Python Tutorial
Release 2.3.4

Guido van Rossum

Fred L. Drake, Jr., editor

May 20, 2004

PythonLabs
Email: docs@python.org

Copyright(© 2001, 2002, 2003 Python Software Foundation. All rights reserved.
Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a simple
but effective approach to object-oriented programming. Python’s elegant syntax and dynamic typing, together with its

interpreted nature, make it an ideal language for scripting and rapid application development in many areas on most
platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for all major
platforms from the Python Web sitettp://www.python.org/, and can be freely distributed. The same site also contains
distributions of and pointers to many free third party Python modules, programs and tools, and additional documenta-
tion.

The Python interpreter is easily extended with new functions and data types implemented in+@ ¢or @ther
languages callable from C). Python is also suitable as an extension language for customizable applications.

This tutorial introduces the reader informally to the basic concepts and features of the Python language and system. It
helps to have a Python interpreter handy for hands-on experience, but all examples are self-contained, so the tutorial
can be read off-line as well.

For a description of standard objects and modules, seByttien Library Referencdocument. ThéPython Refer-
ence Manuapives a more formal definition of the language. To write extensions in Ctdr, €@adExtending and
Embedding the Python Interpretand Python/C API ReferenceThere are also several books covering Python in
depth.

This tutorial does not attempt to be comprehensive and cover every single feature, or even every commonly used
feature. Instead, it introduces many of Python’s most noteworthy features, and will give you a good idea of the
language’s flavor and style. After reading it, you will be able to read and write Python modules and programs, and you
will be ready to learn more about the various Python library modules describedRythen Library Reference

CONTENTS

Whetting Your Appetite 1
Using the Python Interpreter 3
2.1 Invokingthe Interpreter. e 3
2.2 Thelnterpreter and Its Environment L L 4
An Informal Introduction to Python 7
3.1 UsingPythonasaCalculator 7
3.2 First Steps Towards Programming o vttt e e e 17
More Control Flow Tools 19
4.1 if Statements. e e 19
4.2 for StatementS. L 19
4.3 Therange() Function. e e 20
4.4 break andcontinue Statements, anelse Clausesonloops 21
4.5 pass Statements e 21
4.6 Defining FUNCLiONS 22
4.7 MoreonDefining Functions e 23
Data Structures 29
5.1 MoreonListS e e e 29
5.2 Thedel statement L 33
5.3 Tuplesand SequUENCES. e e 33
5.4 DICtionaries o o e e e e 34
5.5 Looping Techniques e 35
56 Moreon Conditions. e 36
5.7 Comparing Sequences and Other Types. o ittt 36
Modules 39
6.1 MoreonModules e e 40
6.2 Standard Modules. L e e 41
6.3 Thedir() Function e e 42
6.4 Packages. e 43
Input and Output 47
7.1 Fancier Output Formatting. e e e e 47
7.2 ReadingandWriting Files e e 50
Errors and Exceptions 53
8.1 Syntax Errors 53

8.2 EXCEPLIONS. o o e e e e e 53

8.3 Handling EXceptions e e e 54
8.4 Raising Exceptions. e 56
8.5 User-defined EXCEPLiONS. e 57
8.6 Defining Clean-up ACtionNS e e e e 58
9 Classes 61
9.1 AWord About Terminology. o e e 61
9.2 Python Scopesand Name Spaces o i i i i e e e 62
9.3 AFirstLookat Classes. i i e e e 63
9.4 Random Remarks. e e e e e 66
9.5 Inheritance. e e e 67
9.6 Private Variables. e 68
9.7 OddsandENds e e e 68
9.8 EXceptions Are Classes TOO. v v i i i i e e e e e e e e e e e 69
9.9 lterators. e e 70
9.10 Generators. e e e e e e e e 71
10 Brief Tour of the Standard Library 73
10.1 Operating System Interface e 73
10.2 FileWildcards e e 73
10.3 Command Line ArgumeNnts. o ot e e e e 74
10.4 Error Output Redirection and Program Terminatian. 74
10.5 String Pattern Matching e e e 74
10.6 MathematiCs. o e e e e e e e 75
10.7 INternet ACCESS v i o e e e e e e e e 75
10.8 Datesand TIMES o i e e e 75
10.9 Data COmPresSion o v v i i e e e e e e 76
10.10 Performance Measurement ot e e e e e e e e 76
10.11 Quality Control e e e e e e 77
10.12 Batteries Included. e 77
11 What Now? 79
A Interactive Input Editing and History Substitution 81
Al LineEdIting e e e e e 81
A.2 History Substitution e e e e e 81
A3 KeyBindings e e 81
A4 COMMENTArY. o o e e e e e e e e e e e 83
B Floating Point Arithmetic: Issues and Limitations 85
B.1 Representation Error e e e e 87
C History and License 89
C.1 Historyofthesoftware e 89
C.2 Terms and conditions for accessing or otherwise using Python 90
D Glossary 93
Index 97

CHAPTER
ONE

Whetting Your Appetite

If you ever wrote a large shell script, you probably know this feeling: you'd love to add yet another feature, but it's
already so slow, and so big, and so complicated; or the feature involves a system call or other function that is only
accessible from C ... Usually the problem at hand isn't serious enough to warrant rewriting the script in C; perhaps
the problem requires variable-length strings or other data types (like sorted lists of file names) that are easy in the shell
but lots of work to implement in C, or perhaps you're not sufficiently familiar with C.

Another situation: perhaps you have to work with several C libraries, and the usual C write/compile/test/re-compile
cycle is too slow. You need to develop software more quickly. Possibly perhaps you've written a program that could
use an extension language, and you don’'t want to design a language, write and debug an interpreter for it, then tie it
into your application.

In such cases, Python may be just the language for you. Python is simple to use, but it is a real programming language,
offering much more structure and support for large programs than the shell has. On the other hand, it also offers much
more error checking than C, and, beingeay-high-level languagét has high-level data types built in, such as flexible
arrays and dictionaries that would cost you days to implement efficiently in C. Because of its more general data types
Python is applicable to a much larger problem domain #vakor evenPerl, yet many things are at least as easy in
Python as in those languages.

Python allows you to split up your program in modules that can be reused in other Python programs. It comes with a
large collection of standard modules that you can use as the basis of your programs — or as examples to start learning
to program in Python. There are also built-in modules that provide things like file 1/0, system calls, sockets, and even
interfaces to graphical user interface toolkits like Tk.

Python is an interpreted language, which can save you considerable time during program development because no
compilation and linking is necessary. The interpreter can be used interactively, which makes it easy to experiment with
features of the language, to write throw-away programs, or to test functions during bottom-up program development.
It is also a handy desk calculator.

Python allows writing very compact and readable programs. Programs written in Python are typically much shorter
than equivalent C or €+ programs, for several reasons:

¢ the high-level data types allow you to express complex operations in a single statement;

e statement grouping is done by indentation instead of beginning and ending brackets;

¢ no variable or argument declarations are necessary.

Python isextensible if you know how to program in C it is easy to add a new built-in function or module to the
interpreter, either to perform critical operations at maximum speed, or to link Python programs to libraries that may
only be available in binary form (such as a vendor-specific graphics library). Once you are really hooked, you can
link the Python interpreter into an application written in C and use it as an extension or command language for that
application.

By the way, the language is named after the BBC show “Monty Python’s Flying Circus” and has nothing to do with
nasty reptiles. Making references to Monty Python skits in documentation is not only allowed, it is encouraged!

Now that you are all excited about Python, you'll want to examine it in some more detail. Since the best way to learn
a language is using it, you are invited here to do so.

In the next chapter, the mechanics of using the interpreter are explained. This is rather mundane information, but
essential for trying out the examples shown later.

The rest of the tutorial introduces various features of the Python language and system through examples, beginning
with simple expressions, statements and data types, through functions and modules, and finally touching upon ad-
vanced concepts like exceptions and user-defined classes.

2 Chapter 1. Whetting Your Appetite

CHAPTER
TWO

Using the Python Interpreter

2.1 Invoking the Interpreter

The Python interpreter is usually installed asst/local/bin/python’ on those machines where it is available; putting
‘lusr/local/bin’ in your UNIX shell’'s search path makes it possible to start it by typing the command

python

to the shell. Since the choice of the directory where the interpreter lives is an installation option, other places are
possible; check with your local Python guru or system administrator. (Eugr/jocal/python’ is a popular alternative
location.)

Typing an end-of-file characte€pntrol-D on UNix, Control-Z on Windows) at the primary prompt causes the
interpreter to exit with a zero exit status. If that doesn’t work, you can exit the interpreter by typing the following
commands:import sys; sys.exit() '

The interpreter’s line-editing features usually aren’t very sophisticated. @ ,Uvhoever installed the interpreter

may have enabled support for the GNU readline library, which adds more elaborate interactive editing and history
features. Perhaps the quickest check to see whether command line editing is supported is typing Control-P to the
first Python prompt you get. If it beeps, you have command line editing; see Appendix A for an introduction to the
keys. If nothing appears to happen, otiif is echoed, command line editing isn't available; you'll only be able to use
backspace to remove characters from the current line.

The interpreter operates somewhat like theixJshell: when called with standard input connected to a tty device, it
reads and executes commands interactively; when called with a file name argument or with a file as standard input, it
reads and executessaript from that file.

A second way of starting the interpreter python -c command|arg] ... ', which executes the statement(s) in
commanganalogous to the shell’s option. Since Python statements often contain spaces or other characters that are
special to the shell, it is best to quatemmandn its entirety with double quotes.

Note that there is a difference betwegython file ' and ‘python <file . In the latter case, input requests

from the program, such as callsitgput() andraw_input() , are satisfied fronfile. Since this file has already

been read until the end by the parser before the program starts executing, the program will encounter end-of-file
immediately. In the former case (which is usually what you want) they are satisfied from whatever file or device is
connected to standard input of the Python interpreter.

When a script file is used, it is sometimes useful to be able to run the script and enter interactive mode afterwards.
This can be done by passirighefore the script. (This does not work if the script is read from standard input, for the
same reason as explained in the previous paragraph.)

2.1.1 Argument Passing

When known to the interpreter, the script name and additional arguments thereafter are passed to the script in the
variablesys.argv , which is a list of strings. Its length is at least one; when no script and no arguments are given,
sys.argv[0] is an empty string. When the script name is givefy'as (meaning standard inpugys.argv[0]

is setto’~ . When-c commands used,sys.argv[0] is set to’-c’ . Options found afterc commandare not
consumed by the Python interpreter’s option processing but leftsrargv for the command to handle.

2.1.2 Interactive Mode

When commands are read from a tty, the interpreter is said to inéeirmctive modeln this mode it prompts for the
next command with therimary prompt usually three greater-than signs¥> ’); for continuation lines it prompts
with the secondary promptby default three dots (.). The interpreter prints a welcome message stating its
version number and a copyright notice before printing the first prompt:

python

Python 1.5.2b2 (#1, Feb 28 1999, 00:02:06) [GCC 2.8.1] on sunos5
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>>

Continuation lines are needed when entering a multi-line construct. As an example, take a look astatement:

>>> the world is flat = 1
>>> if the_world_is_flat:
print "Be careful not to fall off!"

Be careful not to fall offl

2.2 The Interpreter and Its Environment

2.2.1 Error Handling

When an error occurs, the interpreter prints an error message and a stack trace. In interactive mode, it then returns
to the primary prompt; when input came from a file, it exits with a nonzero exit status after printing the stack trace.
(Exceptions handled by aexcept clause in @ry statement are not errors in this context.) Some errors are un-
conditionally fatal and cause an exit with a nonzero exit; this applies to internal inconsistencies and some cases of
running out of memory. All error messages are written to the standard error stream; normal output from the executed
commands is written to standard output.

Typing the interrupt character (usually Control-C or DEL) to the primary or secondary prompt cancels the input and
returns to the primary promptTyping an interrupt while a command is executing raisestiagboardinterrupt
exception, which may be handled byrg statement.

2.2.2 Executable Python Scripts

On BSD’ish WNIx systems, Python scripts can be made directly executable, like shell scripts, by putting the line

1A problem with the GNU Readline package may prevent this.

4 Chapter 2. Using the Python Interpreter

#! Jusr/bin/env python

(assuming that the interpreter is on the user's PATH) at the beginning of the script and giving the file an executable
mode. The#! ' must be the first two characters of the file. On some platforms, this first line must end with a
UNix-style line ending (n '), not a Mac OS (ir ’) or Windows (\r\n ') line ending. Note that the hash, or pound,
character,#’, is used to start a comment in Python.

The script can be given a executable mode, or permission, usirpthed command:

$ chmod +x myscript.py

2.2.3 Source Code Encoding

It is possible to use encodings different thaicii in Python source files. The best way to do it is to put one more
special comment line right after the line to define the source file encoding:

-*- coding: is0-8859-1 -*-

With that declaration, all characters in the source file will be treateida8859-1 , and it will be possible to
directly write Unicode string literals in the selected encoding. The list of possible encodings can be found in the
Python Library Referengén the section orodecs .

If your editor supports saving files d$TF-8 with a UTF-8 byte order mark(aka BOM), you can use that in-
stead of an encoding declaration. IDLE supports this capabilit@pfions/General/Default Source
Encoding/UTF-8 is set. Notice that this signature is not understood in older Python releases (2.2 and earlier),
and also not understood by the operating syster#ffofiles.

By using UTF-8 (either through the signature or an encoding declaration), characters of most languages in the world
can be used simultaneously in string literals and comments. Using®oneharacters in identifiers is not supported.

To display all these characters properly, your editor must recognize that the file is UTF-8, and it must use a font that
supports all the characters in the file.

2.2.4 The Interactive Startup File

When you use Python interactively, it is frequently handy to have some standard commands executed every time the
interpreter is started. You can do this by setting an environment variable named PYTHONSTARTUP to the name of a
file containing your start-up commands. This is similar to theofile’ feature of the Wix shells.

This file is only read in interactive sessions, not when Python reads commands from a script, and nédevhigh *

is given as the explicit source of commands (which otherwise behaves like an interactive session). It is executed in
the same namespace where interactive commands are executed, so that objects that it defines or imports can be used
without qualification in the interactive session. You can also change the preggpsl andsys.ps2 in this file.

If you want to read an additional start-up file from the current directory, you can program this in the global start-
up file using code likeif os.path.isfile(’.pythonrc.py’): execfile(’.pythonrc.py’) If
you want to use the startup file in a script, you must do this explicitly in the script:

2.2. The Interpreter and Its Environment 5

import 0s

filename = os.environ.get(PYTHONSTARTUP’)

if flename and os.path.isfile(filename):
execfile(filename)

Chapter 2. Using the Python Interpreter

CHAPTER
THREE

An Informal Introduction to Python

In the following examples, input and output are distinguished by the presence or absence of prempts dhd

‘... "): to repeat the example, you must type everything after the prompt, when the prompt appears; lines that do
not begin with a prompt are output from the interpreter. Note that a secondary prompt on a line by itself in an example
means you must type a blank line; this is used to end a multi-line command.

Many of the examples in this manual, even those entered at the interactive prompt, include comments. Comments in
Python start with the hash charactér, ‘and extend to the end of the physical line. A comment may appear at the start

of a line or following whitespace or code, but not within a string literal. A hash character within a string literal is just

a hash character.

Some examples:

this is the first comment

SPAM = 1 # and this is the second comment
... and now a third!

STRING = "# This is not a comment."

3.1 Using Python as a Calculator

Let’s try some simple Python commands. Start the interpreter and wait for the primary prempt, .’ (It shouldn’t
take long.)

3.1.1 Numbers

The interpreter acts as a simple calculator: you can type an expression at it and it will write the value. Expression
syntax is straightforward: the operataers- , * and/ work just like in most other languages (for example, Pascal or
C); parentheses can be used for grouping. For example:

>>> 242

4

>>> # This is a comment

. 242

4

>>> 2+2 # and a comment on the same line as code
4

>>> (50-5*6)/4

5

>>> # Integer division returns the floor:
.. 713

2

>>> 7/-3

-3

Like in C, the equal sign €’) is used to assign a value to a variable. The value of an assignment is not written:

>>> width = 20
>>> height = 5*9
>>> width * height
900

A value can be assigned to several variables simultaneously:

>>>
>>>

X=y=2z=0 # Zero x, y and z
X

>>> Yy

>>> 7

There is full support for floating point; operators with mixed type operands convert the integer operand to floating
point:

>>> 3 * 375/ 15
7.5

>>> 70/ 2

3.5

Complex numbers are also supported; imaginary numbers are written with a suffixaf*J’. Complex numbers
with a nonzero real component are written @eal+imag) ’, or can be created with theomplex(real, imag’
function.

8 Chapter 3. An Informal Introduction to Python

>>> 1) * 1]

(-1+0j)

>>> 1j * complex(0,1)
(-1+0j)

>>> 3+1j*3

(3+3))

>>> (3+1))*3

(9+3))

>>> (1+2))/(1+1))
(1.5+0.5j)

Complex numbers are always represented as two floating point numbers, the real and imaginary part. To extract these
parts from a complex numberusezreal andzimag .

>>> g=1.5+0.5j
>>> a.real

15

>>> a.imag
0.5

The conversion functions to floating point and integéwat() , int() andlong()) don't work for complex
numbers — there is no one correct way to convert a complex number to a real numbeabd{s® to get its
magnitude (as a float) arreal to get its real part.

>>> a=3.0+4.0j
>>> float(a)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: can’t convert complex to float; use abs(z)
>>> a.real
3.0
>>> a.imag
4.0
>>> abs(a) # sgrt(a.real**2 + a.imag**2)
5.0
>>>

In interactive mode, the last printed expression is assigned to the varialibis means that when you are using
Python as a desk calculator, it is somewhat easier to continue calculations, for example:

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625

>>> price + _
113.0625

>>> round(_, 2)
113.06

>>>

This variable should be treated as read-only by the user. Don't explicitly assign a value to it — you would create an
independent local variable with the same name masking the built-in variable with its magic behavior.

3.1. Using Python as a Calculator 9

3.1.2 Strings

Besides numbers, Python can also manipulate strings, which can be expressed in several ways. They can be enclosed
in single quotes or double quotes:

>>> 'spam eggs’
'spam eggs’

>>> 'doesn\'t’
"doesn’t"

>>> "doesn't"
"doesn’t"

>>> "Yes," he said.’
"Yes," he said.’

>>> "\"Yes\" he said."
"Yes," he said.’

>>> "|sn\'t," she said.’
"Isn\'t," she said.’

String literals can span multiple lines in several ways. Continuation lines can be used, with a backslash as the last
character on the line indicating that the next line is a logical continuation of the line:

hello = "This is a rather long string containing\n\
several lines of text just as you would do in C.\n\

Note that whitespace at the beginning of the line is\
significant.”

print hello

Note that newlines would still need to be embedded in the string Wisinthe newline following the trailing backslash
is discarded. This example would print the following:

This is a rather long string containing
several lines of text just as you would do in C.
Note that whitespace at the beginning of the line is significant.

