying class instances.
"This protocol is also used by the shallow and deep copying operations definedirpthenodule.

80 Chapter 3. Python Runtime Services

e A callable object that will be called to create the initial version of the object. The next element of the tu-
ple will provide arguments for this callable, and later elements provide additional state information that will
subsequently be used to fully reconstruct the pickled date.

In the unpickling environment this object must be either a class, a callable registered as a “safe constructor
(see below), or it must have an attributesafe _for _unpickling __ with a true value. Otherwise, an
UnpicklingError will be raised in the unpickling environment. Note that as usual, the callable itself is
pickled by name.

e Atuple of arguments for the callable object,one. Deprecated since release 2.¥.this item isNone, then
instead of calling the callable directly, its basicnew __() method is called without arguments; this method
should also return the unpickled object. ProvidMgne is deprecated, however; return a tuple of arguments

instead.
e Optionally, the object’s state, which will be passed to the object'setstate __() method as described in
section 3.14.5. If the object has nosetstate __() method, then, as above, the value must be a dictionary

and it will be added to the object’s_dict

e Optionally, an iterator (and not a sequence) yielding successive list items. These list items will be pickled, and
appended to the object using eitludyj.append(item) or obj.extend(list_of_itemg . This is primarily
used for list subclasses, but may be used by other classes as long as theppeve() andextend()
methods with the appropriate signature. (Whetiqgpend() orextend() is used depends on which pickle
protocol version is used as well as the number of items to append, so both must be supported.)

e Optionally, an iterator (not a sequence) yielding successive dictionary items, which should be tuples of the form
(key, valug . These items will be pickled and stored to the object usinjfy key] = value Thisis primarily
used for dictionary subclasses, but may be used by other classes as long as they impleseiiiem __.

It is sometimes useful to know the protocol version when implementingduce __. This can be done by im-
plementing a method named_reduce _ex__ instead of__reduce __. __reduce _ex__, when it exists, is
called in preference over_reduce __ (you may still provide__reduce __ for backwards compatibility). The
__reduce _ex__ method will be called with a single integer argument, the protocol version.

The object class implements both _reduce __ and __reduce _ex__; however, if a subclass over-
rides __reduce __ but not __reduce _ex__, the __reduce _ex__ implementation detects this and calls
__reduce __.

An alternative to implementing a_reduce __() method on the object to be pickled, is to register the callable with
thecopy _reg module. This module provides a way for programs to register “reduction functions” and constructors
for user-defined types. Reduction functions have the same semantics and interface asduee __() method
described above, except that they are called with a single argument, the object to be pickled.

The registered constructor is deemed a “safe constructor” for purposes of unpickling as described above.

Pickling and unpickling external objects

For the benefit of object persistence, fiiekle module supports the notion of a reference to an object outside the
pickled data stream. Such objects are referenced by a “persistent id”, which is just an arbitrary string of printable
AsScll characters. The resolution of such names is not defined kyickke module; it will delegate this resolution

to user defined functions on the pickler and unpicRler.

To define external persistent id resolution, you need to segpehgistent _id attribute of the pickler object and
thepersistent _load attribute of the unpickler object.

8The actual mechanism for associating these user defined functions is slightly differ@ittkler andcPickle . The description given
here works the same for both implementations. Users opitide module could also use subclassing to effect the same results, overriding the
persistent _id() andpersistent _load() methods in the derived classes.

3.14. pickle — Python object serialization 81

To pickle objects that have an external persistent id, the pickler must have a @estsistent _id() method that

takes an object as an argument and returns eiMbeae or the persistent id for that object. Whislone is returned, the
pickler simply pickles the object as normal. When a persistent id string is returned, the pickler will pickle that string,
along with a marker so that the unpickler will recognize the string as a persistent id.

To unpickle external objects, the unpickler must have a cugtersistent _load() function that takes a persis-
tent id string and returns the referenced object.

Here’s a silly example thahightshed more light:

import pickle
from c¢StringlO import StringlO

src = StringlO()
p = pickle.Pickler(src)

def persistent_id(obj):
if hasattr(obj, 'X):
return 'the value %d’ % obj.x
else:
return None

p.persistent_id = persistent_id

class Integer:
def __init_ (self, x):
self.x = x
def __str_ (self):
return 'My name is integer %d’ % self.x

i = Integer(7)
print i
p.dump(i)

datastream = src.getvalue()
print repr(datastream)
dst = StringlO(datastream)

up = pickle.Unpickler(dst)

class Fancylnteger(Integer):
def __str__ (self):
return 'l am the integer %d’ % self.x

def persistent_load(persid):
if persid.startswith('the value °):
value = int(persid.split()[2])
return Fancylnteger(value)
else:
raise pickle.UnpicklingError, 'Invalid persistent id’

up.persistent_load = persistent_load

j = up.load()
print j
In the cPickle module, the unpickler'persistent _load attribute can also be set to a Python list, in which

82 Chapter 3. Python Runtime Services

case, when the unpickler reaches a persistent id, the persistent id string will simply be appended to this list. This
functionality exists so that a pickle data stream can be “sniffed” for object references without actually instantiating all
the objects in a pickl@. Settingpersistent _load to a list is usually used in conjunction with tmeload()

method on the Unpickler.

3.14.6 Subclassing Unpicklers

By default, unpickling will import any class that it finds in the pickle data. You can control exactly what gets unpickled
and what gets called by customizing your unpickler. Unfortunately, exactly how you do this is different depending on
whether you're usingickle orcPickle .10

In thepickle module, you need to derive a subclass fidnpickler , overriding thdoad _global() method.

load _global() should read two lines from the pickle data stream where the first line will the name of the module
containing the class and the second line will be the name of the instance’s class. It then looks up the class, possibly
importing the module and digging out the attribute, then it appends what it finds to the unpickler's stack. Later
on, this class will be assigned to the class __ attribute of an empty class, as a way of magically creating an
instance without calling its class’s_init __() . Your job (should you choose to accept it), would be to have

load _global() push onto the unpickler’'s stack, a known safe version of any class you deem safe to unpickle. It
is up to you to produce such a class. Or you could raise an error if you want to disallow all unpickling of instances. If
this sounds like a hack, you're right. Refer to the source code to make this work.

Things are a little cleaner wittPickle , but not by much. To control what gets unpickled, you can set the unpickler’s

find _global attribute to a function oNone. If it is None then any attempts to unpickle instances will raise an
UnpicklingError . If it is a function, then it should accept a module name and a class name, and return the
corresponding class object. It is responsible for looking up the class and performing any necessary imports, and it may
raise an error to prevent instances of the class from being unpickled.

The moral of the story is that you should be really careful about the source of the strings your application unpickles.

3.14.7 Example

Here’s a simple example of how to modify pickling behavior for a class. ThéReader class opens a text file, and
returns the line number and line contents each timeeislline() method is called. If &extReader instance

is pickled, all attributegxcepthe file object member are saved. When the instance is unpickled, the file is reopened,
and reading resumes from the last location. Theetstate __() and__getstate __() methods are used to
implement this behavior.

SWe'll leave you with the image of Guido and Jim sitting around sniffing pickles in their living rooms.
10A word of caution: the mechanisms described here use internal attributes and methods, which are subject to change in future versions of Python.
We intend to someday provide a common interface for controlling this behavior, which will work in pittkée or cPickle

3.14. pickle — Python object serialization 83

class TextReader:
""Print and number lines in a text file.""
def __init__ (self, file):
self.file = file
self.fh = open(file)
self.lineno = 0

def readline(self):
self.lineno = selflineno + 1
line = self.fh.readline()
if not line:
return None
if line.endswith("\n"):
line = line[:-1]
return "%d: %s" % (self.lineno, line)

def _ getstate_ (self):
odict = self.__dict__.copy() # copy the dict since we change it
del odict['fh’] # remove filehandle entry
return odict

def __ setstate__(self,dict):

fh = open(dict[’file’]) # reopen file
count = dict['lineno’] # read from file...
while count: # until line count is restored

fh.readline()
count = count - 1
self.__dict__.update(dict) # update attributes
self.th = fh # save the file object

A sample usage might be something like this:

>>> import TextReader

>>> obj = TextReader.TextReader("TextReader.py")
>>> obj.readline()

'1: #!/usr/local/bin/python’

>>> # (more invocations of obj.readline() here)

. obj.readline()

'7: class TextReader:’

>>> import pickle

>>> pickle.dump(obj,open('save.p’,'w’))

If you want to see thatickle works across Python processes, start another Python session, before continuing. What
follows can happen from either the same process or a new process.

>>> import pickle

>>> reader = pickle.load(open('save.p’))

>>> reader.readline()

'8: "Print and number lines in a text file."

See Also:

Modulecopy _reg (section 3.16):

84 Chapter 3. Python Runtime Services

Pickle interface constructor registration for extension types.

Moduleshelve (section 3.17):
Indexed databases of objects; upiekle

Modulecopy (section 3.18):
Shallow and deep object copying.

Modulemarshal (section 3.19):
High-performance serialization of built-in types.

3.15 cPickle — A faster pickle

ThecPickle module supports serialization and de-serialization of Python objects, providing an interface and func-
tionality nearly identical to theickle module. There are several differences, the most important being performance
and subclassability.

First, cPickle can be up to 1000 times faster thpickle because the former is implemented in C. Second, in

the cPickle module the callableRickler() and Unpickler() are functions, not classes. This means that

you cannot use them to derive custom pickling and unpickling subclasses. Most applications have no need for this
functionality and should benefit from the greatly improved performance afRiekle module.

The pickle data stream produced pickle andcPickle are identical, so it is possible to upéckle and
cPickle interchangeably with existing picklés.

There are additional minor differences in API betwe@ickle andpickle , however for most applications, they
are interchangeable. More documentation is provided ipitlde module documentation, which includes a list of
the documented differences.

3.16 copy _reg — Reqister pickle support functions

Thecopy _reg module provides support for thckle andcPickle modules. Theopy module is likely to use
this in the future as well. It provides configuration information about object constructors which are not classes. Such
constructors may be factory functions or class instances.

constructor (objec)
Declaresobjectto be a valid constructor. bjectis not callable (and hence not valid as a constructor), raises
TypeError

pickle (type, functimﬁ, constructoﬂ)
Declares thafunction should be used as a “reduction” function for objects of tiyges type must not be a
“classic” class object. (Classic classes are handled differently; see the documentatiorpfokitne module
for details.)functionshould return either a string or a tuple containing two or three elements.

The optionakonstructorparameter, if provided, is a callable object which can be used to reconstruct the object
when called with the tuple of arguments returnedfioyctionat pickling time. TypeError will be raised if
objectis a class oconstructoris not callable.

See thepickle module for more details on the interface expecteflinttionandconstructor

3.17 shelve — Python object persistence

HSince the pickle data format is actually a tiny stack-oriented programming language, and some freedom is taken in the encodings of certain
objects, it is possible that the two modules produce different data streams for the same input objects. However it is guaranteed that they will always
be able to read each other’s data streams.

3.15. cPickle — A faster pickle 85

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the keys!)

in a shelf can be essentially arbitrary Python objects — anything thatithee module can handle. This includes

most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

open (filename[,flag:’c’ [,protocoI:None[,Writeback:FaIse [,binary:None]]]])
Open a persistent dictionary. The filename specified is the base filename for the underlying database. As a
side-effect, an extension may be added to the filename and more than one file may be created. By default, the
underlying database file is opened for reading and writing. The optilamgbarameter has the same interpreta-
tion as theflag parameter oinydbm.open .

By default, version 0 pickles are used to serialize values. The version of the pickle protocol can be specified
with the protocolparameter. Changed in version 2.3: Titetocolparameter was added. Thmary parameter
is deprecated and provided for backwards compatibility only.

By default, mutations to persistent-dictionary mutable entries are not automatically written back. If the optional
writebackparameter is set tdrue, all entries accessed are cached in memory, and written back at close time;
this can make it handier to mutate mutable entries in the persistent dictionary, but, if many entries are accessed,
it can consume vast amounts of memory for the cache, and it can make the close operation very slow since all
accessed entries are written back (there is no way to determine which accessed entries are mutable, nor which
ones were actually mutated).

Shelve objects support all methods supported by dictionaries. This eases the transition from dictionary based scripts
to those requiring persistent storage.

One additional method is supported:

sync ()
Write back all entries in the cache if the shelf was opened wittebackset toTrue. Also empty the cache and
synchronize the persistent dictionary on disk, if feasible. This is called automatically when the shelf is closed
with close()

3.17.1 Restrictions

e The choice of which database package will be used (sudbrasgdbm or bsddb) depends on which interface
is available. Therefore it is not safe to open the database directly disingThe database is also (unfortunately)
subject to the limitations adbm, if it is used — this means that (the pickled representation of) the objects stored
in the database should be fairly small, and in rare cases key collisions may cause the database to refuse updates.

e Depending on the implementation, closing a persistent dictionary may or may not be necessary to flush changes
to disk. The__del __ method of theShelf class calls thelose method, so the programmer generally need
not do this explicitly.

e Theshelve module does not supparbncurrentread/write access to shelved objects. (Multiple simultaneous
read accesses are safe.) When a program has a shelf open for writing, no other program should have it open
for reading or writing. Wix file locking can be used to solve this, but this differs acrossXJversions and
requires knowledge about the database implementation used.

classShelf (dict[, protocoI:NoneE, Writeback:FaIsé, binary:None]]])
A subclass otJserDict.DictMixin which stores pickled values in tlafct object.

By default, version 0 pickles are used to serialize values. The version of the pickle protocol can be specified with
the protocolparameter. See thgckle documentation for a discussion of the pickle protocols. Changed in
version 2.3: Therotocolparameter was added. Thimary parameter is deprecated and provided for backwards
compatibility only.

If the writebackparameter i§rue , the object will hold a cache of all entries accessed and write them back to
thedict at sync and close times. This allows natural operations on mutable entries, but can consume much more
memory and make sync and close take a long time.

86 Chapter 3. Python Runtime Services

classBsdDbShelf (dict[, protocoI=None{, writeback=FaIs<£, binary=None]]])
A subclass oShelf which exposefirst , next ,previous ,last andset _location which are avail-
able in thebsddb module but not in other database modules. distobject passed to the constructor must sup-
port those methods. This is generally accomplished by calling obsdifb.hashopen , bsddb.btopen
or bsddb.rnopen . The optionalprotocol writeback andbinary parameters have the same interpretation as
for the Shelf class.

classDbfilenameShelf (filenam{, flag:’c’[, protocoI:Non({, Writeback:Falsé, binary:None]]]])
A subclass oShelf which accepts &ilenameinstead of a dict-like object. The underlying file will be opened
usinganydbm.open . By default, the file will be created and opened for both read and write. The opfiagal
parameter has the same interpretation as fooffen function. The optionaprotocol writeback andbinary
parameters have the same interpretation as foBtedf class.

3.17.2 Example

To summarize the interfackdy is a stringdata is an arbitrary object):

import shelve

d = shelve.open(flename) # open -- file may get suffix added by low-level
library

dlkey] = data # store data at key (overwrites old data if
using an existing key)

data = dlkey] # retrieve a COPY of data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = d.has_key(key) # true if the key exists

list = d.keys() # a list of all existing keys (slow!)

as d was opened WITHOUT writeback=True, beware:

d'xx] = range(4) # this works as expected, but...

d'xx’].append(5) # *this doesn’t’* -- d['xx’] is STILL range(4)!!

having opened d without writeback=True, you need to code carefully:

temp = d['xx] # extracts the copy
temp.append(5) # mutates the copy
d['xx’] = temp # stores the copy right back, to persist it

or, d=shelve.open(filename,writeback=True) would let you just code
d['xx’].append(5) and have it work as expected, BUT it would also
consume more memory and make the d.close() operation slower.

d.close() # close it

See Also:

Moduleanydbm (section 7.10):
Generic interface tdbm-style databases.

Modulebsddb (section 7.13):
BSDdb database interface.

Moduledbhash (section 7.11):
Thin layer around thésddb which provides ampen function like the other database modules.

Moduledbm (section 8.6):

3.17. shelve — Python object persistence 87

Standard Wix database interface.

Moduledumbdbm(section 7.14):
Portable implementation of thdbminterface.

Modulegdbm (section 8.7):
GNU database interface, based ondbeninterface.

Modulepickle (section 3.14):
Object serialization used Ishelve .

ModulecPickle (section 3.15):
High-performance version gfickle

3.18 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy
X = copy.copy(y) # make a shallow copy of y
X = copy.deepcopy(y) # make a deep copy of y

For module specific errorsppy.error s raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

¢ A shallow copyconstructs a new compound object and then (to the extent possible) referéncesnto it to
the objects found in the original.

e A deep copyonstructs a new compound object and then, recursively, insgptesinto it of the objects found
in the original.

Two problems often exist with deep copy operations that don't exist with shallow copy operations:

e Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a
recursive loop.

e Because deep copy copiegerythingit may copy too much, e.g., administrative data structures that should be
shared even between copies.

Thedeepcopy() function avoids these problems by:

e keeping a “memo” dictionary of objects already copied during the current copying pass; and

e letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file, socket, window,
array, or any similar types.

Classes can use the same interfaces to control copying that they use to control pickling. See the description of module
pickle for information on these methods. Thepy module does not use tlwpy _reg registration module.

88 Chapter 3. Python Runtime Services

In order for a class to define its own copy implementation, it can define special methadpy __() and
__deepcopy __() . The former is called to implement the shallow copy operation; no additional arguments are
passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo dictionary. If
the__deepcopy __() implementation needs to make a deep copy of a component, it should cadleépeopy()

function with the component as first argument and the memo dictionary as second argument.

See Also:

Modulepickle (section 3.14):
Discussion of the special methods used to support object state retrieval and restoration.

3.19 marshal — Internal Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is specific to
Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC, transport
the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may change between
Python versions (although it rarely doés).

This is not a general “persistence” module. For general persistence and transfer of Python objects through RPC
calls, see the modulgsckle andshelve . Themarshal module exists mainly to support reading and writing

the “pseudo-compiled” code for Python modules pf/¢’ files. Therefore, the Python maintainers reserve the right

to modify the marshal format in backward incompatible ways should the need arise. If you're serializing and de-
serializing Python objects, use thigkle module instead.

Warning: Themarshal module is not intended to be secure against erroneous or maliciously constructefl data.
Never unmarshal data received from an untrusted or unauthenticated source.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are suppdded; integers,

long integers, floating point numbers, strings, Unicode objects, tuples, lists, dictionaries, and code objects, where it
should be understood that tuples, lists and dictionaries are only supported as long as the values contained therein are
themselves supported; and recursive lists and dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where Cleng int type has more than 32 bits (such as the DEC Alpha), it is possible to
create plain Python integers that are longer than 32 bits. If such an integer is marshaled and read back in on a machine
where C'dlong int type has only 32 bits, a Python long integer object is returned instead. While of a different type,

the numeric value is the same. (This behavior is new in Python 2.2. In earlier versions, all but the least-significant 32
bits of the value were lost, and a warning message was printed.)

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump(value, file[, version])
Write the value on the open file. The value must be a supported type. The file must be an open file object such
assys.stdout or returned byopen() or posix.popen() . It must be opened in binary modeavp’ or
‘w+b’).
If the value has (or contains an object that has) an unsupported tyfady@Error exception is raised — but
garbage data will also be written to the file. The object will not be properly read baldat)

New in version 2.4: Theersionargument indicates the data format tdatmp should use (see below).

load (file)
Read one value from the open file and return it. If no valid value is read, E&$&Error , ValueError or

12The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “marshalling”
for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to external form (in
an RPC buffer for instance) and “unmarshalling” for the reverse process.

3.19. marshal — Internal Python object serialization 89

TypeError . The file must be an open file object opened in binary maté (or'r+b’).

Warning: If an object containing an unsupported type was marshalledduithp() , load() will substitute
None for the unmarshallable type.

dumps(valud, version])
Return the string that would be written to a file Bymp(value file) . The value must be a supported type.
Raise avalueError exception if value has (or contains an object that has) an unsupported type.

New in version 2.4: Theersionargument indicates the data format tdamps should use (see below).

loads (string)
Convert the string to a value. If no valid value is found, radig@FError , ValueError or TypeError
Extra characters in the string are ignored.

In addition, the following constants are defined:

version
Indicates the format that the module uses. Version 0 is the historical format, version 1 (added in Python 2.4)
shares interned strings. The current version is 1.

New in version 2.4.

3.20 warnings — Warning control

New in version 2.1.

Warning messages are typically issued in situations where it is useful to alert the user of some condition in a program,
where that condition (normally) doesn’t warrant raising an exception and terminating the program. For example, one
might want to issue a warning when a program uses an obsolete module.

Python programmers issue warnings by callingwean() function defined in this module. (C programmers use
PyErr _Warn() ; see thePython/C API Reference Manufar details).

Warning messages are normally writtersye.stderr , but their disposition can be changed flexibly, from ignoring

all warnings to turning them into exceptions. The disposition of warnings can vary based on the warning category (see
below), the text of the warning message, and the source location where it is issued. Repetitions of a particular warning
for the same source location are typically suppressed.

There are two stages in warning control: first, each time a warning is issued, a determination is made whether a
message should be issued or not; next, if a message is to be issued, it is formatted and printed using a user-settable
hook.

The determination whether to issue a warning message is controlled by the warning filter, which is a sequence of
matching rules and actions. Rules can be added to the filter by céltergvarnings() and reset to its default
state by callingesetwarnings()

The printing of warning messages is done by calhgwwarning() , which may be overridden; the default im-
plementation of this function formats the message by caftingatwarning() , Which is also available for use by
custom implementations.

3.20.1 Warning Categories

There are a number of built-in exceptions that represent warning categories. This categorization is useful to be able to
filter out groups of warnings. The following warnings category classes are currently defined:

20 Chapter 3. Python Runtime Services

Class Description

Warning This is the base class of all warning category classes. It is a subclegsetion
UserWarning The default category favarn() .

DeprecationWarning Base category for warnings about deprecated features.

SyntaxWarning Base category for warnings about dubious syntactic features.

RuntimeWarning Base category for warnings about dubious runtime features.

FutureWarning Base category for warnings about constructs that will change semantically in the future.

While these are technically built-in exceptions, they are documented here, because conceptually they belong to the
warnings mechanism.

User code can define additional warning categories by subclassing one of the standard warning categories. A warning
category must always be a subclass of\&ning class.

3.20.2 The Warnings Filter

The warnings filter controls whether warnings are ignored, displayed, or turned into errors (raising an exception).

Conceptually, the warnings filter maintains an ordered list of filter specifications; any specific warning is matched
against each filter specification in the list in turn until a match is found; the match determines the disposition of the
match. Each entry is a tuple of the forac{ion messagecategory module lineng), where:

e actionis one of the following strings:

Value Disposition

"error" turn matching warnings into exceptions

"ignore" never print matching warnings

"always" always print matching warnings

"default” print the first occurrence of matching warnings for each location where the warning is issued
"module” print the first occurrence of matching warnings for each module where the warning is issued
"once" print only the first occurrence of matching warnings, regardless of location

messagés a string containing a regular expression that the warning message must match (the match is compiled
to always be case-insensitive)

categoryis a class (a subclassfarning) of which the warning category must be a subclass in order to match

e moduleis a string containing a regular expression that the module name must match (the match is compiled to
be case-sensitive)

linenois an integer that the line number where the warning occurred must matehe anatch all line numbers

Since theWarning class is derived from the built-iBxception class, to turn a warning into an error we simply
raisecategory(message)

The warnings filter is initialized byW options passed to the Python interpreter command line. The interpreter saves
the arguments for alW options without interpretation isys.warnoptions ; thewarnings module parses these
when it is first imported (invalid options are ignored, after printing a messagystetderr).

3.20.3 Available Functions

warn (messag[a categor)[, stackleve]])
Issue a warning, or maybe ignore it or raise an exception.calegoryargument, if given, must be a warning

3.20. warnings — Warning control 91

category class (see above); it defaultdJserWarning . Alternativelymessagean be aVarning instance,

in which casecategorywill be ignored andnessage. __class __ will be used. In this case the message text
will be str(message) . This function raises an exception if the particular warning issued is changed into an
error by the warnings filter see above. T$tacklevelargument can be used by wrapper functions written in
Python, like this:

def deprecation(message):
warnings.warn(message, DeprecationWarning, stacklevel=2)

This makes the warning refer teprecation() 's caller, rather than to the source a@éprecation()
itself (since the latter would defeat the purpose of the warning message).

warn _explicit (message, category, filename, Iinénmodule[, registry]])
This is a low-level interface to the functionality affarn() , passing in explicitly the message, cate-
gory, filename and line number, and optionally the module name and the registry (which should be the
__warningregistry __ dictionary of the module). The module name defaults to the filename.pjth
stripped; if no registry is passed, the warning is never suppressedsagenust be a string andategorya
subclass oWarning or messagenay be aVarning instance, in which casgategorywill be ignored.

showwarning (message, category, flename, IinEnﬁie])
Write a warning to a file. The default implementation cdsmatwarning(message category file-
name lineng and writes the resulting string fde, which defaults tesys.stderr . You may replace this
function with an alternative implementation by assigningveonings.showwarning

formatwarning (message, category, filename, lingno
Format a warning the standard way. This returns a string which may contain embedded newlines and ends in a
newline.

filterwarnings (actior{, messag[a categor)[, module{, Iinen({, appencl]]]])
Insert an entry into the list of warnings filters. The entry is inserted at the front by defaafipéndis true, it
is inserted at the end. This checks the types of the arguments, compiles the message and module regular expres-
sions, and inserts them as a tuple in front of the warnings filter. Entries inserted later override entries inserted
earlier, if both match a particular warning. Omitted arguments default to a value that matches everything.

resetwarnings ()
Reset the warnings filter. This discards the effect of all previous callédowvarnings() , including that
of the-W command line options.

3.21 imp — Access the import internals

This module provides an interface to the mechanisms used to implememigbe statement. It defines the follow-
ing constants and functions:

get _magic ()
Return the magic string value used to recognize byte-compiled code fipgs' files). (This value may be
different for each Python version.)

get _suffixes ()
Return a list of triples, each describing a particular type of module. Each triple has thé $offrx mode
type , wheresuffixis a string to be appended to the module name to form the filename to searafobte,
is the mode string to pass to the builtépen() function to open the file (this can be for text files or
rb’ for binary files), andypeis the file type, which has one of the value¥_SOURCHEY_COMPILED or
C_EXTENSION described below.

find _module (name[, path])
Try to find the modulenameon the search patpath If pathis a list of directory names, each directory is
searched for files with any of the suffixes returnedyey _suffixes() above. Invalid names in the list are

92 Chapter 3. Python Runtime Services

silently ignored (but all list items must be strings) pHthis omitted orNone, the list of directory names given

by sys.path is searched, but first it searches a few special places: it tries to find a built-in module with the
given name C_BUILTIN), then a frozen moduldPY_FROZEN, and on some systems some other places are
looked in as well (on the Mac, it looks for a resour&/(RESOURCEon Windows, it looks in the registry
which may point to a specific file).

If search is successful, the return value is a triplde, pathname descriptior) wherefile is an open file

object positioned at the beginningathnameis the pathname of the file found, adéscriptionis a triple as
contained in the list returned tget _suffixes() describing the kind of module found. If the module does

not live in afile, the returnefile is None, filenameis the empty string, and traescriptiontuple contains empty

strings for its suffix and mode; the module type is as indicate in parentheses above. If the search is unsuccessful,
ImportError is raised. Other exceptions indicate problems with the arguments or environment.

This function does not handle hierarchical module names (hames containing dots). In ordePtfinidat
is, submodulév of packageP, usefind _module() andload _module() to find and load packade and
then usdfind _module() with the pathargument set t®. __path __. WhenP itself has a dotted name,
apply this recipe recursively.

load _module (name, file, filename, descriptipn
Load a module that was previously foundfioyd _module() (or by an otherwise conducted search yielding
compatible results). This function does more than importing the module: if the module was already imported,
it is equivalent to aeload() ! The nameargument indicates the full module name (including the package
name, if this is a submodule of a package). Tileeargument is an open file, affitenameis the corresponding
file name; these can kdone and” , respectively, when the module is not being loaded from a file. The
descriptionargument is a tuple, as would be returnedgley _suffixes() , describing what kind of module
must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (mspattrror)
is raised.

Important: the caller is responsible for closing tfiee argument, if it was noNone, even when an exception
is raised. This is best done usingna ... finally statement.

new_module (namé
Return a new empty module object callegime This object isnotinserted insys.modules

lock _held ()
ReturnTrue if the import lock is currently held, elsealse . On platforms without threads, always return
False .

On platforms with threads, a thread executing an import holds an internal lock until the import is complete.
This lock blocks other threads from doing an import until the original import completes, which in turn prevents
other threads from seeing incomplete module objects constructed by the original thread while in the process of
completing its import (and the imports, if any, triggered by that).

acquire _lock ()
Acquires the interpreter’s import lock for the current thread. This lock should be used by import hooks to ensure
thread-safety when importing modules. On platforms without threads, this function does nothing. New in
version 2.3.

release _lock ()
Release the interpreter’s import lock. On platforms without threads, this function does nothing. New in version
2.3.

The following constants with integer values, defined in this module, are used to indicate the search result of
find _module()

PY_SOURCE
The module was found as a source file.

PY_COMPILED
The module was found as a compiled code object file.

3.21. imp — Access the import internals 93

C_EXTENSION
The module was found as dynamically loadable shared library.

PY_RESOURCE
The module was found as a Mac OS 9 resource. This value can only be returned on a Mac OS 9 or earlier
Macintosh.

PKG.DIRECTORY
The module was found as a package directory.

C_BUILTIN
The module was found as a built-in module.
PY_FROZEN

The module was found as a frozen module (e _frozen()).

The following constant and functions are obsolete; their functionality is available thrngjh _module() or
load _module() . They are kept around for backward compatibility:

SEARCHERROR
Unused.

init _builtin ~ (namg
Initialize the built-in module calledameand return its module object. If the module was already initialized, it
will be initialized again A few modules cannot be initialized twice — attempting to initialize these again will
raise animportError exception. If there is no built-in module calledme None is returned.

init _frozen (namg
Initialize the frozen module calledameand return its module object. If the module was already initialized,
it will be initialized again If there is no frozen module callesthme None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python
interpreter by Python'freezeutility. See Tools/freeze/’ for now.)

is _builtin (nam¢
Returnl if there is a built-in module calledamewhich can be initialized again. Retush if there is a built-in
module callechamewhich cannot be initialized again (sest _builtin()). Return0 if there is no built-in
module callechame

is _frozen (nam¢
ReturnTrue if there is a frozen module (séeit _frozen()) calledname or False if there is no such
module.

load _compiled (name, pathname{file])
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the
module was already initialized, it will be initializeagain The nameargument is used to create or access a
module object. Th@athnameargument points to the byte-compiled code file. Tileargument is the byte-
compiled code file, open for reading in binary mode, from the beginning. It must currently be a real file object,
not a user-defined class emulating a file.

load _dynamic (name, pathnan{e file])
Load and initialize a module implemented as a dynamically loadable shared library and return its module object.
If the module was already initialized, it will be initializeajain Some modules don't like that and may raise
an exception. Thpathnameargument must point to the shared library. TReeneargument is used to construct
the name of the initialization function: an external C function calie@t * namd) ' in the shared library is
called. The optiondile argument is ignored. (Note: using shared libraries is highly system dependent, and not
all systems support it.)

load _source (name, pathnan{e file])
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initializedgain The nameargument is used to create or access a module
object. Thepathnameargument points to the source file. Thile argument is the source file, open for reading

94 Chapter 3. Python Runtime Services

as text, from the beginning. It must currently be a real file object, not a user-defined class emulating a file.
Note that if a properly matching byte-compiled file (with suffigyc’ or ‘ .pyo’) exists, it will be used instead of
parsing the given source file.

3.21.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (no hierarchical mod-
ule names). (Thismplementationvouldn’t work in that version, sincéind _module() has been extended and
load _module() has been addedin 1.4.)

import imp
import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
try:
return sys.modules[name]
except KeyError:
pass

If any of the following calls raises an exception,
there’s a problem we can't handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(hname, fp, pathname, description)
finally:
Since we may exit via an exception, close fp explicitly.
if fp:
fp.close()

A more complete example that implements hierarchical module names and incleelead() function can be
found in the modulé&knee . The knee module can be found irDemo/imputil”’ in the Python source distribution.

3.22 zipimport — Import modules from Zip archives

New in version 2.3.

This module adds the ability to import Python modulespf/, * *.py[co]’) and packages from ZIP-format archives.
It is usually not needed to use thgimport module explicitly; it is automatically used by the builiimport
mechanism fosys.path items that are paths to ZIP archives.

