Python Library Reference
Release 2.3.4

Guido van Rossum
Fred L. Drake, Jr., editor

May 20, 2004

PythonLabs
Email: docs@python.org

Copyright(© 2001, 2002, 2003 Python Software Foundation. All rights reserved.
Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applica-
tions, from simple text processing scripts to interactive Web browsers.

While thePython Reference Manudéscribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability.
This library contains built-in modules (written in C) that provide access to system functionality such as file 1/O
that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are
explicitly designed to encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules
(which may or may not be available, depending on whether the underlying platform supports them and on the
configuration choices made at compile time). It also documents the standard types of the language and its built-in
functions and exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuemains the highest authority on syntactic and semantic questions.
Finally, the manual entitleExtending and Embedding the Python Interpretescribes how to add new extensions

to Python and how to embed it in other applications.

CONTENTS

1 Introduction 1

2 Built-In Objects 3
2.1 Built-in FUNCLioNS L e e e 3
2.2 Non-essential Built-in Functions. 13
2.3 BUIlt-iNTypes e e 14
2.4 BUIlt-INEXCEPLIONS o o e e e e e e e 30
25 Built-inConstants. 35

3 Python Runtime Services 37
3.1 sys — System-specific parameters and functions. 37
3.2 gc — Garbage Collectorinterface. e 43
3.3 weakref —Weakreferences. 45
3.4 fpectl — Floating pointexceptioncontrol 49
3.5 atexit —Exithandlers. 50
3.6 types — Namesforbuilt-intypes. e 51
3.7 UserDict — Class wrapper for dictionaryobjects 53
3.8 UserList — Classwrapperforlistobjects 54
3.9 UserString — Class wrapper forstringobjects. 54
3.10 operator — Standard operatorsasfunctions. Lo 55
3.11 inspect —Inspectliveobjects. 59
3.12 traceback — Printorretrieve astacktraceback. L. 63
3.13 linecache —Randomaccesstotextlines. 65
3.14 pickle — Python object serialization oL 66
3.15 cPickle — Afasterpickle 74
3.16 copy _reg — Registempickle supportfunctions. 74
3.17 shelve — Python objectpersistence. e 75
3.18 copy — Shallow anddeep copyoperations e 77
3.19 marshal — Internal Python object serialization. 78
3.20 warnings —Warningcontrol. e 79
3.21 imp — Accessthemport internals. 81
3.22 pkgutii — Package extensionnutility 84
3.23 code — Interpreterbaseclasses 84
3.24 codeop — Compile Pythoncode e 86
3.25 pprint — Datapretty printer e 87
3.26 repr — Alternaterepr() implementation. L oL 89
3.27 new — Creation of runtime internal objects., 91
3.28 site — Site-specific configurationhook L L 91
3.29 user — User-specific configurationhook L 92
3.30 __builtin __—Built-infunctions. L 93
3.31 __main __ —Top-level scriptenvironment. L 93
3.32 __future __— Future statementdefinitions Lo 93

4 String Services 95

4.1 string —Commonstringoperations e e 95
4.2 re —Regularexpression operations. 98
4.3 struct — Interpretstrings as packed binarydata L. 108
4.4 difflib — Helpers for computingdeltas 110
4,5 fpformat — Floating pointconversions. i e 117
46 StringlO — Read and write stringsasfiles. o o oL 117
4.7 cStringlO — Faster version oBtringlOo 118
4.8 textwrap — Textwrappingandfiling. L 118
4.9 codecs — Codecregistryand baseclasses. 0. 120
4.10 unicodedata —Unicode Database. 128
411 stringprep — Internet String Preparation. 129
Miscellaneous Services 131
5.1 pydoc — Documentation generator and online helpsystem. 131
5.2 doctest — Testdocstringsrepresentreality, 132
5.3 unittest —Unittestingframework. 139
5.4 test — Regression tests package forPython. 150
5.5 test.test _support — Utility functionsfortests. 152
5.6 math — Mathematical functions. 153
5.7 cmath — Mathematical functions for complexnumbers 155
5.8 random — Generate pseudo-randomnumbers. oL 156
5.9 whrandom — Pseudo-random number generator. 159
5.10 bisect — Array bisectionalgorithm L o 160
5.11 heapq — Heap queue algorithm. 161
5.12 array — Efficientarraysofnumericvalues., 163
5.13 sets — Unordered collections of uniqueelements. 165
5.14 itertools — Functions creating iterators for efficient looping. 168
5.15 ConfigParser = — Configurationfileparser. 174
5.16 fileinput — lterate over lines from multiple inputstreams 176
5.17 xreadlines — Efficientiterationoverafile. 178
5.18 calendar — General calendar-related functions., 178
5.19 cmd— Support for line-oriented command interpreters. 179
5.20 shlex — Simplelexicalanalysis 181
Generic Operating System Services 185
6.1 o0s — Miscellaneous operating systeminterfaces. 185
6.2 os.path — Common pathname manipulations. 202
6.3 dircache — Cacheddirectorylistings. 204
6.4 stat — Interpretingstat() results. e 205
6.5 statcache — Anoptimizationofos.stat(), 207
6.6 statvfs — Constants used withs.statvfs() L 208
6.7 filecmp — File and Directory Comparisons i it 208
6.8 popen2 — Subprocesses with accessible /O streams. 210
6.9 datetime —Basicdateandtimetypes. 212
6.10 time — Timeaccessand CoNVErSIONS v v v v v v i i e e e e 228
6.11 sched —Eventscheduler. e 233
6.12 mutex — Mutual exclusion Support. oL 234
6.13 getpass — Portable passwordinput. 235
6.14 curses — Terminal handling for character-celldisplays. 235
6.15 curses.textpad — Text input widget for curses programs 248
6.16 curses.wrapper — Terminal handler for curses programs 250
6.17 curses.ascii — Utilities for ASCllcharacters 250
6.18 curses.panel — A panel stack extensionforcurses.. L. 252
6.19 getopt — Parserforcommand lineoptions., 253
6.20 optparse — Powerful parser for command lineoptions. 255
6.21 tempfile — Generate temporary files and directories. 279
6.22 errno — Standard errnosystemsymbols. o oL 280