If we make the string literal a “raw” string, however, ttne sequences are not converted to newlines, but the backslash
at the end of the line, and the newline character in the source, are both included in the string as data. Thus, the example:

hello = r"This is a rather long string containing\n\
several lines of text much as you would do in C."

print hello

would print;

This is a rather long string containing\n\
several lines of text much as you would do in C.

Or, strings can be surrounded in a pair of matching triple-qudtés:or
when using triple-quotes, but they will be included in the string.

. End of lines do not need to be escaped

10 Chapter 3. An Informal Introduction to Python

print ™"

Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to

produces the following output:

Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hosthame to connect to

The interpreter prints the result of string operations in the same way as they are typed for input: inside quotes, and with
guotes and other funny characters escaped by backslashes, to show the precise value. The string is enclosed in double
guotes if the string contains a single quote and no double quotes, else it's enclosed in single quotesintThe
statement, described later, can be used to write strings without quotes or escapes.)

Strings can be concatenated (glued together) with-tbperator, and repeated with

>>> word = 'Help’ + 'A’

>>> word

'HelpA’

>>> <’ + word*5 + >’
'<HelpAHelpAHelpAHelpAHelpA>’

Two string literals next to each other are automatically concatenated; the first line above could also have been written

‘word = 'Help’ A’ " this only works with two literals, not with arbitrary string expressions:
>>> 'str’ 'ing’ # <- This is ok
'string’
>>> stristrip() + 'ing’ # <- This is ok
'string’
>>> str'.strip() 'ing’ # <- This is invalid

File "<stdin>", line 1, in ?
'str'.strip() 'ing’
N

SyntaxError: invalid syntax

Strings can be subscripted (indexed); like in C, the first character of a string has subscript (index) 0. There is no
separate character type; a character is simply a string of size one. Like in Icon, substrings can be specified with the
slice notation two indices separated by a colon.

>>> word[4]
A

>>> word[0:2]
He'

>>> word[2:4]
1|p!

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second index defaults to the size
of the string being sliced.

3.1. Using Python as a Calculator 11

>>> word[:2] # The first two characters

He'

>>> word[2:] # All but the first two characters
1|pAl

Unlike a C string, Python strings cannot be changed. Assigning to an indexed position in the string results in an error:

>>> word[0] = X
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object doesn't support item assignment
>>> word[:1] = 'Splat’
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object doesn’t support slice assignment

However, creating a new string with the combined content is easy and efficient:

>>> X’ + word[1:]

"xelpA’

>>> 'Splat’ + word[4]

'SplatA’

Here’s a useful invariant of slice operatiors$zi] + s[i:] equalss.

>>> word[:2] + word[2:]

'HelpA’

>>> word[:3] + word[3:]

"HelpA’

Degenerate slice indices are handled gracefully: an index that is too large is replaced by the string size, an upper bound
smaller than the lower bound returns an empty string.

>>> word[1:100]
‘elpA’
>>> word[10:]

”

>>> word[2:1]

”

Indices may be negative numbers, to start counting from the right. For example:

>>> word[-1] # The last character

A

>>> word[-2] # The last-but-one character
>>> word[-2:] # The last two characters

‘DA’

>>> word[:-2] # All but the last two characters
Hel

12 Chapter 3. An Informal Introduction to Python

But note that -0 is really the same as 0, so it does not count from the right!

>>> word[-0] # (since -0 equals 0)
H

Out-of-range negative slice indices are truncated, but don't try this for single-element (non-slice) indices:

>>> word[-100:]

'HelpA’

>>> word[-10] # error

Traceback (most recent call last):
File "<stdin>", line 1, in ?

IndexError: string index out of range

The best way to remember how slices work is to think of the indices as poimgitngeercharacters, with the left edge
of the first character numbered 0. Then the right edge of the last character of a stniohavhcters has index for
example:

O S S Sa—
[Hlelllpl|A]

F O S S S—

0 1 2 3 4 5
5 4 -3 -2 -1

The first row of numbers gives the position of the indices 0...5 in the string; the second row gives the corresponding
negative indices. The slice frono j consists of all characters between the edges labeladj, respectively.

For non-negative indices, the length of a slice is the difference of the indices, if both are within bounds. For example,
the length ofword[1:3] is 2.

The built-in functionlen() returns the length of a string:

>>> s = ’supercalifragilisticexpialidocious’
>>> len(s)
34

See Also:

Sequence Types

(../lib/typesseq.html)
Strings, and the Unicode strings described in the next section, are examptzsuehce typeand support the
common operations supported by such types.

String Methods
(../lib/string-methods.html)
Both strings and Unicode strings support a large number of methods for basic transformations and searching.

String Formatting Operations

(../lib/typesseq-strings.html)
The formatting operations invoked when strings and Unicode strings are the left operand@fibeator are
described in more detail here.

3.1. Using Python as a Calculator 13

3.1.3 Unicode Strings

Starting with Python 2.0 a new data type for storing text data is available to the programmer: the Unicode object. It
can be used to store and manipulate Unicode datahfge#www.unicode.org/) and integrates well with the existing
string objects providing auto-conversions where necessary.

Unicode has the advantage of providing one ordinal for every character in every script used in modern and ancient
texts. Previously, there were only 256 possible ordinals for script characters and texts were typically bound to a
code page which mapped the ordinals to script characters. This lead to very much confusion especially with respect
to internationalization (usually written ael8n ' — ‘i ' + 18 characters +r’) of software. Unicode solves these
problems by defining one code page for all scripts.

Creating Unicode strings in Python is just as simple as creating normal strings:

>>> u'Hello World !
u'Hello World "

The small U’ in front of the quote indicates that an Unicode string is supposed to be created. If you want to include
special characters in the string, you can do so by using the Pithmode-Escapencoding. The following example
shows how:

>>> u’Hello\u0020World "
u'Hello World "

The escape sequentgd020 indicates to insert the Unicode character with the ordinal value 0x0020 (the space
character) at the given position.

Other characters are interpreted by using their respective ordinal values directly as Unicode ordinals. If you have
literal strings in the standard Latin-1 encoding that is used in many Western countries, you will find it convenient that
the lower 256 characters of Unicode are the same as the 256 characters of Latin-1.

For experts, there is also a raw mode just like the one for normal strings. You have to prefix the opening quote with
‘ur’ to have Python use thRaw-Unicode-Escapencoding. It will only apply the aboveiXXXX conversion if there
is an uneven number of backslashes in front of the small 'u’.

>>> ur'Hello\u0020World
u'Hello World "

>>> ur'Hello\u0020World "
u’Hello\W\u0020World "

The raw mode is most useful when you have to enter lots of backslashes, as can be necessary in regular expressions.

Apart from these standard encodings, Python provides a whole set of other ways of creating Unicode strings on the
basis of a known encoding.

The built-in functionunicode() provides access to all registered Unicode codecs (COders and DECoders). Some
of the more well known encodings which these codecs can convdratirel, ASCII, UTF-8, andUTF-16. The latter

two are variable-length encodings that store each Unicode character in one or more bytes. The default encoding is
normally set toascii, which passes through characters in the range 0 to 127 and rejects any other characters with an
error. When a Unicode string is printed, written to a file, or converted tiff) , conversion takes place using this
default encoding.

14 Chapter 3. An Informal Introduction to Python

>>> y"abc"
u'abc’
>>> str(u"abc")
‘abc’
>>> y"aou”
u'\xe4\xf6\xfc’
>>> str(u"aod”)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
UnicodeEncodeError: 'ascii’ codec can't encode characters in position 0-2: ordinal not in range(128)

To convert a Unicode string into an 8-bit string using a specific encoding, Unicode objects provedeate()
method that takes one argument, the name of the encoding. Lowercase names for encodings are preferred.

>>> y"aol".encode('utf-8’)
"\xc3\xad\xc3\xb6\xc3\xbc’

If you have data in a specific encoding and want to produce a corresponding Unicode string from it, you can use the
unicode() function with the encoding name as the second argument.

>>> unicode('\xc3\xa4\xc3\xb6\xc3\xbc’, 'utf-8’)
u’\xe4\xf6\xfc’

3.1.4 Lists

Python knows a number @ompoundiata types, used to group together other values. The most versatildlist,the
which can be written as a list of comma-separated values (items) between square brackets. List items need not all have
the same type.

>>> a = ['spam’, 'eggs’, 100, 1234]
>>> g
['spam’, 'eggs’, 100, 1234]

Like string indices, list indices start at 0, and lists can be sliced, concatenated and so on:

>>> a[0]

'spam’

>>> g[3]

1234

>>> g[-2]

100

>>> g[l:-1]

[eggs’, 100]

>>> g[:2] + [bacon’, 2*2]
['spam’, 'eggs’, 'bacon’, 4]
>>> 3*g[:3] + ['Boe!’]
['spam’, 'eggs’, 100, 'spam’, 'eggs’, 100, 'spam’, 'eggs’, 100, 'Boe!]

Unlike strings, which arénmutable it is possible to change individual elements of a list:

3.1. Using Python as a Calculator 15

>>> a

[spam’, 'eggs’, 100, 1234]
>>> a[2] = a[2] + 23
>>> a

[spam’, 'eggs’, 123, 1234]

Assignment to slices is also possible, and this can even change the size of the list:

>>> # Replace some items:
. af0:2] = [1, 12

>>> a

[1, 12, 123, 1234]

>>> # Remove some:
.al0:2] =]

>>> a

[123, 1234]

>>> # Insert some:

. a[l:1] = [bletch’, 'xyzzy’]

>>> a
[123, ’bletch’, 'xyzzy', 1234]

>>> g[:0] = a # Insert (a copy of) itself at the beginning
>>> a

[123, ’bletch’, 'xyzzy', 1234, 123, ’'bletch’, 'xyzzy’, 1234]

The built-in functionlen() also applies to lists:

>>> len(a)
8

It is possible to nest lists (create lists containing other lists), for example:

>>> [2, 3]
>>>p = [1, q, 4]
>>> len(p)

3

>>> p[1]

[2, 3]

>>> p[1][0]

2

>>> p[l].append(’xtra’) # See section 5.1
>>> P

[1, [2, 3, 'xtra’], 4]
>>> (

[2, 3, 'xtra’]

Note that in the last examplp[l] andq really refer to the same object! We'll come baclkotgiect semantickater.

16 Chapter 3. An Informal Introduction to Python

3.2 First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two and two together. For instance, we can
write an initial sub-sequence of tiébonacciseries as follows:

>>> # Fibonacci series:
... # the sum of two elements defines the next

.a, b=01
>>> while b < 10:
print b
a, b = b, atb

0 UTWN R, P

This example introduces several new features.

e The first line contains anultiple assignmenthe variables andb simultaneously get the new values 0 and 1.
On the last line this is used again, demonstrating that the expressions on the right-hand side are all evaluated
first before any of the assignments take place. The right-hand side expressions are evaluated from the left to the
right.

e Thewhile loop executes as long as the condition (hére< 10) remains true. In Python, like in C, any non-
zero integer value is true; zero is false. The condition may also be a string or list value, in fact any sequence;
anything with a non-zero length is true, empty sequences are false. The test used in the example is a simple
comparison. The standard comparison operators are written the same as(ie$3:than)> (greater than)y=
(equal to) <= (less than or equal to}= (greater than or equal to) atd (not equal to).

e Thebodyof the loop isindented indentation is Python’s way of grouping statements. Python does not (yet!)
provide an intelligent input line editing facility, so you have to type a tab or space(s) for each indented line.
In practice you will prepare more complicated input for Python with a text editor; most text editors have an
auto-indent facility. When a compound statement is entered interactively, it must be followed by a blank line to
indicate completion (since the parser cannot guess when you have typed the last line). Note that each line within
a basic block must be indented by the same amount.

e Theprint statement writes the value of the expression(s) it is given. It differs from just writing the expression
you want to write (as we did earlier in the calculator examples) in the way it handles multiple expressions and
strings. Strings are printed without quotes, and a space is inserted between items, so you can format things
nicely, like this:

>>> | = 256*256
>>> print 'The value of i is’, i
The value of i is 65536

A trailing comma avoids the newline after the output:

3.2. First Steps Towards Programming 17

>>> a, b

11235813 21 3455 89 144 233 377 610 987

Note that the interpreter inserts a newline before it prints the next prompt if the last line was not completed.

18

Chapter 3. An Informal Introduction to Python

CHAPTER
FOUR

More Control Flow Tools

Besides thavhile statement just introduced, Python knows the usual control flow statements known from other
languages, with some twists.

4.1 if Statements

Perhaps the most well-known statement type igfthestatement. For example:

>>> x = int(raw_input("Please enter an integer: "))
>>> if x < 0:

x =0
print 'Negative changed to zero’
. elif x == 0:
print 'Zero’
.elif x == 1:
print 'Single’
. else:

print 'More’

There can be zero or mosdif parts, and thelse part is optional. The keyworcelif ' is short for ‘else if’, and
is useful to avoid excessive indentation. &n ... elif ... elif ... sequence is a substitute for thaitch or
case statements found in other languages.

4.2 for Statements

Thefor statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always iterating
over an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both the iteration
step and halting condition (as C), Pythofds statement iterates over the items of any sequence (a list or a string), in
the order that they appear in the sequence. For example (no pun intended):

19

>>> # Measure some strings:
. a = [cat’, 'window’, 'defenestrate’]
>>> for x in a:
print X, len(x)
cat 3
window 6
defenestrate 12

It is not safe to modify the sequence being iterated over in the loop (this can only happen for mutable sequence types,
such as lists). If you need to modify the list you are iterating over (for example, to duplicate selected items) you must
iterate over a copy. The slice notation makes this particularly convenient:

>>> for x in a[;]: # make a slice copy of the entire list
if len(x) > 6: a.insert(0, X)

>>> g
[defenestrate’, 'cat’, 'window’, 'defenestrate’]

4.3 Therange() Function

If you do need to iterate over a sequence of numbers, the built-in funatiye() comes in handy. It generates lists
containing arithmetic progressions:

>>> range(10)
0,1, 2 3 4,5, 6,7 8, 9

The given end point is never part of the generated tetge(10) generates a list of 10 values, exactly the legal
indices for items of a sequence of length 10. It is possible to let the range start at another number, or to specify a
different increment (even negative; sometimes this is called the ‘step’):

>>> range(5, 10)

[5, 6, 7, 8, 9]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(-10, -100, -30)
[-10, -40, -70]

To iterate over the indices of a sequence, combamge() andlen() as follows:

20 Chapter 4. More Control Flow Tools

>>> a = ['Mary’, 'had’, 'a’, ’little’, 'lamb’]
>>> for i in range(len(a)):
print i, ali]

0 Mary
1 had

2 a

3 little

4 lamb

4.4 Dbreak and continue Statements, and else Clauses on Loops

Thebreak statement, like in C, breaks out of the smallest enclo&ing or while loop.
Thecontinue statement, also borrowed from C, continues with the next iteration of the loop.

Loop statements may have else clause; it is executed when the loop terminates through exhaustion of the list (with
for) or when the condition becomes false (withile), but not when the loop is terminated byeeak statement.
This is exemplified by the following loop, which searches for prime numbers:

>>> for n in range(2, 10):
for x in range(2, n):
ifn % x ==
print n, ’equals’, x, *, n/x
break
else:
loop fell through without finding a factor
print n, 'is a prime number’

is a prime number
is a prime number
equals 2 * 2
is a prime number
equals 2 * 3
is a prime number
equals 2 * 4
equals 3 * 3

4.5 pass Statements

Thepass statement does nothing. It can be used when a statement is required syntactically but the program requires
no action. For example:

>>> while True:
pass # Busy-wait for keyboard interrupt

4.4. break and continue Statements, and else Clauses on Loops 21

4.6 Defining Functions

We can create a function that writes the Fibonacci series to an arbitrary boundary:

>>> def fib(n): # write Fibonacci series up to n
""Print a Fibonacci series up to n."™
a b=01
while b < n:
print b,
a, b = b, atb

>>> # Now call the function we just defined:
... fib(2000)
11235813 21 34 55 89 144 233 377 610 987 1597

The keyworddef introduces a functiodefinition It must be followed by the function name and the parenthesized list

of formal parameters. The statements that form the body of the function start at the next line, and must be indented. The
first statement of the function body can optionally be a string literal; this string literal is the function’s documentation
string, ordocstring

There are tools which use docstrings to automatically produce online or printed documentation, or to let the user
interactively browse through code; it's good practice to include docstrings in code that you write, so try to make a
habit of it.

Theexecutiorof a function introduces a new symbol table used for the local variables of the function. More precisely,
all variable assignments in a function store the value in the local symbol table; whereas variable references first look in
the local symbol table, then in the global symbol table, and then in the table of built-in names. Thus, global variables
cannot be directly assigned a value within a function (unless namedlwbal statement), although they may be
referenced.

The actual parameters (arguments) to a function call are introduced in the local symbol table of the called function
when it is called; thus, arguments are passed usitigoy value(where thevalueis always an objeateference not
the value of the object).When a function calls another function, a new local symbol table is created for that call.

A function definition introduces the function name in the current symbol table. The value of the function name has a
type that is recognized by the interpreter as a user-defined function. This value can be assigned to another name which
can then also be used as a function. This serves as a general renaming mechanism:

>>> fib

<function object at 10042ed0>
>>> f = fib

>>> (100)
1123581321 3455 89

You might object thafib is not a function but a procedure. In Python, like in C, procedures are just functions that
don't return a value. In fact, technically speaking, procedures do return a value, albeit a rather boring one. This value
is calledNone (it's a built-in name). Writing the valuBlone is normally suppressed by the interpreter if it would be

the only value written. You can see it if you really want to:

1Actually, call by object referencevould be a better description, since if a mutable object is passed, the caller will see any changes the callee
makes to it (items inserted into a list).

22 Chapter 4. More Control Flow Tools

>>> print fib(0)
None

It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing it:

>>> def fib2(n): # return Fibonacci series up to n

result =]

a b=01

while b < n:
result.append(b) # see below
a, b = b, atb

return result

>>> f100 = fib2(100) # call it
>>> 100 # write the result
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

e Thereturn statement returns with a value from a functioeturn without an expression argument returns
None. Falling off the end of a procedure also retuhhsne.

e The statementesult.append(b) calls amethodof the list objectresult . A method is a function that
‘belongs’ to an object and is nametj.methodname , whereobj is some object (this may be an expression),
andmethodname is the name of a method that is defined by the object’s type. Different types define different
methods. Methods of different types may have the same name without causing ambiguity. (Itis possible to define
your own object types and methods, usalgssesas discussed later in this tutorial.) The mettaqpgbend()
shown in the example, is defined for list objects; it adds a new element at the end of the list. In this example it
is equivalent toresult = result + [b] ', but more efficient.

4.7 More on Defining Functions

It is also possible to define functions with a variable number of arguments. There are three forms, which can be
combined.