Typically, sys.path is a list of directory names as strings. This module also allows an itesyopath to

be a string naming a ZIP file archive. The ZIP archive can contain a subdirectory structure to support package im-
ports, and a path within the archive can be specified to only import from a subdirectory. For example, the path
‘ tmp/example.zip/lib/’ would only import from the fib/" subdirectory within the archive.

Any files may be present in the ZIP archive, but only files™and ‘.py[co]’ are available for import. ZIP import of
dynamic modules (pyd’, * .s0’) is disallowed. Note that if an archive only containgy’ files, Python will not attempt
to modify the archive by adding the correspondimyc¢’ or ‘ .pyo’ file, meaning that if a ZIP archive doesn’t contain
“.pyc’ files, importing may be rather slow.

3.22. zipimport — Import modules from Zip archives 95

Using the built-inreload() function will fail if called on a module loaded from a ZIP archive; it is unlikely that
reload() would be needed, since this would imply that the ZIP has been altered during runtime.

The available attributes of this module are:

exceptionZiplmporterError
Exception raised by zipimporter objects. It's a subclasslmoportError , so it can be caught as
ImportError , too.

classzipimporter
The class for importing ZIP files. Seeipimporter Objects(section 3.22.1) for constructor details.

See Also:

PKZIP Application Note
(http://www.pkware.com/appnote.html)
Documentation on the ZIP file format by Phil Katz, the creator of the format and algorithms used.

PEP 0273, Import Modules from Zip Archivés
Written by James C. Ahlstrom, who also provided an implementation. Python 2.3 follows the specification in
PEP 273, but uses an implementation written by Just van Rossum that uses the import hooks described in PEP
302.

PEP 0302, New Import Hooks
The PEP to add the import hooks that help this module work.

3.22.1 zipimporter Objects

classzipimporter (archivepath
Create a new zipimporter instancarchivepathmust be a path to a zipfileZipimportError is raised if
archivepathdoesn't point to a valid ZIP archive.

find _module (fuIIname[, path])
Search for a module specified fwliname fullnamemust be the fully qualified (dotted) module name. It returns
the zipimporter instance itself if the module was foundName if it wasn’t. The optionalpath argument is
ignored—it’s there for compatibility with the importer protocol.

get _code (fullnamé
Return the code object for the specified module. RAipemportError if the module couldn’t be found.

get _data (pathnamé
Return the data associated wighthname RaiselOError if the file wasn'’t found.

get _source (fullnam@
Return the source code for the specified module. RaigknportError if the module couldn’t be found,
returnNone if the archive does contain the module, but has no source for it.

is _package (fullnameg
Return True if the module specified byllnameis a package. Rais&plmportError if the module couldn’t
be found.

load _module (fullnamg
Load the module specified Hullname fullnamemust be the fully qualified (dotted) module name. It returns
the imported module, or rais@plmportError if it wasn’t found.

3.22.2 Examples

Here is an example that imports a module from a ZIP archive - note thaigheport module is not explicitly
used.

96 Chapter 3. Python Runtime Services

$ unzip -l /tmp/example.zip
Archive: /tmp/example.zip
Length Date Time Name

8467 11-26-02 22:30 jwzthreading.py

$./python

Python 2.3 (#1, Aug 1 2003, 19:54:32)

>>> import sys

>>> sys.path.insert(0, '/tmp/example.zip’) # Add .zip file to front of path
>>> import jwzthreading

>>> jwzthreading._ file_

"ltmp/example.zip/jwzthreading.py’

3.23 pkgutii — Package extension utility

New in version 2.3.
This module provides a single function:

extend _path (path, namg
Extend the search path for the modules which comprise a package. Intended use is to place the following code
in a package’s__init__.py":

from pkgutil import extend_path
__path__ = extend_path(__path__, _ name_)

This will add to the package’s_path __ all subdirectories of directories @ys.path named after the pack-
age. This is useful if one wants to distribute different parts of a single logical package as multiple directories.

It also looks for *.pkg’ files beginning wheré matches theameargument. This feature is similar togth’ files
(see thesite module for more information), except that it doesn't special-case lines startingrgtbrt

A ‘*.pkg’ file is trusted at face value: apart from checking for duplicates, all entries found*ipkgfile are
added to the path, regardless of whether they exist the filesystem. (This is a feature.)

If the input path is not a list (as is the case for frozen packages) it is returned unchanged. The input path is not
modified; an extended copy is returned. Iltems are only appended to the copy at the end.

Itis assumed thays.path isasequence. Itemssgys.path that are not (Unicode or 8-bit) strings referring
to existing directories are ignored. Unicode itemssga.path that cause errors when used as filenames may
cause this function to raise an exception (in line vaghpath.isdir() behavior).

3.24 modulefinder = — Find modules used by a script

This module provides BloduleFinder class that can be used to determine the set of modules imported by a script.
modulefinder.py can also be run as a script, giving the filename of a Python script as its argument, after which a
report of the imported modules will be printed.

AddPackagePath (pkg_name, path
Record that the package nany@dy_namecan be found in the specifigzhth

3.23. pkgutii — Package extension utility 97

ReplacePackage (oldname, newnanye
Allows specifying that the module namettinameis in fact the package namegwname The most common
usage would be to handle how themiplus package replaces thxenl package.

classModuleFinder ([path:None, debug=0, excludes=[], replacpathszﬂ])
This class providesun _script() andreport() methods to determine the set of modules imported by a
script. pathcan be a list of directories to search for modules; if not specifigelpath is used.debugsets
the debugging level; higher values make the class print debugging messages about what it'sxatinigss
a list of module names to exclude from the analyséplace _pathsis a list of(oldpath newpath tuples that
will be replaced in module paths.

report ()
Print a report to standard output that lists the modules imported by the script and their paths, as well as modules

that are missing or seem to be missing.

run _script (pathnamg
Analyze the contents of theathnamdile, which must contain Python code.

3.25 code — Interpreter base classes

The code module provides facilities to implement read-eval-print loops in Python. Two classes and convenience
functions are included which can be used to build applications which provide an interactive interpreter prompt.

classinteractivelnterpreter ([Iocals])
This class deals with parsing and interpreter state (the user's namespace); it does not deal with input buffering
or prompting or input file naming (the filename is always passed in explicitly). The oplmceds argument
specifies the dictionary in which code will be executed; it defaults to a newly created dictionary with key

' __name__' setto’ __console __’ andkey __doc__' settoNone.

classinteractiveConsole ([Iocals[, filenamd])
Closely emulate the behavior of the interactive Python interpreter. This class builds on
Interactivelnterpreter and adds prompting using the familiays.psl and sys.ps2 , and

input buffering.

interact ([bannel[, readfunc[, Iocal]]])
Convenience function to run a read-eval-print loop. This creates a new instamterattiveConsole
and setgeadfuncto be used as theaw _input() = method, if provided. [flocal is provided, it is passed
to the InteractiveConsole constructor for use as the default namespace for the interpreter loop. The
interact() method of the instance is then run witannerpassed as the banner to use, if provided. The
console object is discarded after use.

compile _command source[, fiIenam{, symboﬂ])
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a. the read-eval-
print loop). The tricky part is to determine when the user has entered an incomplete command that can be
completed by entering more text (as opposed to a complete command or a syntax error). This &lmcisin
always makes the same decision as the real interpreter main loop.

sourceis the source stringfilenameis the optional filename from which source was read, defaulting to
<input>' ; andsymbols the optional grammar start symbol, which should be eiiegle’ (the default)
or’eval’

Returns a code object (the samecampile(source filename symbo)) if the command is complete and

valid; None if the command is incomplete; rais8yntaxError if the command is complete and contains a
syntax error, or raise®verflowError orValueError if the command contains an invalid literal.

98 Chapter 3. Python Runtime Services

3.25.1 Interactive Interpreter Objects

runsource (source[, filenamé, symbo]|])
Compile and run some source in the interpreter. Arguments are the samecasifite _command() ; the
default forfilenameis '<input>' , and forsymbolis 'single’ . One several things can happen:

eThe input is incorrect; compile _command() raised an exception SyntaxError or
OverflowError). A syntax traceback will be printed by calling th&howsyntaxerror()
method.runsource() returnsFalse .

eThe input is incomplete, and more input is requiredpmpile _command() returned None.
runsource() returnsTrue .

eThe input is completecompile _command() returned a code object. The code is executed by calling
theruncode() (which also handles run-time exceptions, exceptSgstemExit). runsource()
returnsfFalse .

The return value can be used to decide whether tesysgsl orsys.ps2 to prompt the next line.

runcode (code
Execute a code object. When an exception ocalrewtraceback() is called to display a traceback. All
exceptions are caught excepistemExit , which is allowed to propagate.

A note aboutKeyboardInterrupt : this exception may occur elsewhere in this code, and may not always
be caught. The caller should be prepared to deal with it.

showsyntaxerror ([filenamé)
Display the syntax error that just occurred. This does not display a stack trace because there isn’t one for syntax
errors. Iffilenameis given, it is stuffed into the exception instead of the default filename provided by Python’s
parser, because it always usestring>’ when reading from a string. The output is written by write()
method.

showtraceback ()
Display the exception that just occurred. We remove the first stack item because it is within the interpreter object
implementation. The output is written by thaite() method.

write (data)
Write a string to the standard error streasyg.stderr). Derived classes should override this to provide the
appropriate output handling as needed.

3.25.2 Interactive Console Objects

The InteractiveConsole class is a subclass titeractivelnterpreter , and so offers all the methods
of the interpreter objects as well as the following additions.

interact [banner])
Closely emulate the interactive Python console. The optional banner argument specify the banner to print before
the first interaction; by default it prints a banner similar to the one printed by the standard Python interpreter,
followed by the class name of the console object in parentheses (so as not to confuse this with the real interpreter
—since it's so close!).

push (line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may have internal
newlines. The line is appended to a buffer and the interpretarisource() method is called with the
concatenated contents of the buffer as source. If this indicates that the command was executed or invalid, the
buffer is reset; otherwise, the command is incomplete, and the buffer is left as it was after the line was appended.
The return value iSrue if more input is requirediFalse if the line was dealt with in some way (this is the
same asunsource()).

3.25. code — Interpreter base classes 99

resetbuffer ()
Remove any unhandled source text from the input buffer.

raw _input ([prompt])
Write a prompt and read a line. The returned line does not include the trailing newline. When the user enters the
EOF key sequenceEOFError is raised. The base implementation uses the built-in functen_input() ;
a subclass may replace this with a different implementation.

3.26 codeop — Compile Python code

Thecodeop module provides utilities upon which the Python read-eval-print loop can be emulated, as is done in the
code module. As a result, you probably don’t want to use the module directly; if you want to include such a loop in
your program you probably want to use ttede module instead.

There are two parts to this job:

1. Being able to tell if a line of input completes a Python statement: in short, telling whether to>print™ or
! " next.

2. Remembering which future statements the user has entered, so subsequent input can be compiled with these in
effect.

Thecodeop module provides a way of doing each of these things, and a way of doing them both.
To do just the former:

compile _command source[, fiIenam&, symboﬂ])
Tries to compilesource which should be a string of Python code and return a code objsdifceis valid
Python code. In that case, the filename attribute of the code object willdmame which defaults to
<input>' . ReturnsNone if sourceis notvalid Python code, but is a prefix of valid Python code.

If there is a problem witlsource an exception will be raise@®yntaxError is raised if there is invalid Python
syntax, andDverflowError or ValueError if there is an invalid literal.

The symbolargument determines wheth&urceis compiled as a statemensifigle’ , the default) or as an
expression’éval’). Any other value will caus®¥alueError to be raised.

Caveat: It is possible (but not likely) that the parser stops parsing with a successful outcome before reaching
the end of the source; in this case, trailing symbols may be ignored instead of causing an error. For example, a
backslash followed by two newlines may be followed by arbitrary garbage. This will be fixed once the API for
the parser is better.

classCompile ()
Instances of this class havecall __() methods identical in signature to the built-in functmompile()
but with the difference that if the instance compiles program text containingfature __ statement, the
instance 'remembers’ and compiles all subsequent program texts with the statement in force.

classCommandCompiler ()
Instances of this class have_call __() methods identical in signature mmpile _command() ; the
difference is that if the instance compiles program text containing fature __ statement, the instance
‘remembers’ and compiles all subsequent program texts with the statement in force.

A note on version compatibility: th€ompile and CommandCompiler are new in Python 2.2. If you want to
enable the future-tracking features of 2.2 but also retain compatibility with 2.1 and earlier versions of Python you can
either write

100 Chapter 3. Python Runtime Services

try:
from codeop import CommandCompiler
compile_command = CommandCompiler()
del CommandCompiler

except ImportError:
from codeop import compile_command

which is a low-impact change, but introduces possibly unwanted global state into your program, or you can write:

try:
from codeop import CommandCompiler
except ImportError:
def CommandCompiler():
from codeop import compile_command
return compile_command

and then calCommandCompiler every time you need a fresh compiler object.

3.27 pprint — Data pretty printer

Thepprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be

used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or instances are
included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don't
fit within the allowed width. Construd®rettyPrinter objects explicitly if you need to adjust the width constraint.

Thepprint module defines one class:

classPrettyPrinter (..)
Construct &PrettyPrinter instance. This constructor understands several keyword parameters. An output
stream may be set using teeeamkeyword; the only method used on the stream object is the file protocol’s
write() method. If not specified, therettyPrinter adoptssys.stdout . Three additional parameters
may be used to control the formatted representation. The keywordiscenat depth andwidth. The amount
of indentation added for each recursive level is specifiethtgnt the default is one. Other values can cause
output to look a little odd, but can make nesting easier to spot. The number of levels which may be printed
is controlled bydepth if the data structure being printed is too deep, the next contained level is replaced by
‘ '. By default, there is no constraint on the depth of the objects being formatted. The desired output width
is constrained using theidth parameter; the default is eighty characters. If a structure cannot be formatted
within the constrained width, a best effort will be made.

3.27. pprint — Data pretty printer 101

>>> import pprint, sys

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff[:])

>>> pp = pprint.PrettyPrinter(indent=4)
>>> pp.pprint(stuff)

[
'fusr/local/lib/pythonl.5’,
'lusr/local/lib/pythonl.5/test’,
'lusr/local/lib/python1.5/sunos5’,
'lusr/local/lib/pythonl.5/sharedmodules’,
"fusr/local/lib/pythonl.5/tkinter’],

"lusr/local/lib/pythonl.5’,
"lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/pythonl.5/sunos5’,
"lusr/local/lib/pythonl.5/sharedmodules’,
"lusr/local/lib/pythonl.5/tkinter’]

>>>

>>> import parser

>>> tup = parser.ast2tuple(
parser.suite(open(’pprint.py’).read()))[1][1][1]
>>> pp = pprint.PrettyPrinter(depth=6)

>>> pp.pprint(tup)

(266, (267, (307, (287, (288, (...)

ThePrettyPrinter class supports several derivative functions:

pformat (objec{, inden{, width[, depth]]])
Return the formatted representation alfject as a string. indent width and depthwill be passed to the
PrettyPrinter constructor as formatting parameters. Changed in version 2.4: The paramdens
width anddepthwere added.

pprint (objec{, strean[, inden{, width[, depth]]]])
Prints the formatted representation olbject on stream followed by a newline. Ifstreamis omitted,
sys.stdout is used. This may be used in the interactive interpreter insteadpdhts statement for in-
specting valuesindent width and depthwill be passed to th@rettyPrinter constructor as formatting
parameters.

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff)

>>> pprint.pprint(stuff)

[<Recursion on list with id=869440>,

'lusr/local/lib/pythonl.5’,
"lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/pythonl1.5/sunos5’,
'lusr/local/lib/pythonl1.5/sharedmodules’,
"lusr/local/lib/pythonl.5/tkinter’]

Changed in version 2.4: The parametedent width anddepthwere added.

isreadable (objec)
Determine if the formatted representationotijectis “readable,” or can be used to reconstruct the value using
eval() . This always returns false for recursive objects.

>>> pprint.isreadable(stuff)
False

102 Chapter 3. Python Runtime Services

isrecursive (objec)
Determine ifobjectrequires a recursive representation.

One more support function is also defined:

saferepr (objec)
Return a string representation olbject protected against recursive data structures. If the representation of
objectexposes a recursive entry, the recursive reference will be representelleaifsion on typename
with id= numbep’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)

"[<Recursion on list with id=682968>, ", ’lusr/local/lib/pythonl.5’, 'fusr/loca
Illib/pythonl.5/test’, '/usr/local/lib/pythonl.5/sunos5’, '/usr/local/lib/python
1.5/sharedmodules’, ’/ust/local/lib/pythonl.5/tkinter’]"

3.27.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (objec)
Return the formatted representation object This takes into Account the options passed to the
PrettyPrinter constructor.

pprint (objec)
Print the formatted representationalfjecton the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since ResttyPrinter objects don’t need to be created.

isreadable (objec)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the value using
eval() . Note that this returns false for recursive objects. Ifdepthparameter of th@rettyPrinter is
set and the object is deeper than allowed, this returns false.

isrecursive (objec)
Determine if the object requires a recursive representation.

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The default
implementation uses the internals of gaferepr() implementation.

format (object, context, maxlevels, leyel
Returns three values: the formatted versioolgiectas a string, a flag indicating whether the result is readable,
and a flag indicating whether recursion was detected. The first argument is the object to be presented. The
second is a dictionary which contains tli) of objects that are part of the current presentation context
(direct and indirect containers fabjectthat are affecting the presentation) as the keys; if an object needs to
be presented which is already representedontext the third return value should be true. Recursive calls to
theformat() = method should add additional entries for containers to this dictionary. The fourth argument,
maxlevels gives the requested limit to recursion; this will Baf there is no requested limit. This argument
should be passed unmodified to recursive calls. The fourth arguhegatgives the current level; recursive
calls should be passed a value less than that of the current call. New in version 2.3.

3.28 repr — Alternate repr() implementation

Therepr module provides a means for producing object representations with limits on the size of the resulting strings.
This is used in the Python debugger and may be useful in other contexts as well.

3.28. repr — Alternate repr() implementation 103

This module provides a class, an instance, and a function:

classRepr ()
Class which provides formatting services useful in implementing functions similar to the brelpsif) ; size
limits for different object types are added to avoid the generation of representations which are excessively long.

aRepr
This is an instance dRepr which is used to provide theepr() function described below. Changing the
attributes of this object will affect the size limits usedrdepr() and the Python debugger.

repr (obj)
This is therepr() method ofaRepr . It returns a string similar to that returned by the built-in function of the
same name, but with limits on most sizes.

3.28.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of different
object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The defafilt is

maxdict

maxlist

maxtuple

maxset

maxfrozenset

maxdeque

maxarray
Limits on the number of entries represented for the named object type. The defaditirisnaxdict , 5 for
maxarray , and6 for the others. New in version 2.maxset , maxfrozenset , andset . .

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default is40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation of
the string is used as the character source: if escape sequences are needed in the representation, these may be
mangled when the representation is shortened. The def&dt is

maxother
This limit is used to control the size of object types for which no specific formatting method is available on the
Repr object. Itis applied in a similar manner amxstring . The default i20.

repr (obj)
The equivalent to the built-irepr() that uses the formatting imposed by the instance.

reprl (obj, leve)
Recursive implementation used tspr() . This uses the type abjto determine which formatting method to
call, passing ibbj andlevel The type-specific methods should a&prl() to perform recursive formatting,
with level - 1 for the value ofevelin the recursive call.

repr _typg obj, leve)
Formatting methods for specific types are implemented as methods with a name based on the type name. In the
method nametypeis replaced bystring.join(string.split(type(ob)). __name__, ') .
Dispatch to these methods is handledréprl() . Type-specific methods which need to recursively format a
value should callself.repri(subobj level - 1) .

104 Chapter 3. Python Runtime Services

3.28.2 Subclassing Repr Objects

The use of dynamic dispatching Repr.repri() allows subclasses &epr to add support for additional built-in
object types or to modify the handling of types already supported. This example shows how special support for file
objects could be added:

import repr
import sys

class MyRepr(repr.Repr):
def repr_file(self, obj, level):
if obj.name in [<stdin>', '<stdout>', '<stderr>']:
return obj.name
else:
return ‘obj*

aRepr = MyRepr()
print aRepr.repr(sys.stdin) # prints '<stdin>’

3.29 new — Creation of runtime internal objects

Thenew module allows an interface to the interpreter object creation functions. This is for use primarily in marshal-
type functions, when a new object needs to be created “magically” and not by using the regular creation functions.
This module provides a low-level interface to the interpreter, so care must be exercised when using this module. It is
possible to supply non-sensical arguments which crash the interpreter when the object is used.

Thenew module defines the following functions:

instance (class[, dict])
This function creates an instance @sswith dictionarydict without calling the__init __() constructor.
If dict is omitted orNone, a new, empty dictionary is created for the new instance. Note that there are no
guarantees that the object will be in a consistent state.

instancemethod (function, instance, clays
This function will return a method object, bounditstance or unbound ifinstanceis None. functionmust be
callable.

function (code, gIobaIE, name[, argdefs]])
Returns a (Python) function with the given code and globalsaiffieis given, it must be a string d&fone. Ifitis
a string, the function will have the given name, otherwise the function name will be takedaeoo _name.
If argdefsis given, it must be a tuple and will be used to determine the default values of parameters.

code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno, Ino-

tab)
This function is an interface to tHeyCode_New() C function.

module (nam@
This function returns a new module object with naname namemust be a string.

classobj (name, baseclasses, gict
This function returns a new class object, with namaene derived frombaseclasse@vhich should be a tuple of
classes) and with namespatiet.

3.29. new — Creation of runtime internal objects 105

3.30 site — Site-specific configuration hook

This module is automatically imported during initialization. The automatic import can be suppressed using the
interpreter's-S option.

Importing this module will append site-specific paths to the module search path.

It starts by constructing up to four directories from a head and a tail part. For the head part,Sysipesfix
andsys.exec _prefix ; empty heads are skipped. For the tail part, it uses the empty string (on Windows) or
‘lib/python2.4/site-packages’ (on UNIX and Macintosh) and thetib/site-python’. For each of the distinct head-tail
combinations, it sees if it refers to an existing directory, and if so, addssitd@ath and also inspects the newly
added path for configuration files.

A path configuration file is a file whose name has the fopackagepth’ and exists in one of the four directories
mentioned above; its contents are additional items (one per line) to be adslgsligath . Non-existing items are
never added tgys.path , but no check is made that the item refers to a directory (rather than a file). No item is
added tesys.path more than once. Blank lines and lines beginning witire skipped. Lines starting witmport

are executed.

For example, suppossys.prefix andsys.exec _prefix are set to/usr/local’. The Python 2.4.2 library is
then installed in/usr/local/lib/python2.4’ (where only the first three characterssyfs.version are used to form the
installation path name). Suppose this has a subdirechasylocal/lib/python2.4/site-packages’ with three subsubdi-
rectories, foo’, ‘ bar’ and ‘spam’, and two path configuration filesfoo.pth’ and ‘bar.pth’. Assume foo.pth’ contains
the following:

foo package configuration

foo
bar
bletch

and ar.pth’ contains:

bar package configuration

bar

Then the following directories are addedstgs.path , in this order:

/usr/local/lib/python2.3/site-packages/bar
lusr/local/lib/python2.3/site-packages/foo

Note that bletch’ is omitted because it doesn't exist; thaal’ directory precedes thddo’ directory becausebar.pth’
comes alphabetically beforéb.pth’; and ‘spam’ is omitted because it is not mentioned in either path configuration
file.

After these path manipulations, an attempt is made to import a module rat@eastomize , which can perform
arbitrary site-specific customizations. If this import fails withlexportError exception, it is silently ignored.

Note that for some non-MWix systemssys.prefix andsys.exec _prefix are empty, and the path manipula-
tions are skipped; however the importsifecustomize is still attempted.

106 Chapter 3. Python Runtime Services

3.31 user — User-specific configuration hook

As a policy, Python doesn’t run user-specified code on startup of Python programs. (Only interactive sessions execute
the script specified in the PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization file, which
gets run when a program requests it. This module implements such a mechanism. A program that wishes to use the
mechanism must execute the statement

import user

Theuser module looks for a file.pythonrc.py’ in the user’s home directory and if it can be opened, executes it (using

execfile()) in its own (the moduleauser ’s) global namespace. Errors during this phase are not caught; that’s up
to the program that imports theser module, if it wishes. The home directory is assumed to be named by the HOME
environment variable; if this is not set, the current directory is used.

The user’s ‘pythonrc.py’ could conceivably test fosys.version if it wishes to do different things depending on
the Python version.

A warning to users: be very conservative in what you place in ygythonrc.py’ file. Since you don’t know which
programs will use it, changing the behavior of standard modules or functions is generally not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options for your
package is to have them define variables in thpythonrc.py’ file that you test in your module. For example, a module
spam that has a verbosity level can look for a variabter.spam _verbose , as follows:

import user

verbose = bool(getattr(user, "spam_verbose", 0))

(The three-argument form dfetattr() is used in case the user has not defimpam_verbose in their
‘.pythonrc.py’ file.)

Programs with extensive customization needs are better off reading a program-specific customization file.

Programs with security or privacy concerns shaubdimport this module; a user can easily break into a program by
placing arbitrary code in thegythonrc.py’ file.

Modules for general use shoubdtimport this module; it may interfere with the operation of the importing program.
See Also:

Modulesite (section 3.30):
Site-wide customization mechanism.

3.32 __builtin __ — Built-in objects

This module provides direct access to all ‘built-in’ identifiers of Python; for examplépiltin ~ __.open is the
full name for the built-in functioropen() . See chapter 2, “Built-in Objects.”

This module is not normally accessed explicitly by most applications, but can be useful in modules that provide objects
with the same name as a built-in value, but in which the built-in of that name is also needed. For example, in a module
that wants to implement avpen() function that wraps the built-inpen() , this module can be used directly:

3.31. user — User-specific configuration hook 107

import __ builtin__

def open(path):
f = _ builtin__.open(path, 'r’)
return UpperCaser(f)

class UpperCaser:
"Wrapper around a file that converts output to upper-case.”

def __init__ (self, f):
self._f = f

def read(self, count=-1):
return self._f.read(count).upper()

.
As an implementation detail, most modules have the nantmiiltins __ (note the §’) made available as part of
their globals. The value of _builtins ~ __is normally either this module or the value of this modules’slict

attribute. Since this is an implementation detail, it may not be used by alternate implementations of Python.

3.33 __main __ — Top-level script environment

This module represents the (otherwise anonymous) scope in which the interpreter’s main program executes — com-
mands read either from standard input, from a script file, or from an interactive prompt. It is this environment in which
the idiomatic “conditional script” stanza causes a script to run:

if _name__ == "__main__"
main()
3.34 __future __ — Future statement definitions
__future __is areal module, and serves three purposes:

e To avoid confusing existing tools that analyze import statements and expect to find the modules they’re import-
ing.

e To ensure that futurestatements run under releases prior to 2.1 at least yield runtime exceptions (the import of
__future __ will fail, because there was no module of that name prior to 2.1).

e To document when incompatible changes were introduced, and when they will be — or were — made
mandatory. This is a form of executable documentation, and can be inspected programatically via importing
__future __ and examining its contents.

Each statement in__future__.py’ is of the form:

FeatureName = "_Feature(" OptionalRelease'," MandatoryReleasé',"
CompilerFlag ")"

108 Chapter 3. Python Runtime Services

where, normally,OptionalReleasds less thanMandatoryReleaseand both are 5-tuples of the same form as
sys.version _info

(PY_MAJOR_VERSION, # the 2 in 2.1.0a3; an int
PY_MINOR_VERSION, # the 1; an int

PY_MICRO_VERSION, # the 0; an int

PY_RELEASE_LEVEL, # "alpha", "beta", "candidate" or "final"; string
PY_RELEASE_SERIAL # the 3; an int

)

OptionalReleaseecords the first release in which the feature was accepted.

In the case of MandatoryReleas¢hat has not yet occurredjlandatoryReleaseredicts the release in which the
feature will become part of the language.

ElseMandatoryReleasgecords when the feature became part of the language; in releases at or after that, modules no
longer need a future statement to use the feature in question, but may continue to use such imports.

MandatoryReleasmay also béNone, meaning that a planned feature got dropped.

Instances of class_Feature have two corresponding methodsgetOptionalRelease() and
getMandatoryRelease()

CompilerFlagis the (bitfield) flag that should be passed in the fourth argument to the builtin furoctiopile() to

enable the feature in dynamically compiled code. This flag is stored icattmpiler _flag attribute on_Future
instances.

No feature description will ever be deleted framfuture

3.34. __future __ — Future statement definitions 109

110

CHAPTER
FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s an overview:

string Common string operations.

re Regular expression search and match operations with a Perl-style expression syntax.
struct Interpret strings as packed binary data.

difflib Helpers for computing differences between objects.
fpformat General floating point formatting functions.
StringlO Read and write strings as if they were files.
cStringlO Faster version aBtringlO , but not subclassable.
textwrap Text wrapping and filling

encodings.idna Internationalized Domain Names implementation
unicodedata Access the Unicode Database.

stringprep String preparation, as per RFC 3453

Information on the methods of string objects can be found in section 2.3.6, “String Methods.”

4.1 string — Common string operations

Thestring module contains a number of useful constants and classes, as well as some deprecated legacy functions
that are also available as methods on strings. See the maddite string functions based on regular expressions.

4.1.1 String constants

The constants defined in this module are:

ascii _letters
The concatenation of thascii _lowercase andascii _uppercase constants described below. This
value is not locale-dependent.

ascii _lowercase
The lowercase lettefabcdefghijklmnopqgrstuvwxyz’ . This value is not locale-dependent and will not
change.

ascii _uppercase
The uppercase lettetABCDEFGHIJKLMNOPQRSTUVWXY Zhis value is not locale-dependent and will not
change.

digits
The string’0123456789’

hexdigits

111

The string'0123456789abcdefABCDEF

letters
The concatenation of the stringavercase anduppercase described below. The specific value is locale-
dependent, and will be updated wHenale.setlocale() is called.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the
string 'abcdefghijklmnopqgrstuvwxyz’ . Do not change its definition — the effect on the routines
upper() andswapcase() is undefined. The specific value is locale-dependent, and will be updated when
locale.setlocale() is called.

octdigits
The string'01234567"

punctuation
String of Ascli characters which are considered punctuation characters iCtlozale.

printable
String of characters which are considered printable. This is a combinatiodigdt , letters

punctuation , andwhitespace

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this is the
string ’ABCDEFGHIJKLMNOPQRSTUVWXYDo not change its definition — the effect on the routines
lower() andswapcase() is undefined. The specific value is locale-dependent, and will be updated when
locale.setlocale() is called.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the characters
space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition — the effect on the routines
strip() andsplit() is undefined.

4.1.2 Template strings

Templates provide simpler string substitutions as described in PEP 292. Instead of the A&taaéd substitutions,
Templates suppor$’-based substitutions, using the following rules:

e ‘$$’is an escape; it is replaced with a sing®.*

e ‘Sidentifier " names a substitution placeholder matching a mapping key of "identifier”. By default, "iden-
tifier” must spell a Python identifier. The first non-identifier character after $heHlaracter terminates this
placeholder specification.

o ‘${identifier} " is equivalent to $identifier ". It is required when valid identifier characters follow
the placeholder but are not part of the placeholder, suchfamif}ification”.

Any other appearance o$” in the string will result in avalueError being raised.
New in version 2.4.
Thestring module provides demplate class that implements these rules. The methodsaiplate are:

classTemplate (template
The constructor takes a single argument which is the template string.

substitute (mappind, **kws])
Performs the template substitution, returning a new strimgppingis any dictionary-like object with keys that
match the placeholders in the template. Alternatively, you can provide keyword arguments, where the keywords

112 Chapter 4. String Services

are the placeholders. When battappingandkwsare given and there are duplicates, the placeholderskmesn
take precedence.

safe _substitute (mapping{, **kws])
Like substitute() , except that if placeholders are missing fronappingand kws instead of raising a
KeyError exception, the original placeholder will appear in the resulting string intact. Also, unlike with
substitute() , any other appearances of ti# Wwill simply return ‘$’ instead of raising/alueError

While other exceptions may still occur, this method is called “safe” because substitutions always tries to return a
usable string instead of raising an exception. In another seafee, _substitute() may be anything other

than safe, since it will silently ignore malformed templates containing dangling delimiters, unmatched braces,
or placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

template
This is the object passed to the constructteimplateargument. In general, you shouldn’t change it, but read-
only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template('$who likes $what’)

>>> s.substitute(who="tim’, what="kung pao’)
'tim likes kung pao’

>>> d = dict(who="tim’)

>>> Template('Give $who $100’).substitute(d)
Traceback (most recent call last):

(]

ValueError: Invalid placeholder in string: line 1, col 10
>>> Template('$who likes $what’).substitute(d)
Traceback (most recent call last):

[-]

KeyError: 'what’

>>> Template('$who likes $what’).safe_substitute(d)
‘tim likes $what’

Advanced usage: you can derive subclassekeofiplate to customize the placeholder syntax, delimiter character,
or the entire regular expression used to parse template strings. To do this, you can override these class attributes:

e delimiter— This is the literal string describing a placeholder introducing delimiter. The default \&lulote
that this shoulchot be a regular expression, as the implementation will akscape() on this string as
needed.

e idpattern— This is the regular expression describing the pattern for non-braced placeholders (the braces will be
added automatically as appropriate). The default value is the regular exprdssion][_a-z0-9]* .