10

6.23 glob — UNIX style pathname patternexpansion 286
6.24 fnmatch — UNIx filename patternmatching 286
6.25 shutil — High-levelfile operations 287
6.26 locale — Internationalizationservices L 288
6.27 gettext — Multilingual internationalizationservices. 293
6.28 logging — Logging facility forPython. 301
Optional Operating System Services 317
7.1 signal — Sethandlers for asynchronousevents. 317
7.2 socket — Low-level networkinginterface. 319
7.3 select — Waiting for I/O completion. 328
7.4 thread — Multiple threadsofcontrol. 329
7.5 threading — Higher-level threadinginterface. 330
7.6 dummy_thread — Drop-inreplacementforthéhread module 337
7.7 dummy_threading — Drop-in replacement for théareading module 337
7.8 Queue —Asynchronizedqueueclass. e 338
7.9 mmap— Memory-mapped file support 339
7.10 anydbm — Generic access to DBM-style databases 340
7.11 dbhash — DBM-style interface to the BSD database libraty. 341
7.12 whichdb — Guess which DBM module created adatabase. 342
7.13 bsddb — Interface to Berkeley DB library 342
7.14 dumbdbm— Portable DBM implementation o oo 344
7.15 zlib — Compression compatible widzip oo 345
7.16 gzip — Support forgzipfiles L 347
7.17 bz2 — Compression compatible witbzip2 Lo 348
7.18 zipfile — Workwith ZIP archives. e 350
7.19 tarfile — Read and write tar archivefiles. o oL 353
7.20 readline — GNUreadlineinterface. 358
7.21 rlcompleter — Completion function for GNU readline. 359
Unix Specific Services 361
8.1 posix — The mostcommon POSIXsystemecalls. 361
8.2 pwd—Thepassworddatabase. 362
8.3 grp —Thegroupdatabase 363
8.4 crypt —Functiontocheck Mix passwords. 363
8.5 dl —CallCfunctionsinsharedobjects, 364
8.6 dbm— Simple “database”interface. 365
8.7 gdbm— GNU's reinterpretationofdbm. o 366
8.8 termios — POSIXstylettycontrol. 367
8.9 TERMIOS— Constants used with thermios module 368
8.10 tty — Terminalcontrolfunctions. 368
8.11 pty — Pseudo-terminal utilities 368
8.12 fentl — Thefentl() andioctl() systemecalls. 369
8.13 pipes — Interfacetoshell pipelines L L 371
8.14 posixfile — File-like objects with lockingsupport 372
8.15 resource — Resource usageinformation.o 374
8.16 nis — Interfaceto Sun's NIS (YellowPages), 376
8.17 syslog — UNix sysloglibraryroutines 376
8.18 commands — Utilities for runningcommands 377
The Python Debugger 379
9.1 DebuggerCommands e e 380
9.2 HowltWorks e 382
The Python Profiler 385
10.1 Introductiontothe profiler 385
10.2 How Is This Profiler Different From The Old Profiler?. 385
10.3 InstantUsers Manual. e 386
10.4 What Is Deterministic Profiling?. e 387

11

12

13

10.5 Reference Manual e e e 388

10.6 LimitationS. o o o e e 391
10.7 Calibration. e 391
10.8 Extensions — Deriving Better Profilers. 392
10.9 hotshot — High performance loggingprofiler 392
10.10timeit — Measure execution time of small code snippets 394
Internet Protocols and Support 397
11.1 webbrowser — Convenient Web-browser controller. 397
11.2 cgi — Common Gateway Interface support.. 399
11.3 cgitb — Traceback managerforCGlscripts. 406
11.4 urlib — Open arbitrary resourcesby URL o L. 406
11.5 urllib2 —extensible library foropeningURLs 411
11.6 httplib —HTTP protocolclient. e 418
11.7 ftplib —FTP protocolclient. e 421
11.8 gopherlib — Gopher protocolclient 424
11.9 poplib —POP3protocolclient. 424
11.10imaplib — IMAP4 protocol client 426
11.12nntplib — NNTP protocolclient. 430
11.12smtplib — SMTP protocolclient. e 433
11.13telnetlib —Telnetclient 437
11.14urlparse —Parse URLsintocomponents. vt 439
11.15SocketServer — A framework for network servers. oL 440
11.16BaseHTTPServer —BasicHTTP server it 442
11.17SimpleHTTPServer — Simple HTTP requesthandler 445
11.18CGIHTTPServer — CGl-capable HTTPrequesthandler 445
11.19Cookie — HTTP state management. i i i it ittt 446
11.20xmlrpclib — XML-RPCclientaccess o i i 450
11.21SimpleXMLRPCServer — Basic XML-RPCserver. 453
11.22DocXMLRPCServer — Self-documenting XML-RPC server. 455
11.23asyncore — Asynchronous sockethandler. 456
11.24asynchat — Asynchronous socket command/response handler. 458
Internet Data Handling 463
12.1 formatter = — Genericoutputformatting o o oo 463
12.2 email — An email and MIME handlingpackage, 467
12.3 mailcap — Mailcap file handling.. 492
12.4 mailbox — Read various mailboxformats o oo 493
12.5 mhlib — Accessto MH mailboxes 495
12.6 mimetools — Tools for parsingMIME messages v v v v i it v i i e 496
12.7 mimetypes — Map filenamesto MIME types. 498
12.8 MimeWriter — Generic MIME filewritero 500
12.9 mimify — MIME processingof mailmessages. 500
12.10multifile — Support for files containing distinctparts. 502
12.11rfc822 — Parse RFC 2822 mailheaders. 503
12.12base64 — Encode and decode MIME base64data. 507
12.13binascii — Convert between binaryamdscil o e 507
12.14binhex — Encode and decode binhex4files 509
12.15quopri — Encode and decode MIME quoted-printabledata 510
12.16uu — Encode and decode uuencodefiles L oL oo oo 510
12.17xdrlib — Encode and decode XDRdata. 511
12.18netrc —nnetrcfile processing. e 513
12.19robotparser — Parserforrobots.txt Lo 514
12.20csv — CSV File Readingand Writing. o o i i 515
Structured Markup Processing Tools 519
13.1 HTMLParser — Simple HTMLand XHTML parser. 519
13.2 sgmllib — Simple SGML parser. i i e 521
13.3 htmllib — AparserforHTML documents 523

14

15

16

17

18

19

13.4 htmlentitydefs — Definitions of HTML general entities 525

13.5 xml.parsers.expat — Fast XML parsingusingExpat 525
13.6 xml.dom — The Document Object Model API., 532
13.7 xml.dom.minidom — Lightweight DOM implementation. 541
13.8 xml.dom.pulldom — Support for building partial DOMtrees 545
13.9 xmlsax — Supportfor SAX2 parserS. . . . v v v v v i e e e e e e e 546
13.10xml.sax.handler —BaseclassesforSAXhandlers L. 547
13.11 xml.sax.saxutils — SAXUtilities L 551
13.12xml.sax.xmlreader — Interface for XML parsers. 552
13.13xmllib — A parser for XML documents. 556
Multimedia Services 559
14.1 audioop — Manipulateraw audiodata 559
14.2 imageop — Manipulaterawimagedata. 0. 562
14.3 aifc — Read and write AIFFand AIFCfiles. 563
14.4 sunau — Read and write Sun AUfiles L 565
14.5 wave — Read and write WAV files. e 567
14.6 chunk — Read IFFchunkeddata. 569
14.7 colorsys — Conversions betweencolorsystems. 570
14.8 rghimg — Read and write “SGIRGB”files 571
14.9 imghdr — Determinethetypeofanimage 571
14.10sndhdr — Determine type of soundfile oo oo 572
14.11o0ssaudiodev — Access to OSS-compatible audio devices. 572
Cryptographic Services 577
15.1 hmac — Keyed-Hashing for Message Authentication. 577
15.2 md5— MD5 message digest algorithm.o oL o 577
15.3 sha — SHA-1 message digest algorithm. Lo 578
15.4 mpz— GNU arbitrary magnitude integers oo 579
15.5 rotor — Enigma-like encryptionanddecryption. oo 580
Graphical User Interfaces with Tk 583
16.1 Tkinter — Pythoninterfaceto Tcl/Tk., 583
16.2 Tix —ExtensionwidgetsforTK. e 594
16.3 ScrolledText ~ — Scrolled TextWidget. 599
16.4 turtle —Turtle graphicsfor Tk o o 599
165 Idle e e 601
16.6 Other Graphical User Interface Packages 604
Restricted Execution 607
17.1 rexec — Restricted executionframework o oL 607
17.2 Bastion — Restrictingaccesstoobjects. 610
Python Language Services 613
18.1 parser — Access Pythonparsetrees. i 613
18.2 symbol — Constants used with Python parsetrees 622
18.3 token — Constants used with Python parsetrees 622
18.4 keyword — Testing for Pythonkeywords, 623
18.5 tokenize — Tokenizer for Pythonsource. oo 623
18.6 tabnanny — Detection of ambiguous indentation L L. 624
18.7 pyclbor — Python class browsersupport 624
18.8 py_compile — Compile Pythonsourcefiles. 625
18.9 compileall ~— Byte-compile Pythonlibraries 626
18.10dis — Disassembler for Python bytecode. o, 626
18.11 distutils — Building and installing Python modules. 633
Python compiler package 635
19.1 Thebasicinterface e 635
19.2 LimMitations. o o e 636