4.7.1 Default Argument Values

The most useful form is to specify a default value for one or more arguments. This creates a function that can be called
with fewer arguments than it is defined to allow. For example:

def ask_ok(prompt, retries=4, complaint="Yes or no, please!):
while True:
ok = raw_input(prompt)
if ok in (y, 'ye', 'yes’): return True
if ok in ('n’, 'no’, 'nop’, 'nope’): return False
retries = retries - 1
if retries < 0: raise |OError, 'refusenik user’
print complaint

4.7. More on Defining Functions 23

This function can be called either like thisask_ok('Do you really want to quit?’) or like this:
ask_ok('OK to overwrite the file?’, 2)

This example also introduces the keyword. This tests whether or not a sequence contains a certain value.

The default values are evaluated at the point of function definition idéfieaingscope, so that

i=5

def f(arg=i):
print arg

i =6
f0

will print 5.

Important warning: The default value is evaluated only once. This makes a difference when the default is a mutable
object such as a list, dictionary, or instances of most classes. For example, the following function accumulates the
arguments passed to it on subsequent calls:

def f(a, L=[]):
L.append(a)
return L

print f(1)
print f(2)
print f(3)

This will print

(1]
(1, 2]
[1, 2, 3]

If you don’t want the default to be shared between subsequent calls, you can write the function like this instead:

def f(a, L=None):
if L is None:
L =1]
L.append(a)
return L

4.7.2 Keyword Arguments

Functions can also be called using keyword arguments of the fkegword = valu€. For instance, the following
function:

24 Chapter 4. More Control Flow Tools

def parrot(voltage, state='a stiff’, action="voom’, type='"Norwegian Blue’):
print "-- This parrot wouldn’t", action,
print "if you put", voltage, "Volts through it."
print "-- Lovely plumage, the", type
print "-- It's", state, "I"

could be called in any of the following ways:

parrot(1000)

parrot(action = 'VOOOOOM’, voltage = 1000000)
parrot(a thousand’, state = ’pushing up the daisies’)
parrot('a million’, 'bereft of life’, 'jump’)

but the following calls would all be invalid:

parrot() # required argument missing
parrot(voltage=5.0, 'dead’) # non-keyword argument following keyword
parrot(110, voltage=220) # duplicate value for argument

parrot(actor="John Cleese’) # unknown keyword

In general, an argument list must have any positional arguments followed by any keyword arguments, where the

keywords must be chosen from the formal parameter names. It's not important whether a formal parameter has a
default value or not. No argument may receive a value more than once — formal parameter names corresponding to
positional arguments cannot be used as keywords in the same calls. Here’s an example that fails due to this restriction:

>>> def function(a):
pass

>>> function(0, a=0)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: function() got multiple values for keyword argument ’'a’

When a final formal parameter of the forfh nameis present, it receives @ctionarycontaining all keyword argu-
ments whose keyword doesn’t correspond to a formal parameter. This may be combined with a formal parameter of
the form* name(described in the next subsection) which receives a tuple containing the positional arguments beyond

the formal parameter list* famemust occur befor&* name) For example, if we define a function like this:

def cheeseshop(kind, *arguments, **keywords):
print "-- Do you have any", kind, '?’

print "-- I'm sorry, we're all out of", kind
for arg in arguments: print arg
print '-*40

keys = keywords.keys()
keys.sort()
for kw in keys: print kw, "’, keywords[kw]

It could be called like this:

4.7. More on Defining Functions

25

cheeseshop(’'Limburger’, "It's very runny, sir.",
"It's really very, VERY runny, sir.",
client="John Cleese’,
shopkeeper="Michael Palin’,
sketch="Cheese Shop Sketch’)

and of course it would print:

-- Do you have any Limburger ?

-- I'm sorry, we're all out of Limburger
It's very runny, sir.

It's really very, VERY runny, sir.

client : John Cleese
shopkeeper : Michael Palin
sketch : Cheese Shop Sketch

Note that thesort() method of the list of keyword argument names is called before printing the contents of the
keywords dictionary; if this is not done, the order in which the arguments are printed is undefined.

4.7.3 Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of argu-
ments. These arguments will be wrapped up in a tuple. Before the variable number of arguments, zero or more normal
arguments may occur.

def fprintf(file, format, *args):
file.write(format % args)

4.7.4 Unpacking Argument Lists

The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function
call requiring separate positional arguments. For instance, the budtige() function expects separas¢éart and
stoparguments. If they are not available separately, write the function call with-tiperator to unpack the arguments

out of a list or tuple:

>>> range(3, 6) # normal call with separate arguments

[3, 4, 5]

>>> args = [3, 6]

>>> range(*args) # call with arguments unpacked from a list
[3, 4, 5]

475 Lambda Forms

By popular demand, a few features commonly found in functional programming languages and Lisp have been added
to Python. With thdambda keyword, small anonymous functions can be created. Here’s a function that returns
the sum of its two argumentstambda a, b: a+b . Lambda forms can be used wherever function objects are
required. They are syntactically restricted to a single expression. Semantically, they are just syntactic sugar for a

26 Chapter 4. More Control Flow Tools

normal function definition. Like nested function definitions, lambda forms can reference variables from the containing
scope:

>>> def make_incrementor(n):
return lambda x: x + n

>>> f = make_incrementor(42)
>>> f(0)

42

>>> f(1)

43

4.7.6 Documentation Strings

There are emerging conventions about the content and formatting of documentation strings.

The first line should always be a short, concise summary of the object’s purpose. For brevity, it should not explicitly
state the object’'s name or type, since these are available by other means (except if the name happens to be a verb
describing a function’s operation). This line should begin with a capital letter and end with a period.

If there are more lines in the documentation string, the second line should be blank, visually separating the summary
from the rest of the description. The following lines should be one or more paragraphs describing the object’s calling
conventions, its side effects, etc.

The Python parser does not strip indentation from multi-line string literals in Python, so tools that process documen-
tation have to strip indentation if desired. This is done using the following convention. The first non-blaakdine

the first line of the string determines the amount of indentation for the entire documentation string. (We can't use
the first line since it is generally adjacent to the string’s opening quotes so its indentation is not apparent in the string
literal.) Whitespace “equivalent” to this indentation is then stripped from the start of all lines of the string. Lines that
are indented less should not occur, but if they occur all their leading whitespace should be stripped. Equivalence of
whitespace should be tested after expansion of tabs (to 8 spaces, normally).

Here is an example of a multi-line docstring:

>>> def my_function():
""" Do nothing, but document it.

No, really, it doesn’t do anything.

>>> print my_function.__doc__
Do nothing, but document it.

No, really, it doesn’'t do anything.

4.7. More on Defining Functions 27

28

CHAPTER
FIVE

Data Structures

This chapter describes some things you've learned about already in more detail, and adds some new things as well.

5.1 More on Lists

The list data type has some more methods. Here are all of the methods of list objects:

append (X)
Add an item to the end of the list; equivalentapen(a):;] = [X .

extend (L)
Extend the list by appending all the items in the given list; equivaleaflem(a):;] = L.

insert (i, Xx)
Insert an item at a given position. The first argument is the index of the element before which to in-
sert, soa.insert(0, X) inserts at the front of the list, analinsert(len(a), X) is equivalent to
a.append(Xx).

remove (X)
Remove the first item from the list whose valueidt is an error if there is no such item.

pop([i])

Remove the item at the given position in the list, and return it. If no index is spedfipdp() returns the

last item in the list. The item is also removed from the list. (The square brackets arouinith tthe method
signature denote that the parameter is optional, not that you should type square brackets at that position. You
will see this notation frequently in theython Library Referenck

index (X)
Return the index in the list of the first item whose valug.i#t is an error if there is no such item.

count (x)
Return the number of timesappears in the list.

sort ()
Sort the items of the list, in place.

reverse ()
Reverse the elements of the list, in place.

An example that uses most of the list methods:

29

>>> a = [66.6, 333, 333, 1, 1234.5]
>>> print a.count(333), a.count(66.6), a.count(’x’)
210

>>> a.insert(2, -1)

>>> a.append(333)

>>> a

[66.6, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)

1

>>> a.remove(333)

>>> a

[66.6, -1, 333, 1, 1234.5, 333]

>>> a.reverse()

>>> a

[333, 1234.5, 1, 333, -1, 66.6]

>>> a.sort()

>>> a

[-1, 1, 66.6, 333, 333, 1234.5]

5.1.1 Using Lists as Stacks

The list methods make it very easy to use a list as a stack, where the last element added is the first element retrieved
(“last-in, first-out”). To add an item to the top of the stack, append() . To retrieve an item from the top of the
stack, us@op() without an explicit index. For example:

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack

[3, 4, 5, 6, 7]

>>> stack.pop()

7

>>> stack

[3, 4, 5, 6]

>>> stack.pop()

6

>>> stack.pop()

5
>>> stack
(3, 4]

5.1.2 Using Lists as Queues

You can also use a list conveniently as a queue, where the first element added is the first element retrieved (“first-in,
first-out”). To add an item to the back of the queue, agpend() . To retrieve an item from the front of the queue,
usepop() with O as the index. For example:

30 Chapter 5. Data Structures

>>> queue = ['Eric", "John", "Michael"]

>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.pop(0)

'Eric’

>>> queue.pop(0)

'John’

>>> queue

[Michael’, 'Terry’, 'Graham’]

5.1.3 Functional Programming Tools

There are three built-in functions that are very useful when used with fiils() , map() , andreduce()

“filter(function sequencg’ returns a sequence (of the same type, if possible) consisting of those items from the
sequence for whicfunctior(item) is true. For example, to compute some primes:

>>> def f(x): return x % 2 1= 0 and x % 3 = 0
>>> filter(f, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]

‘map(function sequencg’ calls functior(item) for each of the sequence’s items and returns a list of the return
values. For example, to compute some cubes:

>>> def cube(x): return Xx*x*x

>>> map(cube, range(1, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

More than one sequence may be passed; the function must then have as many arguments as there are sequences and
is called with the corresponding item from each sequenc®&¢me if some sequence is shorter than another). For
example:

>>> seq = range(8)
>>> def add(x, y): return x+y

>>> map(add, seq, seq)

[0, 2, 4, 6, 8, 10, 12, 14]

‘reduce(funcg sequencg’ returns a single value constructed by calling the binary functiort on the first two
items of the sequence, then on the result and the next item, and so on. For example, to compute the sum of the numbers
1 through 10:

>>> def add(x,y): return x+y

>>> reduce(add, range(1, 11))
55

5.1. More on Lists 31

If there’s only one item in the sequence, its value is returned; if the sequence is empty, an exception is raised.

A third argument can be passed to indicate the starting value. In this case the starting value is returned for an empty
sequence, and the function is first applied to the starting value and the first sequence item, then to the result and the
next item, and so on. For example,

>>> def sum(seq):
def add(x,y): return x+y
return reduce(add, seq, 0)

>>> sum(range(1, 11))
55

>>> sum([])

0

Don't use this example’s definition aum() : since summing numbers is such a common need, a built-in function
sum(sequenck is already provided, and works exactly like this. New in version 2.3.

5.1.4 List Comprehensions

List comprehensions provide a concise way to create lists without resorting to usapgf , filter() and/or
lambda . The resulting list definition tends often to be clearer than lists built using those constructs. Each list
comprehension consists of an expression followed foy a clause, then zero or mofer orif clauses. The result

will be a list resulting from evaluating the expression in the context ofdhe andif clauses which follow it. If the
expression would evaluate to a tuple, it must be parenthesized.

>>> freshfruit = [banana’, ' loganberry ', 'passion fruit]
>>> [weapon.strip() for weapon in freshfruit]
[banana’, ’'loganberry’, ’passion fruit’]
>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]
>>> [3*x for x in vec if x > 3]
[12, 18]
>>> [3*x for x in vec if x < 2]
I
>>> [[x,x**2] for x in vec]
[[2, 4], [4, 16], [6, 36]]
>>> [x, x**2 for x in vec] # error - parens required for tuples
File "<stdin>", line 1, in ?
[x, x*2 for x in vec]
A

SyntaxError: invalid syntax
>>> [(x, x**2) for x in vec]
(2, 4), (4, 16), (6, 36)]
>>> vecl = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [x*y for x in vecl for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vecl for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]
>>> [vecl[i]*vec2[i] for i in range(len(vecl))]
[8, 12, -54]

32 Chapter 5. Data Structures

List comprehensions are much more flexible thaap() and can be applied to functions with more than one argument
and to nested functions:

>>> [str(round(355/113.0, i)) for i in range(1,6)]
[3.1', '3.14’, '3.142’, '3.1416’, '3.14159’]

5.2 The del statement

There is a way to remove an item from a list given its index instead of its valuetethestatement. This can also be
used to remove slices from a list (which we did earlier by assignment of an empty list to the slice). For example:

>>> a = [-1, 1, 66.6, 333, 333, 1234.5]
>>> del a[0]

>>> a

[1, 66.6, 333, 333, 1234.5]

>>> del a[2:4]

>>> a

[1, 66.6, 1234.5]

del can also be used to delete entire variables:

>>> del a

Referencing the nam& hereafter is an error (at least until another value is assigned to it). We'll find other uses for
del later.

5.3 Tuples and Sequences

We saw that lists and strings have many common properties, such as indexing and slicing operations. They are two
examples ofequencealata types Since Python is an evolving language, other sequence data types may be added.
There is also another standard sequence data typeaptees

A tuple consists of a number of values separated by commas, for instance:

>>> t = 12345, 54321, ’hello’

>>> {[0]

12345

>>> t

(12345, 54321, ’hello!’)

>>> # Tuples may be nested:

.u =1t (1, 2, 3, 4, 5)

>>> U

((12345, 54321, ’hello?), (1, 2, 3, 4, 5))

As you see, on output tuples are alway enclosed in parentheses, so that nested tuples are interpreted correctly; they
may be input with or without surrounding parentheses, although often parentheses are necessary anyway (if the tuple
is part of a larger expression).

5.2. The del statement 33

Tuples have many uses. For example: (X, y) coordinate pairs, employee records from a database, etc. Tuples, like
strings, are immutable: it is not possible to assign to the individual items of a tuple (you can simulate much of the
same effect with slicing and concatenation, though). It is also possible to create tuples which contain mutable objects,
such as lists.

A special problem is the construction of tuples containing O or 1 items: the syntax has some extra quirks to accom-
modate these. Empty tuples are constructed by an empty pair of parentheses; a tuple with one item is constructed by
following a value with a comma (it is not sufficient to enclose a single value in parentheses). Ugly, but effective. For
example:

>>> empty = ()

>>> singleton = ’hello’, # <-- note trailing comma
>>> |en(empty)

0

>>> |en(singleton)

1

>>> singleton

(hello’,)

The statemertt = 12345, 54321, ’hello” is an example ofuple packingthe valuesl2345, 54321 and
"hello!’ are packed together in a tuple. The reverse operation is also possible:

>>> X, y, z = t

This is called, appropriately enougsequence unpackingsequence unpacking requires that the list of variables on
the left have the same number of elements as the length of the sequence. Note that multiple assignment is really just a
combination of tuple packing and sequence unpacking!

There is a small bit of asymmetry here: packing multiple values always creates a tuple, and unpacking works for any
sequence.

5.4 Dictionaries

Another useful data type built into Python is thetionary. Dictionaries are sometimes found in other languages

as “associative memories” or “associative arrays”. Unlike sequences, which are indexed by a range of numbers,
dictionaries are indexed geys which can be any immutable type; strings and numbers can always be keys. Tuples
can be used as keys if they contain only strings, numbers, or tuples; if a tuple contains any mutable object either
directly or indirectly, it cannot be used as a key. You can't use lists as keys, since lists can be modified in place using
theirappend() andextend() methods, as well as slice and indexed assignments.

It is best to think of a dictionary as an unordered seteyf: valuepairs, with the requirement that the keys are unique
(within one dictionary). A pair of braces creates an empty diction@ry:Placing a comma-separated list of key:value
pairs within the braces adds initial key:value pairs to the dictionary; this is also the way dictionaries are written on
output.

The main operations on a dictionary are storing a value with some key and extracting the value given the key. Itis also
possible to delete a key:value pair wilkl . If you store using a key that is already in use, the old value associated
with that key is forgotten. It is an error to extract a value using a non-existent key.

Thekeys() method of a dictionary object returns a list of all the keys used in the dictionary, in random order (if you
want it sorted, just apply theort() method to the list of keys). To check whether a single key is in the dictionary,
use thenhas_key() method of the dictionary.

Here is a small example using a dictionary:

34 Chapter 5. Data Structures

>>> tel = {jack’: 4098, ’'sape’ 4139}
>>> tel['quido’] = 4127

>>> tel

{'sape’: 4139, ’'guido’: 4127, ’jack’: 4098}
>>> tel['jack’]

4098

>>> del tel['sape’]

>>> tellirv] = 4127

>>> tel

{'guido’: 4127, 'irv’: 4127, ’jack’: 4098}
>>> tel.keys()

['guido’, 'irv’, 'jack’]

>>> tel.has_key('guido’)

True

Thedict() constructor builds dictionaries directly from lists of key-value pairs stored as tuples. When the pairs
form a pattern, list comprehensions can compactly specify the key-value list.

>>> dict([('sape’, 4139), (‘guido’, 4127), (jack’, 4098)])

{'sape’: 4139, ’jack’: 4098, 'guido’: 4127}

>>> dict([(x, x**2) for x in vec]) # use a list comprehension
{2: 4, 4: 16, 6: 36}

5.5 Looping Techniques

When looping through dictionaries, the key and corresponding value can be retrieved at the same time using the
iteritems() method.

>>> knights = {'gallahad’: 'the pure’, 'robin’: 'the brave’}
>>> for k, v in knights.iteritems():
print k, v

gallahad the pure
robin the brave

When looping through a sequence, the position index and corresponding value can be retrieved at the same time using
theenumerate() function.

>>> for i, v in enumerate(['tic’, 'tac’, 'toe’]):
print i, v

0 tic

1 tac

2 toe

To loop over two or more sequences at the same time, the entries can be paired wiplf)thefunction.

5.5. Looping Techniques 35

>>> questions = ['name’, 'quest’, 'favorite color’]
>>> answers = [lancelot’, 'the holy grail’, 'blue’]
>>> for g, a in zip(questions, answers):
print 'What is your %s? It is %s.” % (q, a)

What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

5.6 More on Conditions

The conditions used iwhile andif statements above can contain other operators besides comparisons.

The comparison operatars andnot in check whether a value occurs (does not occur) in a sequence. The operators
is andis not compare whether two objects are really the same object; this only matters for mutable objects like
lists. All comparison operators have the same priority, which is lower than that of all numerical operators.

Comparisons can be chained. For examples b == c tests whethea is less tharb and moreoveb equalsc.

Comparisons may be combined by the Boolean operatmisandor , and the outcome of a comparison (or of any
other Boolean expression) may be negated with. These all have lower priorities than comparison operators again;
between themnot has the highest priority, anok the lowest, so tha® and not B or C is equivalent tqA

and (not B)) or C . Of course, parentheses can be used to express the desired composition.

The Boolean operato@nd andor are so-calledghort-circuit operators: their arguments are evaluated from left to
right, and evaluation stops as soon as the outcome is determined. For exarAedi€ are true buB is false,A

and B and C does not evaluate the express{arin general, the return value of a short-circuit operator, when used
as a general value and not as a Boolean, is the last evaluated argument.