Alternatively, you can provide the entire regular expression pattern by overriding the class ataitbeite If you do
this, the value must be a regular expression object with four named capturing groups. The capturing groups correspond
to the rules given above, along with the invalid placeholder rule:

e escaped- This group matches the escape sequence,%$g.ih the default pattern.

e named- This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

e braced- This group matches the brace enclosed placeholder name; it should not include either the delimiter or
braces in the capturing group.

4.1. string — Common string operations 113

e invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should appear last in
the regular expression.

4.1.3 String functions

The following functions are available to operate on string and Unicode objects. They are not available as string
methods.

capwords (s)
Split the argument into words usirgplit() , capitalize each word usingapitalize() , and join the
capitalized words usingin() . Note that this replaces runs of whitespace characters by a single space, and
removes leading and trailing whitespace.

maketrans (from, to
Return a translation table suitable for passingramslate() or regex.compile() , that will map each
character irffrominto the character at the same positionanfrom andto must have the same length.

Warning: Don’t use strings derived frodowercase anduppercase as arguments; in some locales, these
don’t have the same length. For case conversions, alwayswee() andupper()

4.1.4 Deprecated string functions

The following list of functions are also defined as methods of string and Unicode objects; see “String Methods”
(section 2.3.6) for more information on those. You should consider these functions as deprecated, although they will
not be removed until Python 3.0. The functions defined in this module are:

atof (s)
Deprecated since release 2.Qse thefloat() built-in function.

Convert a string to a floating point number. The string must have the standard syntax for a floating point literal
in Python, optionally preceded by a sigr-'('or ‘- ’). Note that this behaves identical to the built-in function
float() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

atoi (s[, basd)
Deprecated since release 2.Qse theint() built-in function.

Convert strings to an integer in the givebbase The string must consist of one or more digits, optionally
preceded by a sign{' or ‘- ’). The basedefaults to 10. If it is 0, a default base is chosen depending on the
leading characters of the string (after stripping the siglx’ ‘or ‘0OX’ means 16, 0’ means 8, anything else
means 10. Ibaseis 16, a leading0x’ or * 0X' is always accepted, though not required. This behaves identically
to the built-in functionint() when passed a string. (Also note: for a more flexible interpretation of numeric
literals, use the built-in functioaval() .)

atol (9, basd])
Deprecated since release 2.Qse thelong() built-in function.
Convert strings to a long integer in the givebhase The string must consist of one or more digits, optionally
preceded by a sign{’ or ‘- ’). The baseargument has the same meaning asatoi() . Atrailing ‘I "or ‘L’
is not allowed, except if the base is 0. Note that when invoked withas¢or with baseset to 10, this behaves
identical to the built-in functiomong() when passed a string.

capitalize (word)
Return a copy ofvord with only its first character capitalized.

expandtabs (s[, tabsize])
Expand tabs in a string replacing them by one or more spaces, depending on the current column and the given

114 Chapter 4. String Services

tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t understand
other non-printing characters or escape sequences. The tab size defaults to 8.

find (s, sul{, start{,end]])
Return the lowest index iswhere the substringubis found such thasubis wholly contained ir§[start end .
Return-1 on failure. Defaults fostart andendand interpretation of negative values is the same as for slices.

rfind (s, suk[, starl{, end]])
Like find() but find the highest index.

index (s, sut{, starl{, end]])
Like find() butraiseValueError when the substring is not found.

rindex (s, sul{, starl{, end]])
Like rfind() but raiseValueError when the substring is not found.

count (s, suk{, starl[, end]])
Return the number of (non-overlapping) occurrences of substtib string g start end . Defaults forstart
andendand interpretation of negative values are the same as for slices.

lower (s)
Return a copy o§, but with upper case letters converted to lower case.

split (s[, se;{, maxsplit]])
Return a list of the words of the strirgy If the optional second argumesépis absent oNone, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the second
argumentsepis present and nadtlone, it specifies a string to be used as the word separator. The returned list
will then have one more item than the number of non-overlapping occurrences of the separator in the string.
The optional third argumembaxsplitdefaults to 0. If it is nonzero, at mostaxsplithumber of splits occur, and
the remainder of the string is returned as the final element of the list (thus, the list will have ahenstlit-1
elements).

The behavior of split on an empty string depends on the valisepf If sepis not specified, or specified as
None, the result will be an empty list. Bepis specified as any string, the result will be a list containing one
element which is an empty string.

rsplit (s[, sep[, maxsplit]])
Return a list of the words of the strirgyscannings from the end. To all intents and purposes, the resulting list
of words is the same as returned split() , except when the optional third argumenéaxsplitis explicitly
specified and nonzero. Whenaxsplitis nonzero, at moshaxsplitnumber of splits — theightmostones —
occur, and the remainder of the string is returned as the first element of the list (thus, the list will have at most
maxsplit-l elements). New in version 2.4.

splitfields (s[, se;{, maxsplit]])
This function behaves identically split() . (In the pastsplit() was only used with one argument, while
splitfields() was only used with two arguments.)

join (word{, sep])
Concatenate a list or tuple of words with intervening occurrencegpfThe default value fosepis a single
space character. It is always true thatting.join(string.split(s, sep, sep’equalss.

joinfields (words[, sep])
This function behaves identically foin() . (In the pastjoin() was only used with one argument, while
joinfields() was only used with two arguments.) Note that there ifoidields() method on string
objects; use th@in() method instead.

Istrip (s[, chars])
Return a copy of the string with leading characters removethdfsis omitted oNone, whitespace characters
are removed. If given and ndtone, charsmust be a string; the characters in the string will be stripped from
the beginning of the string this method is called on. Changed in version 2.2.8h@hgparameter was added.
Thecharsparameter cannot be passed in earlier 2.2 versions.

4.1. string — Common string operations 115

rstrip (s[, chars])
Return a copy of the string with trailing characters removedhérsis omitted oNone, whitespace characters
are removed. If given and ndtone, charsmust be a string; the characters in the string will be stripped from
the end of the string this method is called on. Changed in version 2.2.XhEigparameter was added. The
charsparameter cannot be passed in earlier 2.2 versions.

strip (s[, chars])
Return a copy of the string with leading and trailing characters removetaitis omitted oNone, whitespace
characters are removed. If given and hiine, charsmust be a string; the characters in the string will be
stripped from the both ends of the string this method is called on. Changed in version 2.2.&hdrke
parameter was added. Thiearsparameter cannot be passed in earlier 2.2 versions.

swapcase (9)
Return a copy 0§, but with lower case letters converted to upper case and vice versa.

translate (s, table[, deletechari)
Delete all characters fromthat are indeletechargif present), and then translate the characters usihtg
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.

upper (9)
Return a copy o§, but with lower case letters converted to upper case.

ljust (s, width

rjust (s, width

center (s, width
These functions respectively left-justify, right-justify and center a string in a field of given width. They return a
string that is at leaswidth characters wide, created by padding the stamgth spaces until the given width on
the right, left or both sides. The string is never truncated.

zfill (s, width
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign are
handled correctly.

replace (str, old, nev[, maxreplacé)
Return a copy of stringtr with all occurrences of substringld replaced bynew If the optional argument
maxreplacas given, the firsmaxreplaceoccurrences are replaced.

4.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Regular expression
pattern strings may not contain null bytes, but can specify the null byte usifgitirebemotation. Both patterns and
strings to be searched can be Unicode strings as well as 8-bit stringse Trhedule is always available.

Regular expressions use the backslash charas&tgrt@ indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have té\Wtite as the pattern

string, because the regular expression musi\be, ‘and each backslash must be expressed\asihside a regular

Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with*. So r"\n" is a two-character string containing’‘and ‘n’, while

"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

See Also:

Mastering Regular Expressions
Book on regular expressions by Jeffrey Friedl, published by O'Reilly. The second edition of the book no longer

116 Chapter 4. String Services

covers Python at all, but the first edition covered writing good regular expression patterns in great detail.

4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressidrsidB are both regular expressions,
thenAB is also a regular expression. In general, if a stpngatchesA and another string matchesB, the string

pgwill match AB. This holds unlesé or B contain low precedence operations; boundary conditions betdeerl

B; or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions, consult
the Friedl book referenced above, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the Regular Expression HOWTO, accessible fiiopy/www.python.org/doc/howto/.

Regular expressions can contain both special and ordinary characters. Most ordinary charactexs,’ Bkeor

‘0, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
so last ; matches the strindast’ . (In the rest of this section, we’'ll write RE’s iithis special style I

usually without quotes, and strings to be matchedsingle quotes’)

Some characters, lik¢ *or ‘ (’, are special. Special characters either stand for classes of ordinary characters, or affect
how the regular expressions around them are interpreted.

The special characters are:

(Dot.) In the default mode, this matches any character except a newline. DIQRALLflag has been specified,
this matches any character including a newline.

(Caret.) Matches the start of the string, andbLTILINE mode also matches immediately after each newline.

‘$’ Matches the end of the string or just before the newline at the end of the string, BRJLIRILINE mode also
matches before a newlindoo ; matches both 'foo’ and *foobar’, while the regular expressfon$; matches
only *foo’. More interestingly, searching fdioo.$;in 'fool\nfoo2\n’ matches 'foo2’ normally, but 'fool’ in
MULTILINE mode.

‘*’ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are possible.
fab* ; will match 'a’, 'ab’, or 'a’ followed by any number of 'b’s.

‘+’ Causes the resulting RE to match 1 or more repetitions of the precedingtiREwill match 'a’ followed by any
non-zero number of 'b’s; it will not match just 'a’.

‘?’ Causes the resulting RE to match 0 or 1 repetitions of the precedingiE will match either 'a’ or 'ab’.

*?,+7?,?? The *’, *+', and *?’ qualifiers are allgreedy they match as much text as possible. Sometimes this
behaviour isn't desired; if the RE.*> | is matched agains&H1>title</H1>’ , it will match the entire
string, and not just<H1>" . Adding ‘?’ after the qualifier makes it perform the match nion-greedyor
minimal fashion; asew characters as possible will be matched. Using | in the previous expression will
match only'<H1>’

{m} Specifies that exactly copies of the previous RE should be matched; fewer matches cause the entire RE not to
match. For exampléa{6} ;will match exactly six &’ characters, but not five.

{m, n} Causes the resulting RE to match fromto n repetitions of the preceding RE, attempting to match as many
repetitions as possible. For exampk3,5} will match from 3 to 5 &' characters. Omittingn specifies a
lower bound of zero, and omitting specifies an infinite upper bound. As an examf@&,}b ; will match
aaaab or a thousandd’ characters followed by &, but notaaab. The comma may not be omitted or the
modifier would be confused with the previously described form.

4.2. re — Regular expression operations 117

{m, n}? Causes the resulting RE to match fromto n repetitions of the preceding RE, attempting to matcfeas
repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the 6-character
string’aaaaaa’ , 'a{3,5} will match 5 ‘a’ characters, whiléa{3,5}? ;will only match 3 characters.

‘\'" Either escapes special characters (permitting you to match characters’)ik@’; and so forth), or signals a
special sequence; special sequences are discussed below.

If you're not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and
subsequent character are included in the resulting string. However, if Python would recognize the resulting
sequence, the backslash should be repeated twice. This is complicated and hard to understand, so it's highly
recommended that you use raw strings for all but the simplest expressions.

[Used to indicate a set of characters. Characters can be listed individually, or a range of characters can be indicated
by giving two characters and separating them by’a Special characters are not active inside sets. For exam-
ple, Takm$] ; will match any of the charactera”, ‘k’, ‘m, or ‘$’; Ta-z] ,will match any lowercase letter,
and[a-zA-Z0-9] matches any letter or digit. Character classes sudtvasr \S (defined below) are also
acceptable inside a range. If you want to includé¢'aor a ‘- ' inside a set, precede it with a backslash, or place
it as the first character. The pattéfiji ;will match’] , for example.

You can match the characters not within a rangedmymplementinghe set. This is indicated by including @'
as the first character of the set; ‘elsewhere will simply match the ° character. For exampld'5] | will
match any character except, and [] ;will match any character except™

‘| * AIB, where A and B can be arbitrary RES, creates a regular expression that will match either A or B. An arbitrary
number of REs can be separated by thein this way. This can be used inside groups (see below) as well.
As the target string is scanned, REs separated bgre tried from left to right. When one pattern completely
matches, that branch is accepted. This means thatdntatchesB will not be tested further, even if it would
produce a longer overall match. In other words, fheoperator is never greedy. To match a litefal,‘use\| |,
or enclose it inside a character class, a§jn ;.

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group; the
contents of a group can be retrieved after a match has been performed, and can be matched later in the string
with the\ numberspecial sequence, described below. To match the litgrads ©) *, use\(jor\) ;, or enclose
them inside a character cladg] [)] .

(?..) This is an extension notation (2‘following a ‘(' is not meaningful otherwise). The first character after the
‘?’ determines what the meaning and further syntax of the construct is. Extensions usually do not create a new
group;(?P< name-...) is the only exception to this rule. Following are the currently supported extensions.

(?iLmsux) (One or more letters from the set’; ‘L’, ‘mi, ‘s’, ‘u’, ‘x".) The group matches the empty string; the
letters set the corresponding flags.[,re.L ,re.M ,re.S ,re.U ,re.X) for the entire regular expression.
This is useful if you wish to include the flags as part of the regular expression, instead of patajraygument
to thecompile() function.

Note that the(?x) ; flag changes how the expression is parsed. It should be used first in the expression string,
or after one or more whitespace characters. If there are non-whitespace characters before the flag, the results are
undefined.

(?:..) A non-grouping version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the grmamqmotbe retrieved after performing a match or referenced later
in the pattern.

(?P< name>...) Similar to regular parentheses, but the substring matched by the group is accessible via the sym-
bolic group namaame Group names must be valid Python identifiers, and each group name must be defined
only once within a regular expression. A symbolic group is also a numbered group, just as if the group were not
named. So the group named 'id’ in the example above can also be referenced as the numbered group 1.

For example, if the pattern i§?P<id>[a-zA-Z _]\w*) |, the group can be referenced by its name in argu-
ments to methods of match objects, sucmagroup(’id’) orm.end(id") , and also by name in pattern
text (for example(?P=id)) and replacement text (such\asid>).

118 Chapter 4. String Services

(?P=namé Matches whatever text was matched by the earlier group naiee

(?#..) A comment; the contents of the parentheses are simply ignored.

(?=...) Matchesif... ;matches next, but doesn’t consume any of the string. This is called a lookahead assertion.
For examplellsaac (?=Asimov) will match’lsaac ' only if it's followed by ’'AsimoVv’
(?...) Matches if... | doesn’t match next. This is a negative lookahead assertion. For exaispkg

(?'Asimov) ;will match’lsaac only if it's notfollowed by’Asimov’

(?<=..) Matches if the current position in the string is preceded by a match.for that ends at the current
position. This is called positive lookbehind assertiof{(?<=abc)def ;will find a match in abcdef ’, since
the lookbehind will back up 3 characters and check if the contained pattern matches. The contained pattern must
only match strings of some fixed length, meaning that, or a|b ; are allowed, buia* and'a{3,4} ;are not.
Note that patterns which start with positive lookbehind assertions will never match at the beginning of the string
being searched; you will most likely want to use #earch() function rather than theatch() function:

>>> import re

>>> m = re.search('(?<=abc)def’, 'abcdef’)
>>> m.group(0)

‘def’

This example looks for a word following a hyphen:

>>> m = re.search(’(?<=-)\w+’, 'spam-egg’)
>>> m.group(0)
'egy

(?<!..) Matches if the current position in the string is not preceded by a match.for. This is called aegative
lookbehind assertianSimilar to positive lookbehind assertions, the contained pattern must only match strings
of some fixed length. Patterns which start with negative lookbehind assertions may match at the beginning of
the string being searched.

(?(id/nam@yes-pattern|no-pattern) Will try to match with yes-pattern | if the group with givenid
or nameexists, and withno-pattern | if it doesn’t. |no-pattern | is optional and can be omitted. For
example (<)?2(\Ww+@\w+(?2:\.\w+)+)(?(1)>) 1is a poor email matching pattern, which will match with
'<user@host.com>’ as well as'user@host.com’ , but not with’<user@host.com’ . New in
version 2.4,

The special sequences consist\ofand a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For exariplenatches the characte$’:

\ number Matches the contents of the group of the same number. Groups are numbered starting from 1. For example,
(.(+) \1 | matchesthe the’ or’55 55 | but not'the end’ (note the space after the group). This
special sequence can only be used to match one of the first 99 groups. If the first digitloéris O, ornumber
is 3 octal digits long, it will not be interpreted as a group match, but as the character with octahwaiber
Inside the ["and ‘] ’ of a character class, all numeric escapes are treated as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric or underscore characters, so the end of a word is indicated by whitespace or a non-alphanumeric,
non-underscore character. Note tiatis defined as the boundary between and\W, so the precise set of
characters deemed to be alphanumeric depends on the valuesWiIBODEand LOCALEflags. Inside a
character rangd\b | represents the backspace character, for compatibility with Python’s string literals.

4.2. re — Regular expression operations 119

\B Matches the empty string, but only when itriet at the beginning or end of a word. This is just the opposite of
\b , sois also subject to the settingslLédd CALEandUNICODE

\d When theUNICODEfag is not specified, matches any decimal digit; this is equivalent to thf0s@jt ;. With
UNICODE it will match whatever is classified as a digit in the Unicode character properties database.

\D When theUNICODEHag is not specified, matches any non-digit character; this is equivalent to ti@gjt ..
With UNICODE it will match anything other than character marked as digits in the Unicode character properties
database.

\s When theLOCALEandUNICODHilags are not specified, matches any whitespace character; this is equivalent to
the set] \t\n\r\fiv] .- With LOCALE it will match this set plus whatever characters are defined as space
for the current locale. IUNICODEis set, this will match the charactefs\t\n\r\fiv] 1 plus whatever is
classified as space in the Unicode character properties database.

\S When the.OCALEandUNICODHlags are not specified, matches any non-whitespace character; this is equivalent
to the set[” \t\n\r\fiv] ; With LOCALE it will match any character not in this set, and not defined as
space in the current locale. UNICODEis set, this will match anything other thgn\t\n\r\fiv] ;and
characters marked as space in the Unicode character properties database.

\w When theLOCALEandUNICODHlags are not specified, matches any alphanumeric character and the underscore;
this is equivalent to the sd-zA-Z0-9 _],. With LOCALE it will match the set[0-9 _], plus whatever
characters are defined as alphanumeric for the current locaNIEODEs set, this will match the characters
T0-9 _],plus whatever is classified as alphanumeric in the Unicode character properties database.

\W When theLOCALEandUNICODHlags are not specified, matches any non-alphanumeric character; this is equiv-
alent to the sefa-zA-Z0-9 _] . With LOCALE it will match any character not in the sg@8-9 _] ;, and not
defined as alphanumeric for the current local&JMICODEs set, this will match anything other th§@-9 _] |
and characters marked as alphanumeric in the Unicode character properties database.

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\r \t \v \X
\\

Octal escapes are included in a limited form: If the first digit is a 0, or if there are three octal digits, it is considered an
octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three digits in
length.

4.2.2 Matching vs Searching

Python offers two different primitive operations based on regular expressions: match and search. If you are accustomed
to Perl’s semantics, the search operation is what you're looking for. Sex=#lneh() function and corresponding
method of compiled regular expression objects.

Note that match may differ from search using a regular expression beginning Wwith ° matches only at the start

of the string, or iMULTILINE mode also immediately following a newline. The “match” operation succeeds only
if the pattern matches at the start of the string regardless of mode, or at the starting position given by thepmstional
argument regardless of whether a newline precedes it.

120 Chapter 4. String Services

re.compile("a").match("ba", 1) # succeeds
re.compile(""a").search("ba", 1) # fails; 'a’ not at start
re.compile(""a").search("\na", 1) # fails; 'a’ not at start
re.compile("a", re.M).search(\na", 1) # succeeds
re.compile("a", re.M).search("ba", 1) # fails; no preceding \n

4.2.3 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled
form.

compile (patterr{, flags])
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match() andsearch() methods, described below.

The expression’s behaviour can be modified by specifyifiggs value. Values can be any of the following
variables, combined using bitwise OR (th@perator).

The sequence

prog = re.compile(pat)
result = prog.match(str)

is equivalent to

result = re.match(pat, str)

but the version usingompile() is more efficient when the expression will be used several times in a single
program.

I

IGNORECASE
Perform case-insensitive matching; expressions Tikez] ; will match lowercase letters, too. This is not
affected by the current locale.

L

LOCALE
Make \w, \W, \b , \B , \s ; and\S, dependent on the current locale.

M

MULTILINE
When specified, the pattern character matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern chara®ematches at the end of the string and at
the end of each line (immediately preceding each newline). By defauthatches only at the beginning of the
string, and $’ only at the end of the string and immediately before the newline (if any) at the end of the string.

S

DOTALL
Make the : ’ special character match any character at all, including a newline; without this.flagilt match
anythingexcepta newline.

U

UNICODE

Make \w , "W, \b , \B , \d , \D;, \s ;and\S ; dependent on the Unicode character properties database. New
in version 2.0.

4.2. re — Regular expression operations 121

X

VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,
except when in a character class or preceded by an unescaped backslash, and, when a line egBmaitieea *

in a character class or preceded by an unescaped backslash, all characters from the leftm&sttsocigh

the end of the line are ignored.

search (pattern, string{, flags])

Scan througlstring looking for a location where the regular expresgiatternproduces a match, and return a
correspondindgMatchObject instance. ReturiNone if no position in the string matches the pattern; note that

this is different from finding a zero-length match at some point in the string.

match (pattern, strini, flags])

split

If zero or more characters at the beginningwing match the regular expressipattern return a corresponding
MatchObject instance. Returione if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywherestring, usesearch() instead.

(pattern, strini, maxsplit = 0])
Split string by the occurrences giattern If capturing parentheses are usegattern then the text of all groups
in the pattern are also returned as part of the resulting lishalfsplitis nonzero, at moshaxsplitsplits occur,
and the remainder of the string is returned as the final element of the list. (Incompatibility note: in the original
Python 1.5 releasepaxsplitwas ignored. This has been fixed in later releases.)

>>> re.split(\W+', 'Words, words, words.")
[Words', 'words’, 'words’, "]

>>> re.splitC(\W+)’, 'Words, words, words.")
[Words', ’, ', 'words’, ', ’, 'words’, ", "]
>>> re.split(\W+', 'Words, words, words.’, 1)
[Words’, 'words, words.]

This function combines and extends the functionality of theefgub.split() andregsub.splitx()

findall (pattern, string{, flags])

Return a list of all non-overlapping matchespaftternin string. If one or more groups are present in the pattern,
return a list of groups; this will be a list of tuples if the pattern has more than one group. Empty matches are
included in the result unless they touch the beginning of another match. New in version 1.5.2. Changed in
version 2.4: Added the optional flags argument.

finditer (pattern, string{, flags])

Return an iterator over all non-overlapping matches for thepRfernin string. For each match, the iterator
returns a match object. Empty matches are included in the result unless they touch the beginning of another
match. New in version 2.2. Changed in version 2.4: Added the optional flags argument.

sub (pattern, repl, strin@, count])

Return the string obtained by replacing the leftmost non-overlapping occurrenpasterinin string by the
replacementepl. If the pattern isn’t foundstring is returned unchangedepl can be a string or a function; if
it is a string, any backslash escapes in it are processed. That iss‘converted to a single newline character,
‘\r " is converted to a linefeed, and so forth. Unknown escapes sudi asre left alone. Backreferences,
such as\6 ’, are replaced with the substring matched by group 6 in the pattern. For example:

>>> re.sub(rdefis+([a-zA-Z_][a-zA-Z_0-9]*)\s*\(\s*\)’,
r'static PyObject®\npy_\1(void)\n{’,

'def myfunc():’)

‘static PyObject*\npy_myfunc(void)\n{’

If repl is a function, it is called for every non-overlapping occurrenceaitern The function takes a single

122

Chapter 4. String Services

match object argument, and returns the replacement string. For example:

>>> def dashrepl(matchobj):

if matchobj.group(0) == '-": return
. else: return -’
>>> re.sub(’-{1,2}, dashrepl, 'pro----gram-files’)

‘pro--gram files’

[

The pattern may be a string or an RE object; if you need to specify regular expression flags, you must use a RE
object, or use embedded modifiers in a pattern; for exampldy(*(?i)b+", "x", "bbbb BBBB") '
returnsx x’

The optional argumertountis the maximum number of pattern occurrences to be replamrditmust be a
non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern are
replaced only when not adjacent to a previous matchssio('x*’, -, 'abc’) ' returns’-a-b-c-’

In addition to character escapes and backreferences as described apavemte> " will use the substring
matched by the group namedame’, as defined by th?P<name>...) | syntax. \g<number> ’ uses the
corresponding group numbeig<2> ’ is therefore equivalent td2 ’, but isn’t ambiguous in a replacement
such as\g<2>0 '. ‘\20 " would be interpreted as a reference to group 20, not a reference to group 2 followed
by the literal charactel0’. The backreferencdd<0> ’ substitutes in the entire substring matched by the RE.

subn (pattern, repl, strini, count])
Perform the same operationsgh() , but return a tuplé new_string, number.of_subs madg .

escape (string)
Returnstring with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

exceptionerror
Exception raised when a string passed to one of the functions here is not a valid regular expression (for example,
it might contain unmatched parentheses) or when some other error occurs during compilation or matching. It is
never an error if a string contains no match for a pattern.

4.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

match (string[, pos[, endpoa])
If zero or more characters at the beginningstifing match this regular expression, return a corresponding
MatchObject instance. Returione if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywherestring, usesearch() instead.

The optional second paramef@sgives an index in the string where the search is to start; it defaults This
is not completely equivalent to slicing the string; thie pattern character matches at the real beginning of the
string and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parameteandpodimits how far the string will be searched; it will be as if the stringeisdpos
characters long, so only the characters fromsto endpos- 1 will be searched for a match. éndposs less
thanpos no match will be found, otherwise, iik is a compiled regular expression objastmatch(string,
0, 50) is equivalenttax.match(string[:50], 0)

search (string[, pos[, endpos]])
Scan througtstring looking for a location where this regular expression produces a match, and return a corre-
spondingMatchObject instance. ReturiNone if no position in the string matches the pattern; note that this
is different from finding a zero-length match at some point in the string.

The optionaposandendpogarameters have the same meaning as fomaeh() method.

4.2. re — Regular expression operations 123

split (string[, maxsplit = 0])
Identical to thesplit() function, using the compiled pattern.

findall (string[, pos[, endpoi])

Identical to thefindall() function, using the compiled pattern.
finditer (string[, pos[, endpos]])
Identical to thefinditer() function, using the compiled pattern.

sub (repl, string{, count = 0])
Identical to thesub() function, using the compiled pattern.

subn (repl, string{, count = 0])
Identical to thesubn() function, using the compiled pattern.

flags
The flags argument used when the RE object was compildtiifaro flags were provided.

groupindex
A dictionary mapping any symbolic group names defined(Bl< id>) ; to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the RE object was compiled.

4.2.5 Match Objects

MatchObject instances support the following methods and attributes:

expand (templat¢
Return the string obtained by doing backslash substitution on the templatetsiriptate as done by theub()
method. Escapes such &s * are converted to the appropriate characters, and numeric backreferédces (*
‘\2 ') and named backreference$g&l> ’, ‘\g<name>) are replaced by the contents of the corresponding

group.

group ([groupl,])
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if
there are multiple arguments, the result is a tuple with one item per argument. Without argugmnasung,
defaults to zero (the whole match is returned). HBraupN argument is zero, the corresponding return value
is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
anlIndexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result iSone. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

If the regular expression uses tffgP< name»...) | syntax, thegroupNarguments may also be strings identify-
ing groups by their group name. If a string argument is not used as a group name in the pattetex&rror
exception is raised.

A moderately complicated example:

m = re.match(r'(?P<int>\d+)\.(\d*)", '3.14’)

After performing this matchn.group(1l) is'3’ , asism.group(’int’) , andm.group(2) is’'14’

groups ([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
The defaultargument is used for groups that did not participate in the match; it defauMsrte. (Incompat-
ibility note: in the original Python 1.5 release, if the tuple was one element long, a string would be returned
instead. In later versions (from 1.5.1 on), a singleton tuple is returned in such cases.)

124 Chapter 4. String Services

groupdict ([default])
Return a dictionary containing all theamedsubgroups of the match, keyed by the subgroup namedéfalt
argument is used for groups that did not participate in the match; it defaultsrte.

start ([group])

end (| group])
Return the indices of the start and end of the substring matchegtoloy, group defaults to zero (meaning the
whole matched substring). Retwh if groupexists but did not contribute to the match. For a match olject
and a groum that did contribute to the match, the substring matched by ggqeguivalent tam.group(@))
is

m.string[m.start(g):m.end(g)]

Note thatm.start(group) will equalm.end(group) if groupmatched a null string. For example, aftar=
re.search(’b(c?)’, 'cba’) , m.start(0) is 1, m.end(0) is 2, m.start(1) andm.end(1)
are both 2, andh.start(2) raises arindexError exception.

span ([group])
ForMatchObject m, return the 2-tuplé m.start(group), m.end(group)) . Note that ifgroupdid not
contribute to the match, this {s1, -1) . Again,groupdefaults to zero.

pos
The value ofposwhich was passed to tleearch() ormatch() method of theRegexObject . This is the
index into the string at which the RE engine started looking for a match.

endpos

The value ofendposvhich was passed to ttleearch() ormatch() method of theRegexObject . This is
the index into the string beyond which the RE engine will not go.

lastindex
The integer index of the last matched capturing groupName if no group was matched at all. For example, the
expressionga)b j, ((@)(b)) ,, and((ab)) ;will have lastindex == if applied to the strindab’ ,
while the expressioffa)(b) ;will have lastindex == , if applied to the same string.

lastgroup

The name of the last matched capturing groupiNone if the group didn’t have a name, or if no group was
matched at all.

re
The regular expression object whasatch() orsearch() method produced thiglatchObject instance.

string
The string passed tmatch() or search()

4.2.6 Examples
Simulating scanf()

Python does not currently have an equivalergédanf() . Regular expressions are generally more powerful, though
also more verbose, thastanf() format strings. The table below offers some more-or-less equivalent mappings
betweerscanf() format tokens and regular expressions.

4.2. re — Regular expression operations 125

scanf() Token | Regular Expression
%cC [.J

%5c {.{5}]

%d T-+]2\d+

%e %E %f, %g
%i

[-+120d+(\\d*)?\d*\\d+) ([eE][-+]?\d+)?
[-+]2(0[xX]NdA-Fa-f]+|0[0-7]*\d+)

%0 o[0-71*

%S \S+ 1

%u {\d"'J

%X %X O[xX][\dA-Fa-f]+ |

To extract the filename and numbers from a string like

lusr/shin/sendmail - 0 errors, 4 warnings

you would use acanf() format like

%s - %d errors, %d warnings

The equivalent regular expression would be

(\S+) - (\d+) errors, (\d+) warnings

Avoiding recursion

If you create regular expressions that require the engine to perform a lot of recursion, you may encounter a RuntimeEr-
ror exception with the messageximum recursion limit exceeded. For example,

>>> import re
>>> 5 = 'Begin ' + 1000¥a very long string
>>> re.match('Begin (\w|)*? end’, s).end()
Traceback (most recent call last):

File "<stdin>", line 1, in ?

File "/usr/local/lib/python2.3/sre.py”, line 132, in match

return _compile(pattern, flags).match(string)

RuntimeError: maximum recursion limit exceeded

) 1

+ ‘end’

You can often restructure your regular expression to avoid recursion.

Starting with Python 2.3, simple uses of th®, pattern are special-cased to avoid recursion. Thus, the above regular
expression can avoid recursion by being recasBagin [a-zA-Z0-9 _]*?end . As a further benefit, such
regular expressions will run faster than their recursive equivalents.

4.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python strinfnittises
strings(explained below) as compact descriptions of the lay-out of the C structs and the intended conversion to/from
Python values. This can be used in handling binary data stored in files or from network connections, among other
sources.