19.3 Python Abstract Syntax 0 e e e e

19.4 Using Visitorsto Walk ASTS e 640
19.5 Bytecode Generation. e e e 641
20 SGI IRIX Specific Services 643
20.1 al —AudiofunctionsontheSGI 643
20.2 AL —Constants used withthed module 645
20.3 cd — CD-ROM accesson SGIsystems oot ii it e 645
20.4 fl — FORMS library for graphical userinterfaces. 648
20.5 FL — Constantsused withtife module 653
20.6 flp — Functions for loading stored FORMS designs. 653
20.7 fm — Font Managetinterface. 653
20.8 gl — Graphics Libraryinterface 654
20.9 DEVICE— Constantsused withttgd module 656
20.10GL— Constants used withtlgg module, 656
20.11imgfile — Support for SGlimglibfiles o o 656
20.12jpeg —Read andwrite JPEGfiles. 657
21 SunOS Specific Services 659
21.1 sunaudiodev — Accessto Sunaudiohardware. 659
21.2 SUNAUDIODEW- Constants used witbunaudiodev 660
22 MS Windows Specific Services 661
22.1 msvert — Useful routines from the MS VE€rruntime 661
22.2 _winreg —WIiNdOWS regiStry 8CCESS+« v v v v i e e e e e 662
22.3 winsound — Sound-playing interface for Windows. 666
A Undocumented Modules 669
Al Frameworks e e e 669
A.2 Miscellaneous useful utilities. 669
A.3 Platform specificmodules 669
A4 Multimedia. 670
A5 Obsolete e 670
A.6 SGl-specific Extension modules. 671
B Reporting Bugs 673
C History and License 675
C.1 Historyofthesoftware 675
C.2 Terms and conditions for accessing or otherwise using Python 676
Module Index 679
Index 683

Vi

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as nhumbers and
lists. For these types, the Python language core defines the form of literals and places some constraints on their
semantics, but does not fully define the semantics. (On the other hand, the language core does define syntactic
properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without
the need of aimport statement. Some of these are defined by the core language, but many are not essential for
the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this col-
lection. Some modules are written in C and built in to the Python interpreter; others are written in Python and
imported in source form. Some modules provide interfaces that are highly specific to Python, like printing a
stack trace; some provide interfaces that are specific to particular operating systems, such as access to specific
hardware; others provide interfaces that are specific to a particular application domain, like the World Wide Web.
Some modules are available in all versions and ports of Python; others are only available when the underlying
system supports or requires them; yet others are available only when a particular configuration option was chosen
at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions
and exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as
well as the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored,
you will get a reasonable overview of the available modules and application areas that are supported by the Python
library. Of course, you dontaveto read it like a novel — you can also browse the table of contents (in front of

the manual), or look for a specific function, module or term in the index (in the back). And finally, if you enjoy
learning about random subjects, you choose a random page number (see randale) and read a section or

two. Regardless of the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in
Types, Exceptions and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-In Objects

Names for built-in exceptions and functions and a number of constants are found in a separate symbol table. This
table is searched last when the interpreter looks up the meaning of a name, so local and global user-defined names
can override built-in names. Built-in types are described together here for easy reference.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within
a table) and grouping operators that have the same priority in the same box. Binary operators of the same priority
group from left to right. (Unary operators group from right to left, but there you have no real choice.) See chapter
5 of thePython Reference Manufdr the complete picture on operator priorities.

2.1 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

—_import __(name[, globals[, Iocals[, fromlist]]])
This function is invoked by thamport statement. It mainly exists so that you can replace it with another
function that has a compatible interface, in order to change the semanticsiofgbe statement. For
examples of why and how you would do this, see the standard library motolelss andrexec . See
also the built-in modulémp, which defines some useful operations out of which you can build your own
__import __() function.

For example, the statemeritmport spam ' results in the following call: __import __('spam’,
globals(), locals(), [1) ; the statement ffom spam.ham import eggs ' results in
‘__import __('spam.ham’, globals(), locals(), ['eggs’]) ". Note that even though

locals() and['eggs’] are passed in as arguments, themport __() function does not set the
local variable nameeggs ; this is done by subsequent code that is generated for the import statement.
(In fact, the standard implementation does not uséoitals argument at all, and uses iggobalsonly to
determine the package context of ihgport statement.)

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up
till the first dot) is returnedpotthe module named bhyame However, when a non-empfsomlistargument

is given, the module named mameis returned. This is done for compatibility with the bytecode gener-
ated for the different kinds of import statement; when usingpbrt spam.ham.eggs ', the top-level
packagespam must be placed in the importing namespace, but when uioig‘ spam.ham import

eggs’, the spam.ham subpackage must be used to find #ggs variable. As a workaround for this
behavior, usgetattr() to extract the desired components. For example, you could define the following
helper:

def my_import(name):
mod = __import__(name)
components = name.split(".")
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

IMost descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point
number. If the argument is a complex number, its magnitude is returned.

basestring ()
This abstract type is the superclass$or andunicode . It cannot be called or instantiated, but it can be
used to test whether an object is an instancgof or unicode . isinstance(obj, basestring)
is equivalent tasinstance(obj, (str, unicode)) . New in version 2.3.

bool ([x])
Convert a value to a Boolean, using the standard truth testing proceduis félise or omitted, this returns
False ; otherwise it returndrue . bool is also a class, which is a subclasgrdf . Classbool cannot
be subclassed further. Its only instanceskakse andTrue .

New in version 2.2.1. Changed in version 2.3: If no argument is given, this function rétalses .

callable (objec)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a
call fails, but if it is false, callingobjectwill never succeed. Note that classes are callable (calling a class
returns a new instance); class instances are callable if they havesdl __() method.

chr (i)
Return a string of one character whesgcii code is the integar For examplechr(97) returns the string
'a’ . Thisis the inverse afrd() . The argument must be in the range [0..255], inclusikedueError
will be raised ifi is outside that range.

classmethod (function
Return a class method function

A class method receives the class as implicit first argument, just like an instance method receives the in-
stance. To declare a class method, use this idiom:

class C:
def f(cls, argl, arg2, ..): ...
f = classmethod(f)

It can be called either on the class (suctCaf§)) or on an instance (such &%).f()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed
as the implied first argument.