It is possible to assign the result of a comparison or other Boolean expression to a variable. For example,

>>> stringl, string2, string3 = ", 'Trondheim’, 'Hammer Dance’
>>> non_null = stringl or string2 or string3

>>> non_null

"Trondheim’

Note that in Python, unlike C, assignment cannot occur inside expressions. C programmers may grumble about this,
but it avoids a common class of problems encountered in C programs: typiran expression wher= was intended.

5.7 Comparing Sequences and Other Types

Sequence objects may be compared to other objects with the same sequence type. The compdesicogisgshical

ordering: first the first two items are compared, and if they differ this determines the outcome of the comparison; if
they are equal, the next two items are compared, and so on, until either sequence is exhausted. If two items to be
compared are themselves sequences of the same type, the lexicographical comparison is carried out recursively. If all
items of two sequences compare equal, the sequences are considered equal. If one sequence is an initial sub-sequence
of the other, the shorter sequence is the smaller (lesser) one. Lexicographical ordering for strings mses the

ordering for individual characters. Some examples of comparisons between sequences with the same types:

36 Chapter 5. Data Structures

1, 2, 3) < (1, 2, 4)

[1, 2, 3] <1, 2, 4]

'ABC’ < 'C’ < 'Pascal' < 'Python’

@, 2, 3, 4 < (1 2 4

1, 2) < (1, 2, -1)

@1, 2, 3) == (1.0, 2.0, 3.0)
1, 2, (aa’, 'ab)) < (1, 2, (abc, @), 4)

Note that comparing objects of different types is legal. The outcome is deterministic but arbitrary: the types are
ordered by their name. Thus, a list is always smaller than a string, a string is always smaller than a tuple, etc. Mixed
numeric types are compared according to their numeric value, so 0 equals 8.0, etc.

1The rules for comparing objects of different types should not be relied upon; they may change in a future version of the language.

5.7. Comparing Sequences and Other Types 37

38

CHAPTER
SIX

Modules

If you quit from the Python interpreter and enter it again, the definitions you have made (functions and variables) are
lost. Therefore, if you want to write a somewhat longer program, you are better off using a text editor to prepare the
input for the interpreter and running it with that file as input instead. This is known as creadicripa As your
program gets longer, you may want to split it into several files for easier maintenance. You may also want to use a
handy function that you've written in several programs without copying its definition into each program.

To support this, Python has a way to put definitions in a file and use them in a script or in an interactive instance of the
interpreter. Such a file is calledraodule definitions from a module can bmportedinto other modules or into the
mainmodule (the collection of variables that you have access to in a script executed at the top level and in calculator

mode).

A module is a file containing Python definitions and statements. The file name is the module name with the suffix
“.py’ appended. Within a module, the module’s name (as a string) is available as the value of the global variable
__name___. For instance, use your favorite text editor to create a file cafiealpy’ in the current directory with the

following contents:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
a b=01
while b < n:

print b,
a, b = b, atb

def fib2(n): # return Fibonacci series up to n

result = []

a, b=01

while b < n:
result.append(b)
a, b = b, atb

return result

Now enter the Python interpreter and import this module with the following command:

>>> import fibo

This does not enter the names of the functions defindtan directly in the current symbol table; it only enters the
module namdibo there. Using the module name you can access the functions:

39

>>> fibo.fib(1000)

11235813 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

>>> fibo.__name__

fibo’

If you intend to use a function often you can assign it to a local name:

>>> fib = fibo.fib
>>> fib(500)
112358 13 21 34 55 89 144 233 377

6.1 More on Modules

A module can contain executable statements as well as function definitions. These statements are intended to initialize
the module. They are executed only fivst time the module is imported somewhére.

Each module has its own private symbol table, which is used as the global symbol table by all functions defined in
the module. Thus, the author of a module can use global variables in the module without worrying about accidental
clashes with a user’s global variables. On the other hand, if you know what you are doing you can touch a module’s
global variables with the same notation used to refer to its functrmngname.itemname .

Modules can import other modules. It is customary but not required to placemlt statements at the beginning
of a module (or script, for that matter). The imported module names are placed in the importing module’s global
symbol table.

There is a variant of themport statement that imports names from a module directly into the importing module’s
symbol table. For example:

>>> from fibo import fib, fib2
>>> fib(500)
112358 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the local symbol table (so in the example,
fibo is not defined).

There is even a variant to import all names that a module defines:

>>> from fibo import *
>>> fib(500)
112358 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscire (

1In fact function definitions are also ‘statements’ that are ‘executed’; the execution enters the function name in the module’s global symbol table.

40 Chapter 6. Modules

6.1.1 The Module Search Path

When a module namespam is imported, the interpreter searches for a file nanspdrh.py’ in the current directory,

and then in the list of directories specified by the environment variable PYTHONPATH. This has the same syntax as
the shell variable PATH, that is, a list of directory names. When PYTHONPATH is not set, or when the file is not found
there, the search continues in an installation-dependent default pathyian this is usually :/usr/local/lib/python’.

Actually, modules are searched in the list of directories given by the vasgblpath ~ which is initialized from the
directory containing the input script (or the current directory), PYTHONPATH and the installation-dependent default.
This allows Python programs that know what they’re doing to modify or replace the module search path. Note that
because the directory containing the script being run is on the search path, it is important that the script not have the
same name as a standard module, or Python will attempt to load the script as a module when that module is imported.
This will generally be an error. See section 6.2, “Standard Modules,” for more information.

6.1.2 “Compiled” Python files

As an important speed-up of the start-up time for short programs that use a lot of standard modules, if a file called
‘spam.pyc’ exists in the directory wherespam.py’ is found, this is assumed to contain an already-“byte-compiled”
version of the modulspam. The modification time of the version afpam.py’ used to createspam.pyc’ is recorded

in ‘spam.pyc’, and the ‘pyc’ file is ignored if these don't match.

Normally, you don'’t need to do anything to create tigam.pyc’ file. Whenever $pam.py’ is successfully compiled,

an attempt is made to write the compiled versionstiam.pyc'. It is not an error if this attempt fails; if for any reason

the file is not written completely, the resultingpam.pyc’ file will be recognized as invalid and thus ignored later. The
contents of thespam.pyc’ file are platform independent, so a Python module directory can be shared by machines of
different architectures.

Some tips for experts:

e When the Python interpreter is invoked with #@ flag, optimized code is generated and storedgyo’ files.
The optimizer currently doesn’t help much; it only remoassert statements. Whet© is usedall bytecode
is optimized;.pyc files are ignored angyy files are compiled to optimized bytecode.

e Passing twaO flags to the Python interpretetdO) will cause the bytecode compiler to perform optimizations
that could in some rare cases result in malfunctioning programs. Currently odbc _ strings are removed
from the bytecode, resulting in more compagiyé’ files. Since some programs may rely on having these
available, you should only use this option if you know what you're doing.

e A program doesn’t run any faster when it is read fronpgc” or ‘ .pyo’ file than when it is read from apy’ file;
the only thing that’s faster aboupyc’ or ‘ .pyo’ files is the speed with which they are loaded.

e When a script is run by giving its name on the command line, the bytecode for the script is never written to a
‘.pyc’ or ‘.pyo’ file. Thus, the startup time of a script may be reduced by moving most of its code to a module
and having a small bootstrap script that imports that module. It is also possible to ngye ar'‘.pyo’ file
directly on the command line.

e Itis possible to have a file calledgam.pyc’ (or ‘spam.pyo’ when -O is used) without a filespam.py’ for the
same module. This can be used to distribute a library of Python code in a form that is moderately hard to reverse
engineer.

e The modulecompileall can create.pyc’ files (or ‘.pyo’ files when-O is used) for all modules in a directory.

6.2 Standard Modules

Python comes with a library of standard modules, described in a separate documénththe Library Reference
(“Library Reference” hereafter). Some modules are built into the interpreter; these provide access to operations that are

6.2. Standard Modules 41

not part of the core of the language but are nevertheless built in, either for efficiency or to provide access to operating
system primitives such as system calls. The set of such modules is a configuration option which also depends on the
underlying platform For example, trl@noeba module is only provided on systems that somehow support Amoeba
primitives. One particular module deserves some attentiga:, which is built into every Python interpreter. The
variablessys.psl andsys.ps2 define the strings used as primary and secondary prompts:

>>> import sys
>>> gys.psl
>>>

>>> sys.ps2

>>> sys.psl = 'C> "’
C> print "Yuck!
Yuck!

C>

These two variables are only defined if the interpreter is in interactive mode.

The variablesys.path is a list of strings that determine the interpreter’s search path for modules. It is initialized to
a default path taken from the environment variable PYTHONPATH, or from a built-in default if PYTHONPATH is not
set. You can modify it using standard list operations:

>>> import sys
>>> sys.path.append(’/ufs/guido/lib/python’)

6.3 Thedir() Function
The built-in functiondir() is used to find out which names a module defines. It returns a sorted list of strings:

>>> import fibo, sys

>>> dir(fibo)

[_name__’, *fib’, 'fib2]

>>> dir(sys)

[__displayhook__’, ' doc_ ', '_ excepthook_ ', ' name_ ', ' stderr_ ’,
' stdin__’, '__stdout__’, '_getframe’, 'api_version’, 'argv’,
‘builtin_module_names’, ’'byteorder’, ’'callstats’, 'copyright’,
‘displayhook’, 'exc_clear’, ’exc_info’, 'exc_type’, 'excepthook’,
‘exec_prefix’, 'executable’, 'exit’, 'getdefaultencoding’, 'getdlopenflags’,
‘getrecursionlimit’, 'getrefcount’, 'hexversion’, 'maxint’, 'maxunicode’,
‘'meta_path’, 'modules’, ’path’, 'path_hooks’, 'path_importer_cache’,
‘platform’, ’prefix’, 'psl’, 'ps2’, 'setcheckinterval’, 'setdlopenflags’,
'setprofile’, 'setrecursionlimit’, ’'settrace’, 'stderr’, ’'stdin’, 'stdout’,
‘version’, 'version_info’, 'warnoptions’]

Without argumentsgir() lists the names you have defined currently:

42 Chapter 6. Modules

>>> a = [1, 2, 3, 4, 5]

>>> import fibo, sys

>>> fib = fibo.fib

>>> dir()

[__name_’, 'a’, 'fib’, ’fibo’, 'sys’]

Note that it lists all types of names: variables, modules, functions, etc.

dir() does not list the names of built-in functions and variables. If you want a list of those, they are defined in the
standard module_builtin__

>>> import __ builtin__

>>> dir(__builtin_)

['ArithmeticError’, 'AssertionError’, 'AttributeError’,
'DeprecationWarning’, 'EOFError’, 'Ellipsis’, 'EnvironmentError’,
'Exception’, 'False’, 'FloatingPointError’, 'lIOError’, 'ImportError’,
‘IndentationError’, 'IndexError’, 'KeyError’, 'Keyboardinterrupt’,
‘LookupError’, 'MemoryError’, 'NameError’, 'None’, 'Notimplemented’,
‘NotimplementedError’, 'OSError’, 'OverflowError’, 'OverflowWarning’,
'PendingDeprecationWarning’, 'ReferenceError’,

'RuntimeError’, 'RuntimeWarning’, 'StandardError’, 'Stoplteration’,
'SyntaxError’, 'SyntaxWarning’, 'SystemError’, 'SystemExit’, 'TabError’,
"True’, 'TypeError’, 'UnboundLocalError’, 'UnicodeError’, 'UserWarning’,
"ValueError', 'Warning’, 'ZeroDivisionError’, '__debug__’, '__doc_’

’
’ ’

__import__’, ’__name__’, 'abs’, 'apply’, 'bool’, ’buffer’,
‘callable’, 'chr’, 'classmethod’, 'cmp’, 'coerce’, 'compile’, 'complex’,
‘copyright’, 'credits’, ’delattr’, 'dict’, 'dir’, 'divmod’,
‘'enumerate’, 'eval’, 'execfile’, 'exit’, ‘file’, ‘filter’, 'float’,
‘getattr’, 'globals’, 'hasattr’, 'hash’, 'help’, 'hex’, 'id’,
'input’, ’int’, 'intern’, 'isinstance’, 'issubclass’, 'iter’,

‘len’, ’license’, ’list’, ’locals’, ’long’, 'map’, 'max’, 'min’,
‘object’, 'oct’, 'open’, ’'ord’, 'pow’, 'property’, 'quit’,
‘range’, 'raw_input’, 'reduce’, 'reload’, 'repr’, 'round’,
'setattr’, ’'slice’, ’'staticmethod’, ’str’, ’'string’, 'sum’, 'super’,
‘tuple’, 'type’, 'unichr’, 'unicode’, 'vars’, 'xrange’, zip’]

6.4 Packages

Packages are a way of structuring Python’s module namespace by using “dotted module names”. For example, the
module name\.B designates a submodule nam&dih a package namedX'. Just like the use of modules saves the
authors of different modules from having to worry about each other’s global variable names, the use of dotted module
names saves the authors of multi-module packages like NumPy or the Python Imaging Library from having to worry
about each other's module names.

Suppose you want to design a collection of modules (a “package”) for the uniform handling of sound files and sound
data. There are many different sound file formats (usually recognized by their extension, for examaple: .aiff’,

‘.au’), so you may need to create and maintain a growing collection of modules for the conversion between the various
file formats. There are also many different operations you might want to perform on sound data (such as mixing,
adding echo, applying an equalizer function, creating an artificial stereo effect), so in addition you will be writing a
never-ending stream of modules to perform these operations. Here’s a possible structure for your package (expressed
in terms of a hierarchical filesystem):

6.4. Packages 43

Sound/ Top-level package

__init__.py Initialize the sound package

Formats/ Subpackage for file format conversions
__init__.py
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py

Effects/ Subpackage for sound effects
__init__.py
echo.py
surround.py
reverse.py

Filters/ Subpackage for filters
__init__.py
equalizer.py
vocoder.py
karaoke.py

When importing the package, Python searches through the directorsss @ath looking for the package subdi-
rectory.

The *__init__.py’ files are required to make Python treat the directories as containing packages; this is done to prevent
directories with a common name, such stsihg ', from unintentionally hiding valid modules that occur later on the
module search path. In the simplest caseinit__.py’ can just be an empty file, but it can also execute initialization
code for the package or settheall variable, described later.

Users of the package can import individual modules from the package, for example:

import Sound.Effects.echo

This loads the submodugound.Effects.echo . It must be referenced with its full name.

Sound.Effects.echo.echofilter(input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:

from Sound.Effects import echo

This also loads the submodwgeho , and makes it available without its package prefix, so it can be used as follows:

echo.echdfilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

from Sound.Effects.echo import echofilter

44 Chapter 6. Modules

Again, this loads the submoduéeho , but this makes its functioachofilter() directly available:

echofilter(input, output, delay=0.7, atten=4)

Note that when usingrom packageimport item the item can be either a submodule (or subpackage) of the
package, or some other name defined in the package, like a function, class or variahlapdtie statement first

tests whether the item is defined in the package; if not, it assumes it is a module and attempts to load it. If it fails to
find it, anImportError ~ exception is raised.

Contrarily, when using syntax likenport item.subitem.subsubitemach item except for the last must be a package;
the last item can be a module or a package but can’t be a class or function or variable defined in the previous item.

6.4.1 Importing * From a Package

Now what happens when the user wrifesm Sound.Effects import * ? Ideally, one would hope that this
somehow goes out to the filesystem, finds which submodules are present in the package, and imports them all. Un-
fortunately, this operation does not work very well on Mac and Windows platforms, where the filesystem does not
always have accurate information about the case of a filename! On these platforms, there is no guaranteed way to
know whether a fileECHO.PY’ should be imported as a modubeho , Echo or ECHO (For example, Windows 95

has the annoying practice of showing all file names with a capitalized first letter.) The DOS 8+3 filename restriction
adds another interesting problem for long module names.

The only solution is for the package author to provide an explicit index of the package. The import statement uses
the following convention: if a package’s ‘init__.py’ code defines a listnamed all__ , it is taken to be the list of

module names that should be imported wfrem package import * is encountered. It is up to the package au-

thor to keep this list up-to-date when a new version of the package is released. Package authors may also decide not to
support it, if they don’t see a use for importing * from their package. For example, thedileds/Effects/__init__.py’

could contain the following code:

_all__ = ["echo", "surround", "reverse"]

This would mean thafrom Sound.Effects import * would import the three named submodules of the
Sound package.

If __all__ is not defined, the statemefibom Sound.Effects import * doesnot import all submodules
from the packag&ound.Effects into the current namespace; it only ensures that the packaged. Effects

has been imported (possibly running its initialization codeirit__.py’) and then imports whatever names are defined
in the package. This includes any names defined (and submodules explicitly loadedihby “py’. It also includes
any submodules of the package that were explicitly loaded by previous import statements. Consider this code:

import Sound.Effects.echo
import Sound.Effects.surround
from Sound.Effects import *

In this example, the echo and surround modules are imported in the current namespace because they are defined in the
Sound.Effects package when thigom...import statement is executed. (This also works wheall__ is
defined.)

Note that in general the practice of importihdrom a module or package is frowned upon, since it often causes poorly
readable code. However, it is okay to use it to save typing in interactive sessions, and certain modules are designed to
export only names that follow certain patterns.

6.4. Packages 45

Remember, there is nothing wrong with usiingm Package import specific_submodule I In fact, this
is the recommended notation unless the importing module needs to use submodules with the same name from different
packages.

6.4.2 Intra-package References

The submodules often need to refer to each other. For exampleytteeind module might use thecho module.

In fact, such references are so common thatrtipgort statement first looks in the containing package before looking
in the standard module search path. Thus, the surround module can simpiypse echo or from echo

import echofilter . If the imported module is not found in the current package (the package of which the
current module is a submodule), timeport statement looks for a top-level module with the given name.

When packages are structured into subpackages (as withoilned package in the example), there’s no shortcut to

refer to submodules of sibling packages - the full name of the subpackage must be used. For example, if the module
Sound.Filters.vocoder needs to use thecho module in theSound.Effects package, it can usiom
Sound.Effects import echo

6.4.3 Packages in Multiple Directories

Packages support one more special attribut@ath . This is initialized to be a list containing the name of the
directory holding the package’s ‘init__.py’ before the code in that file is executed. This variable can be modified;
doing so affects future searches for modules and subpackages contained in the package.

While this feature is not often needed, it can be used to extend the set of modules found in a package.

46 Chapter 6. Modules

CHAPTER
SEVEN

Input and Output

There are several ways to present the output of a program; data can be printed in a human-readable form, or written to
a file for future use. This chapter will discuss some of the possibilities.

7.1 Fancier Output Formatting

So far we've encountered two ways of writing valuegpression statemerdsd theprint statement. (A third way
is using thewrite() method of file objects; the standard output file can be referencegsastdout . See the
Library Reference for more information on this.)