126 Chapter 4. String Services

The module defines the following exception and functions:

exceptionerror
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fmt, v1, v2,..)
Return a string containing the values v2, ... packed according to the given format. The arguments must
match the values required by the format exactly.

unpack (fmt, string
Unpack the string (presumably packed fogck(fmt, ...)) according to the given format. The result is a
tuple even if it contains exactly one item. The string must contain exactly the amount of data required by the
format (en(string) must equatalcsize(fmt)).

calcsize (fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types:

Format | C Type Python Notes
X’ pad byte no value
‘c’ char string of length 1
‘b’ signed char integer
‘B unsigned char integer
‘h’ short integer
‘H unsigned short integer
g int integer
1 unsigned int long
1 long integer
‘L unsigned long long
‘q long long long Q)
‘Q unsigned long long long (1)
f float float
d’ double float
‘s’ charf] string
‘P’ char[] string
‘P void * integer

Notes:

(1) The ‘q’ and ‘Q conversion codes are available in native mode only if the platform C compiler supptotgC
long , or, on Windows,__int64 . They are always available in standard modes. New in version 2.2.

A format character may be preceded by an integral repeat count. For example, the formadistrinmeans exactly
the same athhhh’

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the 5§’ format character, the count is interpreted as the size of the string, not a repeat count like for the other format
characters; for exampl&,0s’ means a single 10-byte string, whiltDc’ means 10 characters. For packing, the
string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting string always
has exactly the specified number of bytes. As a special &&8e, means a single, empty string (whilgc’ means

0 characters).

The ‘p’ format character encodes a "Pascal string”, meaning a short variable-length string stored in a fixed number of
bytes. The count is the total number of bytes stored. The first byte stored is the length of the string, or 255, whichever
is smaller. The bytes of the string follow. If the string passed ipaok() is too long (longer than the count minus

4.3. struct — Interpret strings as packed binary data 127

1), only the leading count-1 bytes of the string are stored. If the string is shorter than count-1, it is padded with null
bytes so that exactly count bytes in all are used. Note thatrdfpack() , the ‘p’ format character consumes count
bytes, but that the string returned can never contain more than 255 characters.

Forthe1’, ‘L', ‘q’ and ‘Q format characters, the return value is a Python long integer.

For the P’ format character, the return value is a Python integer or long integer, depending on the size needed to hold
a pointer when it has been cast to an integer typdUAL pointer will always be returned as the Python inte@er

When packing pointer-sized values, Python integer or long integer objects may be used. For example, the Alpha and
Merced processors use 64-bit pointer values, meaning a Python long integer will be used to hold the pointer; other
platforms use 32-bit pointers and will use a Python integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character | Byte order Size and alignment
‘@ native native
‘= native standard
< little-endian standard
> big-endian standard
i network (= big-endian) standard

If the first character is not one of thes@ls assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Motorola and Sun pro-
cessors are big-endian; Intel and DEC processors are little-endian.

Native size and alignment are determined using the C compiizenf expression. This is always combined with
native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes);
short is2bytesjnt andlong are 4 bytestong long (__int6é4 on Windows)is 8 bytedloat anddouble
are 32-bit and 64-bit IEEE floating point numbers, respectively.

Note the difference betwee@and ‘=": both use native byte order, but the size and alignment of the latter is stan-
dardized.

The form 1’ is available for those poor souls who claim they can’t remember whether network byte order is big-endian
or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of".

The ‘P’ format character is only available for the native byte ordering (selected as the default or wighlilyte' order
character). The byte order character thooses to use little- or big-endian ordering based on the host system. The
struct module does not interpret this as native ordering, sdXHermat is not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *

>>> pack(hhl’, 1, 2, 3)
\x00\x01\x00\x02\x00\x00\x00\x03’

>>> unpack(hhl’, "\x00\x01\x00\x02\x00\x00\x00\x03")

1, 2, 3)
>>> calcsize(’hhl’)
8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code for

128 Chapter 4. String Services

that type with a repeat count of zero. For example, the forfihal’ specifies two pad bytes at the end, assuming
longs are aligned on 4-byte boundaries. This only works when native size and alignment are in effect; standard size
and alignment does not enforce any alignment.

See Also:

Modulearray (section 5.14):
Packed binary storage of homogeneous data.

Modulexdrlib (section 12.17):
Packing and unpacking of XDR data.

4.4 difflib — Helpers for computing deltas

New in version 2.1.

classSequenceMatcher

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are
hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980’s by
Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find the longest con-
tiguous matching subsequence that contains no “junk” elements (the Ratcliff and Obershelp algorithm doesn’t
address junk). The same idea is then applied recursively to the pieces of the sequences to the left and to the right
of the matching subsequence. This does not yield minimal edit sequences, but does tend to yield matches that
“look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected caseSequenceMatcher is quadratic time for the worst case and has expected-case behavior de-
pendent in a complicated way on how many elements the sequences have in common; best case time is linear.

classDiffer
This is a class for comparing sequences of lines of text, and producing human-readable differences or deltas.
Differ usesSequenceMatcher both to compare sequences of lines, and to compare sequences of characters
within similar (near-matching) lines.

Each line of eDiffer delta begins with a two-letter code:

Code | Meaning
- line unique to sequence 1

+ line unique to sequence 2
T line common to both sequences
7 line not present in either input sequence

Lines beginning with? ' attempt to guide the eye to intraline differences, and were not present in either input
sequence. These lines can be confusing if the sequences contain tab characters.

classHtmIDiff
This class can be used to create an HTML table (or a complete HTML file containing the table) showing a
side by side, line by line comparison of text with inter-line and intra-line change highlights. The table can be
generated in either full or contextual difference mode.
The constructor for this class is:
——init __([tabsizei[, wrapcolumr][, Iinejunk][, charjunk])
Initializes instance oHtmIDiff
tabsizes an optional keyword argument to specify tab stop spacing and defa@lts to
wrapcolumnis an optional keyword to specify column number where lines are broken and wrapped, de-
faults toNone where lines are not wrapped.
linejunk and charjunk are optional keyword arguments passed intiiff() (used byHtmIDiff to
generate the side by side HTML differences). &d#f() documentation for argument default values
and descriptions.

4.4. difflib — Helpers for computing deltas 129

The following methods are public:

make_file (fromlines, tolines[, fromdesd[, todesd[, contexﬂ[, numlines])
Comparedromlinesand tolines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.
fromdescandtodescare optional keyword arguments to specify from/to file column header strings (both
default to an empty string).
contextandnumlinesare both optional keyword arguments. $ehtextto True when contextual differ-
ences are to be shown, else the defaukatse to show the full files.numlinesdefaults to5. When
contextis True numlinescontrols the number of context lines which surround the difference highlights.
Whencontextis False numlinescontrols the number of lines which are shown before a difference high-
light when using the "next” hyperlinks (setting to zero would cause the "next” hyperlinks to place the next
difference highlight at the top of the browser without any leading context).

make_table (fromlines, tolines[, fromdesn][, todesc][, contexﬂ[, numlines])
Comparedromlinesandtolines (lists of strings) and returns a string which is a complete HTML table
showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those fonake_file() method.
‘Tools/scripts/diff.py’ is a command-line front-end to this class and contains a good example of its use.
New in version 2.4.

context _diff (a, b[fromfile][, tofile][, fromfiledatd[, tofiledatei[, n][Iineterm])
Comparea andb (lists of strings); return a delta (a generator generating the delta lines) in context diff format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines isrseitigh defaults to three.

By default, the diff control lines (those witt¥* or ---) are created with a trailing newline. This is
helpful so that inputs created frofile.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, setlthetermargumenttd” so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings fimomfile, tofile, fromfiledate andtofiledate The modification times are normally
expressed in the format returned tiye.ctime() . If not specified, the strings default to blanks.

‘Tools/scripts/diff.py’ is a command-line front-end for this function.
New in version 2.3.

get _close _matches (‘word, possibilitieg, n][cutoff])
Return a list of the best “good enough” matchegord is a sequence for which close matches are desired
(typically a string), andoossibilitiesis a list of sequences against which to matebrd (typically a list of
strings).
Optional argument (default3) is the maximum number of close matches to retarmust be greater thah

Optional argumentutoff (default0.6) is a float in the range [0, 1]. Possibilities that don't score at least that
similar toword are ignored.

The best (no more tham) matches among the possibilities are returned in a list, sorted by similarity score, most
similar first.

130 Chapter 4. String Services

>>> get_close_matches('appel’, ['ape’, 'apple’, 'peach’, 'puppy’])
['apple’, "ape’]

>>> import keyword

>>> get_close_matches('wheel’, keyword.kwlist)

['while’]

>>> get_close_matches('apple’, keyword.kwlist)

I

>>> get_close_matches('accept’, keyword.kwlist)
[except’]

ndiff (a, d, linejunk][, charjunk])
Comparea andb (lists of strings); return ®iffer -style delta (a generator generating the delta lines).

Optional keyword parametelimejunkandcharjunkare for filter functions (oNone):

linejunk A function that accepts a single string argument, and returns true if the string is junk, or false if
not. The default isNone), starting with Python 2.3. Before then, the default was the module-level function
IS _LINE _JUNK() , which filters out lines without visible characters, except for at most one pound character
(‘#). As of Python 2.3, the underlyin§equenceMatcher class does a dynamic analysis of which lines are
so frequent as to constitute noise, and this usually works better than the pre-2.3 default.

charjunk A function that accepts a character (a string of length 1), and returns if the character is junk, or false if
not. The default is module-level functid8 _CHARACTERIUNK() , which filters out whitespace characters
(a blank or tab; note: bad idea to include newline in this!).

‘Tools/scripts/ndiff.py’ is a command-line front-end to this function.

>>> diff = ndiff(one\ntwo\nthree\n’.splitlines(1),
‘ore\ntree\nemu\n’.splitlines(1))
>>> print ”.join(diff),
- one

o -

+ ore

PR

- two

- three

? -

+ tree

+ emu

restore (sequence, whigh
Return one of the two sequences that generated a delta.

Given asequenc@roduced byDiffer.compare() or ndiff() , extract lines originating from file 1 or 2
(parametewhich), stripping off line prefixes.

Example:

>>> diff = ndiffCone\ntwo\nthree\n’.splitlines(1),
‘ore\ntree\nemu\n’.splitlines(1))
>>> diff = list(diff) # materialize the generated delta into a list
>>> print ”.join(restore(diff, 1)),

one

two

three

>>> print ".join(restore(diff, 2)),

ore

tree

emu

4.4. difflib — Helpers for computing deltas 131

unified _diff (a, b, fromfile][, tofile][, fromfiledatd [, tofiledatd[, n][, lineterm])
Comparea andb (lists of strings); return a delta (a generator generating the delta lines) in unified diff format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a inline style (instead of separate before/after blocks). The number of context lines is set
by n which defaults to three.

By default, the diff control lines (those with- , +++, or @ @are created with a trailing newline. This

is helpful so that inputs created frofile.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, setlthetermargument té” so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings fdnomfile, tofile, fromfiledate andtofiledate The modification times are normally
expressed in the format returned tioye.ctime() . If not specified, the strings default to blanks.

‘Tools/scripts/diff.py’ is a command-line front-end for this function.
New in version 2.3.

IS _LINE _JUNKline)
Return true for ignorable lines. The liiee is ignorable ifline is blank or contains a singlé*, otherwise it is
not ignorable. Used as a default for paramétejunkin ndiff() before Python 2.3.

IS _CHARACTERIJUNK ch)
Return true for ignorable characters. The charaches ignorable ifch is a space or tab, otherwise it is not
ignorable. Used as a default for parametearjunkin ndiff()

See Also:

Pattern Matching: The Gestalt Approach

(http://www.ddj.com/documents/s=1103/ddj8807c/)
Discussion of a similar algorithm by John W. Ratcliff and D. E. Metzener. This was publistigd iDobb’s
Journalin July, 1988.

4.4.1 SequenceMatcher Objects

The SequenceMatcher class has this constructor:

classSequenceMatcher ([isjunk[, a[b]]])
Optional argumernisjunkmust beNone (the default) or a one-argument function that takes a sequence element
and returns true if and only if the element is “junk” and should be ignored. Passing for isjunkis equivalent
to passindgambda x: 0 ;in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you're comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.
The optional argumenis andb are sequences to be compared; both default to empty strings. The elements of
both sequences must be hashable.

SequenceMatcher objects have the following methods:

set _segs (a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want to com-
pare one sequence against many sequencesetiseseq2() to set the commonly used sequence once and call
set _seql() repeatedly, once for each of the other sequences.

132 Chapter 4. String Services

set _seql (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set _seq2(h)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find _longest _match (alo, ahi, blo, bh)
Find longest matching block ia alo: ahi] andb[blo: bhi] .

If isjunkwas omitted oNone, get _longest _match() returns(i, j, k) suchthaf]i: i+k] is equal to
b[j: j+K] , wherealo <= i <= i+k <= ahiandblo <= j <= j+k <= bhi. Forall(i", j, k') meeting
those conditions, the additional conditidks>= k', i <= i',and ifi == i’,j <= | are also met. In other

words, of all maximal matching blocks, return one that starts earliesstamd of all those maximal matching
blocks that start earliest & return the one that starts earliestin

>>> s = SequenceMatcher(None, " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
O, 4, 5)

If isjunkwas provided, first the longest matching block is determined as above, but with the additional restriction
that no junk element appears in the block. Then that block is extended as far as possible by matching (only)
junk elements on both sides. So the resulting block never matches on junk except as identical junk happens to
be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That pteabots from matching
the’ abcd’ atthe tail end of the second sequence directly. Instead onlgltied’ can match, and matches
the leftmostabcd’ in the second sequence:

>>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
1, o, 4)

If no blocks match, this returnsalo, blo, 0) .

get _matching _blocks ()
Return list of triples describing matching subsequences. Each triple is of th€ formy n), and means that
ali:i+n] == Db[j: j+n] . The triples are monotonically increasingiiandj.
The last triple is a dummy, and has the vaflen(a), len(b), 0) . Itisthe only triple withn ==
>>> s = SequenceMatcher(None, "abxcd", "abcd")

>>> s.get_matching_blocks()
[0, 0, 2), (3, 2, 2), (5, 4, 0)]

get _opcodes ()
Return list of 5-tuples describing how to tuannto b. Each tuple is of the forritag, i1, i2, j1, j2). The
first tuple hadl == j1 == 0, and remaining tuples hav& equal to thei2 from the preceding tuple, and,
likewise,j1 equal to the previoug.

Thetag values are strings, with these meanings:

Value | Meaning
'replace’ a[i1: i2] should be replaced by j1: j2] .
‘delete’ a[i1: i2] should be deleted. Note thidt == j2 in this case.
'insert’ b[j1:j2] should be inserted &f i1: i1] . Note thatl == i2 in this case.
‘equal’ alil:i2] == Db[j1:]2] (the sub-sequences are equal).
For example:

4.4. difflib — Helpers for computing deltas 133

>>> a = "gabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher(None, a, b)

>>> for tag, i1, i2, j1, j2 in s.get_opcodes():
print ("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %

(tag, i1, i2, afi1:i2], j1, j2, b[j1:j2]))
delete a[0:1] (q) b[0:0] ()

equal a[l1:3] (ab) b[0:2] (ab)
replace a[3:4] (x) b[2:3] (y)

equal a[4:6] (cd) b[3:5] (cd)

insert a[6:6] () b[5:6] (f)

get _grouped _opcodes ([n])

ratio

Return a generator of groups with uprtdéines of context.

Starting with the groups returned lyet _opcodes() , this method splits out smaller change clusters and
eliminates intervening ranges which have no changes.
The groups are returned in the same formajets_opcodes() . New in version 2.3.

0
Return a measure of the sequences’ similarity as a float in the range [0, 1].
Where T is the total number of elements in both sequences, and M is the number of matches, this is 2.0*M / T.
Note that this isl.0 if the sequences are identical, ah@ if they have nothing in common.

This is expensive to compute et _matching _blocks() or get _opcodes() hasn't already been
called, in which case you may want to tquick _ratio() or real _quick _ratio() first to get an
upper bound.

quick _ratio ()

real

Return an upper bound aatio() relatively quickly.
This isn’'t defined beyond that it is an upper boundatio() , and is faster to compute.

_quick _ratio ()
Return an upper bound aatio() very quickly.

This isn't defined beyond that it is an upper boundatio() , and is faster to compute than eithatio()
orquick _ratio()

The three methods that return the ratio of matching to total characters can give different results due to differing levels of
approximation, althougfuick _ratio() andreal _quick _ratio() are always at least as largeratio()

>>> s = SequenceMatcher(None, "abcd", "bcde")
>>> g.ratio()

0.75

>>> s.quick_ratio()

0.75

>>> s.real_quick_ratio()

1.0

4.4.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk:”

134

Chapter 4. String Services

>>> s = SequenceMatcher(lambda x: x == ,
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio() returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thuaitip@ value
over 0.6 means the sequences are close matches:

>>> print round(s.ratio(), 3)
0.866

If you're only interested in where the sequences mageh,_matching _blocks() is handy:

>>> for block in s.get_matching_blocks():

. print "a[%d] and b[%d] match for %d elements" % block
al0] and b[0] match for 8 elements

a[8] and b[17] match for 6 elements

a[14] and b[23] match for 15 elements

a[29] and b[38] match for O elements

Note that the last tuple returned gt _matching _blocks() is always a dummylen(a), len(b), 0) ,
and this is the only case in which the last tuple element (number of elements matdbed) is

If you want to know how to change the first sequence into the secondetiseopcodes()

>>> for opcode in s.get_opcodes():

. print "%6s a[%d:%d] b[%d:%d]" % opcode
equal af0:8] b[0:8]

insert a[8:8] b[8:17]

equal a[8:14] b[17:23]

equal a[14:29] b[23:38]

See also the functioget _close _matches() in this module, which shows how simple code building on
SequenceMatcher can be used to do useful work.

4.4.3 Differ Objects

Note thatDiffer -generated deltas make no claim to mé@imal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Restrict-
ing synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing a longer
diff.

TheDiffer class has this constructor:

classDiffer ([Iinejunk[, charjunk]])
Optional keyword parametelimejunkandcharjunkare for filter functions (oNone):
linejunk A function that accepts a single string argument, and returns true if the string is junk. The default is
None, meaning that no line is considered junk.

charjunk A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default idone, meaning that no character is considered junk.

4.4. difflib — Helpers for computing deltas 135

Differ objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can be obtained
from thereadlines() method of file-like objects. The delta generated also consists of newline-terminated
strings, ready to be printed as-is via thdtelines() method of a file-like object.

4.4.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained frone#uines() method of file-like objects):

>>> textl = " 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.

. 4, Complex is better than complicated.

. ".splitlines(1)

>>> |en(textl)

4

>>> text1[0][-1]

\n'

>>> text2 = " 1. Beautiful is better than ugly.

3. Simple is better than complex.

4. Complicated is better than complex.

5. Flat is better than nested.

.splitlines(1)

m

Next we instantiate a Differ object:

>>> d = Differ()

Note that when instantiating@iffer ~ object we may pass functions to filter out line and character “junk.” See the
Differ() constructor for details.

Finally, we compare the two:

>>> result = list(d.compare(textl, text2))

result s a list of strings, so let’s pretty-print it:

136 Chapter 4. String Services

>>> from pprint import pprint
>>> pprint(result)
[1. Beautiful is better than ugly.\n’,
2. Explicit is better than implicit.\n’,
- 3. Simple is better than complex.\n’,
3. Simple is better than complex.\n’,
'? ++ \n’
’ 4. Complex is better than complicated.\n’,

? \n’,
+ 4. Complicated is better than complex.\n’,

" -

+

++++ ~o\n),
5. Flat is better than nested.\n’]

As a single multi-line string it looks like this:

>>> import sys

>>> sys.stdout.writelines(result)

1. Beautiful is better than ugly.

2. Explicit is better than implicit.

3. Simple is better than complex.

+ 3. Simple is better than complex.
? ++
- 4. Complex is better than complicated.
° - -
+ 4. Complicated is better than complex.
? ++++ 7 .
+ 5. Flat is better than nested.
4.5 fpformat — Floating point conversions

The fpformat module defines functions for dealing with floating point numbers representations in 100% pure
Python.Note: This module is unneeded: everything here could be done vig#teng interpolation operator.

Thefpformat module defines the following functions and an exception:
fix (x,dig9

Formatx as[-]ddd.ddd with digs digits after the point and at least one digit before.dijs <= 0, the
decimal point is suppressed.

x can be either a number or a string that looks like afigsis an integer.
Return value is a string.
sci (X, dig9

Formatx as[-]d.dddE[+-]ddd with digsdigits after the point and exactly one digit beforedifs <= 0,
one digit is kept and the point is suppressed.

x can be either a real number, or a string that looks like digsis an integer.
Return value is a string.

exceptionNotANumber

Exception raised when a string passetix) orsci() asthexparameter does not look like a number. This
is a subclass ofalueError when the standard exceptions are strings. The exception value is the improperly
formatted string that caused the exception to be raised.

4.5. fpformat — Floating point conversions 137

Example:

>>> import fpformat
>>> fpformat.fix(1.23, 1)
1.2

4.6 StringlO — Read and write strings as files

This module implements a file-like clasStringlO , that reads and writes a string buffer (also knownresmory
fileg. See the description of file objects for operations (section 2.3.9).

classStringlO ([buffer])
When aStringlO object is created, it can be initialized to an existing string by passing the string to the
constructor. If no string is given, thgtringlO will start empty. In both cases, the initial file position starts at
zero.

TheStringlO object can accept either Unicode or 8-bit strings, but mixing the two may take some care. If both
are used, 8-bit strings that cannot be interpreted asAskit (that use the 8th bit) will causelinicodeError
to be raised whegetvalue() s called.

The following methods o8tringlO objects require special mention:

getvalue ()
Retrieve the entire contents of the “file” at any time beforeShinglO object'sclose() method is called.
See the note above for information about mixing Unicode and 8-bit strings; such mixing can cause this method
to raiseUnicodeError

close ()
Free the memory buffer.

4.7 cStringlO — Faster version of StringlO

The module cStringlO provides an interface similar to that of thetringlO module. Heavy use of
StringlO.StringlO objects can be made more efficient by using the funcBtimglO() from this mod-
ule instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to build your own
version using subclassing. Use the origiB&inglO module in that case.

Unlike the memory files implemented by tB&inglO module, those provided by this module are not able to accept
Unicode strings that cannot be encoded as piaiall strings.

Another difference from th&tringlO module is that callingtringlO() with a string parameter creates a read-
only object. Unlike an object created without a string parameter, it does not have write methods. These objects are not
generally visible. They turn up in tracebacksstengl andStringO

The following data objects are provided as well:

InputType
The type object of the objects created by callBtgnglO with a string parameter.

OutputType
The type object of the objects returned by callBtginglO with no parameters.

There is a C API to the module as well; refer to the module source for more information.

138 Chapter 4. String Services

4.8 textwrap — Text wrapping and filling

New in version 2.3.

Thetextwrap module provides two convenience functiomgap() andfill() , as well asTextWrapper
the class that does all the work, and a utility functaedent() . If you're just wrapping or filling one or two text
strings, the convenience functions should be good enough; otherwise, you should use an inStart& @fpper

for efficiency.

wrap (tex{, width[, ...]])
Wraps the single paragraph text (a string) so every line is at mostidth characters long. Returns a list of
output lines, without final newlines.

Optional keyword arguments correspond to the instance attributesxofrapper , documented belowvidth

defaults to70.
fill (texq, width[, ..]])
Wraps the single paragraph text and returns a single string containing the wrapped paragté[gh. is

shorthand for

"\n".join(wrap(text, ...))

In particularfill() accepts exactly the same keyword argumentsrap() .

Both wrap() andfill() work by creating arextWrapper instance and calling a single method on it. That
instance is not reused, so for applications that wrap/fill many text strings, it will be more efficient for you to create
your ownTextWrapper object.

An additional utility functiondedent() , is provided to remove indentation from strings that have unwanted whites-
pace to the left of the text.

dedent (tex®
Remove any whitespace that can be uniformly removed from the left of every ltegtin

This is typically used to make triple-quoted strings line up with the left edge of screen/whatever, while still
presenting it in the source code in indented form.

For example:

def test():
end first line with \ to avoid the empty line!
s ="
hello
world

print repr(s) # prints ’ hello\n world\n
print repr(dedent(s)) # prints ’hello\n world\n’

classTextWrapper (..)
TheTextWrapper constructor accepts a number of optional keyword arguments. Each argument corresponds
to one instance attribute, so for example

wrapper = TextWrapper(initial_indent="* ")

is the same as

wrapper = TextWrapper()
wrapper.initial_indent = "* "

4.8. textwrap — Text wrapping and filling 139

You can re-use the sanf@xtWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

TheTextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the input text
longer tharwidth |, TextWrapper guarantees that no output line will be longer thedth characters.

expand _tabs
(default: True) If true, then all tab characters text will be expanded to spaces using tpandtabs()
method oftext

replace _whitespace
(default: True) If true, each whitespace character (as definedthbigg.whitespace) remaining after tab
expansion will be replaced by a single spaete: If expand _tabs is false andeplace _whitespace
is true, each tab character will be replaced by a single space, whichtise same as tab expansion.

initial _indent
(default:”) String that will be prepended to the first line of wrapped output. Counts towards the length of the
first line.

subsequent _indent
(default:”) String that will be prepended to all lines of wrapped output except the first. Counts towards the
length of each line except the first.

fix _sentence _endings
(default: False) If true, TextWrapper attempts to detect sentence endings and ensure that sentences are
always separated by exactly two spaces. This is generally desired for text in a monospaced font. However,
the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a lowercase letter
followed by one of ! ’, “! *, or * ?’, possibly followed by one of*’ or ** ’, followed by a space. One problem
with this is algorithm is that it is unable to detect the difference between “Dr.” in

[...] Dr. Frankenstein’'s monster [...]

and “Spot.” in

[...] See Spot. See Spot run [...]

fix _sentence _endings is false by default.

Since the sentence detection algorithm reliestoimg.lowercase for the definition of “lowercase letter,”
and a convention of using two spaces after a period to separate sentences on the same line, it is specific to
English-language texts.

break _long _words
(default: True) If true, then words longer thamidth will be broken in order to ensure that no lines are longer
thanwidth . If it is false, long words will not be broken, and some lines may be longerhdth . (Long
words will be put on a line by themselves, in order to minimize the amount by whiitth is exceeded.)

TextWrapper also provides two public methods, analogous to the module-level convenience functions:

wrap (texd
Wraps the single paragraph iext (a string) so every line is at mostidth characters long. All wrapping
options are taken from instance attributes ofTleatWrapper instance. Returns a list of output lines, without
final newlines.

fill (tex)
Wraps the single paragraphtiext and returns a single string containing the wrapped paragraph.

140 Chapter 4. String Services

4.9 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry which manages the codec and error handling lookup process.

It defines the following functions:

register (search_function
Register a codec search function. Search functions are expected to take one argument, the encoding name in
all lower case letters, and return a tuple of functioemncoder decoder stream.reader, stream.writer)
taking the following arguments:

encoder and decoder These must be functions or methods which have the same interface as the
encode() /decode() methods of Codec instances (see Codec Interface). The functions/methods are ex-
pected to work in a stateless mode.

stream_readerandstream.writer: These have to be factory functions providing the following interface:
factory(stream errors='strict’)

The factory functions must return objects providing the interfaces defined by the base Stasaps/Nriter
andStreamReader , respectively. Stream codecs can maintain state.

Possible values for errors a'srict’ (raise an exception in case of an encoding erfogplace’ (re-
place malformed data with a suitable replacement marker, sucP)asignore’ (ignore malformed data
and continue without further noticéxmicharrefreplace’ (replace with the appropriate XML character
reference (for encoding only)) arlgackslashreplace’ (replace with backslashed escape sequences (for
encoding only)) as well as any other error handling name definetgiater _error()

In case a search function cannot find a given encoding, it should ndtura.

lookup (‘encoding
Looks up a codec tuple in the Python codec registry and returns the function tuple as defined above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is
scanned. If no codecs tuple is found, @kupError is raised. Otherwise, the codecs tuple is stored in the
cache and returned to the caller.

To simplify access to the various codecs, the module provides these additional functions wHmbkup€) for
the codec lookup:

getencoder (encoding
Lookup up the codec for the given encoding and return its encoder function.

Raises d.ookupError in case the encoding cannot be found.

getdecoder (encoding
Lookup up the codec for the given encoding and return its decoder function.

Raises d ookupError in case the encoding cannot be found.

getreader (encoding
Lookup up the codec for the given encoding and return its StreamReader class or factory function.

Raises d.ookupError in case the encoding cannot be found.

getwriter (encoding
Lookup up the codec for the given encoding and return its StreamWriter class or factory function.

Raises d ookupError in case the encoding cannot be found.

register _error (name, errorhandler)
Register the error handling functi@mror_handlerunder the namaame error_handlerwill be called during
encoding and decoding in case of an error, whameis specified as the errors parameter.

For encodingerror_handlerwill be called with aUnicodeEncodeError instance, which contains informa-
tion about the location of the error. The error handler must either raise this or a different exception or return a

4.9. codecs — Codec registry and base classes 141

tuple with a replacement for the unencodable part of the input and a position where encoding should continue.
The encoder will encode the replacement and continue encoding the original input at the specified position.
Negative position values will be treated as being relative to the end of the input string. If the resulting position
is out of bound an IndexError will be raised.

Decoding and translating works similar, excéfsticodeDecodeError or UnicodeTranslateError
will be passed to the handler and that the replacement from the error handler will be put into the output directly.

lookup _error (nameg
Return the error handler previously register under the naanee

Raises d ookupError in case the handler cannot be found.

strict _errors (exceptiol
Implements thestrict error handling.

replace _errors (. exceptiol
Implements theeplace error handling.

ignore _errors (exception
Implements thégnore error handling.

xmlicharrefreplace _errors _errors (exception
Implements thexmlicharrefreplace error handling.
backslashreplace _errors _errors (exception

Implements théackslashreplace error handling.
To simplify working with encoded files or stream, the module also defines these utility functions:

open (filename, moc{e encodin&, errors[, buffering]]])
Open an encoded file using the givemodeand return a wrapped version providing transparent encod-
ing/decoding.

Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode objects for
most built-in codecs. Output is also codec-dependent and will usually be Unicode as well.

encodingspecifies the encoding which is to be used for the file.

errors may be given to define the error handling. It defaultstact’ which causes ¥alueError to be
raised in case an encoding error occurs.

bufferinghas the same meaning as for the builbpen() function. It defaults to line buffered.

EncodedFile (file, inpul[, outpu{, errors]])
Return a wrapped version of file which provides transparent encoding translation.

Strings written to the wrapped file are interpreted according to the gt encoding and then written to
the original file as strings using tfeutputencoding. The intermediate encoding will usually be Unicode but
depends on the specified codecs.

If outputis not given, it defaults tinput.

errors may be given to define the error handling. It defaultstdct’ , which cause¥alueError to be
raised in case an encoding error occurs.

The module also provides the following constants which are useful for reading and writing to platform dependent files:

BOM

BOMBE
BOMLE
BOMUTF8
BOMUTF16
BOMUTF16_BE
BOMUTF16_LE
BOMUTF32

142 Chapter 4. String Services

BOMUTF32_BE

BOMUTF32_LE
These constants define various encodings of the Unicode byte order mark (BOM) used in UTF-16 and UTF-
32 data streams to indicate the byte order used in the stream or file and in UTF-8 as a Unicode signature.
BOMUTF16 is eitherBOMUTF16_BE or BOMUTF16_LE depending on the platform’s native byte order,
BOMis an alias forBOMUTF16, BOMLE for BOMUTF16_LE and BOMBE for BOMUTF16_BE. The
others represent the BOM in UTF-8 and UTF-32 encodings.

49.1 Codec Base Classes

Thecodecs defines a set of base classes which define the interface and can also be used to easily write you own
codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to imple-
ment the file protocols.

TheCodec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, #secode() anddecode() methods may implement different error
handling schemes by providing tleerors string argument. The following string values are defined and implemented
by all standard Python codecs:

Value Meaning

'strict’ RaiseUnicodeError (or a subclass); this is the default.

'ignore’ Ignore the character and continue with the next.

replace’ Replace with a suitable replacement character; Python will use the official U+FFFD REPLACE
'xmlicharrefreplace’ Replace with the appropriate XML character reference (only for encoding).

'backslashreplace’ Replace with backslashed escape sequences (only for encoding).

The set of allowed values can be extendedreister _error

Codec Objects

TheCodec class defines these methods which also define the function interfaces of the stateless encoder and decoder:

encode (input[, errors])
Encodes the objetputand returns a tuple (output object, length consumed). While codecs are not restricted to
use with Unicode, in a Unicode context, encoding converts a Unicode object to a plain string using a particular
character set encoding (e.gpl1252 oriso-8859-1).

errors defines the error handling to apply. It defaultsdwict’ handling.