Class methods are different tharr€or Java static methods. If you want those, stticmethod() in
this section. New in version 2.2.
cmp(x,y)
Compare the two objecisandy and return an integer according to the outcome. The return value is negative
if X < vy, zeroifx == yand strictly positive ik > .

compile (string, filename, kin[i ﬂage[, donLinherit]])
Compile thestring into a code object. Code objects can be executed Bxan statement or evaluated by
a call toeval() . Thefilenameargument should give the file from which the code was read; pass some

recognizable value if it wasn't read from a file$tring>’ is commonly used). Thieind argument spec-
ifies what kind of code must be compiled; it can’egec’ if string consists of a sequence of statements,
‘eval’ if it consists of a single expression, @ingle’ if it consists of a single interactive statement

(in the latter case, expression statements that evaluate to something elSeteanill printed).

When compiling multi-line statements, two caveats apply: line endings must be represented by a single
newline character\py’), and the input must be terminated by at least one newline character. If line
endings are represented fn’ , use the stringeplace() = method to change them intm’

The optional argumentifagsanddont_inherit (which are new in Python 2.2) control which future state-
ments (see PEP 236) affect the compilatiorsting. If neither is present (or both are zero) the code is
compiled with those future statements that are in effect in the code that is calling compileflabtergu-
ment is given andlont_inherit is not (or is zero) then the future statements specified bflahsargument
are used in addition to those that would be used anywalonf_inheritis a non-zero integer then tlflags
argument is it — the future statements in effect around the call to compile are ignored.

4 Chapter 2. Built-In Objects

Future statemants are specified by bits which can be bitwise or-ed together to specify multiple statements.
The bitfield required to specify a given feature can be found acdnepiler _flag attribute on the
_Feature instance inthe _future __ module.

complex ([real[, imag]])
Create a complex number with the vakgal + imagFj or convert a string or number to a complex number.
If the first parameter is a string, it will be interpreted as a complex number and the function must be called
without a second parameter. The second parameter can never be a string. Each argument may be any
numeric type (including complex). limagis omitted, it defaults to zero and the function serves as a

numeric conversion function likit() ,long() andfloat() . If both arguments are omitted, returns
0j .
delattr (object, namg
This is a relative oketattr() . The arguments are an object and a string. The string must be the name

of one of the object’s attributes. The function deletes the named attribute, provided the object allows it. For
exampledelattr(%, ' foobar) is equivalenttalel x. foobar.

dict ([mapping—or—sequende)
Return a new dictionary initialized from an optional positional argument or from a set of keyword argu-
ments. If no arguments are given, return a new empty dictionary. If the positional argument is a mapping
object, return a dictionary mapping the same keys to the same values as does the mapping object. Otherwise
the positional argument must be a sequence, a container that supports iteration, or an iterator object. The
elements of the argument must each also be of one of those kinds, and each must in turn contain exactly two
objects. The first is used as a key in the new dictionary, and the second as the key’s value. If a given key is
seen more than once, the last value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated values are added as items
to the dictionary. If a key is specified both in the positional argument and as a keyword argument, the value
associated with the keyword is retained in the dictionary. For example, these all return a dictionary equal to
{"one™ 2, "two™ 3}

edict({'one’: 2, 'two’: 3}

edict({'one: 2, 'two: 3}.items())
edict({'one”: 2, 'two’. 3}.iteritems())
edict(zip((one’, two’), (2, 3)))
edict([['two’, 3], ['one’, 2]])

edict(one=2, two=3)

edict([([one’, 'two’][i-2], i) for i in (2, 3)])

New in version 2.2. Changed in version 2.3: Support for building a dictionary from keyword arguments
added.

dir ([object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts
to return a list of valid attributes for that object. This information is gleaned from the objectict __
attribute, if defined, and from the class or type object. The list is not necessarily complete. If the objectis a
module object, the list contains the names of the module’s attributes. If the object is a type or class object,
the list contains the names of its attributes, and recursively of the attributes of its bases. Otherwise, the list
contains the object’s attributes’ names, the names of its class’s attributes, and recursively of the attributes of
its class’s base classes. The resulting list is sorted alphabetically. For example:

>>> jmport struct

>>> dir()

[_builtins__’, ' _doc__’, '__name__’, 'struct]

>>> dir(struct)

[__doc_', '__name__’, ’calcsize’, ’error’, 'pack’, 'unpack’]

Note: Becausdlir() is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of
names, and its detailed behavior may change across releases.

2.1. Built-in Functions 5

divmod (a, b)

Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic operators

apply. For plain and long integers, the result is the sanfaas b, a % b) . For floating point numbers
the resultig g, a % b), whereqis usuallymath.floor(a / b) but may be 1 less than that. In any
caseg * b + a % bisverycloseta, if a % bis non-zero it has the same signtaand0 <= abs(a
% b) < abs(b).

Changed in version 2.3: Usirtivmod() with complex numbers is deprecated.

enumerate (iterable)
Return an enumerate objedterable must be a sequence, an iterator, or some other object which supports
iteration. Thenext() method of the iterator returned ®numerate() returns a tuple containing a
count (from zero) and the corresponding value obtained from iteratingirable enumerate() is
useful for obtaining an indexed serig§, seq[0]) , (1, seq[1]) , (2, seq[2]) ,.... Newin
version 2.3.

eval (expressio[n, globals[, Iocals]])
The arguments are a string and two optional dictionaries.ekpeessiorargument is parsed and evaluated
as a Python expression (technically speaking, a condition list) usingiéhalsandlocals dictionaries as
global and local name space. If tigdobals dictionary is present and lacks 'builtins__’, the current
globals are copied intglobalsbeforeexpressiors parsed. This means thetpressiomormally has full
access to the standard builtin -~ __ module and restricted environments are propagated. Ifoiteds
dictionary is omitted it defaults to thglobalsdictionary. If both dictionaries are omitted, the expression is
executed in the environment whexeal is called. The return value is the result of the evaluated expression.
Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval('x+1’)
2

This function can also be used to execute arbitrary code objects (such as those creategi®()). In
this case pass a code object instead of a string. The code object must have been compiletepabksing
as thekind argument.

Hints: dynamic execution of statements is supported beiee statement. Execution of statements from
a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around forexa®y or
execfile()

execfile (filenam{, globals[, Iocals]])
This function is similar to thexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and
does not create a new moddle.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence

of Python statements (similarly to a module) using ghabalsandlocals dictionaries as global and local
namespace. If thivcalsdictionary is omitted it defaults to thglobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment wnezefile() is called. The return value is
None.

Warning: The defauliocalsact as described for functidacals() below: modifications to the default
locals dictionary should not be attempted. Pass an exgbcidls dictionary if you need to see effects of
the code orocalsafter functionexecfile() returns.execfile() cannot be used reliably to modify
a function’s locals.

file (filenamg, modd, bufsizd])
Return a new file object (described in section 2.3Rle' Objects). The first two arguments are the same
as forstdio ’s fopen() : filenameis the file name to be openemhodeindicates how the file is to be
opened:r for reading,’'w’ for writing (truncating an existing file), an@é’ opens it for appending
(which onsomeUNIx systems means thatl writes append to the end of the file, regardless of the current
seek position).