Often you’ll want more control over the formatting of your output than simply printing space-separated values. There
are two ways to format your output; the first way is to do all the string handling yourself; using string slicing and
concatenation operations you can create any lay-out you can imagine. The standardstrodule contains some

useful operations for padding strings to a given column width; these will be discussed shortly. The second way is to use
the%operator with a string as the left argument. Bheperator interprets the left argument much likspaintf() -

style format string to be applied to the right argument, and returns the string resulting from this formatting operation.

One question remains, of course: how do you convert values to strings? Luckily, Python has ways to convert any value
to a string: passittotheepr() orstr() functions. Reverse quotes)(are equivalent toepr() , but their use is
discouraged.

Thestr() function is meant to return representations of values which are fairly human-readableregpinfle

is meant to generate representations which can be read by the interpreter (or will ®yoctaaError if there

is not equivalent syntax). For objects which don’t have a particular representation for human consusing}ion,

will return the same value agpr() . Many values, such as numbers or structures like lists and dictionaries, have
the same representation using either function. Strings and floating point numbers, in particular, have two distinct
representations.

Some examples:

47

>>> s = ’Hello, world.’
>>> str(s)

'Hello, world.’

>>> repr(s)

""Hello, world.™

>>> str(0.1)

0.1

>>> repr(0.1)
’0.10000000000000001"

>>> x = 10 * 3.25

>>> y = 200 * 200

>>> s = 'The value of x is ' + repr(x) + ’, and y is ' + repr(y) + '
>>> print s

The value of x is 32.5, and y is 40000...

>>> # The repr() of a string adds string quotes and backslashes:
... hello = ’hello, world\n’

>>> hellos = repr(hello)

>>> print hellos

‘hello, world\n’

>>> # The argument to repr() may be any Python object:

- repr((x, y, ('spam’, 'eggs’))

"(32.5, 40000, ('spam’, 'eggs’))"

>>> # reverse quotes are convenient in interactive sessions:
.. %, Yy, ('spam’, 'eggs’)’

"(32.5, 40000, ('spam’, 'eggs’))"

Here are two ways to write a table of squares and cubes:

>>> for x in range(1, 11):
print repr(x).rjust(2), repr(x*x).rjust(3),
Note trailing comma on previous line
print repr(x*x*x).rjust(4)

1 1

4 8

9 27

16 64

25 125

36 216

49 343

64 512

81 729

10 100 1000

>>> for x in range(1,11):
print '%2d %3d %4d’ % (X, X*X, X*X*X)

©CO~NOUNWNE:®

1 1

4 8

9 27
16 64
25 125
36 216
49 343
64 512
81 729
100 1000

COWO~NDOUAWNE:"

1

48 Chapter 7. Input and Output

(Note that one space between each column was added by thprimgy works: it always adds spaces between its
arguments.)

This example demonstrates thast() method of string objects, which right-justifies a string in a field of a given
width by padding it with spaces on the left. There are similar metijod) andcenter() . These methods

do not write anything, they just return a new string. If the input string is too long, they don't truncate it, but return it
unchanged; this will mess up your column lay-out but that's usually better than the alternative, which would be lying
about a value. (If you really want truncation you can always add a slice operation xaguist(n)[:n] ")

There is another methodfill() , which pads a numeric string on the left with zeros. It understands about plus and
minus signs:

>>> 12" Zfill(5)

‘00012’

>>> '-3.14" . Zfill(7)

-003.14’

>>> '3.14159265359".Zfill(5)
'3.14159265359’

Using the%operator looks like this:

>>> jmport math
>>> print 'The value of Pl is approximately %5.3f." % math.pi
The value of PI is approximately 3.142.

If there is more than one format in the string, you need to pass a tuple as right operand, as in this example:

>>> table = {'Sjoerd: 4127, 'Jack’: 4098, 'Dcab’: 7678}
>>> for name, phone in table.items():
print '%-10s ==> %210d’ % (name, phone)

Jack ==> 4098

Dcab ==> 7678
Sjoerd => 4127

Most formats work exactly as in C and require that you pass the proper type; however, if you don't you get an
exception, not a core dump. Thé&sformat is more relaxed: if the corresponding argument is not a string object, it is
converted to string using thetr() built-in function. Using* to pass the width or precision in as a separate (integer)
argument is supported. The C formé&tsand%pare not supported.

If you have a really long format string that you don’t want to split up, it would be nice if you could reference the
variables to be formatted by name instead of by position. This can be done by usingofoame)format , as
shown here:

>>> table = {'Sjoerd: 4127, 'Jack’: 4098, 'Dcab’: 8637678}
>>> print 'Jack: %(Jack)d; Sjoerd: %(Sjoerd)d; Dcab: %(Dcab)d” % table
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This is particularly useful in combination with the new builtdars() function, which returns a dictionary contain-
ing all local variables.

7.1. Fancier Output Formatting 49

7.2 Reading and Writing Files
open() returns a file object, and is most commonly used with two argumerpen(flename modeg .

>>> f=open(’/tmp/workfile’, 'w’)
>>> print f
<open file 'ftmp/workfile’, mode 'w’ at 80a0960>

The first argument is a string containing the filename. The second argument is another string containing a few charac-
ters describing the way in which the file will be usenlodecan ber’ when the file will only be readw’ for only

writing (an existing file with the same name will be erased), @\d opens the file for appending; any data written

to the file is automatically added to the erid?” opens the file for both reading and writing. Tim@deargument is
optional;’r will be assumed if it's omitted.

On Windows and the Macintosty’ appended to the mode opens the file in binary mode, so there are also modes
like'rb’ ,'wb’ ,andr+b’ . Windows makes a distinction between text and binary files; the end-of-line characters
in text files are automatically altered slightly when data is read or written. This behind-the-scenes modification to file
data is fine forascii text files, but it'll corrupt binary data like that in JPEGs dEXE’ files. Be very careful to use

binary mode when reading and writing such files. (Note that the precise semantics of text mode on the Macintosh
depends on the underlying C library being used.)

7.2.1 Methods of File Objects

The rest of the examples in this section will assume that a file object daled already been created.

To read a file's contents, cdlread(size , which reads some quantity of data and returns it as a stsiagis an
optional numeric argument. Whaizeis omitted or negative, the entire contents of the file will be read and returned,;
it's your problem if the file is twice as large as your machine’s memory. Otherwise, atszeslytes are read and
returned. If the end of the file has been reacliedad() will return an empty string"().

>>> fread()
'This is the entire file.\n’
>>> f.read()

”

f.readline() reads a single line from the file; a newline character)(is left at the end of the string, and is only
omitted on the last line of the file if the file doesn’t end in a newline. This makes the return value unambiguous; if
f.readline() returns an empty string, the end of the file has been reached, while a blank line is represented by

\n’” , a string containing only a single newline.

>>> f.readline()

'This is the first line of the file\n’
>>> freadline()

'Second line of the file\n’

>>> f.readline()

f.readlines() returns a list containing all the lines of data in the file. If given an optional pararaizening

it reads that many bytes from the file and enough more to complete a line, and returns the lines from that. This is
often used to allow efficient reading of a large file by lines, but without having to load the entire file in memory. Only
complete lines will be returned.

50 Chapter 7. Input and Output

>>> freadlines()
[This is the first line of the file.\n’, 'Second line of the file\n’]

f.write(string) writes the contents ddtringto the file, returnindNone.

>>> fwrite('This is a test\n’)

f.tell() returns an integer giving the file object’s current position in the file, measured in bytes from the beginning

of the file. To change the file object’s position, ugseek(offsetf from_whaj '. The position is computed from
addingoffsetto a reference point; the reference point is selected bjrdine_ whatargument. Afrom_whatvalue of 0
measures from the beginning of the file, 1 uses the current file position, and 2 uses the end of the file as the reference
point. from_whatcan be omitted and defaults to 0, using the beginning of the file as the reference point.

>>> f=open('/tmp/workfile’, 'r+)

>>> f.write('0123456789abcdef’)

>>> f.seek(5) # Go to the 6th byte in the file
>>> f.read(1)

>>> fseek(-3, 2) # Go to the 3rd byte before the end
>>> fread(l)

When you're done with a file, caflclose() to close it and free up any system resources taken up by the open file.
After callingf.close() , attempts to use the file object will automatically fail.

>>> f.close()
>>> fread()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: /O operation on closed file

File objects have some additional methods, suctsatsy() andtruncate() which are less frequently used;
consult the Library Reference for a complete guide to file objects.

7.2.2 The pickle Module

Strings can easily be written to and read from a file. Numbers take a bit more effort, simeadfe method only

returns strings, which will have to be passed to a functionilit€ , which takes a string lik&123' and returns

its numeric value 123. However, when you want to save more complex data types like lists, dictionaries, or class
instances, things get a lot more complicated.

Rather than have users be constantly writing and debugging code to save complicated data types, Python provides a
standard module callgackle . Thisis an amazing module that can take almost any Python object (even some forms

of Python code!), and convert it to a string representation; this process is palléihg. Reconstructing the object

from the string representation is calledpickling Between pickling and unpickling, the string representing the object

may have been stored in a file or data, or sent over a network connection to some distant machine.

If you have an object, and a file object that's been opened for writing, the simplest way to pickle the object takes
only one line of code:

7.2. Reading and Writing Files 51

pickle.dump(x, f)

To unpickle the object again, ff is a file object which has been opened for reading:

x = pickle.load(f)

(There are other variants of this, used when pickling many objects or when you don't want to write the pickled data to
a file; consult the complete documentationfazkle in the Python Library Referenck

pickle isthe standard way to make Python objects which can be stored and reused by other programs or by a future
invocation of the same program; the technical term for thisgeraistenbbject. Becauspickle is so widely used,

many authors who write Python extensions take care to ensure that new data types such as matrices can be properly
pickled and unpickled.

52 Chapter 7. Input and Output

CHAPTER
EIGHT

Errors and Exceptions

Until now error messages haven't been more than mentioned, but if you have tried out the examples you have probably
seen some. There are (at least) two distinguishable kinds of essorsx errorsandexceptions

8.1 Syntax Errors

Syntax errors, also known as parsing errors, are perhaps the most common kind of complaint you get while you are
still learning Python:

>>> while True print 'Hello world’
File "<stdin>", line 1, in ?
while True print 'Hello world’
N

SyntaxError: invalid syntax

The parser repeats the offending line and displays a little ‘arrow’ pointing at the earliest point in the line where the
error was detected. The error is caused by (or at least detected at) theptekedingthe arrow: in the example, the

error is detected at the keywopdint , since a colon (*’) is missing before it. File name and line number are printed

so you know where to look in case the input came from a script.

8.2 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error when an attempt is made to execute it.
Errors detected during execution are cakedeptionsand are not unconditionally fatal: you will soon learn how to
handle them in Python programs. Most exceptions are not handled by programs, however, and result in error messages
as shown here:

53

>>> 10 * (1/0)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or modulo by zero
>>> 4 + spam*3
Traceback (most recent call last):
File "<stdin>", line 1, in ?
NameError: name ’'spam’ is not defined
>>> 2" + 2
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: cannot concatenate ’str’ and ’int’ objects

The last line of the error message indicates what happened. Exceptions come in different types, and the type is printed
as part of the message: the types in the exampl&areDivisionError , NameError andTypeError . The

string printed as the exception type is the name of the built-in exception that occurred. This is true for all built-in
exceptions, but need not be true for user-defined exceptions (although it is a useful convention). Standard exception
names are built-in identifiers (not reserved keywords).

The rest of the line is a detail whose interpretation depends on the exception type; its meaning is dependent on the
exception type.

The preceding part of the error message shows the context where the exception happened, in the form of a stack
backtrace. In general it contains a stack backtrace listing source lines; however, it will not display lines read from
standard input.

ThePython Library Referendists the built-in exceptions and their meanings.

8.3 Handling Exceptions

It is possible to write programs that handle selected exceptions. Look at the following example, which asks the user
for input until a valid integer has been entered, but allows the user to interrupt the program Qositrgl-C

or whatever the operating system supports); note that a user-generated interruption is signalled by raising the
Keyboardinterrupt exception.

>>> while True:
try:
x = int(raw_input("Please enter a number: "))
break
except ValueError:
print "Oops! That was no valid number. Try again..."

Thetry statement works as follows.

e First, thetry clause(the statement(s) between ttng andexcept keywords) is executed.
e If no exception occurs, thexcept clausé skipped and execution of they statement is finished.

e If an exception occurs during execution of the try clause, the rest of the clause is skipped. Then if its type
matches the exception named afteréixeept keyword, the rest of the try clause is skipped, the except clause
is executed, and then execution continues aftetrihe statement.

54 Chapter 8. Errors and Exceptions

e If an exception occurs which does not match the exception named in the except clause, it is passed on to outer

try statements; if no handler is found, it is anhandled exceptioand execution stops with a message as
shown above.

A try statement may have more than one except clause, to specify handlers for different exceptions. At most one
handler will be executed. Handlers only handle exceptions that occur in the corresponding try clause, not in other

handlers of the samigy statement. An except clause may name multiple exceptions as a parenthesized list, for
example:

. except (RuntimeError, TypeError, NameError):
pass

The last except clause may omit the exception name(s), to serve as a wildcard. Use this with extreme caution, since it
is easy to mask a real programming error in this way! It can also be used to print an error message and then re-raise
the exception (allowing a caller to handle the exception as well):

import sys

try:
f = open('myfile.txt’)
s = f.readline()
i = int(s.strip())
except IOError, (errno, strerror):
print "l/O error(%s): %s" % (errno, strerror)
except ValueError:
print "Could not convert data to an integer."

except:
print "Unexpected error:", sys.exc_info()[0]
raise
Thetry ... except statement has an optionglse clausewhich, when present, must follow all except clauses. It

is useful for code that must be executed if the try clause does not raise an exception. For example:

for arg in sys.argv[1:]:

try:
f = open(arg, 'T’)

except |OError:
print ’cannot open’, arg

else:
print arg, 'has’, len(f.readlines()), ’lines’
f.close()

The use of theelse clause is better than adding additional code totthie clause because it avoids accidentally
catching an exception that wasn't raised by the code being protected tyy the . except statement.

When an exception occurs, it may have an associated value, also known as the excaion&nt The presence
and type of the argument depend on the exception type.

The except clause may specify a variable after the exception name (or list). The variable is bound to an excep-

tion instance with the arguments storedimstance.args . For convenience, the exception instance defines
__getitem__ and__str__ so the arguments can be accessed or printed directly without having to reference
.args

8.3. Handling Exceptions 55

>>> try:
raise Exception('spam’, 'eggs’)
. except Exception, inst:

print type(inst) # the exception instance

print inst.args # arguments stored in .args

print inst # _ str__ allows args to printed directly

X, y = inst # _ getitem__ allows args to be unpacked directly
print 'x =, X

print 'y =,y

<type ’instance’>
('spam’, 'eggs’)
('spam’, ’eggs’)
X = spam

y = €ggs

If an exception has an argument, it is printed as the last part (‘detail’) of the message for unhandled exceptions.

Exception handlers don't just handle exceptions if they occur immediately in the try clause, but also if they occur
inside functions that are called (even indirectly) in the try clause. For example:

>>> def this_fails():
x = 1/0

>>> try:
this_fails()
. except ZeroDivisionError, detail:
print 'Handling run-time error:’, detall

Handling run-time error: integer division or modulo

8.4 Raising Exceptions
Theraise statement allows the programmer to force a specified exception to occur. For example:

>>> raise NameError, 'HiThere’
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: HiThere

The firstargument tocaise hames the exception to be raised. The optional second argument specifies the exception’s
argument.

If you need to determine whether an exception was raised but don’t intend to handle it, a simpler formafethe
statement allows you to re-raise the exception:

56 Chapter 8. Errors and Exceptions

>>> try:
raise NameError, 'HiThere’
. except NameError:
print 'An exception flew by!
raise

An exception flew by!

Traceback (most recent call last):
File "<stdin>", line 2, in ?

NameError: HiThere

8.5 User-defined Exceptions

Programs may name their own exceptions by creating a new exception class. Exceptions should typically be derived
from theException class, either directly or indirectly. For example:

>>> class MyError(Exception):
def __init_ (self, value):
self.value = value
def _ str_ (self):
return repr(self.value)

>>> try:
raise MyError(2*2)
. except MyError, e:
print "My exception occurred, value:’, e.value

My exception occurred, value: 4
>>> raise MyError, 'oops!
Traceback (most recent call last):
File "<stdin>", line 1, in ?
__main___.MyError: 'oops!

Exception classes can be defined which do anything any other class can do, but are usually kept simple, often only
offering a number of attributes that allow information about the error to be extracted by handlers for the exception.

When creating a module which can raise several distinct errors, a common practice is to create a base class for
exceptions defined by that module, and subclass that to create specific exception classes for different error conditions:

8.5. User-defined Exceptions 57

class Error(Exception):
""Base class for exceptions in this module.
pass

class InputError(Error):
""Exception raised for errors in the input.

Attributes:
expression -- input expression in which the error occurred
message -- explanation of the error

def __init__(self, expression, message):
self.expression = expression
self. message = message

class TransitionError(Error):
""Raised when an operation attempts a state transition that's not
allowed.

Attributes:
previous -- state at beginning of transition
next -- attempted new state
message -- explanation of why the specific transition is not allowed

def __init__ (self, previous, next, message):
self.previous = previous
self.next = next
self. message = message

Most exceptions are defined with names that end in “Error,” similar to the naming of the standard exceptions.

Many standard modules define their own exceptions to report errors that may occur in functions they define. More
information on classes is presented in chapter 9, “Classes.”

8.6 Defining Clean-up Actions

Thetry statement has another optional clause which is intended to define clean-up actions that must be executed
under all circumstances. For example:

>>> try:

. raise Keyboardinterrupt

... finally:
print 'Goodbye, world!

Goodbye, world!

Traceback (most recent call last):
File "<stdin>", line 2, in ?

KeyboardInterrupt

A finally clauseis executed whether or not an exception has occurred in the try clause. When an exception has
occurred, it is re-raised after the finally clause is executed. The finally clause is also executed “on the way out” when

58 Chapter 8. Errors and Exceptions

thetry statementis left via Break orreturn statement.

The code in the finally clause is useful for releasing external resources (such as files or network connections), regardless
of whether or not the use of the resource was successful.

A try statement must either have one or more except clauses or one finally clause, but not both.

8.6. Defining Clean-up Actions 59

60

CHAPTER
NINE

Classes

Python’s class mechanism adds classes to the language with a minimum of new syntax and semantics. It is a mixture
of the class mechanisms found irr€and Modula-3. As is true for modules, classes in Python do not put an absolute
barrier between definition and user, but rather rely on the politeness of the user not to “break into the definition.”
The most important features of classes are retained with full power, however: the class inheritance mechanism allows
multiple base classes, a derived class can override any methods of its base class or classes, a method can call the
method of a base class with the same name. Objects can contain an arbitrary amount of private data.

In C++ terminology, all class members (including the data memberg)ubkc, and all member functions avértual.