The method may not store state in Bedec instance. Usé&treamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

decode (input[, errors])
Decodes the objedput and returns a tuple (output object, length consumed). In a Unicode context, decoding
converts a plain string encoded using a particular character set encoding to a Unicode object.

input must be an object which provides thé _getreadbuf buffer slot. Python strings, buffer objects and
memory mapped files are examples of objects providing this slot.

errors defines the error handling to apply. It defaultsdtict’ handling.

4.9. codecs — Codec registry and base classes 143

The method may not store state in tBedec instance. Usé&treamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

The StreamWriter andStreamReader classes provide generic working interfaces which can be used to imple-
ment new encodings submodules very easily. Semdings.utf _8 for an example on how this is done.

StreamWriter Objects

TheStreamWriter class is a subclass @fodec and defines the following methods which every stream writer must
define in order to be compatible to the Python codec registry.

classStreamWriter (strean{, errors])
Constructor for &8treamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for writing (binary) data.

The StreamWriter may implement different error handling schemes by providingetiners keyword argu-
ment. These parameters are predefined:

eo’strict’ RaiseValueError (or a subclass); this is the default.

e’'ignore’ Ignore the character and continue with the next.

e’replace’ Replace with a suitable replacement character

eo'’xmicharrefreplace’ Replace with the appropriate XML character reference
e’backslashreplace’ Replace with backslashed escape sequences.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime $frran\Writer object.

The set of allowed values for tlegrors argument can be extended wittgister _error()
write (objec)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusingite¢) method).

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state, that allows appending of
new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, tBé&reamWriter must also inherit all other methods and attribute from the
underlying stream.

StreamReader Objects
The StreamReader class is a subclass @odec and defines the following methods which every stream reader
must define in order to be compatible to the Python codec registry.

classStreamReader (strean{, errors])
Constructor for &StreamReader instance.

144 Chapter 4. String Services

All stream readers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for reading (binary) data.

The StreamReader may implement different error handling schemes by providingetiners keyword argu-
ment. These parameters are defined:

e’strict’ RaiseValueError (or a subclass); this is the default.
e’'ignore’ Ignore the character and continue with the next.
e'replace’ Replace with a suitable replacement character.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime $frieemReader object.

The set of allowed values for thegrors argument can be extended witkgister _error()
read ([size[, chars,[firstline]]])
Decodes data from the stream and returns the resulting object.

charsindicates the number of characters to read from the streaad() will never return more thachars
characters, but it might return less, if there are not enough characters available.

sizeindicates the approximate maximum number of bytes to read from the stream for decoding purposes. The
decoder can modify this setting as appropriate. The default value -1 indicates to read and decode as much as
possible sizeis intended to prevent having to decode huge files in one step.

firstline indicates that it would be sufficient to only return the first line, if there are decoding errors on later lines.

The method should use a greedy read strategy meaning that it should read as much data as is allowed within the
definition of the encoding and the given size, e.qg. if optional encoding endings or state markers are available on
the stream, these should be read too.

Changed in version 2.4harsargument added. Changed in version 2.fir&tline argument added.

readline ([size[, keepend]s])
Read one line from the input stream and return the decoded data.

size if given, is passed as size argument to the streagaidline() method.
If keependss false lineends will be stripped from the lines returned.
Changed in version 2.4eependargument added.

readlines ([sizehin[, keepend]s])
Read all lines available on the input stream and return them as list of lines.

Line breaks are implemented using the codec’s decoder method and are included in the list dwteipsaritlis
is true.

sizehint if given, is passed asizeargument to the streantead() method.

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to recover
from decoding errors.

In addition to the above methods, tBéreamReader must also inherit all other methods and attribute from the
underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may provide
useful in practice.

4.9. codecs — Codec registry and base classes 145

StreamReaderWriter Objects

The StreamReaderWriter allows wrapping streams which work in both read and write modes.
The design is such that one can use the factory functions returned lopkup() function to construct the instance.

classStreamReaderWriter (stream, Reader, Writer, erroys
Creates &treamReaderWriter instance streammust be a file-like objecReaderandWriter must be fac-
tory functions or classes providing tisdreamReader andStreamWriter interface resp. Error handling
is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfacesStfeamReader and StreamWriter
classes. They inherit all other methods and attribute from the underlying stream.

StreamRecoder Objects

The StreamRecoder provide a frontend - backend view of encoding data which is sometimes useful when dealing
with different encoding environments.

The design is such that one can use the factory functions returned lopkup() function to construct the instance.

classStreamRecoder (stream, encode, decode, Reader, Writer, ejrors
Creates é&treamRecoder instance which implements a two-way conversiencodeanddecodework on
the frontend (the input toead() and output ofwrite()) while Readerand Writer work on the backend
(reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.
streammust be a file-like object.

encode decodemust adhere to th€odec interface,Reader Writer must be factory functions or classes pro-
viding objects of thestreamReader andStreamWriter interface respectively.

encodeanddecodeare needed for the frontend translati®@gaderandWriter for the backend translation. The
intermediate format used is determined by the two sets of codecs, e.g. the Unicode codecs will use Unicode as
intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaceStoéamReader andStreamWriter classes. They
inherit all other methods and attribute from the underlying stream.

4.9.2 Standard Encodings

Python comes with a number of codecs builtin, either implemented as C functions, or with dictionaries as mapping

tables. The following table lists the codecs by name, together with a few common aliases, and the languages for which
the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive. Notice that
spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid aliases.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

e an ISO 8859 codeset

e a Microsoft Windows code page, which is typically derived from a 8859 codeset, but replaces control characters
with additional graphic characters

e an IBM EBCDIC code page

e an IBM PC code page, which isscii compatible

146 Chapter 4. String Services

Codec Aliases Languages
ascii 646, us-ascii English

big5 big5-tw, csbig5 Traditional Chir
big5hkscs big5-hkscs, hkscs Traditional Chir
cp037 IBM037, IBM039 English

cp424 EBCDIC-CP-HE, IBM424 Hebrew

cp437 437, I1BM437 English

cp500 EBCDIC-CP-BE, EBCDIC-CP-CH, IBM500 Western Europ:
cp737 Greek

cp775 IBM775 Baltic language
cp850 850, IBM850 Western Europe
cp852 852, IBM852 Central and Ea:
cp855 855, IBM855 Bulgarian, Byel
cp856 Hebrew

cp857 857, IBM857 Turkish

cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM861 Icelandic
cp862 862, IBM862 Hebrew

cp863 863, IBM863 Canadian
cp864 IBM864 Arabic

cp865 865, IBM865 Danish, Norwe
Ccp866 866, IBM866 Russian

cp869 869, CP-GR, IBM869 Greek

cp874 Thai

cp875 Greek

cp932 932, ms932, mskanji, ms-kanji Japanese
cp949 949, ms949, uhc Korean

cp950 950, ms950 Traditional Chir
cp1006 Urdu

cpl026 ibm1026 Turkish
cpl1140 ibm1140 Western Europ:
cpl250 windows-1250 Central and Ea:
cpl251 windows-1251 Bulgarian, Byel
cpl1252 windows-1252 Western Europt
cpl1253 windows-1253 Greek

cpl254 windows-1254 Turkish

cpl255 windows-1255 Hebrew
cpl256 windows1256 Arabic

cpl257 windows-1257 Baltic language
cpl258 windows-1258 Viethamese
euc_jp eucjp, ujis, u-jis Japanese
euc_jis_2004 jisx0213, eucjis2004 Japanese
euc_jisx0213 eucjisx0213 Japanese
euc_kr euckr, korean, ksc5601, ke-5601, ks c-5601-1987, ksx1001, kx-1001 Korean

gh2312 chinese, ¢sis058gh231280, euc-cn, euccn, eucgh2312-cn, gh2312-1980, gh2312-80, is&impdfied Ching
gbk 936, cp936, ms936 Unified Chinese
gb18030 gb18030-2000 Unified Chinese
hz hzgb, hz-gb, hz-gh-2312 Simplified Chin
502022 jp €sis02022jp, is02022jp, is0-2022-jp Japanese
502022 jp_1 i502022jp-1, is0-2022-jp-1 Japanese
502022 jp_2 i502022jp-2, is0-2022-jp-2 Japanese, Kore
502022 jp_2004 | is02022jp-2004, is0-2022-jp-2004 Japanese
502022 jp_3 is02022jp-3, is0-2022-jp-3 Japanese
502022 jp_ext i502022jp-ext, is0-2022-jp-ext Japanese

4.9. codecs — Codec registry and base classes

147

Codec Aliases Languages
502022 kr €sis02022kr, is02022kr, iso0-2022-kr Korean

latin_1 is0-8859-1, is08859-1, 8859, cp819, latin, latinl, L1 West Europe
is08859 2 iS0-8859-2, latin2, L2 Central and Ea:
is08859 3 is0-8859-3, latin3, L3 Esperanto, Mal
is08859 4 is0-8859-4, latin4, L4 Baltic languagu
508859 5 is0-8859-5, cyrillic Bulgarian, Byel
i508859 6 is0-8859-6, arabic Arabic

i508859 7 is0-8859-7, greek, greek8 Greek

is08859 8 is0-8859-8, hebrew Hebrew
is08859 9 iS0-8859-9, latin5, L5 Turkish
is08859 10 is0-8859-10, latin6, L6 Nordic languag
is08859 13 is0-8859-13 Baltic language
is08859 14 is0-8859-14, lating, L8 Celtic language
i508859 15 iS0-8859-15 Western Europ:
johab cpl361, ms1361 Korean

koi8_r Russian

koi8_u Ukrainian
mac_cyrillic maccyrillic Bulgarian, Byel
mac_greek macgreek Greek
mac_iceland maciceland Icelandic
mac_latin2 maclatin2, maccentraleurope Central and Ea:
mac_roman macroman Western Europe
mac_turkish macturkish Turkish
ptcpl54 csptcpl54, pt154, cpl54, cyrillic-asian Kazakh
shift_jis csshiftjis, shiftjis, sjis, sjis Japanese
shift_jis_2004 shiftjis2004, sjis 2004, sjis2004 Japanese
shift_jisx0213 shiftjisx0213, sjisx0213, 5isx0213 Japanese
utf_16 U16, utflé all languages
utf_16_be UTF-16BE all languages (E
utf_16_le UTF-16LE all languages (E
utf_7 U7 all languages
utf_8 U8, UTF, utf8 all languages

A number of codecs are specific to Python, so their codec names have no meaning outside Python. Some of them
don't convert from Unicode strings to byte strings, but instead use the property of the Python codecs machinery that

any bijective function with one argument can be considered as an encoding.

For the codecs listed below, the result in the “encoding” direction is always a byte string. The result of the “decoding”
direction is listed as operand type in the table.

148

Chapter 4. String Services

Codec Aliases Operand type | Purpose

base64.codec base64, base-64 byte string Convert operand to MIME base64

bz2 _codec bz2 byte string Compress the operand using bz2
hex_codec hex byte string Convert operand to hexadecimal represent:
idna Unicode string| Implements RFC 3490. New in version 2.3
mbcs dbcs Unicode string| Windows only: Encode operand according t
palmos Unicode string| Encoding of PalmOS 3.5

punycode Unicode string| Implements RFC 3492. New in version 2.3
qguopri_codec quopri, quoted-printable, quotedprintahbleébyte string Convert operand to MIME quoted printable
raw_unicode escape Unicode string| Produce a string that is suitable as raw Unic
rot_13 rotl3 byte string Returns the Caesar-cypher encryption of th
string_escape byte string Produce a string that is suitable as string lite
undefined any Raise an exception for all conversion. Can |
unicode_escape Unicode string| Produce a string that is suitable as Unicode
unicode_internal Unicode string| Return the internal representation of the op
uu_codec uu byte string Convert the operand using uuencode
zlib_codec zip, zlib byte string Compress the operand using gzip

4.9.3 encodings.idna

New in version 2.3.

— Internationalized Domain Names in Applications

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492 (Nameprep:
A Stringprep Profile for Internationalized Domain Names (IDN)). It builds uponpgheycode encoding and

stringprep

These RFCs together define a protocol to supporta®oH characters in domain names. A domain name containing
non-Ascll characters (such as “www.Alliancefrangaise.nu”) is converted intasaii-compatible encoding (ACE,

such as “www.xn—alliancefranaise-npb.nu”). The ACE form of the domain name is then used in all places where
arbitrary characters are not allowed by the protocol, such as DNS queries, HdstPfields, and so on. This
conversion is carried out in the application; if possible invisible to the user: The application should transparently
convert Unicode domain labels to IDNA on the wire, and convert back ACE labels to Unicode before presenting them

to the user.

Python supports this conversion in several ways: itina codec allows to convert between Unicode and the ACE.
module transparently converts Unicode host names to ACE, so that applications need not

Furthermore, theocket

be concerned about converting host names themselves when they pass them to the socket module. On top of that,
modules that have host names as function parameters, sittpis andftplib , accept Unicode host names
(httplib then also transparently sends an IDNA hostname imdthse field if it sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode is
performed: Applications wishing to present such host names to the user should decode them to Unicode.

The moduleencodings.idna also implements the nameprep procedure, which performs certain normalizations on
host names, to achieve case-insensitivity of international domain names, and to unify similar characters. The nameprep
functions can be used directly if desired.

nameprep (label)
Return the nameprepped version laibel
AllowUnassigned s true.

ToASCII (label)
Convert a label tascii, as specified in RFC 3490UseSTD3ASCIIRules

ToUnicode (label)
Convert a label to Unicode, as specified in RFC 3490.

The implementation currently assumes query strings, so

is assumed to be false.

4.9. codecs — Codec registry and base classes 149

4.10 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for all Unicode
characters. The data in this database is based owtteptieData.txt’ file version 3.2.0 which is publically available
from ftp://ftp.unicode.org/.

The module uses the same names and symbols as defined by the UnicodeData File Format 3.2.0 (see
http://www.unicode.org/Public/lUNIDATA/UnicodeData.html). It defines the following functions:

lookup (namg
Look up character by name. If a character with the given name is found, return the corresponding Unicode
character. If not found<eyError is raised.

name(unichr[, default])
Returns the name assigned to the Unicode charantehr as a string. If no name is definedkfaultis returned,
or, if not given,ValueError s raised.

decimal (unichr[, default])
Returns the decimal value assigned to the Unicode charantelnr as integer. If no such value is defined,
defaultis returned, or, if not giveriValueError is raised.

digit (unichi, default])
Returns the digit value assigned to the Unicode charactiehr as integer. If no such value is definetifault
is returned, or, if not giverialueError is raised.

numeric (unichr[, default])
Returns the numeric value assigned to the Unicode chanawighr as float. If no such value is definedifault
is returned, or, if not giverialueError is raised.

category (‘unichr)
Returns the general category assigned to the Unicode chauadtér as string.

bidirectional (‘unichr)
Returns the bidirectional category assigned to the Unicode chataxtdr as string. If no such value is defined,
an empty string is returned.

combining (unichr)
Returns the canonical combining class assigned to the Unicode charaitler as integer. Return8 if no
combining class is defined.

east _asian _width (‘unichr)
Returns the east asian width assigned to the Unicode chausitér as string. New in version 2.4.

mirrored (unichr)
Returns the mirrored property assigned to the Unicode characiehr as integer. Returns if the character
has been identified as a “mirrored” character in bidirectional @rtherwise.

decomposition (unichr)
Returns the character decomposition mapping assigned to the Unicode chanatteras string. An empty
string is returned in case no such mapping is defined.

normalize (form, unist)
Return the normal fornform for the Unicode stringinistr. Valid values forform are 'NFC’, 'NFKC’, 'NFD’,
and 'NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition of canon-
ical equivalence and compatibility equivalence. In Unicode, several characters can be expressed in various way.
For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA) can also be expressed as
the sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD) is
also known as canonical decomposition, and translates each character into its decomposed form. Normal form

150 Chapter 4. String Services

C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For example,
U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL LETTER I).
However, it is supported in Unicode for compatibility with existing character sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility charac-
ters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposition, followed
by the canonical composition.

New in version 2.3.
In addition, the module exposes the following constant:

unidata _version
The version of the Unicode database used in this module.

New in version 2.3.

4.11 stringprep — Internet String Preparation

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications for
“equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it should
be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only identifications
consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto the
wire, they are processed with the preparation procedure, after which they have a certain normalized form. The RFC
defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and what
other optional parts of thetringprep procedure are part of the profile. One example strengprep profile is
nameprep , which is used for internationalized domain names.

The modulestringprep only exposes the tables from RFC 3454. As these tables would be very large to represent
them as dictionaries or lists, the module uses the Unicode character database internally. The module source code itself
was generated using thekstringprep.py utility.

As a result, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC: sets
and mappings. For a sedffringprep provides the “characteristic function”, i.e. a function that returns true if the
parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the associated
value. Below is a list of all functions available in the module.

in _table _al(codg
Determine whethetodeis in tableA.1 (Unassigned code points in Unicode 3.2).

in _table _b1(codd
Determine whethetodeis in tableB.1 (Commonly mapped to nothing).

map_table _b2(code
Return the mapped value foodeaccording to tableB.2 (Mapping for case-folding used with NFKC).

map_table _b3(code
Return the mapped value foodeaccording to tableB.3 (Mapping for case-folding used with no normalization).

in _table _cl11(code
Determine whethetodeis in tableC.1.1 (ASCII space characters).

in _table _c12(code
Determine whethetodeis in tableC.1.2 (Non-ASCIl space characters).

in _table _c11 _c12(codg
Determine whethetodeis in tableC.1 (Space characters, union of C.1.1 and C.1.2).

4.11. stringprep — Internet String Preparation 151

in _table _c21(code
Determine whethetodeis in tableC.2.1 (ASCII control characters).

in _table _c22(code
Determine whethetodeis in tableC.2.2 (Non-ASCII control characters).

in _table _c21 _c22(codd
Determine whethetodeis in tableC.2 (Control characters, union of C.2.1 and C.2.2).

in _table _c3(codg
Determine whethetodeis in tableC.3 (Private use).

in _table _c4(codg
Determine whethetodeis in tableC.4 (Non-character code points).

in _table _c5(codg
Determine whethetodeis in tableC.5 (Surrogate codes).

in _table _c6(codd
Determine whethetodeis in tableC.6 (Inappropriate for plain text).

in _table _c7(codg
Determine whethetodeis in tableC.7 (Inappropriate for canonical representation).

in _table _c8(codg
Determine whethetodeis in tableC.8 (Change display properties or are deprecated).

in _table _c9(codg
Determine whethetodeis in tableC.9 (Tagging characters).

in _table _d1(codd
Determine whethetodeis in tableD.1 (Characters with bidirectional property “R” or “AL").

in _table _d2(codg
Determine whethetodeis in tableD.2 (Characters with bidirectional property “L").

152 Chapter 4. String Services

CHAPTER
FIVE

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are available in all Python versions. Here’s
an overview:

pydoc Documentation generator and online help system.

doctest A framework for verifying interactive Python examples.

unittest Unit testing framework for Python.

test Regression tests package containing the testing suite for Python.
test.test _support Support for Python regression tests.

decimal Implementation of the General Decimal Arithmetic Specification.

math Mathematical functionss{n() etc.).

cmath Mathematical functions for complex numbers.

random Generate pseudo-random numbers with various common distributions.
whrandom Floating point pseudo-random number generator.

bisect Array bisection algorithms for binary searching.

collections High-performance datatypes

heapq Heap queue algorithm (a.k.a. priority queue).

array Efficient arrays of uniformly typed numeric values.

sets Implementation of sets of unique elements.

itertools Functions creating iterators for efficient looping.

ConfigParser Configuration file parser.

fileinput Perl-like iteration over lines from multiple input streams, with “save in place” capability.
calendar Functions for working with calendars, including some emulation of thexttal program.
cmd Build line-oriented command interpreters.

shlex Simple lexical analysis for Nix shell-like languages.

5.1 pydoc — Documentation generator and online help system

New in version 2.1.

The pydoc module automatically generates documentation from Python modules. The documentation can be pre-
sented as pages of text on the console, served to a Web browser, or saved to HTML files.

The built-in functionhelp() invokes the online help system in the interactive interpreter, which pgasc to
generate its documentation as text on the console. The same text documentation can also be viewed from outside the
Python interpreter by runningydoc as a script at the operating system’s command prompt. For example, running

pydoc sys

at a shell prompt will display documentation on thes module, in a style similar to the manual pages shown by

153

the UNIX man command. The argument fiydoc can be the name of a function, module, or package, or a dotted
reference to a class, method, or function within a module or module in a package. If the argumgshdddooks

like a path (that is, it contains the path separator for your operating system, such as a slash)jrabd refers to an
existing Python source file, then documentation is produced for that file.

Specifying a-w flag before the argument will cause HTML documentation to be written out to a file in the current
directory, instead of displaying text on the console.

Specifying ak flag before the argument will search the synopsis lines of all available modules for the keyword given
as the argument, again in a manner similar to thexuman command. The synopsis line of a module is the first line
of its documentation string.

You can also useydoc to start an HTTP server on the local machine that will serve documentation to visiting
Web browsers.pydoc -p 1234will start a HTTP server on port 1234, allowing you to browse the documentation
at http://localhost:1234/ in your preferred Web browsepydoc -g will start the server and additionally
bring up a smalllkinter -based graphical interface to help you search for documentation pages.

Whenpydoc generates documentation, it uses the current environment and path to locate modules. Thus, invoking
pydoc spamdocuments precisely the version of the module you would get if you started the Python interpreter and
typed import spam ’

Module docs for core modules are assumed to residiegpn/www.python.org/doc/current/lib/. This can be overridden
by setting the PYTHONDOCS environment variable to a different URL or to a local directory containing the Library
Reference Manual pages.

5.2 doctest — Test interactive Python examples

Thedoctest module searches for pieces of text that look like interactive Python sessions, and then executes those
sessions to verify that they work exactly as shown. There are several common ways to use doctest:

e To check that a module’s docstrings are up-to-date by verifying that all interactive examples still work as docu-
mented.

e To perform regression testing by verifying that interactive examples from a test file or a test object work as
expected.

e To write tutorial documentation for a package, liberally illustrated with input-output examples. Depending on
whether the examples or the expository text are emphasized, this has the flavor of "literate testing” or "executable
documentation”.

Here’s a complete but small example module:

154 Chapter 5. Miscellaneous Services

This is the "example" module.
The example module supplies one function, factorial(). For example,

>>> factorial(5)
120

def factorial(n):
""Return the factorial of n, an exact integer >= 0.

If the result is small enough to fit in an int, return an int.
Else return a long.

>>> [factorial(n) for n in range(6)]

[1, 1, 2, 6, 24, 120]

>>> [factorial(long(n)) for n in range(6)]
[1, 1, 2, 6, 24, 120]

>>> factorial(30)
265252859812191058636308480000000L
>>> factorial(30L)
265252859812191058636308480000000L
>>> factorial(-1)

Traceback (most recent call last):

ValueError: n must be >= 0

Factorials of floats are OK, but the float must be an exact integer:
>>> factorial(30.1)
Traceback (most recent call last):

ValueError: n must be exact integer
>>> factorial(30.0)
265252859812191058636308480000000L

It must also not be ridiculously large:
>>> factorial(1e100)
Traceback (most recent call last):

OverflowError: n too large

5.2. doctest — Test interactive Python examples 155

import math
if not n >= 0:
raise ValueError("n must be >= 0")
if math.floor(n) != n:
raise ValueError("n must be exact integer")

if nt1 == n: # catch a value like 1e300
raise OverflowError("n too large")

result = 1

factor = 2

while factor <= n:
result *= factor
factor += 1

return result

def _test():
import doctest
doctest.testmod()

if _name__ == "_ main__"
_test()

If you run ‘example.py’ directly from the command lineJoctest works its magic:

$ python example.py
$

There’s no output! That's normal, and it means all the examples worked -\Pasthe script, andloctest prints a
detailed log of what it's trying, and prints a summary at the end:

$ python example.py -v
Trying:
factorial(5)
Expecting:
120
ok
Trying:
[factorial(n) for n in range(6)]
Expecting:
[1, 1, 2, 6, 24, 120]
ok
Trying:
[factorial(long(n)) for n in range(6)]
Expecting:
[1, 1, 2, 6, 24, 120]
ok

And so on, eventually ending with:

156 Chapter 5. Miscellaneous Services

Trying:
factorial(1e100)
Expecting:
Traceback (most recent call last):

OverflowError: n too large
ok
1 items had no tests:
__main__._test
2 items passed all tests:
1 tests in __main__
8 tests in __main__.factorial
9 tests in 3 items.
9 passed and O failed.
Test passed.
$

That's all you need to know to start making productive uselaftest ! Jump in. The following sections provide
full details. Note that there are many examples of doctests in the standard Python test suite and libraries. Especially
useful examples can be found in the standard testtfitéést/test_doctest.py’.

5.2.1 Simple Usage: Checking Examples in Docstrings

The simplest way to start using doctest (but not necessarily the way you'll continue to do it) is to end eachihodule
with:

def _test():
import doctest
doctest.testmod()

if _name__ == "_ main_"
_test()

doctest then examines docstrings in mode
Running the module as a script causes the examples in the docstrings to get executed and verified:

python M.py

This won't display anything unless an example fails, in which case the failing example(s) and the cause(s) of the
failure(s) are printed to stdout, and the final line of outputi§Test Failed*** N failures. ', whereN is
the number of examples that failed.

Run it with the-v switch instead:

python M.py -v

and a detailed report of all examples tried is printed to standard output, along with assorted summaries at the end.

You can force verbose mode by passivgrbose=True to testmod() , or prohibit it by passing
verbose=False . In either of those casesys.argv is not examined byestmod() (so passingv or not
has no effect).

5.2. doctest — Test interactive Python examples 157

For more information otestmod() , see section 5.2.4.

5.2.2 Simple Usage: Checking Examples in a Text File

Another simple application of doctest is testing interactive examples in a text file. This can be done with the
testfile() function:

import doctest
doctest.testfile("example.txt")

That short script executes and verifies any interactive Python examples contained in thafige.txt’. The file
content is treated as if it were a single giant docstring; the file doesn’t need to contain a Python program! For example,
perhapséxample.txt’ contains this:

The “example” module

Using “factorial

This is an example text file in reStructuredText format. First import
“factorial* from the “example module:

>>> from example import factorial
Now use it:

>>> factorial(6)
120

Runningdoctest.testfile("example.txt") then finds the error in this documentation:

File "./example.txt", line 14, in example.txt
Failed example:
factorial(6)
Expected:
120
Got:
720

As with testmod() , testfile() won't display anything unless an example fails. If an example does fail, then
the failing example(s) and the cause(s) of the failure(s) are printed to stdout, using the same ftestatad()

By default,testfile() looks for files in the calling module’s directory. See section 5.2.4 for a description of the
optional arguments that can be used to tell it to look for files in other locations.

Like testmod() , testfile() 's verbosity can be set with the command-line switch or with the optional key-
word argumenverbose

For more information omestfile() , see section 5.2.4.

158 Chapter 5. Miscellaneous Services

5.2.3 How It Works

This section examines in detail how doctest works: which docstrings it looks at, how it finds interactive examples,
what execution context it uses, how it handles exceptions, and how option flags can be used to control its behavior.
This is the information that you need to know to write doctest examples; for information about actually running doctest
on these examples, see the following sections.

Which Docstrings Are Examined?

The module docstring, and all function, class and method docstrings are searched. Objects imported into the module
are not searched.

In addition, ifM. __test __ exists and "is true”, it must be a dict, and each entry maps a (string) name to a function
object, class object, or string. Function and class object docstrings foundfrantest __ are searched, and strings
are treated as if they were docstrings. In output, akkeyM. __test __ appears with name

<name of M>_ test .K

Any classes found are recursively searched similarly, to test docstrings in their contained methods and nested classes.

Changed in version 2.4: A "private name” concept is deprecated and no longer documented.

How are Docstring Examples Recognized?

In most cases a copy-and-paste of an interactive console session works fine, but doctest isn't trying to do an exact
emulation of any specific Python shell. All hard tab characters are expanded to spaces, using 8-column tab stops. If
you don't believe tabs should mean that, too bad: don't use hard tabs, or write yolban¥estParser class.

Changed in version 2.4: Expanding tabs to spaces is new; previous versions tried to preserve hard tabs, with confusing
results.

>>> # comments are ignored

>>> x = 12

>>> X

12

>>> if x == 13:
print "yes"

. else:
print "no"
print "NO"
print "NO!m"

no

NO

NOom

>>>

Any expected output must immediately follow the firab> ' or’... ’ line containing the code, and the ex-
pected output (if any) extends to the next> ' or all-whitespace line.

The fine print:

e Expected output cannot contain an all-whitespace line, since such a line is taken to signal the end of expected

5.2. doctest — Test interactive Python examples 159

output. If expected output does contain a blank line,qRit ANKLINE> in your doctest example each place a
blank line is expected. Changed in version ZBLANKLINE>was added; there was no way to use expected
output containing empty lines in previous versions.

e Output to stdout is captured, but not output to stderr (exception tracebacks are captured via a different means).

e If you continue a line via backslashing in an interactive session, or for any other reason use a backslash, you

should use a raw docstring, which will preserve your backslashes exactly as you type them:

>>> def f(x):

r"Backslashes in a raw docstring: m\n™
>>> print f.__doc__
Backslashes in a raw docstring: m\n

Otherwise, the backslash will be interpreted as part of the string. For example,”tabdve would be inter-

preted as a newline character. Alternatively, you can double each backslash in the doctest version (and not use

a raw string):

>>> def f(x):

. ""Backslashes in a raw docstring: m\\n™”
>>> print f.__doc__

Backslashes in a raw docstring: m\n

e The starting column doesn’t matter:

>>> assert "Easy!"
>>> import math
>>> math.floor(1.9)
1.0

and as many leading whitespace characters are stripped from the expected output as appeared in the initial

'>>> ' [ine that started the example.

What's the Execution Context?

By default, each timeloctest finds a docstring to test, it useshallow copyof Ms globals, so that running tests
doesn’t change the module’s real globals, and so that one tb&tam't leave behind crumbs that accidentally allow
another test to work. This means examples can freely use any names defined at top{gawidmames defined
earlier in the docstring being run. Examples cannot see names defined in other docstrings.

You can force use of your own dict as the execution context by paggafg=your _dict totestmod() or
testfile() instead.

What About Exceptions?

No problem, provided that the traceback is the only output produced by the example: just paste in the traceback. Since
tracebacks contain details that are likely to change rapidly (for example, exact file paths and line numbers), this is one

case where doctest works hard to be flexible in what it accepts.

Simple example:

160 Chapter 5. Miscellaneous Services

>>> [1, 2, 3].remove(42)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: list.remove(x): x not in list

That doctest succeedsWalueError is raised, with thelist.remove(x): X not in list ' detall as
shown.

The expected output for an exception must start with a traceback header, which may be either of the following two
lines, indented the same as the first line of the example:

Traceback (most recent call last):
Traceback (innermost last):

The traceback header is followed by an optional traceback stack, whose contents are ignored by doctest. The traceback
stack is typically omitted, or copied verbatim from an interactive session.

The traceback stack is followed by the most interesting part: the line(s) containing the exception type and detail. This
is usually the last line of a traceback, but can extend across multiple lines if the exception has a multi-line detail:

>>> raise ValueError('multi\n line\ndetail’)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: multi
line
detail

The last three lines (starting witalueError) are compared against the exception’s type and detail, and the rest
are ignored.

Best practice is to omit the traceback stack, unless it adds significant documentation value to the example. So the last
example is probably better as:

>>> raise ValueError('multi\n line\ndetail’)
Traceback (most recent call last):

ValueError: multi
line
detail

Note that tracebacks are treated very specially. In particular, in the rewritten example, the.use' @f independent
of doctest’sELLIPSIS option. The ellipsis in that example could be left out, or could just as well be three (or three
hundred) commas or digits, or an indented transcript of a Monty Python skit.

Some details you should read once, but won't need to remember:

e Doctest can’t guess whether your expected output came from an exception traceback or from ordinary printing.
So, e.g., an example that expect&lueError: 42 is prime " will pass whetherValueError is
actually raised or if the example merely prints that traceback text. In practice, ordinary output rarely begins with
a traceback header line, so this doesn't create real problems.

e Each line of the traceback stack (if present) must be indented further than the first line of the exarsigig,

5.2. doctest — Test interactive Python examples 161

with a non-alphanumeric character. The first line following the traceback header indented the same and starting
with an alphanumeric is taken to be the start of the exception detail. Of course this does the right thing for
genuine tracebacks.

e When thelGNORE_EXCEPTION.DETAIL doctest option is is specified, everything following the leftmost
colon is ignored.

e The interactive shell omits the traceback header line for sBymgaxError s. But doctest uses the trace-
back header line to distinguish exceptions from non-exceptions. So in the rare case where you need to test a
SyntaxError that omits the traceback header, you will need to manually add the traceback header line to
your test example.

e For someSyntaxError s, Python displays the character position of the syntax error, usingarker:

>>> 1 1
File "<stdin>", line 1
11

SyntaxError: invalid syntax

Since the lines showing the position of the error come before the exception type and detail, they are not checked
by doctest. For example, the following test would pass, even though it putsrttaker in the wrong location:

>>> 1 1
Traceback (most recent call last):
File "<stdin>", line 1
11

SyntaxError: invalid syntax

Changed in version 2.4: The ability to handle a multi-line exception detail, arlt6tH®RE_EXCEPTION.DETAIL
doctest option, were added.