2|t is used relatively rarely so does not warrant being made into a statement.

6 Chapter 2. Built-In Objects

Modes'r+' ,’'w+’ and’a+’ open the file for updating (note that+ truncates the file). Appenty’
to the mode to open the file in binary mode, on systems that differentiate between binary and text files (else
it is ignored). If the file cannot be opend@Error s raised.

In addition to the standarpen() valuesmodemay be’U’ or’rU’ . If Python is built with universal
newline support (the default) the file is opened as a text file, but lines may be terminated by\any of

the Unix end-of-line conventioryr’ , the Macintosh convention dw\n’ , the Windows convention.

All of these external representations are seetras by the Python program. If Python is built without
universal newline suppomode’U’ is the same as normal text mode. Note that file objects so opened also
have an attribute calledewlines which has a value dflone (if no newlines have yet been seetw),
\r,\\n’ -, or a tuple containing all the newline types seen.

If modeis omitted, it defaults tor’ . When opening a binary file, you should appébd to themode

value for improved portability. (It's useful even on systems which don’t treat binary and text files differently,
where it serves as documentation.) The optidndsizeargument specifies the file’s desired buffer size:

0 means unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately)
that size. A negativbufsizemeans to use the system default, which is usually line buffered for tty devices
and fully buffered for other files. If omitted, the system default is used.

Thefile() constructor is new in Python 2.2. The previous spellofgen() , is retained for compatibil-
ity, and is an alias fofile()

filter (function, lis)
Construct a list from those elementslist for which functionreturns true list may be either a sequence,
a container which supports iteration, or an iteratolisifis a string or a tuple, the result also has that type;
otherwise it is always a list. functionis None, the identity function is assumed, that is, all elementgsof
that are false (zero or empty) are removed.

Note that filter(function, listy is equivalent to [item for item in list if
function(item)] if function is not None and [item for item in list if item] if
function isNone.

float ([x])

Convert a string or a number to floating point. If the argument is a string, it must contain a possi-
bly sighed decimal or floating point number, possibly embedded in whitespace; this behaves identical to
string.atof(X) . Otherwise, the argument may be a plain or long integer or a floating point number,
and a floating point number with the same value (within Python’s floating point precision) is returned. If no
argument is given, returr0 .

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying
C library. The specific set of strings accepted which cause these values to be returned depends entirely on
the C library and is known to vary.

getattr (object, nam[s, default])
Return the value of the named attributedobject namemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For exaguetketr(x, 'foobar’)
is equivalent toc.foobar . If the named attribute does not exidefaultis returned if provided, otherwise
AttributeError is raised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namg
The arguments are an object and a string. The restiluie if the string is the name of one of the object’s
attributes False if not. (This is implemented by callingetattr(object namg and seeing whether
it raises an exception or not.)

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly

3Specifying a buffer size currently has no effect on systems that don'tdetvbuf() . The interface to specify the buffer size is not
done using a method that calietvbuf() , because that may dump core when called after any I/O has been performed, and there’s no
reliable way to determine whether this is the case.

2.1. Built-in Functions 7

compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the same
hash value (even if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked
up as the name of a module, function, class, method, keyword, or documentation topic, and a help page is
printed on the console. If the argument is any other kind of object, a help page on the object is generated.
New in version 2.2.

hex (X)

Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expres-
sion. Note: this always yields an unsigned literal. For example, on a 32-bit matigrel) yields

"Oxffffffff . When evaluated on a machine with the same word size, this literal is evaluated as -1; at
a different word size, it may turn up as a large positive number or rai€xvarflowError exception.
id (objec)

Return the ‘identity’ of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects whose lifetimes are disjunct may have the same
id() value. (Implementation note: this is the address of the object.)

input ([prompt])
Equivalent toeval(raw _input(prompd) . Warning: This function is not safe from user errors! It
expects a valid Python expression as input; if the input is not syntactically vaigntaxError will be
raised. Other exceptions may be raised if there is an error during evaluation. (On the other hand, sometimes
this is exactly what you need when writing a quick script for expert use.)

If the readline module was loaded, thenput() will use it to provide elaborate line editing and
history features.

Consider using theaw _input() function for general input from users.

int ([x[radix]])
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespaeéixlferameter
gives the base for the conversion and may be any integer in the range [2, 36], or zachx I§ zero, the
proper radix is guessed based on the contents of string; the interpretation is the same as for integer literals.
If radix is specified and is not a string;TypeError is raised. Otherwise, the argument may be a plain or
long integer or a floating point number. Conversion of floating point numbers to integers truncates (towards
zero). If the argument is outside the integer range a long object will be returned instead. If no arguments
are given, return®.

isinstance (object, classinfp
Return true if theobjectargument is an instance of tledassinfoargument, or of a (direct or indirect)
subclass thereof. Also return truecifaissinfois a type object andbjectis an object of that type. Ibbject
is not a class instance or an object of the given type, the function always returns falassififois neither
a class object nor a type object, it may be a tuple of class or type objects, or may recursively contain other
such tuples (other sequence types are not accepted)asifinfois not a class, type, or tuple of classes,
types, and such tuples,TgpeError exception is raised. Changed in version 2.2: Support for a tuple of
type information was added.

issubclass (class, classinfp
Return true ifclassis a subclass (direct or indirect) ofassinfo A class is considered a subclass of itself.
classinfomay be a tuple of class objects, in which case every enttiagsinfowill be checked. In any other
case, dlypeError exception is raised. Changed in version 2.3: Support for a tuple of type information
was added.

iter (o[, sentine])
Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argumemhust be a collection object which supports the iteration
protocol (the__iter __() method), or it must support the sequence protocol (thgetitem __()
method with integer arguments startingdat If it does not support either of those protocdigpeError
is raised. If the second argumesgntine] is given, thero must be a callable object. The iterator created in
this case will callo with no arguments for each call to itext() method; if the value returned is equal to

8 Chapter 2. Built-In Objects

sentine] Stoplteration will be raised, otherwise the value will be returned. New in version 2.2.

len (9
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list)
or a mapping (dictionary).

list ([sequenc})
Return a list whose items are the same and in the same orderaence items. sequencenay be either
a sequence, a container that supports iteration, or an iterator objeegguéncés already a list, a copy is

made and returned, similar sequende] . For instancelist('abc’) returns'a’, 'b’, 'c’]
andlist((2, 2, 3)) returns[1, 2, 3] . If noargumentis given, returns a new empty Ijt,
locals ()

Update and return a dictionary representing the current local symbol t&##ening: The contents of
this dictionary should not be modified; changes may not affect the values of local variables used by the
interpreter.

long ([x[radix]])
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed
number of arbitrary size, possibly embedded in whitespace; this behaves idensitalgaatol(X) .
Theradix argument is interpreted in the same way adritf) , and may only be given whenis a string.
Otherwise, the argument may be a plain or long integer or a floating point number, and a long integer with
the same value is returned. Conversion of floating point numbers to integers truncates (towards zero). If no
arguments are given, returik.

map(function, list, ..)
Apply functionto every item oflist and return a list of the results. If additioriat arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter
than another it is assumed to be extended Wtne items. If functionis None, the identity function
is assumed; if there are multiple list argumemsp() returns a list consisting of tuples containing the
corresponding items from all lists (a kind of transpose operation). li§harguments may be any kind of
sequence; the result is always a list.

max(s[, args...])
With a single argumers, return the largest item of a non-empty sequence (such as a string, tuple or list).
With more than one argument, return the largest of the arguments.

min (s[, args...])
With a single argumers, return the smallest item of a non-empty sequence (such as a string, tuple or list).
With more than one argument, return the smallest of the arguments.

object ()
Return a new featureless objeobject() is a base for all new style classes. It has the methods that are
common to all instances of new style classes. New in version 2.2.