There are no special constructors or destructors. As in Modula-3, there are no shorthands for referencing the object’s
members from its methods: the method function is declared with an explicit first argument representing the object,
which is provided implicitly by the call. As in Smalltalk, classes themselves are objects, albeit in the wider sense of
the word: in Python, all data types are objects. This provides semantics for importing and renaming. Wrlike C
and Modula-3, built-in types can be used as base classes for extension by the user. Also, tikebint Gnlike in
Modula-3, most built-in operators with special syntax (arithmetic operators, subscripting etc.) can be redefined for
class instances.

9.1 A Word About Terminology

Lacking universally accepted terminology to talk about classes, | will make occasional use of Smalltalk4and C
terms. (I would use Modula-3 terms, since its object-oriented semantics are closer to those of Python+tharn IC
expect that few readers have heard of it.)

| also have to warn you that there’s a terminological pitfall for object-oriented readers: the word “object” in Python
does not necessarily mean a class instance. Likeahd Modula-3, and unlike Smalltalk, not all types in Python are
classes: the basic built-in types like integers and lists are not, and even somewhat more exotic types like files aren't.
However.all Python types share a little bit of common semantics that is best described by using the word object.

Objects have individuality, and multiple names (in multiple scopes) can be bound to the same object. This is known
as aliasing in other languages. This is usually not appreciated on a first glance at Python, and can be safely ignored
when dealing with immutable basic types (numbers, strings, tuples). However, aliasing has an (intended!) effect
on the semantics of Python code involving mutable objects such as lists, dictionaries, and most types representing
entities outside the program (files, windows, etc.). This is usually used to the benefit of the program, since aliases
behave like pointers in some respects. For example, passing an object is cheap since only a pointer is passed by the
implementation; and if a function modifies an object passed as an argument, the caller will see the change — this
eliminates the need for two different argument passing mechanisms as in Pascal.

61

9.2 Python Scopes and Name Spaces

Before introducing classes, I first have to tell you something about Python'’s scope rules. Class definitions play some
neat tricks with namespaces, and you need to know how scopes and namespaces work to fully understand what's going
on. Incidentally, knowledge about this subject is useful for any advanced Python programmer.

Let's begin with some definitions.

A namespaces a mapping from names to objects. Most namespaces are currently implemented as Python dictionaries,
but that's normally not noticeable in any way (except for performance), and it may change in the future. Examples of
namespaces are: the set of built-in names (functions suahsg} , and built-in exception names); the global names

in a module; and the local names in a function invocation. In a sense the set of attributes of an object also form a
namespace. The important thing to know about namespaces is that there is absolutely no relation between names in
different namespaces; for instance, two different modules may both define a function “maximize” without confusion
— users of the modules must prefix it with the module name.

By the way, | use the wordttributefor any name following a dot — for example, in the expresgioral ,real is

an attribute of the objeat. Strictly speaking, references to names in modules are attribute references: in the expression
modname.funchname , modnameis a module object anflincname is an attribute of it. In this case there happens

to be a straightforward mapping between the module’s attributes and the global names defined in the module: they
share the same namespate!

Attributes may be read-only or writable. In the latter case, assignment to attributes is possible. Module attributes are
writable: you can writernodname.the_answer = 42 . Writable attributes may also be deleted with tthel
statement. For examplejél modname.the_answer ' will remove the attributeahe _answer from the object

named bymodname

Name spaces are created at different moments and have different lifetimes. The namespace containing the built-in
names is created when the Python interpreter starts up, and is never deleted. The global namespace for a module
is created when the module definition is read in; normally, module namespaces also last until the interpreter quits.
The statements executed by the top-level invocation of the interpreter, either read from a script file or interactively,
are considered part of a module calledmain__ , so they have their own global nhamespace. (The built-in names
actually also live in a module; this is called builtin__)

The local namespace for a function is created when the function is called, and deleted when the function returns or
raises an exception that is not handled within the function. (Actually, forgetting would be a better way to describe
what actually happens.) Of course, recursive invocations each have their own local namespace.

A scopeis a textual region of a Python program where a namespace is directly accessible. “Directly accessible” here
means that an unqualified reference to a name attempts to find the name in the namespace.

Although scopes are determined statically, they are used dynamically. At any time during execution, there are at least
three nested scopes whose namespaces are directly accessible: the innermost scope, which is searched first, contains
the local names; the namespaces of any enclosing functions, which are searched starting with the nearest enclosing
scope; the middle scope, searched next, contains the current module’s global names; and the outermost scope (searched
last) is the namespace containing built-in names.

If a name is declared global, then all references and assignments go directly to the middle scope containing the
module’s global names. Otherwise, all variables found outside of the innermost scope are read-only.

Usually, the local scope references the local names of the (textually) current function. Outside of functions, the local
scope references the same namespace as the global scope: the module’s namespace. Class definitions place yet another
namespace in the local scope.

It is important to realize that scopes are determined textually: the global scope of a function defined in a module
is that module’s namespace, no matter from where or by what alias the function is called. On the other hand, the

1Except for one thing. Module objects have a secret read-only attribute calltidt__ which returns the dictionary used to implement
the module’s namespace; the namelict__ is an attribute but not a global name. Obviously, using this violates the abstraction of namespace
implementation, and should be restricted to things like post-mortem debuggers.

62 Chapter 9. Classes

actual search for names is done dynamically, at run time — however, the language definition is evolving towards static
name resolution, at “compile” time, so don't rely on dynamic name resolution! (In fact, local variables are already
determined statically.)

A special quirk of Python is that assignments always go into the innermost scope. Assignments do not copy data —
they just bind names to objects. The same is true for deletions: the statetalent * removes the binding af from

the namespace referenced by the local scope. In fact, all operations that introduce new names use the local scope:
in particular, import statements and function definitions bind the module or function name in the local scope. (The
global statement can be used to indicate that particular variables live in the global scope.)

9.3 A First Look at Classes

Classes introduce a little bit of new syntax, three new object types, and some new semantics.

9.3.1 Class Definition Syntax

The simplest form of class definition looks like this:

class ClassName:
<statement-1>

<statement-N>

Class definitions, like function definitionddf statements) must be executed before they have any effect. (You could
conceivably place a class definition in a branch offarstatement, or inside a function.)

In practice, the statements inside a class definition will usually be function definitions, but other statements are allowed,
and sometimes useful — we’ll come back to this later. The function definitions inside a class normally have a peculiar
form of argument list, dictated by the calling conventions for methods — again, this is explained later.

When a class definition is entered, a new namespace is created, and used as the local scope — thus, all assignments to
local variables go into this new namespace. In particular, function definitions bind the name of the new function here.

When a class definition is left normally (via the endglass objects created. This is basically a wrapper around the
contents of the namespace created by the class definition; we’ll learn more about class objects in the next section. The
original local scope (the one in effect just before the class definitions was entered) is reinstated, and the class object is
bound here to the class name given in the class definition he@iessName in the example).

9.3.2 Class Objects

Class objects support two kinds of operations: attribute references and instantiation.

Attribute referencesise the standard syntax used for all attribute references in Pytipmame . Valid attribute
names are all the names that were in the class’s namespace when the class object was created. So, if the class definition
looked like this:

9.3. A First Look at Classes 63

class MyClass:
"A simple example class"
i = 12345
def f(self):
return ’hello world’

thenMyClass.i andMyClass.f are valid attribute references, returning an integer and a method object, respec-
tively. Class attributes can also be assigned to, so you can change the Wdliy@lags.i by assignment. doc___
is also a valid attribute, returning the docstring belonging to the cldssimple example class"

Classinstantiationuses function notation. Just pretend that the class object is a parameterless function that returns a
new instance of the class. For example (assuming the above class):

x = MyClass()

creates a newstanceof the class and assigns this object to the local varigble

The instantiation operation (“calling” a class object) creates an empty object. Many classes like to create objects in a

known initial state. Therefore a class may define a special method nanmatd () , like this:
def __init__ (self):
self.data = []
When a class defines an init_ () method, class instantiation automatically invokesnit__ () for the

newly-created class instance. So in this example, a new, initialized instance can be obtained by:

x = MyClass()

Of course, the_init__ () method may have arguments for greater flexibility. In that case, arguments given to the
class instantiation operator are passed on tait__ () . For example,

>>> class Complex:
def __init_ (self, realpart, imagpart):
self.r = realpart
self.i = imagpart

>>> x = Complex(3.0, -4.5)
>>> X, X.i
(3.0, -4.5)

9.3.3 Instance Objects

Now what can we do with instance objects? The only operations understood by instance objects are attribute refer-
ences. There are two kinds of valid attribute names.

The first I'll call data attributes These correspond to “instance variables” in Smalltalk, and to “data members” in
C++, Data attributes need not be declared; like local variables, they spring into existence when they are first assigned
to. For example, ik is the instance oMyClass created above, the following piece of code will print the valée

without leaving a trace:

64 Chapter 9. Classes

x.counter = 1

while x.counter < 10:
X.counter = x.counter * 2

print x.counter

del x.counter

The second kind of attribute references understood by instance objeatsetireds A method is a function that
“belongs to” an object. (In Python, the term method is not unique to class instances: other object types can have
methods as well. For example, list objects have methods called append, insert, remove, sort, and so on. However,
below, we'll use the term method exclusively to mean methods of class instance objects, unless explicitly stated
otherwise.)

Valid method names of an instance object depend on its class. By definition, all attributes of a class that are (user-
defined) function objects define corresponding methods of its instances. So in our exampls,a valid method
reference, sinctyClass.f is a function, bui.i is not, sinceMyClass.i is not. Butx.f is not the same thing
asMyClass.f —itis amethod objec¢tnot a function object.

9.3.4 Method Objects

Usually, a method is called immediately:

x.0)

In our example, this will return the stririgello world’ . However, it is not necessary to call a method right away:
x.f is a method object, and can be stored away and called at a later time. For example:

xf = x.f
while True:
print xf()

will continue to print hello world ’ until the end of time.

What exactly happens when a method is called? You may have noticedf(hat was called without an argument
above, even though the function definition forspecified an argument. What happened to the argument? Surely
Python raises an exception when a function that requires an argument is called without any — even if the argument
isn't actually used...

Actually, you may have guessed the answer: the special thing about methods is that the object is passed as the first
argument of the function. In our example, the caf() is exactly equivalent tdMyClass.f(x) . In general,

calling a method with a list of arguments is equivalent to calling the corresponding function with an argument list

that is created by inserting the method’s object before the first argument.

If you still don’t understand how methods work, a look at the implementation can perhaps clarify matters. When an
instance attribute is referenced that isn’t a data attribute, its class is searched. If the name denotes a valid class attribute
that is a function object, a method object is created by packing (pointers to) the instance object and the function object
just found together in an abstract object: this is the method object. When the method object is called with an argument
list, it is unpacked again, a new argument list is constructed from the instance object and the original argument list,
and the function object is called with this new argument list.

9.3. A First Look at Classes 65

9.4 Random Remarks

Data attributes override method attributes with the same name; to avoid accidental name conflicts, which may cause
hard-to-find bugs in large programs, it is wise to use some kind of convention that minimizes the chance of conflicts.
Possible conventions include capitalizing method names, prefixing data attribute names with a small unique string
(perhaps just an underscore), or using verbs for methods and nouns for data attributes.

Data attributes may be referenced by methods as well as by ordinary users (“clients”) of an object. In other words,
classes are not usable to implement pure abstract data types. In fact, nothing in Python makes it possible to enforce
data hiding — it is all based upon convention. (On the other hand, the Python implementation, written in C, can
completely hide implementation details and control access to an object if necessary; this can be used by extensions to
Python written in C.)

Clients should use data attributes with care — clients may mess up invariants maintained by the methods by stamping
on their data attributes. Note that clients may add data attributes of their own to an instance object without affecting
the validity of the methods, as long as name conflicts are avoided — again, a naming convention can save a lot of
headaches here.

There is no shorthand for referencing data attributes (or other methods!) from within methods. | find that this actually
increases the readability of methods: there is no chance of confusing local variables and instance variables when
glancing through a method.

Conventionally, the first argument of methods is often cadlelfl . This is nothing more than a convention: the name
self has absolutely no special meaning to Python. (Note, however, that by not following the convention your code
may be less readable by other Python programmers, and it is also conceivablelfisatizrowseprogram be written

which relies upon such a convention.)

Any function object that is a class attribute defines a method for instances of that class. It is not necessary that the
function definition is textually enclosed in the class definition: assigning a function object to a local variable in the
class is also ok. For example:

Function defined outside the class
def fl(self, x, y):
return min(x, x+y)

class C:
f=1f1
def g(self):
return 'hello world’
h=g

Now f , g andh are all attributes of class that refer to function objects, and consequently they are all methods of
instances o€ — h being exactly equivalent tg. Note that this practice usually only serves to confuse the reader of a
program.

Methods may call other methods by using method attributes afdlie argument:

class Bag:

def __init__(self):
self.data = []

def add(self, x):
self.data.append(x)

def addtwice(self, x):
self.add(x)
self.add(x)

66 Chapter 9. Classes

Methods may reference global names in the same way as ordinary functions. The global scope associated with a
method is the module containing the class definition. (The class itself is never used as a global scope!) While one
rarely encounters a good reason for using global data in a method, there are many legitimate uses of the global scope:
for one thing, functions and modules imported into the global scope can be used by methods, as well as functions and
classes defined in it. Usually, the class containing the method is itself defined in this global scope, and in the next
section we'll find some good reasons why a method would want to reference its own class!

9.5 Inheritance

Of course, a language feature would not be worthy of the name “class” without supporting inheritance. The syntax for
a derived class definition looks as follows:

class DerivedClassName(BaseClassName):
<statement-1>

<statement-N>

The nameBaseClassName must be defined in a scope containing the derived class definition. Instead of a base
class name, an expression is also allowed. This is useful when the base class is defined in another module,

class DerivedClassName(modname.BaseClassName):

Execution of a derived class definition proceeds the same as for a base class. When the class object is constructed, the
base class is remembered. This is used for resolving attribute references: if a requested attribute is not found in the
class, it is searched in the base class. This rule is applied recursively if the base class itself is derived from some other
class.

There’s nothing special about instantiation of derived clasBesivedClassName() creates a new instance of
the class. Method references are resolved as follows: the corresponding class attribute is searched, descending down
the chain of base classes if necessary, and the method reference is valid if this yields a function object.

Derived classes may override methods of their base classes. Because methods have no special privileges when calling
other methods of the same object, a method of a base class that calls another method defined in the same base class,
may in fact end up calling a method of a derived class that overrides it. Foptbgrammers: all methods in Python

are effectivelyvirtual .)

An overriding method in a derived class may in fact want to extend rather than simply replace the base
class method of the same name. There is a simple way to call the base class method directly: just call
‘BaseClassName.methodname(self, arguments) '. This is occasionally useful to clients as well. (Note

that this only works if the base class is defined or imported directly in the global scope.)

9.5.1 Multiple Inheritance

Python supports a limited form of multiple inheritance as well. A class definition with multiple base classes looks as
follows:

9.5. Inheritance 67

class DerivedClassName(Basel, Base2, Base3):
<statement-1>

<statement-N>

The only rule necessary to explain the semantics is the resolution rule used for class attribute references. This is
depth-first, left-to-right. Thus, if an attribute is not foundDerivedClassName , it is searched iBBasel, then
(recursively) in the base classesBdsel, and only if it is not found there, it is searchedBase2, and so on.

(To some people breadth first — searchiBgse2 and Base3 before the base classes BAsel — looks more

natural. However, this would require you to know whether a particular attribuigasél is actually defined in

Basel orin one of its base classes before you can figure out the consequences of a name conflict with an attribute of
Base2 . The depth-first rule makes no differences between direct and inherited attrib@aseff .)

It is clear that indiscriminate use of multiple inheritance is a maintenance nightmare, given the reliance in Python on
conventions to avoid accidental name conflicts. A well-known problem with multiple inheritance is a class derived
from two classes that happen to have a common base class. While it is easy enough to figure out what happens in this
case (the instance will have a single copy of “instance variables” or data attributes used by the common base class), it
is not clear that these semantics are in any way useful.

9.6 Private Variables

There is limited support for class-private identifiers. Any identifier of the forrepam (at least two leading under-

scores, at most one trailing underscore) is now textually replaced wiissname__spam , whereclassname

is the current class name with leading underscore(s) stripped. This mangling is done without regard of the syntactic
position of the identifier, so it can be used to define class-private instance and class variables, methods, as well as
globals, and even to store instance variables private to this class on instaotiesrofasses. Truncation may occur

when the mangled name would be longer than 255 characters. Outside classes, or when the class hame consists of
only underscores, no mangling occurs.

Name mangling is intended to give classes an easy way to define “private” instance variables and methods, without
having to worry about instance variables defined by derived classes, or mucking with instance variables by code outside
the class. Note that the mangling rules are designed mostly to avoid accidents; it still is possible for a determined soul
to access or modify a variable that is considered private. This can even be useful in special circumstances, such as in
the debugger, and that’s one reason why this loophole is not closed. (Buglet: derivation of a class with the same name
as the base class makes use of private variables of the base class possible.)

Notice that code passedémec ,eval() orevalfile() does not consider the classname of the invoking class to
be the current class; this is similar to the effect of ghabal statement, the effect of which is likewise restricted to
code that is byte-compiled together. The same restriction applggestadir() , setattr() anddelattr() , as

well as when referencing dict__ directly.

9.7 0Odds and Ends

Sometimes it is useful to have a data type similar to the Pascal “record” or C “struct”, bundling together a couple of
named data items. An empty class definition will do nicely:

68 Chapter 9. Classes

class Employee:
pass

john = Employee() # Create an empty employee record

Fill the fields of the record
john.name = 'John Doe’
john.dept = 'computer lab’
john.salary = 1000

A piece of Python code that expects a particular abstract data type can often be passed a class that emulates the methods
of that data type instead. For instance, if you have a function that formats some data from a file object, you can define

a class with methodeead() andreadline() that gets the data from a string buffer instead, and pass it as an
argument.

Instance method objects have attributes, tonim_self is the object of which the method is an instance, and
m.im_func is the function object corresponding to the method.

9.8 Exceptions Are Classes Too

User-defined exceptions are identified by classes as well. Using this mechanism it is possible to create extensible
hierarchies of exceptions.

There are two new valid (semantic) forms for the raise statement:

raise Class, instance

raise instance

In the first form,instance must be an instance @lass or of a class derived from it. The second form is a
shorthand for:

raise instance.__class__, instance

A class in an except clause is compatible with an exception if it is the same class or a base class thereof (but not the
other way around — an except clause listing a derived class is not compatible with a base class). For example, the
following code will print B, C, D in that order:

9.8. Exceptions Are Classes Too 69

class B:
pass

class C(B):
pass

class D(C):
pass

for ¢ in [B, C, DI

try:
raise c()
except D:
print "D"
except C:
print "C"
except B:
print "B"

Note that if the except clauses were reversed (wétkcept B ' first), it would have printed B, B, B — the first
matching except clause is triggered.

When an error message is printed for an unhandled exception which is a class, the class name is printed, then a colon
and a space, and finally the instance converted to a string using the built-in fusictjon .