Option Flags and Directives

A number of option flags control various aspects of doctest’'s behavior. Symbolic names for the flags are supplied as
module constants, which can be or'ed together and passed to various functions. The names can also be used in doctest
directives (see below).

The first group of options define test semantics, controlling aspects of how doctest decides whether actual output
matches an example’s expected output:

DONTACCEPTTRUEFOR_1
By default, if an expected output block contains jistan actual output block containing justor just True
is considered to be a match, and similarly foiversusFalse . WhenDONTACCEPTTRUEFOR.1 is
specified, neither substitution is allowed. The default behavior caters to that Python changed the return type of
many functions from integer to boolean; doctests expecting "little integer” output still work in these cases. This
option will probably go away, but not for several years.

DONTACCEPTBLANKLINE
By default, if an expected output block contains a line containing only the stBhANKLINE>, then that line
will match a blank line in the actual output. Because a genuinely blank line delimits the expected output, this is
the only way to communicate that a blank line is expected. WD@®NTACCEPTBLANKLINE is specified,
this substitution is not allowed.

162 Chapter 5. Miscellaneous Services

NORMALIZEWHITESPACE
When specified, all sequences of whitespace (blanks and newlines) are treated as equal. Any sequence of
whitespace within the expected output will match any sequence of whitespace within the actual output. By de-
fault, whitespace must match exactNORMALIZE WHITESPACEHs especially useful when a line of expected
output is very long, and you want to wrap it across multiple lines in your source.

ELLIPSIS
When specified, an ellipsis marker.() in the expected output can match any substring in the actual output.
This includes substrings that span line boundaries, and empty substrings, so it's best to keep usage of this simple.
Complicated uses can lead to the same kinds of "oops, it matched too much!” surprises,tisgbrone to in
regular expressions.

IGNORE_EXCEPTION.DETAIL
When specified, an example that expects an exception passes if an exception of the expected type is raised, even
if the exception detail does not match. For example, an example expec¢ahgeError: 42 " will pass if
the actual exception raised igalueError: 3*14 ’, but will fail, e.g., if TypeError s raised.

Note that a similar effect can be obtained uskIgLIPSIS , andIGNORE_EXCEPTION.DETAIL may go

away when Python releases prior to 2.4 become uninteresting. Until (BBIQRE_ EXCEPTION.DETAIL

is the only clear way to write a doctest that doesn'’t care about the exception detail yet continues to pass under
Python releases prior to 2.4 (doctest directives appear to be comments to them). For example,

>>> (1, 2)[3] = 'moo’ #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: object doesn’'t support item assignment

passes under Python 2.4 and Python 2.3. The detail changed in 2.4, to say "does not” instead of "doesn’t”.

COMPARISON-LAGS
A bitmask or’ing together all the comparison flags above.

The second group of options controls how test failures are reported:

REPORTUDIFF
When specified, failures that involve multi-line expected and actual outputs are displayed using a unified diff.

REPORTICDIFF
When specified, failures that involve multi-line expected and actual outputs will be displayed using a context
diff.

REPORINDIFF
When specified, differences are computeddif§iib.Differ , using the same algorithm as the popular
‘ndiff.py’ utility. This is the only method that marks differences within lines as well as across lines. For example,

if a line of expected output contains diditwhere actual output contains letlera line is inserted with a caret
marking the mismatching column positions.

REPORTONLY_FIRST _FAILURE
When specified, display the first failing example in each doctest, but suppress output for all remaining examples.
This will prevent doctest from reporting correct examples that break because of earlier failures; but it might also
hide incorrect examples that fail independently of the first failure. WRERORTONLY_FIRST _FAILURE
is specified, the remaining examples are still run, and still count towards the total number of failures reported;
only the output is suppressed.

REPORTINGFLAGS
A bitmask or’ing together all the reporting flags above.

"Doctest directives” may be used to modify the option flags for individual examples. Doctest directives are expressed
as a special Python comment following an example’s source code:

5.2. doctest — Test interactive Python examples 163

directive = "#" "doctest:" directive _options

directive _options = directive _option ("," directive _option)*

directive _option ;= on_or _off directive _option _name

on_or _off =

directive _option _name := "DONT_ACCEPTBLANKLINE" | "NORMALIZE _WHITESPACE" | ...

Whitespace is not allowed between ther - and the directive option name. The directive option name can be any of
the option flag names explained above.

An example’s doctest directives modify doctest’s behavior for that single example- tdsmable the named behavior,
or - to disable it.

For example, this test passes:

>>> print range(20) #doctest: +NORMALIZE_WHITESPACE
o 1, 2, 3 4 5 6 7, 8 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Without the directive it would fail, both because the actual output doesn’t have two blanks before the single-digit list
elements, and because the actual output is on a single line. This test also passes, and also requires a directive to do so:

>>> print range(20) # doctest:+ELLIPSIS
[0, 1, ..., 18, 19]

Multiple directives can be used on a single physical line, separated by commas:

>>> print range(20) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
[0, 1, .., 18, 19]

If multiple directive comments are used for a single example, then they are combined:

>>> print range(20) # doctest: +ELLIPSIS
. # doctest: +NORMALIZE_WHITESPACE
o, 1, .., 18, 19]

As the previous example shows, you can add ' lines to your example containing only directives. This can be
useful when an example is too long for a directive to comfortably fit on the same line:

>>> print range(5) + range(10,20) + range(30,40) + range(50,60)
. # doctest: +ELLIPSIS
o, .., 4, 10, .., 19, 30, .., 39, 50, ..., 59]

Note that since all options are disabled by default, and directives apply only to the example they appear in, enabling
options (via+ in a directive) is usually the only meaningful choice. However, option flags can also be passed to
functions that run doctests, establishing different defaults. In such cases, disabling an option &idirective can

be useful.

Changed in version 2.4: ConstantsDONTACCEPTBLANKLINE, NORMALIZEWHITESPACE
ELLIPSIS , IGNOREEXCEPTION.DETAIL, REPORTUDIFF, REPORICDIFF, REPORINDIFF,
REPORTONLY_FIRST _FAILURE, COMPARISON-LAGS and REPORTINGFLAGS were added; by de-

164 Chapter 5. Miscellaneous Services

fault <BLANKLINE> in expected output matches an empty line in actual output; and doctest directives were
added.

There’s also a way to register new option flag names, although this isn’t useful unless you intend talextead
internals via subclassing:

register _optionflag (nam§
Create a new option flag with a given name, and return the new flag’s integer value.
register _optionflag() can be used when subclassi@utputChecker or DocTestRunner
to create new options that are supported by your subclassgsster _optionflag should always be
called using the following idiom:

MY_FLAG = register_optionflag(MY_FLAG")

New in version 2.4.

Warnings

doctest is serious about requiring exact matches in expected output. If even a single character doesn’t match, the
test fails. This will probably surprise you a few times, as you learn exactly what Python does and doesn’t guarantee
about output. For example, when printing a dict, Python doesn't guarantee that the key-value pairs will be printed in

any particular order, so a test like

>>> foo()
{"Hermione™: "hippogryph", "Harry": "broomstick"}

is vulnerable! One workaround is to do

>>> foo() == {"Hermione": "hippogryph", "Harry": "broomstick"}
True

instead. Another is to do

>>> d = foo().items()
>>> d.sort()
>>>

[(Harry’, 'broomstick’), ('Hermione’, ’hippogryph’)]

There are others, but you get the idea.

Another bad idea is to print things that embed an object address, like

>>> jd(1.0) # certain to fail some of the time

7948648

>>> class C: pass

>>> C() # the default repr() for instances embeds an address
<_main__.C instance at OXO0AC18F0>

TheELLIPSIS directive gives a nice approach for the last example:

5.2. doctest — Test interactive Python examples 165

>>> C() #doctest: +ELLIPSIS
< _main__.C instance at 0x...>

Floating-point numbers are also subject to small output variations across platforms, because Python defers to the
platform C library for float formatting, and C libraries vary widely in quality here.

>>> 1./7 # risky
0.14285714285714285

>>> print 1./7 # safer
0.142857142857

>>> print round(1./7, 6) # much safer
0.142857

Numbers of the forn2.**J are safe across all platforms, and | often contrive doctest examples to produce numbers
of that form:

>>> 3./4 # utterly safe
0.75

Simple fractions are also easier for people to understand, and that makes for better documentation.

5.2.4 Basic API

The functiongestmod() andtestfile() provide a simple interface to doctest that should be sufficient for most
basic uses. For a less formal introduction to these two functions, see sections 5.2.1 and 5.2.2.

testfile (filenamg¢, module_relative]] , namﬂ \ packagd[, globs][, verbosd[, report][, optionflagg[, ex-
traglobs [raise_on_error || , parser|)
All arguments excepilenameare optional, and should be specified in keyword form.
Test examples in the file namétename Return { failure_count test.coun) .

Optional argumentnodule_relative specifies how the filename should be interpreted:

olf module_relativeis True (the default), thefilenamespecifies an OS-independent module-relative path.
By default, this path is relative to the calling module’s directory; but ifftaekageargument is specified,
then itis relative to that package. To ensure OS-independéiecemeshould usé characters to separate
path segments, and may not be an absolute path (i.e., it may not begih)with

oIf module_relativeis False , thenfilenamespecifies an OS-specific path. The path may be absolute or
relative; relative paths are resolved with respect to the current working directory.

Optional argumenhamegives the name of the test; by default, oNibne, os.path.basename(filenamé
is used.

Optional argumenpackageis a Python package or the name of a Python package whose directory should be
used as the base directory for a module-relative filename. If no package is specified, then the calling mod-
ule’s directory is used as the base directory for module-relative filenames. It is an error to paekifygeif
module_relativeis False .

Optional argumenglobsgives a dict to be used as the globals when executing examples. A new shallow copy of
this dict is created for the doctest, so its examples start with a clean slate. By defauNpoeifa new empty
dict is used.

166 Chapter 5. Miscellaneous Services

Optional argumenéxtraglobsgives a dict merged into the globals used to execute examples. This works like
dict.update() . if globsandextraglobshave a common key, the associated valuextiaglobsappears in

the combined dict. By default, or None, no extra globals are used. This is an advanced feature that allows
parameterization of doctests. For example, a doctest can be written for a base class, using a generic name for
the class, then reused to test any number of subclasses by passixtgegiobsdict mapping the generic name

to the subclass to be tested.

Optional argumengerboseprints lots of stuff if true, and prints only failures if false; by default, oNidne, it's
true if and only if’-v’ is in sys.argv

Optional argumenteport prints a summary at the end when true, else prints nothing at the end. In verbose
mode, the summary is detailed, else the summary is very brief (in fact, empty if all tests passed).

Optional argumenbptionflagsor’s together option flags. See section 5.2.3.

Optional argumentaise_on_error defaults to false. If true, an exception is raised upon the first failure or
unexpected exception in an example. This allows failures to be post-mortem debugged. Default behavior is to
continue running examples.

Optional argumenparserspecifies @ocTestParser (or subclass) that should be used to extract tests from
the files. It defaults to a normal parser (ieqcTestParser()).

New in version 2.4.

testmod (m] [, namﬂ [\ gIobs][\ verbose][\ isprivate][\ report] [, optionflag§ [: extraglob§ [, raise_on_error
, exclude.empty])
All arguments are optional, and all except fosshould be specified in keyword form.

Test examples in docstrings in functions and classes reachable from nmo¢aienodule__main __ if mis
not supplied or iNone), starting withm. __doc __.

Also test examples reachable from ditt__test __, if it exists and is noNone. m. __test __ maps names
(strings) to functions, classes and strings; function and class docstrings are searched for examples; strings are
searched directly, as if they were docstrings.

Only docstrings attached to objects belonging to moduége searched.
Return { failure_count test.coun) .
Optional argumenhamegives the name of the module; by default, oNibne, m. __name__ is used.

Optional argumentexclude_ empty defaults to false. If true, objects for which no doctests are found
are excluded from consideration. The default is a backward compatibility hack, so that code still using
doctest.master.summarize() in conjunction withtestmod() continues to get output for objects
with no tests. Thexclude_.emptyargument to the newdéocTestFinder constructor defaults to true.

Optional argumentgxtraglobs verbose report, optionflags raise_on_error, andglobs are the same as for
functiontestfile() above, except thaflobsdefaults tom. __dict __.

Optional argumentsprivate specifies a function used to determine whether a hame is private. The default
function treats all names as publidsprivate can be set taloctest.is _private to skip over names

that are private according to Python’s underscore naming convenbeprecated since release 2.4ispri-

vate was a stupid idea — don't use it. If you need to skip tests based on name, filter the list returned by
DocTestFinder.find() instead.

Changed in version 2.3: The paramatptionflagswas added.
Changed in version 2.4: The parametexraglobsraise_on_error andexclude emptywere added.

There’s also a function to run the doctests associated with a single object. This function is provided for backward
compatibility. There are no plans to deprecate it, but it’s rarely useful:

run _docstring _examples (f, globs[, verbosd[, namé[, compileflag§[, optionflags])
Test examples associated with objedior examplef may be a module, function, or class object.

A shallow copy of dictionary argumengtobsis used for the execution context.
Optional argumenbameis used in failure messages, and defaultf\ioName".

5.2. doctest — Test interactive Python examples 167

If optional argumenterboseis true, output is generated even if there are no failures. By default, output is
generated only in case of an example failure.

Optional argumentompileflaggives the set of flags that should be used by the Python compiler when running
the examples. By default, or Mlone, flags are deduced corresponding to the set of future features found in
globs

Optional argumendptionflagsworks as for functionestfile() above.

5.2.5 Unittest API

As your collection of doctest’ed modules grows, you'll want a way to run all their doctests systematically. Prior to
Python 2.4doctest had a barely documentéitester class that supplied a rudimentary way to combine doctests
from multiple modules.Tester was feeble, and in practice most serious Python testing frameworks build on the
unittest module, which supplies many flexible ways to combine tests from multiple sources. So, in Python 2.4,
doctest ’'sTester classis deprecated, addctest provides two functions that can be used to creati&est

test suites from modules and text files containing doctests. These test suites can then be runitising test
runners:

import unittest
import doctest
import my_module_with_doctests, and_another

suite = unittest. TestSuite()

for mod in my_module_with_doctests, and_another:
suite.addTest(doctest.DocTestSuite(mod))

runner = unittest.TextTestRunner()

runner.run(suite)

There are two main functions for creatingittest .TestSuite instances from text files and modules with
doctests:

DocFileSuite (*paths, **kw)
Convert doctest tests from one or more text files tmétest . TestSuite

The returnedinittest ~ .TestSuite is to be run by the unittest framework and runs the interactive examples
in each file. If an example in any file fails, then the synthesized unit test fails, &aitlieeException
exception is raised showing the name of the file containing the test and a (sometimes approximate) line number.

Pass one or more paths (as strings) to text files to be examined.
Options may be provided as keyword arguments:
Optional argumentodule_relative specifies how the filenames jrathsshould be interpreted:

eIf module_relativeis True (the default), then each filename specifies an OS-independent module-relative
path. By default, this path is relative to the calling module’s directory; but ifphekageargument is
specified, then it is relative to that package. To ensure OS-independence, each filename shbuld use
characters to separate path segments, and may not be an absolute path (i.e., it may not begin with

oIf module_relativeis False , then each filename specifies an OS-specific path. The path may be absolute
or relative; relative paths are resolved with respect to the current working directory.

Optional argumenpackageis a Python package or the name of a Python package whose directory should be
used as the base directory for module-relative filenames. If no package is specified, then the calling module’s
directory is used as the base directory for module-relative filenames. It is an error to seetifigef mod-
ule_relativeis False .

168 Chapter 5. Miscellaneous Services

Optional argumensetUpspecifies a set-up function for the test suite. This is called before running the tests in
each file. ThesetUpfunction will be passed BocTest object. The setUp function can access the test globals
as theglobsattribute of the test passed.

Optional argumentearDownspecifies a tear-down function for the test suite. This is called after running the
tests in each file. TheearDownfunction will be passed BocTest object. The setUp function can access the
test globals as thglobsattribute of the test passed.

Optional argumenglobsis a dictionary containing the initial global variables for the tests. A new copy of this
dictionary is created for each test. By defaglgbsis a new empty dictionary.

Optional argumenbptionflagsspecifies the default doctest options for the tests, created by or-ing together
individual option flags. See section 5.2.3. See functeh _unittest _reportflags() below for a
better way to set reporting options.

Optional argumenparserspecifies @ocTestParser (or subclass) that should be used to extract tests from
the files. It defaults to a normal parser (ieqcTestParser()).

New in version 2.4.

DocTestSuite ([module][, globs][, extraglobg[, testinder][, setUp][, tearDown][, checkeﬂ)
Convert doctest tests for a module tarattest . TestSuite

The returnedunittest .TestSuite is to be run by the unittest framework and runs each doctest in the
module. If any of the doctests fail, then the synthesized unit test fails, &aibliseException exception
is raised showing the name of the file containing the test and a (sometimes approximate) line number.

Optional argumenimoduleprovides the module to be tested. It can be a module object or a (possibly dotted)
module name. If not specified, the module calling this function is used.

Optional argumenglobsis a dictionary containing the initial global variables for the tests. A new copy of this
dictionary is created for each test. By defaglgbsis a new empty dictionary.

Optional argumengxtraglobsspecifies an extra set of global variables, which is mergedgiaos By default,
no extra globals are used.

Optional argumentest_finderis theDocTestFinder object (or a drop-in replacement) that is used to extract
doctests from the module.

Optional argumentsetUp tearDown andoptionflagsare the same as for functi@ocFileSuite() above.
New in version 2.3.

Changed in version 2.4: The parametglabs extraglobs test finder, setUp tearDown andoptionflagswere
added,; this function now uses the same search technigestasod()

Under the coversDocTestSuite() creates ainittest .TestSuite out of doctest.DocTestCase in-
stances, an®ocTestCase is a subclass afinittest .TestCase . DocTestCase isn't documented here (it's
an internal detail), but studying its code can answer questions about the exact detaitest integration.

Similarly, DocFileSuite() creates anittest .TestSuite out ofdoctest.DocFileCase instances, and
DocFileCase is a subclass dbocTestCase .

So both ways of creating anittest ~ .TestSuite run instances oDocTestCase . This is important for a
subtle reason: when you rutoctest functions yourself, you can control thioctest options in use directly,
by passing option flags tdoctest functions. However, if you're writing anittest framework, unittest
ultimately controls when and how tests get run. The framework author typically wants to aimitekt reporting
options (perhaps, e.g., specified by command line options), but there’s no way to pass optionstthiibegth ~ to
doctest testrunners.

For this reasonjoctest also supports a notion afoctest reporting flags specific tonittest ~ support, via this
function:

set _unittest _reportflags (flags
Set thedoctest reporting flags to use.

Argumentflagsor’s together option flags. See section 5.2.3. Only "reporting flags” can be used.

5.2. doctest — Test interactive Python examples 169

This is a module-global setting, and affects all future doctests run by modittest : therunTest()

method oDocTestCase looks at the option flags specified for the test case wheDtltd estCase instance

was constructed. If no reporting flags were specified (which is the typical and expecteddcersedt 's

unittest reporting flags are or’ed into the option flags, and the option flags so augmented are passed to
the DocTestRunner instance created to run the doctest. If any reporting flags were specified when the
DocTestCase instance was constructedhctest ’s unittest reporting flags are ignored.

The value of theinittest reporting flags in effect before the function was called is returned by the function.
New in version 2.4,

5.2.6 Advanced API

The basic APl is a simple wrapper that's intended to make doctest easy to use. Itis fairly flexible, and should meet most
users’ needs; however, if you require more fine-grained control over testing, or wish to extend doctest’s capabilities,
then you should use the advanced API.

The advanced API revolves around two container classes, which are used to store the interactive examples extracted
from doctest cases:

e Example : A single python statement, paired with its expected output.

e DocTest : A collection of Example s, typically extracted from a single docstring or text file.
Additional processing classes are defined to find, parse, and run, and check doctest examples:

DocTestFinder : Finds all docstrings in a given module, and usBoaTestParser to create &ocTest
from every docstring that contains interactive examples.

e DocTestParser : Creates &ocTest object from a string (such as an object’s docstring).

DocTestRunner : Executes the examples inRocTest , and uses a®utputChecker to verify their
output.

OutputChecker : Compares the actual output from a doctest example with the expected output, and decides
whether they match.

The relationships among these processing classes are summarized in the following diagram:

list of:
[— + [+
|module| --DocTestFinder-> | DocTest | --DocTestRunner-> results
Fomee + | - Fommee + [- (printed)
I I | Example | I I
v I [v I
DocTestParser | Example | OutputChecker
[+

DocTest Objects

classDocTest (examples, globs, name, filename, lineno, docsjring
A collection of doctest examples that should be run in a single namespace. The constructor arguments are used
to initialize the member variables of the same names. New in version 2.4.

170 Chapter 5. Miscellaneous Services

DocTest defines the following member variables. They are initialized by the constructor, and should not be modified
directly.

examples
A list of Example objects encoding the individual interactive Python examples that should be run by this test.

globs
The namespace (aka globals) that the examples should be run in. This is a dictionary mapping names to values.
Any changes to the namespace made by the examples (such as binding new variables) will be reflietted in
after the test is run.

name
A string name identifying théocTest . Typically, this is the name of the object or file that the test was
extracted from.

filename
The name of the file that thiBocTest was extracted from; oNone if the filename is unknown, or if the
DocTest was not extracted from a file.

lineno
The line number withirfilename where thisDocTest begins, ofNone if the line number is unavailable.
This line number is zero-based with respect to the beginning of the file.

docstring
The string that the test was extracted from, or ‘None' if the string is unavailable, or if the test was not extracted
from a string.

Example Objects

classExample (source, War{t, exc;msg][, Iineno][, indent][, options])
A single interactive example, consisting of a Python statement and its expected output. The constructor argu-
ments are used to initialize the member variables of the same names. New in version 2.4.

Example defines the following member variables. They are initialized by the constructor, and should not be modified
directly.

source
A string containing the example’s source code. This source code consists of a single Python statement, and
always ends with a newline; the constructor adds a newline when necessary.

want
The expected output from running the example’s source code (either from stdout, or a traceback in case of
exception).want ends with a newline unless no output is expected, in which case it's an empty string. The
constructor adds a newline when necessary.

exc _msg
The exception message generated by the example, if the example is expected to generate an exdégmien; or
if it is not expected to generate an exception. This exception message is compared against the return value
of traceback.format _exception _only() . exc _msg ends with a newline unless itNone. The
constructor adds a newline if needed.

lineno
The line number within the string containing this example where the example begins. This line number is
zero-based with respect to the beginning of the containing string.

indent
The example’s indentation in the containing string, i.e., the number of space characters that precede the exam-
ple’s first prompt.

options

5.2. doctest — Test interactive Python examples 171

A dictionary mapping from option flags fbrue or False , which is used to override default options for this
example. Any option flags not contained in this dictionary are left at their default value (as specified by the
DocTestRunner ’s optionflags). By default, no options are set.

DocTestFinder objects

classDocTestFinder ([verbosé[, parser][, recursd[, excludeempt)a)
A processing class used to extract becTest s that are relevant to a given object, from its docstring and
the docstrings of its contained objecBocTest s can currently be extracted from the following object types:
modules, functions, classes, methods, staticmethods, classmethods, and properties.

The optional argumenterbosecan be used to display the objects searched by the finder. It defabisds®
(no output).

The optional argumergdarserspecifies théocTestParser object (or a drop-in replacement) that is used to
extract doctests from docstrings.

If the optional argumentcurseis false, therDocTestFinder.find() will only examine the given object,
and not any contained objects.
If the optional argumergxclude_emptyis false, therbocTestFinder.find() will include tests for objects

with empty docstrings.
New in version 2.4.
DocTestFinder defines the following method:
find (obj[, namd[, modulﬂ[, gIobs][, extraglobs])
Return a list of thédocTest s that are defined bybj's docstring, or by any of its contained objects’ docstrings.

The optional argumemamespecifies the object's name; this name will be used to construct names for the
returnedDocTest s. If nameis not specified, thenbj. __name__ is used.

The optional parametenoduleis the module that contains the given object. If the module is not specified or is
None, then the test finder will attempt to automatically determine the correct module. The object’s module is
used:

eAs a default namespace gfobsis not specified.

eTo prevent the DocTestFinder from extracting DocTests from objects that are imported from other modules.
(Contained objects with modules other thranduleare ignored.)

oTo find the name of the file containing the object.
¢T0 help find the line number of the object within its file.

If moduleis False , no attempt to find the module will be made. This is obscure, of use mostly in testing
doctest itself: ifmoduleis False , orisNone but cannot be found automatically, then all objects are considered
to belong to the (nhon-existent) module, so all contained objects will (recursively) be searched for doctests.

The globals for eacbocTest is formed by combininglobsandextraglobs(bindings inextraglobsoverride
bindings inglobg. A new shallow copy of the globals dictionary is created for e@obTest . If globsis not
specified, then it defaults to the module’sdict__, if specified, o{} otherwise. Ifextraglobss not specified,
then it defaults tq} .

DocTestParser objects

classDocTestParser ()

A processing class used to extract interactive examples from a string, and use them tolBoedtest object.
New in version 2.4,

DocTestParser defines the following methods:

172 Chapter 5. Miscellaneous Services

get _doctest (string, globs, name, filename, linéno
Extract all doctest examples from the given string, and collect them iDmcdest object.

globs name filename andlineno are attributes for the neocTest object. See the documentation for
DocTest for more information.

get _examples (string[, namé)
Extract all doctest examples from the given string, and return them as aligaofiple objects. Line numbers
are 0-based. The optional argumeaimeis a name identifying this string, and is only used for error messages.

parse (string[, namd)
Divide the given string into examples and intervening text, and return them as a list of alteffsimple s
and strings. Line numbers for tli&xample s are 0-based. The optional argumeameis a hame identifying
this string, and is only used for error messages.

DocTestRunner objects

classDocTestRunner ([checkeﬂ[, verbosé[, optionflagg)
A processing class used to execute and verify the interactive exampl&oitilast .

The comparison between expected outputs and actual outputs is don®bypartChecker . This compari-
son may be customized with a number of option flags; see section 5.2.3 for more information. If the option flags
are insufficient, then the comparison may also be customized by passing a subClagsud€Checker to the

constructor.

The test runner’s display output can be controlled in two ways. First, an output function can be passed to
TestRunner.run() ; this function will be called with strings that should be displayed. It defaults to
sys.stdout.write . If capturing the output is not sufficient, then the display output can be also cus-

tomized by subclassing DocTestRunner, and overriding the metepdst _start |, report _success |,
report _unexpected _exception ,andreport _failure

The optional keyword argumenheckerspecifies theOutputChecker object (or drop-in replacement) that
should be used to compare the expected outputs to the actual outputs of doctest examples.

The optional keyword argumerierbosecontrols theDocTestRunner s verbosity. Ifverboses True , then
information is printed about each example, as it is runzelboses False , then only failures are printed. If
verbosds unspecified, oNone, then verbose output is used iff the command-line switcis used.

The optional keyword argumeaptionflagscan be used to control how the test runner compares expected output
to actual output, and how it displays failures. For more information, see section 5.2.3.

New in version 2.4.
DocTestParser defines the following methods:

report _start (out, test, examp)e
Report that the test runner is about to process the given example. This method is provided to allow subclasses
of DocTestRunner to customize their output; it should not be called directly.

examples the example about to be processistis the test containingxample outis the output function that
was passed tbocTestRunner.run()

report _success (out, test, example, gpt
Report that the given example ran successfully. This method is provided to allow subclasses of
DocTestRunner to customize their output; it should not be called directly.

exampleis the example about to be processeagbt is the actual output from the exampléaestis the test
containingexample outis the output function that was passedocTestRunner.run()

report _failure (out, test, example, gpt
Report that the given example failed. This method is provided to allow subclas@scdestRunner to
customize their output; it should not be called directly.

5.2. doctest — Test interactive Python examples 173

exampleis the example about to be processegbt is the actual output from the exampléaestis the test
containingexample outis the output function that was passedocTestRunner.run()

report _unexpected _exception (out,test, example, exinfo)
Report that the given example raised an unexpected exception. This method is provided to allow subclasses of
DocTestRunner to customize their output; it should not be called directly.

examples the example about to be processexic_info is a tuple containing information about the unexpected
exception (as returned tsys.exc _info()). testis the test containingxample out is the output function
that was passed BocTestRunner.run()

run (tes{, compileﬂag%[, out][, clear,globs])
Run the examples itest(aDocTest object), and display the results using the writer functom

The examples are run in the namespiast.globs . If clear_globsis true (the default), then this namespace
will be cleared after the test runs, to help with garbage collection. If you would like to examine the namespace
after the test completes, then udear_globs=False

compileflaggyives the set of flags that should be used by the Python compiler when running the examples. If
not specified, then it will default to the set of future-import flags that appbidbs

The output of each example is checked usingDloe TestRunner s output checker, and the results are for-
matted by thédocTestRunner.report _* methods.

summarize ([verbosé)
Print a summary of all the test cases that have been run by this DocTestRunner, and return a tuple
‘(failure_count test_coun) .

The optionalverboseargument controls how detailed the summary is. If the verbosity is not specified, then the
DocTestRunner s verbosity is used.

OutputChecker objects

classOutputChecker ()
A class used to check the whether the actual output from a doctest example matches the expected output.
OutputChecker defines two methodscheck _output , which compares a given pair of outputs, and re-
turns true if they match; amoutput _difference , which returns a string describing the differences between
two outputs. New in version 2.4,

OutputChecker defines the following methods:

check _output (want, got, optionflags
ReturnTrue iff the actual output from an examplgdt) matches the expected outputahf). These strings are
always considered to match if they are identical; but depending on what option flags the test runner is using,
several non-exact match types are also possible. See section 5.2.3 for more information about option flags.

output _difference (. example, got, optionflays
Return a string describing the differences between the expected output for a given exampipl¢ and the
actual outputgot). optionflagsis the set of option flags used to compa@ntandgot.

5.2.7 Debugging
Doctest provides several mechanisms for debugging doctest examples:

e Several functions convert doctests to executable Python programs, which can be run under the Python debugger,
pdb.

e TheDebugRunner classis a subclass BfocTestRunner that raises an exception for the first failing exam-
ple, containing information about that example. This information can be used to perform post-mortem debug-
ging on the example.

174 Chapter 5. Miscellaneous Services

e The unittest cases generated bfpocTestSuite() support thedebug() method defined by
unittest .TestCase

e You can add a call tpdb.set _trace() in a doctest example, and you'll drop into the Python debugger
when that line is executed. Then you can inspect current values of variables, and so on. For example, suppose
‘a.py’ contains just this module docstring:

>>> def f(x):
g(x*2)
>>> def g(x):
print x+3
import pdb; pdb.set_trace()

Then an interactive Python session may look like this:

>>> import a, doctest
>>> doctest.testmod(a)
--Return--
> <doctest a[1]>(3)g()->None
-> import pdb; pdb.set_trace()
(Pdb) list
1 def g(x):
2 print X+3
3 > import pdb; pdb.set_trace()
[EOF]
(Pdb) print x
6
(Pdb) step
--Return--
> <doctest a[0]>(2)f()->None
-> g(x*2)
(Pdb) list
1 def f(x):
2 > g(x*2)
[EOF]
(Pdb) print x
3
(Pdb) step
--Return--
> <doctest a[2]>(1)?()->None
-> {(3)
(Pdb) cont
0, 3)
>>>

Changed in version 2.4: The ability to useb.set _trace() usefully inside doctests was added.

Functions that convert doctests to Python code, and possibly run the synthesized code under the debugger:

script _from _examples ()
Convert text with examples to a script.

5.2. doctest — Test interactive Python examples 175

Arguments is a string containing doctest examples. The string is converted to a Python script, where doctest
examples irsare converted to regular code, and everything else is converted to Python comments. The generated
script is returned as a string. For example,

import doctest

print doctest.script_from_examples(r""
Set x and y to 1 and 2.
>>> X, y =]_, 2

Print their sum:
>>> print x+y

displays:

Set x and y to 1 and 2.
X,y =1 2
#

H*

Print their sum:
print x+y

Expected:

3

This function is used internally by other functions (see below), but can also be useful when you want to transform
an interactive Python session into a Python script.