Changed in version 2.3: This function does not accept any arguments. Formerly, it accepted arguments but
ignored them.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note: this
always yields an unsigned literal. For example, on a 32-bit macbatel) vyields'037777777777
When evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word
size, it may turn up as a large positive number or rais®earflowError exception.

open (filenam({, mode[, bufsizd])
An alias for thefile() function above.
ord (¢)
Return theascii value of a string of one character or a Unicode character. &rd(,a’) returns the

integer97, ord(u'\u2020") returns8224 . This is the inverse athr() for strings and ofinichr()
for Unicode characters.

Returnx to the powely; if zis present, retur to the powely, moduloz (computed more efficiently than
pow(x, Yy) % 2). The arguments must have numeric types. With mixed operand types, the coercion rules

2.1. Built-in Functions 9

for binary arithmetic operators apply. For int and long int operands, the result has the same type as the
operands (after coercion) unless the second argument is negative; in that case, all arguments are converted
to float and a float result is delivered. For exampl@:*2 returns100, but10**-2 returns0.01 . (This

last feature was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types and
the second argument was negative, an exception was raised.) If the second argument is negative, the third
argument must be omitted. #is presentx andy must be of integer types, arydmust be non-negative.

(This restriction was added in Python 2.2. In Python 2.1 and before, floating 3-argpovef)t returned
platform-dependent results depending on floating-point rounding accidents.)

property ([fget[, fse{, fdel[, doc]]]])

Return a property attribute for new-style classes (classes that derivobjeat).

fgetis a function for getting an attribute value, likewisetis a function for setting, anftlel a function for
del’ing, an attribute. Typical use is to define a managed attribute x:

class C(object):
def getx(self): return self._ x
def setx(self, value): self._ x = value
def delx(self): del self._ x
X = property(getx, setx, delx, "I'm the 'X’ property.")

New in version 2.2.

range ([start,] stop{, step])

This is a versatile function to create lists containing arithmetic progressions. It is most often fised in
loops. The arguments must be plain integers. Ifdtepargument is omitted, it defaults th If the start
argument is omitted, it defaults @ The full form returns a list of plain integefsstart, start + step
start + 2 * step ...] . If stepis positive, the last element is the largstdrt + i * stepless than
stop if stepis negative, the last element is the largeart + i * stepgreater tharstop stepmust not be
zero (or els&/alueError s raised). Example:

>>> range(10)

[0, 1, 2, 3, 4,5, 6,7, 8 9]
>>> range(1, 11)

1, 2, 3, 4, 5, 6, 7, 8 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

I

>>> range(1, 0)

I

raw _input ([prompt])

If the promptargument is present, it is written to standard output without a trailing newline. The function
then reads a line from input, converts it to a string (stripping a trailing newline), and returns thatE&hen
is read,EOFError is raised. Example:

>>> s = raw_input(’-->)

--> Monty Python’s Flying Circus
>>> S

"Monty Python’s Flying Circus"

If thereadline module was loaded, theaw _input() will use it to provide elaborate line editing and
history features.

reduce (function, sequent{einitializer])

Apply functionof two arguments cumulatively to the itemss#quencefrom left to right, so as to reduce

10

Chapter 2. Built-In Objects

the sequence to a single value. For examgléyuce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calculateg(((1+2)+3)+4)+5) . The left argumenty, is the accumulated value and the right argument,
y, is the update value from theequencelf the optionalinitializer is present, it is placed before the items
of the sequence in the calculation, and serves as a default when the sequence is @mtigyizér is not
given andsequenceontains only one item, the first item is returned.

reload (modulg
Re-parse and re-initialize an already importeddule The argument must be a module object, so it must
have been successfully imported before. This is useful if you have edited the module source file using an
external editor and want to try out the new version without leaving the Python interpreter. The return value
is the module object (the same as theduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the fimport statement for it does not bind
its name locally, but does store a (partially initialized) module objecymamodules . To reload the
module you must firsimport it again (this will bind the name to the partially initialized module object)
before you cameload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redef-
initions of names will override the old definitions, so this is generally not a problem. If the new version
of a module does not define a name that was defined by the old version, the old definition remains. This
feature can be used to the module’s advantage if it maintains a global table or cache of objects — with a
try statement it can test for the table’s presence and skip its initialization if desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except for

sys, __main __and__builtin __. In many cases, however, extension modules are not designed to be
initialized more than once, and may falil in arbitrary ways when reloaded.
If a module imports objects from another module usirggn ... import ..., callingreload() for

the other module does not redefine the objects imported from it — one way around this is to re-execute the
from statement, another is to useport and qualified namesr(odulenamg instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for
derived classes.

repr (objec)
Return a string containing a printable representation of an object. This is the same value yielded by conver-
sions (reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For
many types, this function makes an attempt to return a string that would yield an object with the same value
when passed teval()

round (x[, n])
Return the floating point valuerounded ton digits after the decimal point. I is omitted, it defaults to
zero. The result is a floating point number. Values are rounded to the closest multiple of 10 to the power
minusn; if two multiples are equally close, rounding is done away from 0 (so. for examgalad(0.5)
is1.0 andround(-0.5) is-1.0).

setattr (object, name, valye
This is the counterpart afetattr() . The arguments are an object, a string and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute,
provided the object allows it. For exampgstattr(%, ' foobar, 123) is equivalent tx. foobar =
123.

slice ([start,] stod, step])
Return a slice object representing the set of indices specifieaye(start, stop step . Thestartand
steparguments default tone. Slice objects have read-only data attribugest , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however
they are used by Numerical Python and other third party extensions. Slice objects are also generated when
extended indexing syntax is used. For exampgstart:stop:step] "or ‘a[start:stop, i] '

staticmethod (function
Return a static method fdunction

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

2.1. Built-in Functions 11

class C:
def f(argl, arg2, ..): ...
f = staticmethod(f)

It can be called either on the class (suctCa§)) or on an instance (such &%).f()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Javator. G-or a more advanced concept, see
classmethod() in this section. New in version 2.2.

str([object])
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference wittrepr(objec) is thatstr(objec) does not always attempt to return a string
that is acceptable teval() ; its goal is to return a printable string. If no argument is given, returns the
empty string,”

sum(sequenc[a start])
Sumsstartand the items of aequencefrom left to right, and returns the totadtart defaults to0. These-
quencés items are normally numbers, and are not allowed to be strings. The fast, correct way to concatenate
sequence of strings is by callifgoin(sequence. Note thatsum(range(n), m) is equivalent to
reduce(operator.add, range(n), m) New in version 2.3.

super (type{, object-or-typé)
Return the superclass tffpe If the second argument is omitted the super object returned is unbound. If the
second argument is an objeidinstance(obj, type must be true. If the second argument is a type,
issubclass(type2 type must be truesuper() only works for new-style classes.