9.9 Iterators
By now, you've probably noticed that most container objects can be looped over Usingsiatement:

for element in [1, 2, 3]
print element

for element in (1, 2, 3):
print element

for key in {'one’:1, 'two’:2}:
print key

for char in "123"
print char

for line in open("myfile.txt"):
print line

This style of access is clear, concise, and convenient. The use of iterators pervades and unifies Python. Behind the
scenes, théor statement callger() on the container object. The function returns an iterator object that defines

the methodnext() which accesses elements in the container one at a time. When there are no more elements,
next() raises &toplteration exception which tells théor loop to terminate. This example shows how it all

works:

70 Chapter 9. Classes

>>> s = 'abc’
>>> it = iter(s)
>>> it

<iterator object at OxO0A1DB50>
>>> jt.next()

-

>>> jt.next()

b

>>> jt.next()

'c
>>> jt.next()

1

Traceback (most recent call last):
File "<pyshell#6>", line 1, in -toplevel-
it.next()
Stoplteration

Having seen the mechanics behind the iterator protocol, it is easy to add iterator behavior to your classes. De-
fine a__iter_ () method which returns an object withnext() method. If the class definesext() , then
__iter__ () can just returrself

>>> class Reverse:

"lterator for looping over a sequence backwards"

def __init_ (self, data):
self.data = data
self.index = len(data)

def __iter__(self):
return self

def next(self):
if self.index ==

raise Stoplteration

self.index = selfindex - 1
return self.data[self.index]

>>> for char in Reverse('spam’):
print char

w T o3

9.10 Generators

Generators are a simple and powerful tool for creating iterators. They are written like regular functions but use the
yield statement whenever they want to return data. Each timeek#) is called, the generator resumes where it
left-off (it remembers all the data values and which statement was last executed). An example shows that generators
can be trivially easy to create:

9.10. Generators 71

>>> def reverse(data):
for index in range(len(data)-1, -1, -1):
yield datafindex]

>>> for char in reverse('golf):
print char

«Q o — —

Anything that can be done with generators can also be done with class based iterators as described in the previous
section. What makes generators so compact is that tiver () andnext() methods are created automatically.

Another key feature is that the local variables and execution state are automatically saved between calls. This made
the function easier to write and much more clear than an approach using class variabkedflikdex and
self.data

In addition to automatic method creation and saving program state, when generators terminate, they automatically
raise Stoplteration . In combination, these features make it easy to create iterators with no more effort than
writing a regular function.

72 Chapter 9. Classes

CHAPTER
TEN

Brief Tour of the Standard Library

10.1 Operating System Interface

Theos module provides dozens of functions for interacting with the operating system:

>>> import 0s

>>> os.system('time 0:02")

0

>>> os.getcwd() # Return the current working directory
'C:\\Python24’

>>> os.chdir('/server/accesslogs’)

Be sure to use theérmport os ' style instead offrom os import * . This will keepos.open() from shad-
owing the builtinopen() function which operates much differently.

The builtindir() andhelp() functions are useful as interactive aids for working with large modulekke

>>> import 0s

>>> dir(os)

<returns a list of all module functions>

>>> help(os)

<returns an extensive manual page created from the module’s docstrings>

For daily file and directory management tasks,¢hatii module provides a higher level interface that is easier to
use:

>>> import shutil
>>> shutil.copyfile('data.db’, 'archive.db’)
>>> shutil. move('/build/executables’, ’installdir’)

10.2 File Wildcards

Theglob module provides a function for making file lists from directory wildcard searches:

73

>>> import glob
>>> glob.glob(*.py’)
[primes.py’, 'random.py’, 'quote.py’]

10.3 Command Line Arguments

Common utility scripts often invoke processing command line arguments. These arguments are storeglsn the
module’sargv attribute as a list. For instance the following output results from runmgthon demo.py one
two three ’atthe command line:

>>> import sys
>>> print sys.argv

[demo.py’, 'one’, 'two’, 'three’]

Thegetopt module processesys.argwsing the conventions of theNux getopt() function. More powerful and
flexible command line processing is provided by tii¢parse module.

10.4 Error Output Redirection and Program Termination

Thesys module also has attributes fetdin, stdout andstderr. The latter is useful for emitting warnings and error
messages to make them visible even whilouthas been redirected:

>>> gys.stderr.write('Warning, log file not found starting a new one’)
Warning, log file not found starting a new one

The most direct way to terminate a script is to usgs'exit()

10.5 String Pattern Matching

There module provides regular expression tools for advanced string processing. For complex matching and manipu-
lation, regular expressions offer succinct, optimized solutions:

>>> import re

>>> re.findall(r'\bfla-z]*', 'which foot or hand fell fastest’)
[foot’, 'fell’, ‘fastest’]

>>> re.sub(r'(\b[a-z]+) \1', r\l’, 'cat in the the hat)

‘cat in the hat’

When only simple capabilities are needed, string methods are preferred because they are easier to read and debug:

>>> 'tea for too’.replace(’too’, 'two’)
‘tea for two’

74 Chapter 10. Brief Tour of the Standard Library

10.6 Mathematics
Themath module gives access to the underlying C library functions for floating point math:

>>> jmport math

>>> math.cos(math.pi / 4.0)
0.70710678118654757

>>> math.log(1024, 2)

10.0

Therandom module provides tools for making random selections:

>>> import random

>>> random.choice(['apple’, 'pear’, 'banana’])

"apple’

>>> random.sample(xrange(100), 10) # sampling without replacement
[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]

>>> random.random() # random float

0.17970987693706186

>>> random.randrange(6) # random integer chosen from range(6)
4

10.7 Internet Access

There are a number of modules for accessing the internet and processing internet protocols. Two of the simplest are
urllib2 for retrieving data from urls ansimtplib for sending mail:

>>> import urllib2
>>> for line in urllib2.urlopen(http://tycho.usno.navy.mil/cgi-bin/timer.pl’):
. if ’EST" in line: # look for Eastern Standard Time

print line

Nov. 25, 09:43:32 PM EST

>>> import smtplib

>>> server = smtplib. SMTP(localhost’)

>>> server.sendmail('soothsayer@tmp.org’, ’jceasar@tmp.org’,
""To: jceasar@tmp.org

From: soothsayer@tmp.org

Beware the lIdes of March.

>>> server.quit()

10.8 Dates and Times

Thedatetime module supplies classes for manipulating dates and times in both simple and complex ways. While
date and time arithmetic is supported, the focus of the implementation is on efficient member extraction for output

10.6. Mathematics 75

formatting and manipulation. The module also supports objects that are time zone aware.

dates are easily constructed and formatted

>>> from datetime import date

>>> now = date.today()

>>> now

datetime.date(2003, 12, 2)

>>> now.strftime("%m-%d-%y or %d%b %Y is a %A on the %d day of %B")
'12-02-03 or 02Dec 2003 is a Tuesday on the 02 day of December’

dates support calendar arithmetic
>>> birthday = date(1964, 7, 31)
>>> age = now - birthday

>>> age.days

14368

10.9 Data Compression

Common data archiving and compression formats are directly supported by modules inchlitling:gzip , bz2,
zipfile , andtarfile

>>> import zlib

>>> s = 'witch which has which witches wrist watch’
>>> len(s)

41

>>> t = zlib.compress(s)

>>> len(t)

37

>>> zlib.decompress(t)

'witch which has which witches wrist watch’
>>> zlib.crc32(t)

-1438085031

10.10 Performance Measurement

Some Python users develop a deep interest in knowing the relative performance between different approaches to the
same problem. Python provides a measurement tool that answers those questions immediately.

For example, it may be tempting to use the tuple packing and unpacking feature instead of the traditional approach to
swapping arguments. Thigneit module quickly demonstrates that the traditional approach is faster:

>>> from timeit import Timer

>>> Timer('t=a; a=b; b=t', 'a=1; b=2").timeit()
0.60864915603680925

>>> Timer('a,b = b,a’, 'a=1; b=2").timeit()
0.8625194857439773

In contrast tatimeit s fine level of granularity, therofile ~ andpstats modules provide tools for identifying
time critical sections in larger blocks of code.

76 Chapter 10. Brief Tour of the Standard Library

10.11 Quality Control

One approach for developing high quality software is to write tests for each function as it is developed and to run those
tests frequently during the development process.

Thedoctest module provides a tool for scanning a module and validating tests embedded in a program’s docstrings.
Test construction is as simple as cutting-and-pasting a typical call along with its results into the docstring. This
improves the documentation by providing the user with an example and it allows the doctest module to make sure the
code remains true to the documentation:

def average(values):
""Computes the arithmetic mean of a list of numbers.

>>> print average([20, 30, 70])
40.0

return sum(values, 0.0) / len(values)

import doctest
doctest.testmod() # automatically validate the embedded tests

Theunittest module is not as effortless as tectest module, but it allows a more comprehensive set of tests
to be maintained in a separate file:

import unittest
class TestStatisticalFunctions(unittest. TestCase):

def test_average(self):
self.assertEqual(average([20, 30, 70]), 40.0)
self.assertEqual(round(average([1, 5, 7]), 1), 4.3)
self.assertRaises(ZeroDivisionError, average, [])
self.assertRaises(TypeError, average, 20, 30, 70)

unittest.main() # Calling from the command line invokes all tests

10.12 Batteries Included

Python has a “batteries included” philosophy. This is best seen through the sophisticated and robust capabilities of its
larger packages. For example:

* The xmlrpclib ~ andSimpleXMLRPCServer modules make implementing remote procedure calls into an al-
most trivial task. Despite the names, no direct knowledge or handling of XML is needed.

*Theemail package is a library for managing email messages, including MIME and other RFC 2822-based message
documents. Unlikesmtplib andpoplib which actually send and receive messages, the email package has a
complete toolset for building or decoding complex message structures (including attachments) and for implementing
internet encoding and header protocols.

* The xml.dom andxml.sax packages provide robust support for parsing this popular data interchange format.
Likewise, thecsv module supports direct reads and writes in a common database format. Together, these modules
and packages greatly simplify data interchange between python applications and other tools.

10.11. Quality Control 77

* Internationalization is supported by a number of modules includiitext , locale , and thecodecs package.

78 Chapter 10. Brief Tour of the Standard Library

CHAPTER
ELEVEN

What Now?

Reading this tutorial has probably reinforced your interest in using Python — you should be eager to apply Python to
solve your real-world problems. Now what should you do?

You should read, or at least page through,Rlgehon Library Referengavhich gives complete (though terse) reference
material about types, functions, and modules that can save you a lot of time when writing Python programs. The
standard Python distribution include$oa of code in both C and Python; there are modules to remtkUnailboxes,

retrieve documents via HTTP, generate random numbers, parse command-line options, write CGI programs, compress
data, and a lot more; skimming through the Library Reference will give you an idea of what's available.

The major Python Web site tstp://www.python.org/; it contains code, documentation, and pointers to Python-related
pages around the Web. This Web site is mirrored in various places around the world, such as Europe, Japan, and
Australia; a mirror may be faster than the main site, depending on your geographical location. A more informal
site ishttp://starship.python.net/, which contains a bunch of Python-related personal home pages; many people have
downloadable software there. Many more user-created Python modules can be founéyihtire Package Index

(PyPI).

For Python-related questions and problem reports, you can post to the newsgrguipng.python, or send them to

the mailing list atpython-list@python.org. The newsgroup and mailing list are gatewayed, so messages posted to one
will automatically be forwarded to the other. There are around 120 postings a day (with peaks up to several hundred),
asking (and answering) questions, suggesting new features, and announcing new modules. Before posting, be sure to
check the list of-requently Asked Questiorfalso called the FAQ), or look for it in theMisc/’ directory of the Python

source distribution. Mailing list archives are availablégt://www.python.org/pipermail/. The FAQ answers many of

the questions that come up again and again, and may already contain the solution for your problem.

79

80

APPENDIX
A

Interactive Input Editing and History
Substitution

Some versions of the Python interpreter support editing of the current input line and history substitution, similar to
facilities found in the Korn shell and the GNU Bash shell. This is implemented usinGiig Readlindibrary,

which supports Emacs-style and vi-style editing. This library has its own documentation which | won't duplicate here;
however, the basics are easily explained. The interactive editing and history described here are optionally available in
the UNIx and CygWin versions of the interpreter.

This chapter doesot document the editing facilities of Mark Hammond'’s PythonWin package or the Tk-based envi-
ronment, IDLE, distributed with Python. The command line history recall which operates within DOS boxes on NT
and some other DOS and Windows flavors is yet another beast.

A.1 Line Editing

If supported, input line editing is active whenever the interpreter prints a primary or secondary prompt. The current
line can be edited using the conventional Emacs control characters. The most important of thés& é&Zantrol-A)

moves the cursor to the beginning of the liGRE to the endC-B moves it one position to the lefG-F to the right.
Backspace erases the character to the left of the cuEsbrithe character to its rightC-K kills (erases) the rest of

the line to the right of the cursog-Y yanks back the last killed strin@-underscore undoes the last change you
made; it can be repeated for cumulative effect.

A.2 History Substitution

History substitution works as follows. All non-empty input lines issued are saved in a history buffer, and when a new
prompt is given you are positioned on a new line at the bottom of this buifé?. moves one line up (back) in the
history buffer,C-N moves one down. Any line in the history buffer can be edited; an asterisk appears in front of the
prompt to mark a line as modified. Pressing Beturn key passes the current line to the interpre@R starts an
incremental reverse seardds;S starts a forward search.

A.3 Key Bindings

The key bindings and some other parameters of the Readline library can be customized by placing commands in an
initialization file called */.inputrc’. Key bindings have the form

81

key-name: function-name

or

"string": function-name

and options can be set with

set option-name value

For example:

| prefer vi-style editing:
set editing-mode vi

Edit using a single line:
set horizontal-scroll-mode On

Rebind some keys:

Meta-h: backward-kill-word
“\C-u": universal-argument
"\C-x\C-r": re-read-init-file

Note that the default binding foFab in Python is to insert &ab character instead of Readline’s default filename
completion function. If you insist, you can override this by putting

Tab: complete

in your “/inputrc’. (Of course, this makes it harder to type indented continuation lines if you’re accustomed to using
Tab for that purpose.)

Automatic completion of variable and module names is optionally available. To enable it in the interpreter’s interactive
mode, add the following to your startup fite:

import rlcompleter, readline
readline.parse_and_bind('tab: complete’)

This binds theTab key to the completion function, so hitting tiie@ab key twice suggests completions; it looks at

Python statement names, the current local variables, and the available module names. For dotted expressions such as
string.a , it will evaluate the expression up to the final ‘and then suggest completions from the attributes of the
resulting object. Note that this may execute application-defined code if an object witietattr_ () method is

part of the expression.

A more capable startup file might look like this example. Note that this deletes the names it creates once they are no
longer needed,; this is done since the startup file is executed in the same namespace as the interactive commands, and
removing the names avoids creating side effects in the interactive environments. You may find it convenient to keep

1python will execute the contents of a file identified by the PYTHONSTARTUP environment variable when you start an interactive interpreter.

82 Appendix A. Interactive Input Editing and History Substitution

some of the imported modules, suchoas which turn out to be needed in most sessions with the interpreter.

Add auto-completion and a stored history file of commands to your Python
interactive interpreter. Requires Python 2.0+, readline. Autocomplete is
bound to the Esc key by default (you can change it - see readline docs).

Store the file in ~/.pystartup, and set an environment variable to point
to it: "export PYTHONSTARTUP=/max/home/itamar/.pystartup" in bash.

Note that PYTHONSTARTUP does *not* expand "~", so you have to put in the
full path to your home directory.

HOHH K HHHHH

import atexit
import os

import readline
import rlcompleter

historyPath = os.path.expanduser("~/.pyhistory")

def save_history(historyPath=historyPath):
import readline
readline.write_history_file(historyPath)

if os.path.exists(historyPath):
readline.read_history_file(historyPath)

atexit.register(save_history)
del os, atexit, readline, rlcompleter, save_history, historyPath

A.4 Commentary

This facility is an enormous step forward compared to earlier versions of the interpreter; however, some wishes are
left: It would be nice if the proper indentation were suggested on continuation lines (the parser knows if an indent

token is required next). The completion mechanism might use the interpreter’s symbol table. A command to check (or
even suggest) matching parentheses, quotes, etc., would also be useful.

A.4. Commentary 83

84

APPENDIX
B

Floating Point Arithmetic: Issues and
Limitations

Floating-point numbers are represented in computer hardware as base 2 (binary) fractions. For example, the decimal
fraction

0.125

has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction

0.001

has value 0/2 + 0/4 + 1/8. These two fractions have identical values, the only real difference being that the first is
written in base 10 fractional notation, and the second in base 2.

Unfortunately, most decimal fractions cannot be represented exactly as binary fractions. A consequence is that, in
general, the decimal floating-point numbers you enter are only approximated by the binary floating-point numbers
actually stored in the machine.

The problem is easier to understand at first in base 10. Consider the fraction 1/3. You can approximate that as a base
10 fraction:

0.3

or, better,

0.33

or, better,

0.333

and so on. No matter how many digits you're willing to write down, the result will never be exactly 1/3, but will be an
increasingly better approximation to 1/3.

In the same way, no matter how many base 2 digits you're willing to use, the decimal value 0.1 cannot be represented

85

exactly as a base 2 fraction. In base 2, 1/10 is the infinitely repeating fraction

0.0001100110011001100110011001100110011001100110011...

Stop at any finite number of bits, and you get an approximation. This is why you see things like:

>>> 0.1
0.10000000000000001

On most machines today, that is what you'll see if you enter 0.1 at a Python prompt. You may not, though, because
the number of bits used by the hardware to store floating-point values can vary across machines, and Python only
prints a decimal approximation to the true decimal value of the binary approximation stored by the machine. On most
machines, if Python were to print the true decimal value of the binary approximation stored for 0.1, it would have to
display

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

instead! The Python prompt (implicitly) uses the builtepr() function to obtain a string version of everything it
displays. For floatgepr(float) rounds the true decimal value to 17 significant digits, giving

0.10000000000000001

repr(floaf) produces 17 significant digits because it turns out that's enough (on most machines) so that
eval(repr(X)) == xexactly for all finite floats, but rounding to 16 digits is not enough to make that true.

Note that this is in the very nature of binary floating-point: this is not a bug in Python, it is not a bug in your code
either, and you'll see the same kind of thing in all languages that support your hardware’s floating-point arithmetic
(although some languages may diplaythe difference by default, or in all output modes).

Python’s builtinstr() ~ function produces only 12 significant digits, and you may wish to use that instead. It's unusual
foreval(str(X)) toreproduce, but the output may be more pleasant to look at:

>>> print str(0.1)
0.1

It's important to realize that this is, in a real sense, an illusion: the value in the machine is not exactly 1/10, you're
simply rounding thelisplayof the true machine value.

Other surprises follow from this one. For example, after seeing

>>> 0.1
0.10000000000000001

you may be tempted to use theund() function to chop it back to the single digit you expect. But that makes no
difference:

86 Appendix B. Floating Point Arithmetic: Issues and Limitations

>>> round(0.1, 1)
0.10000000000000001

The problem is that the binary floating-point value stored for "0.1" was already the best possible binary approximation
to 1/10, so trying to round it again can’t make it better: it was already as good as it gets.