New in version 2.4.

testsource (module, name

Convert the doctest for an object to a script.

Argumentmoduleis a module object, or dotted name of a module, containing the object whose doctests
are of interest. Argumentameis the name (within the module) of the object with the doctests of inter-
est. The result is a string, containing the object’s docstring converted to a Python script, as described for
script _from _examples() above. For example, if modula.py’ contains a top-level functiof{) , then

import a, doctest
print doctest.testsource(a, "a.f")

prints a script version of functiof() ’'s docstring, with doctests converted to code, and the rest placed in
comments.

New in version 2.3.

debug (module, nam[a pm])

Debug the doctests for an object.

Themoduleandnamearguments are the same as for functiestsource() above. The synthesized Python
script for the named object’s docstring is written to a temporary file, and then that file is run under the control
of the Python debuggendb .

A shallow copy ofmodule __dict __is used for both local and global execution context.

Optional argumenpm controls whether post-mortem debugging is usegnifhas a true value, the script file

is run directly, and the debugger gets involved only if the script terminates via raising an unhandled exception.
If it does, then post-mortem debugging is invoked, pitb .post _mortem() , passing the traceback object
from the unhandled exception. pinis not specified, or is false, the script is run under the debugger from the
start, via passing an appropriaeecfile() call topdb.run()

176

Chapter 5. Miscellaneous Services

New in version 2.3.
Changed in version 2.4: Thmmargument was added.

debug _src (src[, pm][, gIobs])
Debug the doctests in a string.

This is like functiondebug() above, except that a string containing doctest examples is specified directly, via
thesrcargument.

Optional argumenpmhas the same meaning as in functadebug() above.

Optional argumenglobsgives a dictionary to use as both local and global execution context. If not specified,
or None, an empty dictionary is used. If specified, a shallow copy of the dictionary is used.

New in version 2.4.

The DebugRunner class, and the special exceptions it may raise, are of most interest to testing framework authors,
and will only be sketched here. See the source code, and esp&=ailgRunner ’s docstring (which is a doctest!)
for more details:

classDebugRunner ([checkeﬂ[, verbosd[, optionflagg)
A subclass oDocTestRunner that raises an exception as soon as a failure is encountered. If an unexpected
exception occurs, adnexpectedException exception is raised, containing the test, the example, and the
original exception. If the output doesn’'t match, theDacTestFailure exception is raised, containing the
test, the example, and the actual output.

For information about the constructor parameters and methods, see the documentdiociT®stRunner
in section 5.2.6.

There are two exceptions that may be raise®epugRunner instances:

exceptionDocTestFailure (test, example, gpt
An exception thrown bypocTestRunner to signal that a doctest example’s actual output did not match its
expected output. The constructor arguments are used to initialize the member variables of the same names.

DocTestFailure defines the following member variables:
test
TheDocTest object that was being run when the example failed.

example
TheExample that failed.

got
The example’s actual output.

exceptionUnexpectedException (test, example, exinfo)
An exception thrown bypocTestRunner to signal that a doctest example raised an unexpected exception.
The constructor arguments are used to initialize the member variables of the same names.

UnexpectedException defines the following member variables:
test
TheDocTest object that was being run when the example failed.

example
TheExample that failed.

exc _info
A tuple containing information about the unexpected exception, as returrgegshaxc _info()

5.2.8 Soapbox

As mentioned in the introductiodpctest has grown to have three primary uses:

5.2. doctest — Test interactive Python examples 177

1. Checking examples in docstrings.
2. Regression testing.

3. Executable documentation / literate testing.

These uses have different requirements, and it is important to distinguish them. In particular, filling your docstrings
with obscure test cases makes for bad documentation.

When writing a docstring, choose docstring examples with care. There’s an art to this that needs to be learned—it
may not be natural at first. Examples should add genuine value to the documentation. A good example can often be
worth many words. If done with care, the examples will be invaluable for your users, and will pay back the time it
takes to collect them many times over as the years go by and things change. I'm still amazed at how often one of my
doctest examples stops working after a "harmless” change.

Doctest also makes an excellent tool for regression testing, especially if you don’t skimp on explanatory text. By
interleaving prose and examples, it becomes much easier to keep track of what's actually being tested, and why. When
a test fails, good prose can make it much easier to figure out what the problem is, and how it should be fixed. It's
true that you could write extensive comments in code-based testing, but few programmers do. Many have found that
using doctest approaches instead leads to much clearer tests. Perhaps this is simply because doctest makes writing
prose a little easier than writing code, while writing comments in code is a little harder. | think it goes deeper than just
that: the natural attitude when writing a doctest-based test is that you want to explain the fine points of your software,
and illustrate them with examples. This in turn naturally leads to test files that start with the simplest features, and
logically progress to complications and edge cases. A coherent narrative is the result, instead of a collection of isolated
functions that test isolated bits of functionality seemingly at random. It's a different attitude, and produces different
results, blurring the distinction between testing and explaining.

Regression testing is best confined to dedicated objects or files. There are several options for organizing tests:

e Write text files containing test cases as interactive examples, and test the filestestilg() or
DocFileSuite() . This is recommended, although is easiest to do for new projects, designed from the
start to use doctest.

e Define functions namedregrtest _topic that consist of single docstrings, containing test cases for the
named topics. These functions can be included in the same file as the module, or separated out into a separate

test file.
e Define a__test __ dictionary mapping from regression test topics to docstrings containing test cases.
5.3 unittest — Unit testing framework

New in version 2.1.

The Python unit testing framework, often referred to as “PyUnit,” is a Python language version of JUnit, by Kent
Beck and Erich Gamma. JUnit is, in turn, a Java version of Kent's Smalltalk testing framework. Each is the de facto
standard unit testing framework for its respective language.

PyUnit supports test automation, sharing of setup and shutdown code for tests, aggregation of tests into collections,
and independence of the tests from the reporting framework.untigest module provides classes that make it
easy to support these qualities for a set of tests.

To achieve this, PyUnit supports some important concepts:

test fixture
A test fixturerepresents the preparation needed to perform one or more tests, and any associate cleanup actions.
This may involve, for example, creating temporary or proxy databases, directories, or starting a server process.

178 Chapter 5. Miscellaneous Services

test case
A test cases the smallest unit of testing. It checks for a specific response to a particular set of inputs. PyUnit
provides a base clas$estCase , which may be used to create new test cases. You may provide your own
implementation that does not subclass froestCase , of course.

test suite
A test suitds a collection of test cases, test suites, or both. It is used to aggregate tests that should be executed
together.

test runner
A test runneris a component which orchestrates the execution of tests and provides the outcome to the user.
The runner may use a graphical interface, a textual interface, or return a special value to indicate the results of
executing the tests.

The test case and test fixture concepts are supported througresh@ase andFunctionTestCase classes;

the former should be used when creating new tests, and the latter can be used when integrating existing test code
with a PyUnit-driven framework. When building test fixtures usifestCase , thesetUp() andtearDown()

methods can be overridden to provide initialization and cleanup for the fixture . RtvitttionTestCase , existing

functions can be passed to the constructor for these purposes. When the test is run, the fixture initialization is run first;

if it succeeds, the cleanup method is run after the test has been executed, regardless of the outcome of the test. Each
instance of th@estCase will only be used to run a single test method, so a new fixture is created for each test.

Test suites are implemented by thestSuite class. This class allows individual tests and test suites to be aggre-
gated; when the suite is executed, all tests added directly to the suite and in “child” test suites are run.

A test runner is an object that provides a single methanl() , which accepts destCase or TestSuite object

as a parameter, and returns a result object. The GlastResult is provided for use as the result object. PyUnit
provide theTextTestRunner as an example test runner which reports test results on the standard error stream by
default. Alternate runners can be implemented for other environments (such as graphical environments) without any
need to derive from a specific class.

See Also:

Moduledoctest (section 5.2):
Another test-support module with a very different flavor.

PyUnit Web Site
(http://pyunit.sourceforge.net/)
The source for further information on PyUnit.

Simple Smalltalk Testing: With Patterns
(http://www. XProgramming.com/testfram.htm)
Kent Beck’s original paper on testing frameworks using the pattern sharedithgst

5.3.1 Basic example

Theunittest module provides a rich set of tools for constructing and running tests. This section demonstrates that
a small subset of the tools suffice to meet the needs of most users.

Here is a short script to test three functions fromrtiedom module:

5.3. unittest — Unit testing framework 179

import random
import unittest

class TestSequenceFunctions(unittest.TestCase):

def setUp(self):
self.seq = range(10)

def testshuffle(self):
make sure the shuffled sequence does not lose any elements
random.shuffle(self.seq)
self.seq.sort()
self.assertEqual(self.seq, range(10))

def testchoice(self):
element = random.choice(self.seq)
self.assert_(element in self.seq)

def testsample(self):
self.assertRaises(ValueError, random.sample, self.seq, 20)
for element in random.sample(self.seq, 5):
self.assert_(element in self.seq)

if _name__ =='_ main__"
unittest.main()

A testcase is created by subclassumgttest. TestCase . The three individual tests are defined with methods
whose names start with the lettetsst '. This naming convention informs the test runner about which methods
represent tests.

The crux of each test is a call &ssertEqual() to check for an expected resudssert () to verify a condition;
or assertRaises() to verify that an expected exception gets raised. These methods are used instead of the
assert statement so the test runner can accumulate all test results and produce a report.

When asetUp() method is defined, the test runner will run that method prior to each test. Likewise, if a
tearDown() method is defined, the test runner will invoke that method after each test. In the exaatple()
was used to create a fresh sequence for each test.

The final block shows a simple way to run the testsittest.main() provides a command line interface to the
test script. When run from the command line, the above script produces an output that looks like this:

Ran 3 tests in 0.000s

OK

Instead ofunittest.main() , there are other ways to run the tests with a finer level of control, less terse output,
and no requirement to be run from the command line. For example, the last two lines may be replaced with:

suite = unittest. makeSuite(TestSequenceFunctions)
unittest. TextTestRunner(verbosity=2).run(suite)

Running the revised script from the interpreter or another script produces the following output:

180 Chapter 5. Miscellaneous Services

testchoice (__main__.TestSequenceFunctions) ... ok
testsample (__main__.TestSequenceFunctions) ... ok
testshuffle (__main__.TestSequenceFunctions) ... ok

Ran 3 tests in 0.110s

OK

The above examples show the most commonly wsgtiest features which are sufficient to meet many everyday
testing needs. The remainder of the documentation explores the full feature set from first principles.

5.3.2 Organizing test code

The basic building blocks of unit testing aest cases— single scenarios that must be set up and checked for correct-
ness. In PyUnit, test cases are represented by instancesTddt@ase class in theunittest module. To make
your own test cases you must write subclasseBestCase , or useFunctionTestCase

An instance of alestCase -derived class is an object that can completely run a single test method, together with
optional set-up and tidy-up code.

The testing code of @estCase instance should be entirely self contained, such that it can be run either in isolation
or in arbitrary combination with any number of other test cases.

The simplest test case subclass will simply overridetindest() method in order to perform specific testing code:

import unittest

class DefaultWidgetSizeTestCase(unittest.TestCase):
def runTest(self):
widget = Widget("The widget")
self.failUnless(widget.size() == (50,50), ’incorrect default size’)

Note that in order to test something, we use the one ofagsert*() or fail*() methods provided by the
TestCase base class. If the test fails when the test case runs, an exception will be raised, and the testing framework
will identify the test case asfailure. Other exceptions that do not arise from checks made througistet*()

andfail*() methods are identified by the testing framework as dfnerrors.

The way to run a test case will be described later. For now, note that to construct an instance of such a test case, we
call its constructor without arguments:

testCase = DefaultWidgetSizeTestCase()

Now, such test cases can be numerous, and their set-up can be repetitive. In the above case, constructing a “Widget”
in each of 100 Widget test case subclasses would mean unsightly duplication.

Luckily, we can factor out such set-up code by implementing a method atép() , which the testing framework
will automatically call for us when we run the test:

5.3. unittest =~ — Unit testing framework 181

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget("The widget")

class DefaultWidgetSizeTestCase(SimpleWidgetTestCase):
def runTest(self):
self.failUnless(self.widget.size() == (50,50),
'incorrect default size’)

class WidgetResizeTestCase(SimpleWidgetTestCase):
def runTest(self):
self.widget.resize(100,150)
self.failUnless(self.widget.size() == (100,150),
‘wrong size after resize’)

If the setUp() method raises an exception while the test is running, the framework will consider the test to have
suffered an error, and thranTest() method will not be executed.

Similarly, we can provide gearDown() method that tidies up after thenTest() = method has been run:

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget("The widget")

def tearDown(self):
self.widget.dispose()
self.widget = None

If setUp() succeeded, thearDown() method will be run regardless of whether or nahTest() succeeded.
Such a working environment for the testing code is callégtare

Often, many small test cases will use the same fixture. In this case, we would end up subclassing
SimpleWidgetTestCase into many small one-method classes suchDafaultWidgetSizeTestCase
This is time-consuming and discouraging, so in the same vein as JUnit, PyUnit provides a simpler mechanism:

182 Chapter 5. Miscellaneous Services

import unittest

class WidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget("The widget")

def tearDown(self):
self.widget.dispose()
self.widget = None

def testDefaultSize(self):
self.failUnless(self.widget.size() == (50,50),
‘incorrect default size’)

def testResize(self):
self.widget.resize(100,150)
self.failUnless(self.widget.size() == (100,150),
‘wrong size after resize’)

Here we have not provided minTest() method, but have instead provided two different test methods. Class
instances will now each run one of thest*() methods, withself.widget created and destroyed separately

for each instance. When creating an instance we must specify the test method it is to run. We do this by passing the
method name in the constructor:

defaultSizeTestCase = WidgetTestCase("testDefaultSize")
resizeTestCase = WidgetTestCase("testResize")

Test case instances are grouped together according to the features they test. PyUnit provides a mechanism for this: the
test suite |, represented by the claggstSuite in theunittest module:

widgetTestSuite = unittest. TestSuite()
widgetTestSuite.addTest(WidgetTestCase("testDefaultSize"))
widgetTestSuite.addTest(WidgetTestCase("testResize"))

For the ease of running tests, as we will see later, it is a good idea to provide in each test module a callable object that
returns a pre-built test suite:

def suite():
suite = unittest.TestSuite()
suite.addTest(WidgetTestCase("testDefaultSize"))
suite.addTest(WidgetTestCase("testResize"))
return suite

or even:

class WidgetTestSuite(unittest. TestSuite):
def __init__(self):
unittest. TestSuite.__init__(self,map(WidgetTestCase,
("testDefaultSize",
"testResize")))

5.3. unittest =~ — Unit testing framework 183

(The latter is admittedly not for the faint-hearted!)

Since it is a common pattern to creat§ @stCase subclass with many similarly named test functions, there is a
convenience function calleshakeSuite() that constructs a test suite that comprises all of the test cases in a test
case class:

suite = unittest.makeSuite(WidgetTestCase)

Note that when using thenakeSuite() function, the order in which the various test cases will be run by the test
suite is the order determined by sorting the test function names usiogi@ built-in function.

Often it is desirable to group suites of test cases together, so as to run tests for the whole system at once. This is
easy, sincdestSuite instances can be added tdrestSuite just asTestCase instances can be added to a
TestSuite

suitel modulel.TheTestSuite()
suite2 module2.TheTestSuite()
alltests = unittest.TestSuite((suitel, suite2))

You can place the definitions of test cases and test suites in the same modules as the code they are to test (such as
‘widget.py’), but there are several advantages to placing the test code in a separate module, sisigetssts. py’:

e The test module can be run standalone from the command line.

e The test code can more easily be separated from shipped code.

e There is less temptation to change test code to fit the code it tests without a good reason.

e Test code should be modified much less frequently than the code it tests.

e Tested code can be refactored more easily.

e Tests for modules written in C must be in separate modules anyway, so why not be consistent?

e If the testing strategy changes, there is no need to change the source code.

5.3.3 Re-using old test code

Some users will find that they have existing test code that they would like to run from PyUnit, without converting
every old test function to @estCase subclass.

For this reason, PyUnit providesrainctionTestCase class. This subclass @kstCase can be used to wrap an
existing test function. Set-up and tear-down functions can also optionally be wrapped.

Given the following test function:

def testSomething():
something = makeSomething()
assert something.name is not None
..

one can create an equivalent test case instance as follows:

184 Chapter 5. Miscellaneous Services

testcase = unittest.FunctionTestCase(testSomething)

If there are additional set-up and tear-down methods that should be called as part of the test case’s operation, they can
also be provided:

testcase = unittest.FunctionTestCase(testSomething,
setUp=makeSomethingDB,
tearDown=deleteSomethingDB)

Note: PyUnit supports the use dfssertionError as an indicator of test failure, but does not recommend it.
Future versions may treatssertionError differently.

5.3.4 Classes and functions

classTestCase ()
Instances of th@estCase class represent the smallest testable units in a set of tests. This class is intended to
be used as a base class, with specific tests being implemented by concrete subclasses. This class implements the
interface needed by the test runner to allow it to drive the test, and methods that the test code can use to check
for and report various kinds of failures.

classFunctionTestCase (testFunt{, setu;{, tearDowr{, description]]])
This class implements the portion of thiestCase interface which allows the test runner to drive the test, but
does not provide the methods which test code can use to check and report errors. This is used to create test cases
using legacy test code, allowing it to be integrated intmdtest -based test framework.

classTestSuite ([testﬁ)
This class represents an aggregation of individual tests cases and test suites. The class presents the interface
needed by the test runner to allow it to be run as any other test case, but all the contained tests and test suites
are executed. Additional methods are provided to add test cases and suites to the aggregedisis diven,
it must be a sequence of individual tests that will be added to the suite.

classTestLoader ()
This class is responsible for loading tests according to various criteria and returning them wrapped in a
TestSuite . It can load all tests within a given module ©estCase class. When loading from a mod-
ule, it considers allestCase -derived classes. For each such class, it creates an instance for each method with
a name beginning with the strinte’st .

defaultTestLoader
Instance of th& estLoader class which can be shared. If no customization offthstLoader is needed,
this instance can always be used instead of creating new instances.

classTextTestRunner ([strean{, descriptiong, verbositﬂ]])
A basic test runner implementation which prints results on standard output. It has a few configurable parameters,
but is essentially very simple. Graphical applications which run test suites should provide alternate implemen-
tations.

main ([module[, defauItTes[t, argv[, testRunne[r, testRunne}]]]])
A command-line program that runs a set of tests; this is primarily for making test modules conveniently exe-
cutable. The simplest use for this function is:

1 ’

if __name__ == "'_ _main__"
unittest.main()

5.3. unittest =~ — Unit testing framework 185

In some cases, the existing tests may have be written usindatttest module. If so, that module provides a
DocTestSuite class that can automatically builchittest. TestSuite instances from the existing test code.
New in version 2.3.

5.3.5 TestCase Objects

EachTestCase instance represents a single test, but each concrete subclass may be used to define multiple tests —
the concrete class represents a single test fixture. The fixture is created and cleaned up for each test case.

TestCase instances provide three groups of methods: one group used to run the test, another used by the test
implementation to check conditions and report failures, and some inquiry methods allowing information about the test
itself to be gathered.

Methods in the first group are:

setUp ()
Method called to prepare the test fixture. This is called immediately before calling the test method; any exception
raised by this method will be considered an error rather than a test failure. The default implementation does
nothing.

tearDown ()
Method called immediately after the test method has been called and the result recorded. This is called even
if the test method raised an exception, so the implementation in subclasses may need to be particularly careful
about checking internal state. Any exception raised by this method will be considered an error rather than a test
failure. This method will only be called if theetUp() succeeds, regardless of the outcome of the test method.
The default implementation does nothing.

run ([result])
Run the test, collecting the result into the test result object passezbals If resultis omitted orNone, a
temporary result object is created and used, but is not made available to the caller. This is equivalent to simply
calling theTestCase instance.

debug ()
Run the test without collecting the result. This allows exceptions raised by the test to be propagated to the caller,
and can be used to support running tests under a debugger.

The test code can use any of the following methods to check for and report failures.

assert _(expr[, msg])
failUnless (expn, msg|)
Signal a test failure iéxpris false; the explanation for the error will besgif given, otherwise it will beNone.

assertEqual (first, seconﬂ, msg|)

failUnlessEqual (first, secongl, msg])
Test thatfirst andsecondare equal. If the values do not compare equal, the test will fail with the explanation
given bymsg or None. Note that usindailUnlessEqual() improves upon doing the comparison as the
first parameter tdailUnless() : the default value fomsgcan be computed to include representations of
bothfirst andsecond

assertNotEqual (first, seconﬂ, msg])

faillfEqual (first, seconﬂ, msg|)
Test thatfirst andsecondare not equal. If the values do compare equal, the test will fail with the explanation
given bymsg or None. Note that usindaillfEqual() improves upon doing the comparison as the first
parameter tdailUnless() is that the default value fansgcan be computed to include representations of
bothfirst andsecond

assertAlmostEqual (first, secon@, pIaces{, ms])
failUnlessAlmostEqual (first, secongl, places, msg]])
Test thaffirst andsecondare approximately equal by computing the difference, rounding to the given number

186 Chapter 5. Miscellaneous Services

of places and comparing to zero. Note that comparing a given number of decimal places is not the same as
comparing a given number of significant digits. If the values do not compare equal, the test will fail with the
explanation given bynsg or None.

assertNotAlmostEqual (first, secon@, places{, msg]])

faillfAlImostEqual (first, secongl, placeg, msg| |)
Test thafirst andsecondare not approximately equal by computing the difference, rounding to the given number
of places and comparing to zero. Note that comparing a given number of decimal places is not the same as
comparing a given number of significant digits. If the values do not compare equal, the test will fail with the
explanation given bynsg or None.

assertRaises (exception, callable,)..

failUnlessRaises (- exception, callable,)..
Test that an exception is raised wheadlableis called with any positional or keyword arguments that are also
passed t@ssertRaises() . The test passes éxceptions raised, is an error if another exception is raised,
or fails if no exception is raised. To catch any of a group of exceptions, a tuple containing the exception classes
may be passed &xception

faillf (expl{, msg])
The inverse of théailUnless() method is thdaillf() method. This signals a test failuresikpris true,
with msgor None for the error message.

fail ([msg])
Signals a test failure unconditionally, withsgor None for the error message.

failureException
This class attribute gives the exception raised bytdst() method. If a test framework needs to use a
specialized exception, possibly to carry additional information, it must subclass this exception in order to “play
fair” with the framework. The initial value of this attribute AssertionError

Testing frameworks can use the following methods to collect information on the test:

countTestCases ()
Return the number of tests represented by the this test object.eéStCase instances, this will always be,
but this method is also implemented by thestSuite class, which can return larger values.

defaultTestResult 0
Return the default type of test result object to be used to run this test.

id ()
Return a string identifying the specific test case. This is usually the full name of the test method, including the
module and class names.

shortDescription 0
Returns a one-line description of the testName if no description has been provided. The default implemen-
tation of this method returns the first line of the test method’s docstring, if availabNnre:.

5.3.6 TestSuite Objects

TestSuite objects behave much likEestCase objects, except they do not actually implement a test. Instead,
they are used to aggregate tests into groups that should be run together. Some additional methods are available to add
tests toTestSuite instances:

addTest (tes)
Add aTestCase orTestSuite to the set of tests that make up the suite.

addTests (test9
Add all the tests from a sequenceT@stCase andTestSuite instances to this test suite.

Therun() method is also slightly different:

5.3. unittest — Unit testing framework 187

run (resulf
Run the tests associated with this suite, collecting the result into the test result object passall &pote that
unlike TestCase.run() , TestSuite.run() requires the result object to be passed in.

In the typical usage of aestSuite object, therun() method is invoked by &estRunner rather than by the
end-user test harness.

5.3.7 TestResult Objects

A TestResult object stores the results of a set of tests. ThestCase andTestSuite classes ensure that
results are properly stored; test authors do not need to worry about recording the outcome of tests.

Testing frameworks built on top afnittest may want access to theestResult object generated by running
a set of tests for reporting purposesi@stResult instance is returned by theestRunner.run() method for
this purpose.

Each instance holds the total number of tests run, and collections of failures and errors that occurred among those test
runs. The collections contain tuples (ofestcase tracebach , wheretracebackis a string containing a formatted
version of the traceback for the exception.

TestResult instances have the following attributes that will be of interest when inspecting the results of running a
set of tests:

errors
A list containing pairs ofTestCase instances and the formatted tracebacks for tests which raised an ex-
ception but did not signal a test failure. Changed in version 2.2: Contains formatted tracebacks instead of
sys.exc _info() results.

failures
A list containing pairs offestCase instances and the formatted tracebacks for tests which signalled a failure
in the code under test. Changed in version 2.2: Contains formatted tracebacks insgaéxaf _info()
results.

testsRun
The number of tests which have been started.

wasSuccessful ()
Returns true if all tests run so far have passed, otherwise returns false.

The following methods of thdestResult class are used to maintain the internal data structures, and may be
extended in subclasses to support additional reporting requirements. This is particularly useful in building tools which
support interactive reporting while tests are being run.

startTest (tes)
Called when the test cagestis about to be run.

stopTest (tes)
Called when the test casesthas been executed, regardless of the outcome.

addError (test, erp
Called when the test cagestraises an exception without signalling a test failuegr is a tuple of the form
returned bysys.exc _info() : (type value traceback.

addFailure (test, er)
Called when the test cagestsignals a failure.err is a tuple of the form returned bgys.exc _info()
(type valug traceback.

addSuccess (tes)
This method is called for a test that does not fagktis the test case object.

One additional method is available fdestResult objects:

188 Chapter 5. Miscellaneous Services

stop ()
This method can be called to signal that the set of tests being run should be aborted. Once this has been

called, theTestRunner object return to its caller without running any additional tests. This is used by the
TextTestRunner class to stop the test framework when the user signals an interrupt from the keyboard.
Interactive tools which provide runners can use this in a similar manner.

5.3.8 TestLoader Objects

TheTestLoader class is used to create test suites from classes and modules. Normally, there is no need to create an
instance of this class; thenittest ~ module provides an instance that can be shared atefla@ltTestLoader
module attribute. Using a subclass or instance would allow customization of some configurable properties.

TestLoader objects have the following methods:

loadTestsFromTestCase (testCaseClags
Return a suite of all tests cases contained inTibstCase -derived classestCaseClass

loadTestsFromModule (modulg
Return a suite of all tests cases contained in the given module. This method seancdléfor classes derived
from TestCase and creates an instance of the class for each test method defined for the class.

Warning: While using a hierarchy oTestcase -derived classes can be convenient in sharing fixtures and
helper functions, defining test methods on base classes that are not intended to be instantiated directly does not
play well with this method. Doing so, however, can be useful when the fixtures are different and defined in
subclasses.

loadTestsFromName (name[, moduld)
Return a suite of all tests cases given a string specifier.

The specifiernameis a “dotted name” that may resolve either to a module, a test case class, a test
method within a test case class, or a callable object which returiieséCase or TestSuite in-
stance. For example, if you have a modampleTests containing aTestCase -derived class
SampleTestCase with three test methodsgst _one() ,test _two() ,andtest _three()),the spec-

ifier 'SampleTests.SampleTestCase’ would cause this method to return a suite which will run all three
test methods. Using the specifiSampleTests.SampleTestCase.test _two’ would cause it to re-

turn a test suite which will run only thiest _two() test method. The specifier can refer to modules and
packages which have not been imported; they will be imported as a side-effect.

The method optionally resolvesmmerelative to a given module.

loadTestsFromNames (name%, moduld)
Similar toloadTestsFromName() , but takes a sequence of names rather than a single name. The return
value is a test suite which supports all the tests defined for each name.

getTestCaseNames (testCaseClags
Return a sorted sequence of method names found wikiCaseClass

The following attributes of &estLoader can be configured either by subclassing or assignment on an instance:

testMethodPrefix
String giving the prefix of method names which will be interpreted as test methods. The default value is
‘test’

sortTestMethodsUsing
Function to be used to compare method names when sorting thgetTestCaseNames() . The default
value is the built-ircmp() function; it can be set tblone to disable the sort.

suiteClass
Callable object that constructs a test suite from a list of tests. No methods on the resulting object are needed.
The default value is th€estSuite class.

5.3. unittest =~ — Unit testing framework 189

5.4 test — Regression tests package for Python

Thetest package contains all regression tests for Python as well as the mddsteest _support and
test.regrtest . test.test _support is used to enhance your tests whist.regrtest drives the test-
ing suite.

Each module in théest package whose name starts witkst _’ is a testing suite for a specific module or feature.
All new tests should be written using theittest module; usingunittest is not required but makes the tests
more flexible and maintenance of the tests easier. Some older tests are writterdtwies¢ and a “traditional”
testing style; these styles of tests will not be covered.

See Also:

Moduleunittest (section 5.3):
Writing PyUnit regression tests.

Moduledoctest (section 5.2):
Tests embedded in documentation strings.

5.4.1 Writing Unit Tests for the test package

It is preferred that tests for thiest package use thenittest module and follow a few guidelines. One is to

have the name of all the test methods start wiglst _' as well as the module’s name. This is needed so that the
methods are recognized by the test driver as test methods. Also, no documentation string for the method should be
included. A comment (such agTests function returns only True or False ") should be used to

provide documentation for test methods. This is done because documentation strings get printed out if they exist and
thus what test is being run is not stated.

A basic boilerplate is often used:

190 Chapter 5. Miscellaneous Services

import unittest
from test import test_support

class MyTestCasel(unittest.TestCase):
Only use setUp() and tearDown() if necessary

def setUp(self):
. code to execute in preparation for tests ...

def tearDown(self):
. code to execute to clean up after tests ...

def test feature_one(self):
Test feature one.
. testing code ...

def test_feature_two(self):
Test feature two.
. testing code ...

. more test methods ...

class MyTestCase2(unittest.TestCase):
. same structure as MyTestCasel ...

. more test classes ...

def test_main():
test_support.run_unittest(MyTestCasel,
MyTestCase2,
. list other tests ...

if __name__ =="'_ main__"
test_main()
This boilerplate code allows the testing suite to be rutdsy.regrtest as well as on its own as a script.

The goal for regression testing is to try to break code. This leads to a few guidelines to be followed:
e The testing suite should exercise all classes, functions, and constants. This includes not just the external API
that is to be presented to the outside world but also "private” code.

e Whitebox testing (examining the code being tested when the tests are being written) is preferred. Blackbox
testing (testing only the published user interface) is not complete enough to make sure all boundary and edge
cases are tested.

e Make sure all possible values are tested including invalid ones. This makes sure that not only all valid values
are acceptable but also that improper values are handled correctly.

e Exhaust as many code paths as possible. Test where branching occurs and thus tailor input to make sure as many
different paths through the code are taken.

e Add an explicit test for any bugs discovered for the tested code. This will make sure that the error does not crop
up again if the code is changed in the future.

e Make sure to clean up after your tests (such as close and remove all temporary files).

5.4. test — Regression tests package for Python 191

e Import as few modules as possible and do it as soon as possible. This minimizes external dependencies of tests
and also minimizes possible anomalous behavior from side-effects of importing a module.

e Try to maximize code reuse. On occasion, tests will vary by something as small as what type of input is used.
Minimize code duplication by subclassing a basic test class with a class that specifies the input:

class TestFuncAcceptsSequences(unittest.TestCase):
func = mySuperWhammyFunction

def test_func(self):
self.func(self.arg)

class AcceptLists(TestFuncAcceptsSequences):
arg = [1,2,3]

class AcceptStrings(TestFuncAcceptsSequences):
arg = 'abc’

class AcceptTuples(TestFuncAcceptsSequences):
arg = (1,2,3)

See Also:

Test Driven Development
A book by Kent Beck on writing tests before code.

5.4.2 Running tests using test.regrtest

test.regrtest can be used as a script to drive Python’s regression test suite. Running the script by itself automat-
ically starts running all regression tests in thet package. It does this by finding all modules in the package whose
name starts withtest _’, importing them, and executing the functitest _main() if present. The names of tests

to execute may also be passed to the script. Specifying a single regressiqytiesh (fegrtest.py test_spam.py)

will minimize output and only print whether the test passed or failed and thus minimize output.

Runningtest.regrtest directly allows what resources are available for tests to use to be set. You do this by using
the-u command-line option. Rupython regrtest.py -uall to turn on all resources; specifyiral as an option for

-u enables all possible resources. If all but one resource is desired (a more common case), a comma-separated list of
resources that are not desired may be listed afterThe commangython regrtest.py -uall,-audio,-largefile will
runtest.regrtest with all resources except ttaidio andlargefile resources. For a list of all resources and more
command-line options, rupython regrtest.py -h.

Some other ways to execute the regression tests depend on what platform the tests are being executedion. On U
you can runmake testat the top-level directory where Python was built. On Windows, executibgt from your
‘PCBuild’ directory will run all regression tests.