A typical use for calling a cooperative superclass method is:

class C(B):
def meth(self, arg):
super(C, self).meth(arg)

New in version 2.2.

tuple ([sequenc})
Return a tuple whose items are the same and in the same ordegasncs items. sequencenay be

a sequence, a container that supports iteration, or an iterator objesgquences already a tuple, it is
returned unchanged. For instantugle('abc’) returns(’a’, 'b’, 'c’) andtuple([1, 2,
3]) returns(l, 2, 3) . If noargumentis given, returns a new empty tugle,

type (objec)
Return the type of anbject The return value is a type object. The standard motjydes defines names
for all built-in types that don't already have built-in names. For instance:

>>> import types
>>> x = 'abc’
>>> if type(x) is str: print "lt's a string"

I's a string

>>> def f(): pass

>>> if type(f) is types.FunctionType: print "lt's a function"
It's a function

Theisinstance() built-in function is recommended for testing the type of an object.

unichr (i)
Return the Unicode string of one character whose Unicode code is the intEgeexampleunichr(97)
returns the string'a’ . This is the inverse oérd() for Unicode strings. The argument must be in the
range [0..65535], inclusivd/alueError s raised otherwise. New in version 2.0.

12 Chapter 2. Built-In Objects

unicode ([objec{, encoding{, errors]]])
Return the Unicode string version albjectusing one of the following modes:

If encodingand/orerrors are givenunicode() will decode the object which can either be an 8-bit string
or a character buffer using the codec &rcoding Theencodingparameter is a string giving the name of
an encoding; if the encoding is not knowlogokupError is raised. Error handling is done according
to errors; this specifies the treatment of characters which are invalid in the input encodimgrons$ is
'strict’ (the default), a/alueError is raised on errors, while a value ‘@jnore’ causes errors to
be silently ignored, and a value ‘oéplace’ causes the official Unicode replacement charatteFEFFD

to be used to replace input characters which cannot be decoded. See alsdebe module.

If no optional parameters are givamicode() will mimic the behaviour oftr() except that it returns
Unicode strings instead of 8-bit strings. More preciselyohfectis a Unicode string or subclass it will
return that Unicode string without any additional decoding applied.

For objects which provide a_unicode __() method, it will call this method without arguments to
create a Unicode string. For all other objects, the 8-bit string version or representation is requested and then
converted to a Unicode string using the codec for the default encodistyict’ mode.

New in version 2.0. Changed in version 2.2: Support faunicode __() added.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hadiet __ attribute), returns a dictionary
corresponding to the object’'s symbol table. The returned dictionary should not be modified: the effects on
the corresponding symbol table are undefified.

xrange ([start,] sto;{, step])
This function is very similar taange() , but returns an “xrange object” instead of a list. This is an
opaque sequence type which yields the same values as the corresponding list, without actually storing them
all simultaneously. The advantage>asfinge() overrange() is minimal (sincexrange() still has
to create the values when asked for them) except when a very large range is used on a memory-starved
machine or when all of the range’s elements are never used (such as when the loop is usually terminated
with break).

zip (seql,.)
This function returns a list of tuples, where tkih tuple contains theth element from each of the argument
sequences. At least one sequence is required, otherwisgeError is raised. The returned list is
truncated in length to the length of the shortest argument sequence. When there are multiple argument
sequences which are all of the same length() is similar tomap() with an initial argument oNone.
With a single sequence argument, it returns a list of 1-tuples. New in version 2.0.

2.2 Non-essential Built-in Functions

There are several built-in functions that are no longer essential to learn, know or use in modern Python program-
ming. They have been kept here to maintain backwards compatability with programs written for older versions of
Python.

Python programmers, trainers, students and bookwriters should feel free to bypass these functions without con-
cerns about missing something important.

apply (function, arg{, keywordg)
The functionargument must be a callable object (a user-defined or built-in function or method, or a class
object) and thergsargument must be a sequence. Timectionis called withargsas the argument list; the
number of arguments is the length of the tuple. If the optidegivordsargument is present, it must be a
dictionary whose keys are strings. It specifies keyword arguments to be added to the end of the argument list.
Calling apply() s different from just callingunctiorn(args) , since in that case there is always exactly
one argument. The use apply() is equivalent tdunction(* args ** keyword}. Use ofapply() is
not necessary since the “extended call syntax,” as used in the last example, is completely equivalent.

Deprecated since release 2.RIse the extended call syntax instead, as described above.

4In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes
(such as modules) can be. This may change.

2.2. Non-essential Built-in Functions 13

buffer (objec{, offse[, size]])
The objectargument must be an object that supports the buffer call interface (such as strings, arrays, and
buffers). A new buffer object will be created which referencesabiectargument. The buffer object will
be a slice from the beginning abject (or from the specifiedffse). The slice will extend to the end of
object(or will have a length given by thgizeargument).

coerce (X,Y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules
as used by arithmetic operations.

intern (' string)
Enterstringin the table of “interned” strings and return the interned string — whislringitself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary
are interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer
compare instead of a string compare. Normally, the names used in Python programs are automatically
interned, and the dictionaries used to hold module, class or instance attributes have interned keys. Changed
in version 2.3: Interned strings are not immortal (like they used to be in Python 2.2 and before); you must
keep a reference to the return valuargérn() around to benefit from it.

2.3 Built-in Types

The following sections describe the standard types that are built into the interpreter. Historically, Python’s built-
in types have differed from user-defined types because it was not possible to use the built-in types as the basis
for object-oriented inheritance. With the 2.2 release this situation has started to change, although the intended
unification of user-defined and built-in types is as yet far from complete.

The principal built-in types are numerics, sequences, mappings, files classes, instances and exceptions.

Some operations are supported by several object types; in particular, all objects can be compared, tested for truth
value, and converted to a string (with the..* notation). The latter conversion is implicitly used when an object

is written by theprint ~ statement. (Information gmrint ~ statemenéand other language statements can be found

in the Python Reference Manuahd thePython Tutorial)

2.3.1 Truth Value Testing

Any object can be tested for truth value, for use inilanor while condition or as operand of the Boolean
operations below. The following values are considered false:

e None

e False

e zero of any numeric type, for exampl&,0OL, 0.0 , 0] .

e any empty sequence, for examgle,, () ,[] .

e any empty mapping, for examplg, .

e instances of user-defined classes, if the class definesyvanzero __() or __len __() method, when

that method returns the integer zerdoool valueFalse .°

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always retarri-alse for false andl or True
for true, unless otherwise stated. (Important exception: the Boolean operatidrad ‘and’ always return one
of their operands.)