Another consequence is that since 0.1 is not exactly 1/10, adding 0.1 to itself 10 times may not yield exactly 1.0,
either:

>>> sum = 0.0
>>> for i in range(10):
sum += 0.1

>>> sum
0.99999999999999989

Binary floating-point arithmetic holds many surprises like this. The problem with "0.1" is explained in precise detail
below, in the "Representation Error" section. Sée Perils of Floating Poinfor a more complete account of other
common surprises.

As that says near the end, “there are no easy answers.” Still, don't be unduly wary of floating-point! The errors in
Python float operations are inherited from the floating-point hardware, and on most machines are on the order of no
more than 1 part in 2**53 per operation. That's more than adequate for most tasks, but you do need to keep in mind
that it's not decimal arithmetic, and that every float operation can suffer a new rounding error.

While pathological cases do exist, for most casual use of floating-point arithmetic you'll see the result you expect
in the end if you simply round the display of your final results to the number of decimal digits you espgxt.

usually suffices, and for finer control see the discussion of Pythétfbsmat operator: th&6g %f and%eformat

codes supply flexible and easy ways to round float results for display.

B.1 Representation Error

This section explains the “0.1” example in detail, and shows how you can perform an exact analysis of cases like this
yourself. Basic familiarity with binary floating-point representation is assumed.

Representation errorefers to that some (most, actually) decimal fractions cannot be represented exactly as binary
(base 2) fractions. This is the chief reason why Python (or Perl*@, @ava, Fortran, and many others) often won't
display the exact decimal number you expect:

>>> 0.1
0.10000000000000001

Why is that? 1/10 is not exactly representable as a binary fraction. Almost all machines today (November 2000) use
IEEE-754 floating point arithmetic, and almost all platforms map Python floats to IEEE-754 "double precision”. 754
doubles contain 53 bits of precision, so on input the computer strives to convert 0.1 to the closest fraction it can of the
form J/2** N whereJ is an integer containing exactly 53 bits. Rewriting

1/ 10 ~= J / (2*N)

as

B.1. Representation Error 87

J ~= 2N/ 10

and recalling thafl has exactly 53 bits (is= 2**52 but< 2**53), the best value foN is 56:

>>> 2L**52
4503599627370496L
>>> 2| **53
9007199254740992L
>>> 2L**56/10
7205759403792793L

That is, 56 is the only value fo¥ that leaves) with exactly 53 bits. The best possible value Jds then that quotient
rounded:

>>> ¢, r = divmod(2L**56, 10)
>>>
6L

Since the remainder is more than half of 10, the best approximation is obtained by rounding up:

>>> g+l
7205759403792794L

Therefore the best possible approximation to 1/10 in 754 double precision is that over 2**56, or

7205759403792794 | 72057594037927936

Note that since we rounded up, this is actually a little bit larger than 1/10; if we had not rounded up, the quotient would
have been a little bit smaller than 1/10. But in no case can édaetly1/10!

So the computer never “sees” 1/10: what it sees is the exact fraction given above, the best 754 double approximation
it can get:

>>> |1 * 2L**56
7205759403792794.0

If we multiply that fraction by 10**30, we can see the (truncated) value of its 30 most significant decimal digits:

>>> 7205759403792794L * 10L**30 / 2L**56
100000000000000005551115123125L

meaning that the exact number stored in the computer is approximately equal to the decimal value
0.100000000000000005551115123125. Rounding that to 17 significant digits gives the 0.10000000000000001 that
Python displays (well, will display on any 754-conforming platform that does best-possible input and output conver-
sions in its C library — yours may not!).

88 Appendix B. Floating Point Arithmetic: Issues and Limitations

APPENDIX
C

History and License

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://mww.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see
http://www.zope.com/). In 2001, the Python Software Foundation (PSF,tsge//www.python.org/psf/) was formed, a
non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a spon-
soring member of the PSF.

All Python releases are Open Source (s&e//www.opensource.org/ for the Open Source Definition). Historically,
most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0thru1.2 n/a 1991-1995 CWwiI yes
1.3thru1.5.2 1.2 1995-1999 CNRI yes

1.6 15.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
16.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
211 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
221 2.2 2002 PSF yes
222 221 2002 PSF yes
223 2.2.2 2002-2003 PSF yes
2.3 2.2.2 2002-2003 PSF yes
23.1 2.3 2002-2003 PSF yes
2.3.2 231 2003 PSF yes
2.33 2.3.2 2003 PSF yes
234 2.3.3 2004 PSF yes

Note: GPL-compatible doesn’t mean that we're distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses

89

make it possible to combine Python with other software that is released under the GPL; the others don't.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.3.4

. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or Or-

ganization (“Licensee”) accessing and otherwise using Python 2.3.4 software in source or binary form and its
associated documentation.

. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,

royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.3.4 alone or in any derivative version, provided, however,
that PSF's License Agreement and PSF’s notice of copyright, i.e., “Copy@gh001-2003 Python Software
Foundation; All Rights Reserved” are retained in Python 2.3.4 alone or in any derivative version prepared by
Licensee.

. Inthe event Licensee prepares a derivative work that is based on or incorporates Python 2.3.4 or any part thereof,

and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 2.3.4.

. PSF is making Python 2.3.4 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESENTA-

TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 2.3.4 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.3.4 FOR ANY

INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 2.3.4, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint

venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

. By copying, installing or otherwise using Python 2.3.4, Licensee agrees to be bound by the terms and conditions

of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,

Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee

a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

90

Appendix C. History and License

. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-
fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that web page.

. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an office
at 1895 Preston White Drive, Reston, VA 20191 (“CNRI"), and the Individual or Organization (“Licensee”)
accessing and otherwise using Python 1.6.1 software in source or binary form and its associated documentation.

. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided, however, that
CNRI's License Agreement and CNRI’s notice of copyright, i.e., “Copyri@htL995-2001 Corporation for
National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI's License Agreement, Licensee may substitute the
following text (omitting the quotes): “Python 1.6.1 is made available subject to the terms and conditions in
CNRI's License Agreement. This Agreement together with Python 1.6.1 may be located on the Internet using
the following unique, persistent identifier (known as a handle): 1895.22/1013. This Agreement may also be
obtained from a proxy server on the Internet using the following URtp://hdl.handle.net/1895.22/1013."

. Inthe event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-

ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. Terms and conditions for accessing or otherwise using Python 91

7. This License Agreement shall be governed by the federal intellectual property law of the United States, including
without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply, by the
law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstanding the
foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable material that
was previously distributed under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or with respect to Paragraphs 4, 5,
and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between CNRI and Licensee. This License Agreement does not grant
permission to use CNRI trademarks or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python 1.6.1,
Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright(© 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

92 Appendix C. History and License

APPENDIX
D

Glossary

>>> The typical Python prompt of the interactive shell. Often seen for code examples that can be tried right away in
the interpreter.

The typical Python prompt of the interactive shell when entering code for an indented code block.
BDFL Benevolent Dictator For Life, a.k.&uido van RossupPython’s creator.

byte code The internal representation of a Python program in the interpreter. The byte code is also cached in the
.pyc and.pyo files so that executing the same file is faster the second time (compilation from source to byte
code can be saved). This “intermediate language” is said to run on a “virtual machine” that calls the subroutines
corresponding to each bytecode.

classic classAny class which does not inherit froobject . Seenew-style class

coercion Converting data from one type to another. For examplé3.15) coerces the floating point number to
the integer3. Most mathematical operations have rules for coercing their arguments to a common type. For
instance, adding+4.5 , causes the integ8rto be coerced to be a flodt0 before adding t@.5 resulting in
the float7.5 .

descriptor Any new-styleobject that defines the methodsget () , set () ,or__delete () .Whena
class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, writing
a.blooks up the objecb in the class dictionary foa, but if b is a descriptor, the defined method gets called.
Understanding descriptors is a key to a deep understanding of Python because they are the basis for many
features including functions, methods, properties, class methods, static methods, and reference to super classes.

dictionary An associative array, where arbitrary keys are mapped to values. The d&t ofmuch resembles that
for list , but the keys can be any object with ahash__ () function, not just integers starting from zero.
Called a hash in Perl.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of
valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is
characterized by the presence of maryy andexcept statements. The technique contrasts withltB&L
style that is common in many other languages such as C.

__future__ A pseudo module which programmers can use to enable new language features which are not compatible
with the current interpreter. For example, the expres&ibd currently evaluates t@. If the module in which
it is executed had enablédie divisionby executing:

from _ future__ import division

the expressiof1/4 would evaluate t@.75 . By actually importing the future_ module and evaluating
its variables, you can see when a new feature was first added to the language and when it will become the default:

93

>>> jmport __ future__
>>> _ future__.division
_Feature((2, 2, 0, ’alpha’, 2), (3, 0, 0, ’alpha’, 0), 8192)

generator A function that returns an iterator. It looks like a normal function except thayitlld keyword is used
instead ofreturn . Generator functions often contain one or mfime orwhile loops thatyield elements
back to the caller. The function execution is stopped ayitlel keyword (returning the result) and is resumed
there when the next element is requested by callingéx() method of the returned iterator.

GIL Seeglobal interpreter lock

global interpreter lock The lock used by Python threads to assure that only one thread can be run at a time. This
simplifies Python by assuring that no two processes can access the same memory at the same time. Locking the
entire interpreter makes it easier for the interpreter to be multi-threaded, at the expense of some parallelism on
multi-processor machines. Efforts have been made in the past to create a “free-threaded” interpreter (one which
locks shared data at a much finer granularity), but performance suffered in the common single-processor case.

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment that
ships with the standard distribution of Python. Good for beginners, it also serves as clear example code for those
wanting to implement a moderately sophisticated, multi-platform GUI application.

immutable A object with fixed value. Immutable objects are numbers, strings or tuples (and more). Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed. For example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the exprekkiéncurrently eval-
uates to2 in contrast to the.75 returned by float division. Also callefiioor division When dividing two
integers the outcome will always be another integer (having the floor function applied to it). However, if one of
the operands is another numeric type (such®sad), the result will be coerced (seeercior) to a common
type. For example, a integer divided by a float will result in a float value, possibly with a decimal fraction.
Integer division can be forced by using thie operator instead of thie operator. See also future_ .

interactive Python has an interactive interpreter which means that you can try out things and directly see its result.
Just launctpython with no arguments (possibly by selecting it from your computer’'s main menu). Itis a very
powerful way to test out new ideas or inspect modules and packages (rentestgi®)j).

interpreted Python is an interpreted language, opposed to a compiled one. This means that the source files can be run
right away without first making an executable which is then run. Interpreted languages typically have a shorter
development/debug cycle than compiled ones. Seestis@active

iterable A container object capable of returning its members one at a time. Examples of iterables include all sequence
types (such abst , str , andtuple) and some non-sequence types liket andfile and objects of any
classes you define with an iter_ () or__getitem_ () method. Iterables can be used ifoa loop
and in many other places where a sequence is need®)l (, map() , ...). When an iterable object is passed
as an argument to the builtin functider() , it returns an iterator for the object. This iterator is good for one
pass over the set of values. When using iterables, it is usually not necessarytay@all or deal with iterator
objects yourself. Théor statement does that automatically for you, creating a temporary unnamed variable to
hold the iterator for the duration of the loop. See ateaator, sequenceandgenerator

iterator An object representing a stream of data. Repeated calls to the iterad@t{3 method return successive
items in the stream. When no more data is availatfagplteration exception is raised instead. At this
point, the iterator object is exhausted and any further calls teit$() method just rais&toplteration
again. lterators are required to have ariter_ () method that returns the iterator object itself so every
iterator is also iterable and may be used in most places where other iterables are accepted. One notable exception
is code that attempts multiple iteration passes. A container object (sudistas aproduces a fresh new iterator
each time you pass it to thter() function or use it in gor loop. Attempting this with an iterator will

94 Appendix D. Glossary

just return the same exhausted iterator object from the second iteration pass, making it appear like an empty
container.

list comprehension A compact way to process all or a subset of elements in a sequence and return a list with the
results. result = ["0x%02x" %x for x in range(256) if x %2 == 0] generates a list of
strings containing hex numbers (0x..) that are even and in the range from 0 to 2556. Tlaise is optional. If
omitted, all elements irange(256) are processed in that case.

mapping A container object (such adict) that supports arbitrary key lookups using the special method
__getitem__ ()

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with thEAFP approach and is characterized the presence of riiarstatements.

mutable Mutable objects can change their value but keep idé€ir . See alsimmutable

namespaceThe place where a variable is stored. Namespaces are implemented as dictionary. There is the local, global
and builtins namespace and the nested namespaces in objects (in methods). Namespaces support modularity
by preventing naming conflicts. For instance, the functionbuiltin__.open() andos.open() are
distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear
which modules implement a function. For instance, writrapgdom.seed() or itertools.izip()
makes it clear that those functions are implemented byehéom anditertools modules respectively.

nested scopeThe ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read
and write in the innermost scope. Likewise, global variables read and write to the global namespace.

new-style classAny class that inherits fronobject . This includes all built-in types likdist and dict
Only new-style classes can use Python’s newer, versatile features l#fets , descriptors, properties,
__getattribute_ () , class methods, and static methods.

Python3000 A mythical python release, allowed not to be backward compatible, with telepathic interface.

__slots__ A declaration inside aew-style clasthat saves memory by pre-declaring space for instance attributes and
eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best
reserved for rare cases where there are large numbers of instances in a memory critical application.

sequenceAn iterable which supports efficient element access using integer indices via thetitem__ () and
_len__ () special methods. Some built-in sequence typefisire , str , tuple , andunicode . Note that
dict also supports getitem__() and__len__ () , butis considered a mapping rather than a sequence
because the lookups use arbitranmutablekeys rather than integers.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typinmport this " at the interactive prompt.

95

96

Symbols

.y 93

»>, 93

__builtin_ (built-in module), 43
__ future__, 93

__slots__,95

A

append() (list method), 29

B

BDFL, 93

byte code, 93

C

classic class, 93

coercion, 93

compileall (standard module), 41
count() (list method), 29

D

descriptor, 93

dictionary, 93

docstrings, 22, 27
documentation strings, 22, 27

E

EAFP, 93

environment variables
PATH, 5, 41
PYTHONPATH, 41, 42
PYTHONSTARTUP, 5, 82

extend() (list method), 29

F
file
object, 50
for
statement, 19

INDEX

G

generator, 94
GIL, 94
global interpreter lock, 94

IDLE, 94

immutable, 94

index() (list method), 29
insert() (list method), 29
integer division, 94
interactive, 94

interpreted, 94

iterable, 94

iterator, 94

L

LBYL, 95
list comprehension, 95

M

mapping, 95
metaclass, 95
method

object, 65
module

search path, 41
mutable, 95

N

namespace, 95
nested scope, 95
new-style class, 95

O

object
file, 50
method, 65
open() (built-in function), 50

97

P

PATH, 5, 41
path

module search, 41
pickle (standard module), 51
pop() (list method), 29
Python3000, 95
PYTHONPATH, 41, 42
PYTHONSTARTUP, 5, 82

R

readline (built-in module), 82
remove() (list method), 29

reverse() (list method), 29
ricompleter (standard module), 82

S

search

path, module, 41
sequence, 95
sort() (list method), 29
statement

for , 19
string (standard module), 47
strings, documentation, 22, 27
sys (standard module), 42

U

unicode() (built-in function), 14

Z
Zen of Python, 95

98

Index

	1 Whetting Your Appetite
	2 Using the Python Interpreter
	2.1 Invoking the Interpreter
	2.1.1 Argument Passing
	2.1.2 Interactive Mode

	2.2 The Interpreter and Its Environment
	2.2.1 Error Handling
	2.2.2 Executable Python Scripts
	2.2.3 Source Code Encoding
	2.2.4 The Interactive Startup File

	3 An Informal Introduction to Python
	3.1 Using Python as a Calculator
	3.1.1 Numbers
	3.1.2 Strings
	3.1.3 Unicode Strings
	3.1.4 Lists

	3.2 First Steps Towards Programming

	4 More Control Flow Tools
	4.1 if Statements
	4.2 for Statements
	4.3 The range() Function
	4.4 break and continue Statements, and else Clauses on Loops
	4.5 pass Statements
	4.6 Defining Functions
	4.7 More on Defining Functions
	4.7.1 Default Argument Values
	4.7.2 Keyword Arguments
	4.7.3 Arbitrary Argument Lists
	4.7.4 Unpacking Argument Lists
	4.7.5 Lambda Forms
	4.7.6 Documentation Strings

	5 Data Structures
	5.1 More on Lists
	5.1.1 Using Lists as Stacks
	5.1.2 Using Lists as Queues
	5.1.3 Functional Programming Tools
	5.1.4 List Comprehensions

	5.2 The del statement
	5.3 Tuples and Sequences
	5.4 Dictionaries
	5.5 Looping Techniques
	5.6 More on Conditions
	5.7 Comparing Sequences and Other Types

	6 Modules
	6.1 More on Modules
	6.1.1 The Module Search Path
	6.1.2 ``Compiled'' Python files

	6.2 Standard Modules
	6.3 The dir() Function
	6.4 Packages
	6.4.1 Importing * From a Package
	6.4.2 Intra-package References
	6.4.3 Packages in Multiple Directories

	7 Input and Output
	7.1 Fancier Output Formatting
	7.2 Reading and Writing Files
	7.2.1 Methods of File Objects
	7.2.2 The pickle Module

	8 Errors and Exceptions
	8.1 Syntax Errors
	8.2 Exceptions
	8.3 Handling Exceptions
	8.4 Raising Exceptions
	8.5 User-defined Exceptions
	8.6 Defining Clean-up Actions

	9 Classes
	9.1 A Word About Terminology
	9.2 Python Scopes and Name Spaces
	9.3 A First Look at Classes
	9.3.1 Class Definition Syntax
	9.3.2 Class Objects
	9.3.3 Instance Objects
	9.3.4 Method Objects

	9.4 Random Remarks
	9.5 Inheritance
	9.5.1 Multiple Inheritance

	9.6 Private Variables
	9.7 Odds and Ends
	9.8 Exceptions Are Classes Too
	9.9 Iterators
	9.10 Generators

	10 Brief Tour of the Standard Library
	10.1 Operating System Interface
	10.2 File Wildcards
	10.3 Command Line Arguments
	10.4 Error Output Redirection and Program Termination
	10.5 String Pattern Matching
	10.6 Mathematics
	10.7 Internet Access
	10.8 Dates and Times
	10.9 Data Compression
	10.10 Performance Measurement
	10.11 Quality Control
	10.12 Batteries Included

	11 What Now?
	A Interactive Input Editing and History Substitution
	A.1 Line Editing
	A.2 History Substitution
	A.3 Key Bindings
	A.4 Commentary

	B Floating Point Arithmetic: Issues and Limitations
	B.1 Representation Error

	C History and License
	C.1 History of the software
	C.2 Terms and conditions for accessing or otherwise using Python

	D Glossary
	Index