5.5 test.test _support — Utility functions for tests

Thetest.test _support module provides support for Python’s regression tests.
This module defines the following exceptions:

exceptionTestFailed
Exception to be raised when a test fails.

192 Chapter 5. Miscellaneous Services

exceptionTestSkipped
Subclass offestFailed . Raised when a test is skipped. This occurs when a needed resource (such as a
network connection) is not available at the time of testing.

exceptionResourceDenied
Subclass offestSkipped . Raised when a resource (such as a network connection) is not available. Raised
by therequires() function.

Thetest.test _support module defines the following constants:

verbose
True when verbose output is enabled. Should be checked when more detailed information is desired about a
running testverboses set bytest.regrtest

have _unicode
True when Unicode support is available.

is _jython
True if the running interpreter is Jython.
TESTFN

Set to the path that a temporary file may be created at. Any temporary that is created should be closed and
unlinked (removed).

Thetest.test _support module defines the following functions:

forget (module_.nameg
Removes the module namedodule namefrom sys.modules and deletes any byte-compiled files of the
module.

is _resource _enabled (resourcé
Returns True if resourceis enabled and available. The list of available resources is only set when
test.regrtest is executing the tests.

requires (resourc{, msg])
RaisesResourceDenied if resourceis not available.msgis the argument t&ResourceDenied if it is
raised. Always returns true if called by a function whasename__is’ __main __’ . Used when tests are
executed byest.regrtest

findfile (filenamé
Return the path to the file namdéitename If no match is foundilenameis returned. This does not equal a
failure since it could be the path to the file.

run _unittest (*classe3d
Executeunittest. TestCase subclasses passed to the function. The function scans the classes for methods
starting with the prefixtest _’ and executes the tests individually. This is the preferred way to execute tests.

run _suite (suite[, testclasi)
Execute thaunittest. TestSuite instancesuite The optional argumenestclassaccepts one of the test
classes in the suite so as to print out more detailed information on where the testing suite originated from.

5.6 decimal — Decimal floating point arithmetic

New in version 2.4.

Thedecimal module provides support for decimal floating point arithmetic. It offers several advantages over the
float() datatype:

e Decimal numbers can be represented exactly. In contrast, numbetslikéo not have an exact representation
in binary floating point. End users typically would not exp&ct to display asl.1000000000000001 as

5.6. decimal — Decimal floating point arithmetic 193

it does with binary floating point.

e The exactness carries over into arithmetic. In decimal floating p&rit, + 0.1 + 0.1 - 0.3 "is exactly
equal to zero. In binary floating point, result3s5511151231257827e-017 . While near to zero, the
differences prevent reliable equality testing and differences can accumulate. For this reason, decimal would be
preferred in accounting applications which have strict equality invariants.

e The decimal module incorporates a notion of significant places soll&i ‘+ 1.20 ’is 2.50 . The trailing
zero is kept to indicate significance. This is the customary presentation for monetary applications. For multipli-
cation, the “schoolbook” approach uses all the figures in the multiplicands. For instarge;, ‘1.2 ' gives
1.56 while ‘1.30 * 1.20 ’gives1.5600 .

e Unlike hardware based binary floating point, the decimal module has a user settable precision (defaulting to 28
places) which can be as large as needed for a given problem:

>>> getcontext().prec = 6

>>> Decimal(1) / Decimal(7)
Decimal("0.142857")

>>> getcontext().prec = 28

>>> Decimal(1) / Decimal(7)
Decimal("0.1428571428571428571428571429")

¢ Both binary and decimal floating point are implemented in terms of published standards. While the built-in
float type exposes only a modest portion of its capabilities, the decimal module exposes all required parts of the
standard. When needed, the programmer has full control over rounding and signal handling.

The module design is centered around three concepts: the decimal number, the context for arithmetic, and signals.

A decimal number is immutable. It has a sign, coefficient digits, and an exponent. To preserve significance, the coef-
ficient digits do not truncate trailing zeroes. Decimals also include special values sundimiis , -Infinity
andNaN The standard also differentiatéd from +0.

The context for arithmetic is an environment specifying precision, rounding rules, limits on exponents, flags indicating
the results of operations, and trap enablers which determine whether signals are treated as exceptions. Rounding
options includeROUNDCEILING , ROUNDDOWNROUNDFLOORROUNDHALF_DOWNROUNDHALF_EVEN
ROUNDHALF_UP, andROUNDUP.

Signals are groups of exceptional conditions arising during the course of computation. Depending on the needs
of the application, signals may be ignored, considered as informational, or treated as exceptions. The signals in the
decimal module areClamped , InvalidOperation , DivisionByZero ,Inexact , Rounded, Subnormal ,

Overflow , andUnderflow

For each signal there is a flag and a trap enabler. When a signal is encountered, its flag incremented from zero and,
then, if the trap enabler is set to one, an exception is raised. Flags are sticky, so the user needs to reset them before
monitoring a calculation.

See Also:
IBM's General Decimal Arithmetic Specificatiomhe General Decimal Arithmetic Specification
IEEE standard 854-198Unofficial IEEE 854 Text

5.6.1 Quick-start Tutorial

The usual start to using decimals is importing the module, viewing the current contexjetditntext() and, if
necessary, setting new values for precision, rounding, or enabled traps:

194 Chapter 5. Miscellaneous Services

>>> from decimal import *

>>> getcontext()

Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[], traps=[Overflow, InvalidOperation,
DivisionByZero])

>>> getcontext().prec = 7 # Set a new precision

Decimal instances can be constructed from integers, strings or tuples. To create a Decimalflisam a first

convert it to a string. This serves as an explicit reminder of the details of the conversion (including representation
error). Decimal numbers include special values sucNaswhich stands for “Not a number”, positive and negative
Infinity ,and-0 .

>>> Decimal(10)
Decimal("10")

>>> Decimal("3.14")
Decimal("3.14")

>>> Decimal((0, (3, 1, 4), -2))
Decimal("3.14")

>>> Decimal(str(2.0 ** 0.5))
Decimal("1.41421356237")
>>> Decimal("NaN")
Decimal("NaN")

>>> Decimal("-Infinity")
Decimal("-Infinity")

The significance of a new Decimal is determined solely by the number of digits input. Context precision and rounding
only come into play during arithmetic operations.

>>> getcontext().prec = 6

>>> Decimal('3.0")

Decimal("3.0")

>>> Decimal('3.1415926535")

Decimal("3.1415926535")

>>> Decimal(’3.1415926535") + Decimal('2.7182818285’)
Decimal("5.85987")

>>> getcontext().rounding = ROUND_UP

>>> Decimal(’3.1415926535") + Decimal('2.7182818285’)
Decimal("5.85988")

Decimals interact well with much of the rest of python. Here is a small decimal floating point flying circus:

5.6. decimal — Decimal floating point arithmetic 195

>>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
>>> max(data)

Decimal("9.25")

>>> min(data)

Decimal("0.03")

>>> sorted(data)

[Decimal("0.03"), Decimal("1.00"), Decimal("1.34"), Decimal('1.87"),
Decimal("2.35"), Decimal("3.45"), Decimal("9.25")]

>>> sum(data)

Decimal("19.29")

>>> a,b,c = data[:3]

>>> str(a)

'1.34'

>>> float(a)

1.3400000000000001

>>> round(a, 1) # round() first converts to binary floating point
1.3

>>> int(a)

1

>>> g * 5

Decimal("6.70")

>>> g * b

Decimal("2.5058")

>>> Cc % a

Decimal("0.77")

Thequantize() method rounds a number to a fixed exponent. This method is useful for monetary applications that
often round results to a fixed number of places:

>>> Decimal(’7.325’).quantize(Decimal(’.01’), rounding=ROUND_DOWN)
Decimal("7.32")

>>> Decimal(’7.325’).quantize(Decimal(’1.’), rounding=ROUND_UP)
Decimal("8")

As shown above, thgetcontext() function accesses the current context and allows the settings to be changed.
This approach meets the needs of most applications.

For more advanced work, it may be useful to create alternate contexts using the Context() constructor. To make an
alternate active, use ttsetcontext() function.

In accordance with the standard, fhecimal module provides two ready to use standard cont®dsjcContext
andExtendedContext . The former is especially useful for debugging because many of the traps are enabled:

196 Chapter 5. Miscellaneous Services

>>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)

>>> setcontext(myothercontext)

>>> Decimal(1) / Decimal(7)
Decimal("0.142857142857142857142857142857142857142857142857142857142857")

>>> ExtendedContext

Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[], traps=[])

>>> setcontext(ExtendedContext)

>>> Decimal(1) / Decimal(7)

Decimal("0.142857143")

>>> Decimal(42) / Decimal(0)

Decimal("Infinity")

>>> setcontext(BasicContext)
>>> Decimal(42) / Decimal(0)
Traceback (most recent call last):
File "<pyshell#143>", line 1, in -toplevel-
Decimal(42) / Decimal(0)
DivisionByZero: x / 0

Contexts also have signal flags for monitoring exceptional conditions encountered during computations. The flags
remain set until explicitly cleared, so it is best to clear the flags before each set of monitored computations by using
theclear _flags() method.

>>> setcontext(ExtendedContext)

>>> getcontext().clear_flags()

>>> Decimal(355) / Decimal(113)

Decimal("3.14159292")

>>> getcontext()

Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[Inexact, Rounded], traps=[])

The flagsentry shows that the rational approximationRb was rounded (digits beyond the context precision were
thrown away) and that the result is inexact (some of the discarded digits were non-zero).

Individual traps are set using the dictionary in thegos field of a context:

>>> Decimal(1) / Decimal(0)
Decimal("Infinity")
>>> getcontext().traps[DivisionByZero] = 1
>>> Decimal(1) / Decimal(0)
Traceback (most recent call last):
File "<pyshell#112>", line 1, in -toplevel-

Decimal(1) / Decimal(0)

DivisionByZero: x / 0

Most programs adjust the current context only once, at the beginning of the program. And, in many applications,
data is converted tDecimal with a single cast inside a loop. With context set and decimals created, the bulk of the
program manipulates the data no differently than with other Python numeric types.

5.6. decimal — Decimal floating point arithmetic 197

5.6.2 Decimal objects

classDecimal ([value[, contexﬂ])
Constructs a newecimal object based frommalue

valuecan be an integer, string, tuple, or anotBecimal object. If novalueis given, return®ecimal("0")
If valueis a string, it should conform to the decimal numeric string syntax:

sign =

digit =0 | 2|3 |45 16|78 |y
indicator = e | 'F

digits »= digit [digit]...

decimal-part = digits .’ [digits] | [."] digits

exponent-part = indicator [sign] digits

infinity = Infinity’ | ’Inf’

nan == ’'NaN’' [digits] | 'sNaN’ [digits]

numeric-value ::= decimal-part [exponent-part] | infinity
numeric-string ::= [sign] numeric-value | [sign] nan

If valueis atuple , it should have three components, a si@nfdr positive orl for negative), auple
of digits, and an integer exponent. For examplBecimal((0, (1, 4, 1, 4), -3)) " returns
Decimal("1.414")

The contextprecision does not affect how many digits are stored. That is determined exclusively by the number
of digits invalue For example,Decimal("3.00000") ' records all five zeroes even if the context precision

is only three.

The purpose of theontextargument is determining what to dovélueis a malformed string. If the context
trapsinvalidOperation , an exception is raised; otherwise, the constructor returns a new Decimal with the

value ofNaN
Once constructed)ecimal objects are immutable.

Decimal floating point objects share many properties with the other builtin numeric types sflcatas andint .
All of the usual math operations and special methods apply. Likewise, decimal objects can be copied, pickled, printed,
used as dictionary keys, used as set elements, compared, sorted, and coerced to another tyfleéuctoal®ong).

In addition to the standard numeric properties, decimal floating point objects also have a number of specialized meth-
ods:

adjusted ()
Return the adjusted exponent after shifting out the coefficient’s rightmost digits until only the lead digit re-
mains: Decimal("321e+5").adjusted() returns seven. Used for determining the position of the most

significant digit with respect to the decimal point.

as _tuple ()
Returns a tuple representation of the numbfsigh, digittuple, exponent)

compare (other[, contexﬂ)
Compares like__cmp__() but returns a decimal instance:

a or b is a NaN ==> Decimal("NaN")
a<b ==> Decimal("-1")
a == ==> Decimal("0")
a>b ==> Decimal("1")
max(othel{, contexl])
Like ‘max(self, other) ' except that the context rounding rule is applied before returning and\thist

198 Chapter 5. Miscellaneous Services

values are either signalled or ignored (depending on the context and whether they are signaling or quiet).

min (other[, contexl])
Like ‘min(self, other) " except that the context rounding rule is applied before returning and\iisit
values are either signalled or ignored (depending on the context and whether they are signaling or quiet).

normalize ([context])
Normalize the number by stripping the rightmost trailing zeroes and converting any result equal to
Decimal("0") to Decimal("0e0") . Used for producing canonical values for members of an equiva-
lence class. For examplBgcimal("32.100") andDecimal("0.321000e+2") both normalize to the
equivalent valu®ecimal("32.1")

quantize (exp[, rounding[, contex[, watchexd]])
Quantize makes the exponent the samex@sSearches for a rounding methodaunding then incontext and
then in the current context.

If watchexpis set (default), then an error is returned whenever the resulting exponent is greaténthaor
less tharEtiny

remainder _near (other[, contexﬂ)
Computes the modulo as either a positive or negative value depending on which is closest to zero. For in-
stance, Decimal(10).remainder _near(6) ' returnsDecimal("-2") which is closer to zero than
Decimal("4")

If both are equally close, the one chosen will have the same sigelfas

same_quantum (other[, contexﬂ)
Test whether self and other have the same exponent or whether bdthNre

sqrt ([contexl])
Return the square root to full precision.

to _eng_string ([contexl])
Convert to an engineering-type string.

Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal
place. For example, convefecimal('123E+1) to Decimal("1.23E+3")

to _integral ([rounding{, contexﬂ])
Rounds to the nearest integer without signalimgxact or Rounded. If given, appliesounding otherwise,
uses the rounding method in either the supptiedtextor the current context.

5.6.3 Context objects

Contexts are environments for arithmetic operations. They govern precision, set rules for rounding, determine which
signals are treated as exceptions, and limit the range for exponents.

Each thread has its own current context which is accessed or changed usirgettomatext() and
setcontext() functions:

getcontext ()
Return the current context for the active thread.

setcontext (¢)
Set the current context for the active thread.to

New contexts can formed using tiontext constructor described below. In addition, the module provides three
pre-made contexts:

classBasicContext
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set tROUNDHALF_UP. All flags are cleared. All traps are enabled (treated as exceptions) except

5.6. decimal — Decimal floating point arithmetic 199

Inexact , Rounded, andSubnormal .
Because many of the traps are enabled, this context is useful for debugging.

classExtendedContext
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set tROUNDHALF_EVEN All flags are cleared. No traps are enabled (so that exceptions are not
raised during computations).

Because the trapped are disabled, this context is useful for applications that prefer to have resultNaNie of
or Infinity instead of raising exceptions. This allows an application to complete a run in the presence of
conditions that would otherwise halt the program.

classDefaultContext
This context is used by th€ontext constructor as a prototype for new contexts. Changing a field (such a
precision) has the effect of changing the default for new contexts creating Iotitext constructor.

This context is most useful in multi-threaded environments. Changing one of the fields before threads are started
has the effect of setting system-wide defaults. Changing the fields after threads have started is not recommended
as it would require thread synchronization to prevent race conditions.

In single threaded environments, it is preferable to not use this context at all. Instead, simply create contexts
explicitly as described below.

The default values are precision=28, rounding=ROUMBLF_EVEN, and enabled traps for Overflow, In-
validOperation, and DivisionByZero.

In addition to the three supplied contexts, new contexts can be created witiotitext constructor.

classContext (prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capijals=1
Creates a new context. If a field is not specified omMNisne, the default values are copied from the
DefaultContext . If the flagsfield is not specified or idlone, all flags are cleared.

Theprecfield is a positive integer that sets the precision for arithmetic operations in the context.
Theroundingoption is one of:

¢ROUNDCEILING (towardslInfinity),

¢ROUNDDOWNtowards zero),

¢ROUNDFLOORtowards-Infinity),

¢ROUNDHALF_DOWNo nearest with ties going towards zero),

¢ROUNDHALF_EVEN(to nearest with ties going to nearest even integer),

eROUNDHALF_UP (to nearest with ties going away from zero), or

¢ROUNDUP (away from zero).
Thetrapsandflagsfields list any signals to be set. Generally, new contexts should only set traps and leave the
flags clear.
The EminandEmaxfields are integers specifying the outer limits allowable for exponents.

The capitalsfield is either0 or 1 (the default). If set td, exponents are printed with a capiilotherwise, a
lowercasee is used:Decimal(’6.02e+23’)

TheContext class defines several general purpose methods as well as a large number of methods for doing arithmetic
directly in a given context.

clear _flags ()
Resets all of the flags .

copy ()
Return a duplicate of the context.

200 Chapter 5. Miscellaneous Services

create _decimal (num
Creates a new Decimal instance framambut usingself as context. Unlike th®ecimal constructor, the
context precision, rounding method, flags, and traps are applied to the conversion.

This is useful because constants are often given to a greater precision than is needed by the application. Another
benefit is that rounding immediately eliminates unintended effects from digits beyond the current precision. In
the following example, using unrounded inputs means that adding zero to a sum can change the result:

>>> getcontext().prec = 3

>>> Decimal("3.4445") + Decimal("1.0023")
Decimal("4.45")

>>> Decimal("3.4445") + Decimal(0) + Decimal("1.0023")
Decimal("4.44")

Etiny ()
Returns a value equal t&min - prec + 1 ’'which is the minimum exponent value for subnormal results.

When underflow occurs, the exponent is seEtimy

Etop ()
Returns a value equal t&max - prec + 1 .

The usual approach to working with decimals is to crdx¢eimal instances and then apply arithmetic operations
which take place within the current context for the active thread. An alternate approach is to use context methods for
calculating within a specific context. The methods are similar to those fdbdoemal class and are only briefly
recounted here.

abs (x)
Returns the absolute value xf

add(x,y)
Return the sum af andy.

compare (X, Y)
Compares values numerically.

Like __cmp__() but returns a decimal instance:

a or b is a NaN ==> Decimal("NaN")

a<b ==> Decimal("-1")
a == ==> Decimal("O")
a>bhb ==> Decimal("1")
divide (x,Y)
Returnx divided byy.
divmod (x,V)

Divides two numbers and returns the integer part of the result.

max(X, y)

Compare two values numerically and return the maximum.

If they are numerically equal then the left-hand operand is chosen as the result.
min (X, y)

Compare two values numerically and return the minimum.

If they are numerically equal then the left-hand operand is chosen as the result.
minus (' X)

Minus corresponds to the unary prefix minus operator in Python.

5.6. decimal — Decimal floating point arithmetic 201

multiply (X, y)
Return the product of andy.

normalize (x)
Normalize reduces an operand to its simplest form.

Essentially gplus operation with all trailing zeros removed from the result.

plus (X)
Plus corresponds to the unary prefix plus operator in Python. This operation applies the context precision and
rounding, so it i;otan identity operation.

power (X, y[modulo])
Return X ** y ’to the moduloif given.
The right-hand operand must be a whole number whose integer part (after any exponent has been applied) has
no more than 9 digits and whose fractional part (if any) is all zeros before any rounding. The operand may
be positive, negative, or zero; if negative, the absolute value of the power is used, and the left-hand operand is
inverted (divided into 1) before use.

If the increased precision needed for the intermediate calculations exceeds the capabilities of the implementation
then aninvalidOperation condition is signaled.

If, when raising to a negative power, an underflow occurs during the division into 1, the operation is not halted
at that point but continues.

quantize (x,Y)
Returns a value equal toafter rounding and having the exponentyof

Unlike other operations, if the length of the coefficient after the quantize operation would be greater than pre-
cision, then arnnvalidOperation is signaled. This guarantees that, unless there is an error condition, the
quantized exponent is always equal to that of the right-hand operand.

Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact.
remainder (X,Y)

Returns the remainder from integer division.

The sign of the result, if non-zero, is the same as that of the original dividend.
remainder _near (X,Y)

Computed the modulo as either a positive or negative value depending on which is closest to zero. For in-

stance, Decimal(10).remainder _near(6) ' returnsDecimal("-2") which is closer to zero than
Decimal("4")

If both are equally close, the one chosen will have the same sigelfas

same_quantum (X, y)
Test whethex andy have the same exponent or whether bothNaibl

sqrt ()
Return the square root to full precision.

subtract (x,Y)
Return the difference betweerandy.

to _eng_string ()
Convert to engineering-type string.
Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal
place. For example, convelecimal('123E+1") to Decimal("1.23E+3")

to _integral (X)
Rounds to the nearest integer without signalimgxact or Rounded.

to _sci _string ()
Converts a number to a string using scientific notation.

202 Chapter 5. Miscellaneous Services

5.6.4 Signals

Signals represent conditions that arise during computation. Each corresponds to one context flag and one context trap
enabler.

The context flag is incremented whenever the condition is encountered. After the computation, flags may be checked
for informational purposes (for instance, to determine whether a computation was exact). After checking the flags, be
sure to clear all flags before starting the next computation.

If the context’s trap enabler is set for the signal, then the condition causes a Python exception to be raised. For example,
if the DivisionByZero trap is set, then BivisionByZero exception is raised upon encountering the condition.

classClamped
Altered an exponent to fit representation constraints.

Typically, clamping occurs when an exponent falls outside the contéxiie andEmaxlimits. If possible, the
exponent is reduced to fit by adding zeroes to the coefficient.

classDecimalException
Base class for other signals and is a subclagsitfimeticError

classDivisionByZero
Signals the division of a non-infinite number by zero.

Can occur with division, modulo division, or when raising a number to a negative power. If this signal is not
trapped, returnifinity or -Infinity with the sign determined by the inputs to the calculation.

classlnexact
Indicates that rounding occurred and the result is not exact.

Signals when non-zero digits were discarded during rounding. The rounded result is returned. The signal flag
or trap is used to detect when results are inexact.

classinvalidOperation
An invalid operation was performed.

Indicates that an operation was requested that does not make sense. If not trappedjadtuPossible causes
include:

Infinity - Infinity

0 * Infinity

Infinity / Infinity

X % 0

Infinity % X

X._rescale(non-integer)

sgrt(-x) and x > 0

0*™ 0

X ** (non-integer)

X ** Infinity

classOverflow
Numerical overflow.

Indicates the exponent is larger thBmax after rounding has occurred. If not trapped, the result depends on
the rounding mode, either pulling inward to the largest representable finite number or rounding outward to
Infinity . In either caselnexact andRounded are also signaled.

classRounded
Rounding occurred though possibly no information was lost.

Signaled whenever rounding discards digits; even if those digits are zero (such as rauf@ing 5.0). If
not trapped, returns the result unchanged. This signal is used to detect loss of significant digits.

5.6. decimal — Decimal floating point arithmetic 203

classSubnormal
Exponent was lower thalBmin prior to rounding.

Occurs when an operation result is subnormal (the exponent is too small). If not trapped, returns the result
unchanged.

classUnderflow
Numerical underflow with result rounded to zero.

Occurs when a subnormal result is pushed to zero by rounttiegact andSubnormal are also signaled.

The following table summarizes the hierarchy of signals:

exceptions.ArithmeticError(exceptions.StandardError)
DecimalException
Clamped
DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
Inexact
Overflow(Inexact, Rounded)
Underflow(Inexact, Rounded, Subnormal)
InvalidOperation
Rounded
Subnormal

5.6.5 Floating Point Notes
Mitigating round-off error with increased precision

The use of decimal floating point eliminates decimal representation error (making it possible to repesexdactly);
however, some operations can still incur round-off error when non-zero digits exceed the fixed precision.

The effects of round-off error can be amplified by the addition or subtraction of nearly offsetting quantities resulting in
loss of significance. Knuth provides two instructive examples where rounded floating point arithmetic with insufficient
precision causes the breakdown of the associative and distributive properties of addition:

Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import *
>>> getcontext().prec = 8

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111’)
>>> (U + V) +w

Decimal("9.5111111")

>>>u + (Vv + w)

Decimal("10")

>>> u, v, w = Decimal(20000), Decimal(-6), Decimal(’6.0000003’)
>>> (u*v) + (u*w)

Decimal("0.01")

>>> U *(v+w)

Decimal("0.0060000")

Thedecimal module makes it possible to restore the identities by expanding the precision sufficiently to avoid loss
of significance:

204 Chapter 5. Miscellaneous Services

>>> getcontext().prec = 20

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111’)
>>> (U +Vv) +w

Decimal("9.51111111")

>>> u + (Vv + w)

Decimal("9.51111111")

>>>

>>> u, v, w = Decimal(20000), Decimal(-6), Decimal(’6.0000003’)
>>> (u*v) + (u*w)

Decimal("0.0060000")

>>> U *(v+w)

Decimal("0.0060000")

Special values

The number system for thdecimal module provides special values includiddpN, sNaN, -Infinity ,
Infinity , and two zeroest0 and-0 .

Infinities can be constructed directly witecimal(’Infinity’) . Also, they can arise from dividing by zero
when theDivisionByZero signal is not trapped. Likewise, when tBwerflow signal is not trapped, infinity can
result from rounding beyond the limits of the largest representable number.

The infinities are signed (affine) and can be used in arithmetic operations where they get treated as very large, indeter-
minate numbers. For instance, adding a constant to infinity gives another infinite result.

Some operations are indeterminate and reiaf| or if the InvalidOperation signal is trapped, raise an excep-

tion. For exampleQ/0 returnsNaNwhich means “not a number”. This variety M&Nis quiet and, once created, will

flow through other computations always resulting in anott@X This behavior can be useful for a series of compu-
tations that occasionally have missing inputs — it allows the calculation to proceed while flagging specific results as
invalid.

A variant issNaN which signals rather than remaining quiet after every operation. This is a useful return value when
an invalid result needs to interrupt a calculation for special handling.

The signed zeros can result from calculations that underflow. They keep the sign that would have resulted if the
calculation had been carried out to greater precision. Since their magnitude is zero, both positive and negative zeros
are treated as equal and their sign is informational.

In addition to the two signed zeros which are distinct yet equal, there are various representations of zero with differing
precisions yet equivalent in value. This takes a bit of getting used to. For an eye accustomed to normalized floating
point representations, it is not immediately obvious that the following calculation returns a value equal to zero:

>>> 1 / Decimal(’Infinity’)
Decimal("0E-1000000026")

5.6.6 Working with threads

Thegetcontext() function accesses a differe@bntext object for each thread. Having separate thread contexts
means that threads may make changes (sugetasntext.prec=10) without interfering with other threads.
Likewise, thesetcontext() function automatically assigns its target to the current thread.

If setcontext() has not been called befogetcontext() , thengetcontext() will automatically create a

5.6. decimal — Decimal floating point arithmetic 205

new context for use in the current thread.

The new context is copied from a prototype context caldedaultContext To control the defaults so that each thread
will use the same values throughout the application, directly modifypfaultContexbbject. This should be done
beforeany threads are started so that there won't be a race condition between threadgjetdiomgext() . For
example:

Set applicationwide defaults for all threads about to be launched
DefaultContext.prec = 12

DefaultContext.rounding = ROUND_DOWN

DefaultContext.traps = ExtendedContext.traps.copy()
DefaultContext.traps[InvalidOperation] = 1

setcontext(DefaultContext)

Afterwards, the threads can be started
t1.start()
t2.start()
t3.start()

5.6.7 Recipes

Here are a few recipes that serve as utility functions and that demonstrate ways to work \ligciimal class:

206

Chapter 5. Miscellaneous Services

def moneyfmt(value, places=2, curr=", sep=",, dp="/,
pos=", neg="-', trailneg="):
""Convert Decimal to a money formatted string.

places: required number of places after the decimal point

curr: optional currency symbol before the sign (may be blank)
sep: optional grouping separator (comma, period, space, or blank)
dp: decimal point indicator (comma or period)

only specify as blank when places is zero
pos: optional sign for positive numbers: '+, space or blank
neg: optional sign for negative numbers: -, ’(, space or blank
trailneg:optional trailing minus indicator: -, ')’, space or blank

>>> d = Decimal(’-1234567.8901")

>>> moneyfmt(d, curr="$’)

'-$1,234,567.89’

>>> moneyfmt(d, places=0, sep="’, dp=", neg=", trailneg="-)
'1.234.568-

>>> moneyfmt(d, curr='$’, neg="(, trailneg="))
'($1,234,567.89)

>>> moneyfmt(Decimal(123456789), sep="")

123 456 789.00’

>>> moneyfmt(Decimal(’-0.02’), neg='<’, trailneg=">")
'<.02>

q = Decimal((0, (1,), -places)) # 2 places --> '0.01
sign, digits, exp = value.quantize(qg).as_tuple()
assert exp == -places
result =]
digits = map(str, digits)
build, next = result.append, digits.pop
if sign:
build(trailneg)
for i in range(places):
if digits:
build(next())
else:
build('0%)
build(dp)
i=0
while digits:
build(next())
i +=1
if i == 3 and digits:
i=0
build(sep)
build(curr)
if sign:
build(neg)
else:
build(pos)
result.reverse()
return ".join(result)

def pi():
""Compute Pi to the current precision.

>>> print pi()
- 3.144592653589793238462643383 OO
5.6. decimal — Decimal floating point arithmetic 207

getcontext().prec += 2 # extra digits for intermediate steps

three = Decimal(3) # substitute "three=3.0" for regular floats
lmcte ¥+ = rn nrna A Aa — N +heease 29 1 N N D22

5.6.8 Decimal FAQ

Q. It is cumbersome to typgecimal.Decimal(’1234.5") . Is there a way to minimize typing when using the
interactive interpreter?

A. Some users abbreviate the constructor to just a single letter:

>>> D = decimal.Decimal
>>> D('1.23") + D('3.45)
Decimal("4.68")

Q. In a fixed-point application with two decimal places, some inputs have many places and need to be rounded. Others
are not supposed to have excess digits and need to be validated. What methods should be used?

A. Thequantize() method rounds to a fixed number of decimal places. Iftlegact trap is set, itis also useful
for validation:

>>> TWOPLACES = Decimal(10) ** -2 # same as Decimal(’0.01)

>>> # Round to two places
>>> Decimal("3.214").quantize(TWOPLACES)
Decimal("3.21")

>>> # Validate that a number does not exceed two places
>>> Decimal("3.21").quantize(TWOPLACES, context=Context(traps=[Inexact]))
Decimal("3.21")

>>> Decimal("3.214").quantize(TWOPLACES, context=Context(traps=[Inexact]))
Traceback (most recent call last):

Inexact: Changed in rounding

Q. Once | have valid two place inputs, how do | maintain that invariant throughout an application?

A. Some operations like addition and subtraction automatically preserve fixed point. Others, like multiplication and
division, change the number of decimal places and need to be followed-up gudirdize() step.

Q. There are many ways to express the same value. The nu2@r200.000 , 2E2, and.02E+4 all have the
same value at various precisions. Is there a way to transform them to a single recognizable canonical value?

A. Thenormalize() method maps all equivalent values to a single representive:

>>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
>>> [v.normalize() for v in values]
[Decimal("2E+2"), Decimal("2E+2"), Decimal("2E+2"), Decimal("2E+2")]

Q. Some decimal values always print with exponential notation. Is there a way to get a non-exponential representation?

A. For some values, exponential notation is the only way to express the number of significant places in the coeffi-
cient. For example, expressiBg0E+3 as5000 keeps the value constant but cannot show the original’s two-place
significance.

Q. Is there a way to convert a regular float tDecimal ?

A. Yes, all binary floating point numbers can be exactly expressed as a Decimal. An exact conversion may take more
precision than intuition would suggest, so trappingxact will signal a need for more precision:

208 Chapter 5. Miscellaneous Services

def floatToDecimal(f):
"Convert a floating point number to a Decimal with no loss of information”
Transform (exactly) a float to a mantissa (0.5 <= abs(m) < 1.0) and an
exponent. Double the mantissa until it is an integer. Use the integer
mantissa and exponent to compute an equivalent Decimal. If this cannot
be done exactly, then retry with more precision.

mantissa, exponent = math.frexp(f)
while mantissa != int(mantissa):
mantissa *= 2.0
exponent -= 1
mantissa = int(mantissa)

oldcontext = getcontext()
setcontext(Context(traps=[Inexact]))

try:
while True:
try:
return mantissa * Decimal(2) ** exponent
except Inexact:
getcontext().prec += 1
finally:

setcontext(oldcontext)

Q. Why isn’t thefloatToDecimal() routine included in the module?

A. There is some question about whether it is advisable to mix binary and decimal floating point. Also, its use requires
some care to avoid the representation issues associated with binary floating point:

>>> floatToDecimal(1.1)
Decimal("1.100000000000000088817841970012523233890533447265625")

Q. W