SAdditional information on these special methods may be found iPtlieon Reference Manual

14 Chapter 2. Built-In Objects

2.3.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
x or y | if xis false, thery, elsex (1)
x and vy | if xis false, therx, elsey (1)
not x if xis false, therTrue , elseFalse (2

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ’ has a lower priority than non-Boolean operatorsnsd a
anda not bis a syntax error.

bis interpreted agot (a b),

2.3.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of
the Boolean operations). Comparisons can be chained arbitrarily; for examgley <= zis equivalent tox <

y and y <= z except thay is evaluated only once (but in both cases not evaluated at all whex < yis

found to be false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
I= not equal (1)
<> not equal)
is object identity

is not negated object identity

Notes:
(1) <> and!= are alternate spellings for the same operdtoris the preferred spellings> is obsolescent.

Objects of different types, except different numeric types and different string types, never compare equal; such
objects are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result).
Furthermore, some types (for example, file objects) support only a degenerate notion of comparison where any
two objects of that type are unequal. Again, such objects are ordered arbitrarily but consistently<¥he and

>= operators will raise &ypeError exception when any operand is a complex number.

Instances of a class normally compare as non-equal unless the class definesrtipe () method. Refer to
the Python Reference Manufdr information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the
same types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, “and ‘not in
(below).

’, are supported only by sequence types

2.3.4 Numeric Types

There are four distinct numeric typgdain integerslong integersfloating point numbersandcomplex numbers
In addition, Booleans are a subtype of plain integers. Plain integers (also justicédigerd are implemented

2.3. Built-in Types 15

usinglong in C, which gives them at least 32 bits of precision. Long integers have unlimited precision. Floating
point numbers are implemented usihguble in C. All bets on their precision are off unless you happen to know
the machine you are working with.

Complex numbers have a real and imaginary part, which are each implementediosblg in C. To extract
these parts from a complex numleusezreal andzimag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer
literals (including hex and octal numbers) yield plain integers unless the value they denote is too large to be
represented as a plain integer, in which case they yield a long integer. Integer literals vitloar * suffix yield

long integers (L’ is preferred becausdl ' looks too much like eleven!). Numeric literals containing a decimal
point or an exponent sign yield floating point numbers. Appendingr ‘ J’ to a numeric literal yields a complex
number with a zero real part. A complex numeric literal is the sum of a real and an imaginary part.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric
types, the operand with the “narrower” type is widened to that of the other, where plain integer is narrower than
long integer is narrower than floating point is narrower than complex. Comparisons between numbers of mixed
type use the same rufeThe constructorgit() ,long() ,float() , andcomplex() can be used to produce
numbers of a specific type.

All numeric types (except complex) support the following operations, sorted by ascending priority (operations in
the same box have the same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
X +y sum ofx andy
X -y difference ofx andy
X *y product ofx andy
X/ y guotient ofx andy Q)
X %y remainderok / vy 4)
-X X negated
+X x unchanged
abs(x) absolute value or magnitude »f
int(x) X converted to integer (2)
long(x) x converted to long integer 2)
float(x) x converted to floating point
complex(re, im) | a complex number with real pat, imaginary partm. im defaults to zero.
c.conjugate() conjugate of the complex number
divmod(X, V) thepair(x / 'y, X %Y) 3)(4)
pow(X, V) x to the powely
X ** y x to the powery

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus
infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either
operand is a long integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see functions
floor() andceil() inthemath module for well-defined conversions.

(3) See section 2.1, “Built-in Functions,” for a full description.

(4) Complex floor division operator, modulo operator, atiamod()
Deprecated since release 2.3stead convert to float usiraps() if appropriate.

Bit-string Operations on Integer Types

6As a consequence, the g, 2] is considered equal {d.0, 2.0] , and similarly for tuples.

16 Chapter 2. Built-In Objects

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2's complement value (for long integers, this assumes a sufficiently large number of bits that
no overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the
comparisons; the unary operatioi has the same priority as the other unary numeric operatigiisuid ‘- °).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same
priority):

Operation | Result Notes
X| 'y bitwise or of x andy
X"y bitwise exclusive oiof x andy
X &Yy bitwiseandof x andy
X << n | xshifted left byn bits D), (2
X >> n | xshifted right byn bits (D), (3)
~X the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and causéaueError to be raised.

(2) A left shift by n bits is equivalent to multiplication byow(2, n) without overflow check.

(3) A right shift by n bits is equivalent to division bgow(2, n) without overflow check.

2.3.5 lterator Types

New in version 2.2.

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support
the iteration methods.

One method needs to be defined for container objects to provide iteration support:

__iter __()
Return an iterator object. The object is required to support the iterator protocol described below. If a
container supports different types of iteration, additional methods can be provided to specifically request
iterators for those iteration types. (An example of an object supporting multiple forms of iteration would be
a tree structure which supports both breadth-first and depth-first traversal.) This method corresponds to the
tp _iter slot of the type structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together fteratibre
protocot

__iter __()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the
for andin statements. This method corresponds tottheiter slot of the type structure for Python
objects in the Python/C API.

next ()
Return the next item from the container. If there are no further items, raiStapéeration exception.
This method corresponds to ttpe _iternext slot of the type structure for Python objects in the Python/C
API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iteratoiext() method raiseStoplteration , it will continue
to do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This constraint
was added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

2.3. Built-in Types 17

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter __() method is implemented as a generator, it will automatically return an iterator object (technically, a
generator object) supplying the iter __() andnext() methods.

2.3.6 Sequence Types

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

String literals are written in single or double quotégyzzy’ , "frobozz" . See chapter 2 of thEBython
Reference Manudbr more about string literals. Unicode strings are much like strings, but are specified in the
syntax using a preceeding’‘characteru’abc’ ,u"def" . Lists are constructed with square brackets, separating
items with commas[a, b, c] . Tuples are constructed by the comma operator (not within square brackets),
with or without enclosing parentheses, but an empty tuple must have the enclosing parenthesesa,siich as

c or () . Asingle item tuple must have a trailing comma, suclidgs .

Buffer objects are not directly supported by Python syntax, but can be created by calling the builtin function
buffer() . They don't support concatenation or repetition.

Xrange objects are similar to buffers in that there is no specific syntax to create them, but they are created using
thexrange() function. They don’t support slicing, concatenation or repetition, and usingot in , min()
ormax() on them is inefficient.

Most sequence types support the following operations. théand ‘not in ' operations have the same priori-
ties as the comparison operations. Thegnd *’ operations have the same priority as the corresponding numeric
operations.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same
priority). In the tables andt are sequences of the same typg;andj are integers:

Operation Result Notes
X in s 1 if an item ofsis equal tox, else0 (1)
X not in s | Oifanitem ofsis equal tax, elsel (1)
s+t the concatenation afandt
s * n, n * s | nshallow copies o concatenated | (2)
9 i] i'th item of s, origin O 3)
g i:] slice ofsfromitoj (3), (4)
gi:j: K slice ofsfromi toj with stepk (3), (5)
len(9 length ofs
min(s) smallest item o6
max(s) largest item of

Notes:

(1) Whensis a string or Unicode string object tive andnot in operations act like a substring test. In Python
versions before 2.3 had to be a string of length 1. In Python 2.3 and beyoniehay be a string of any
length.

(2) Values ofn less tharD are treated a® (which yields an empty sequence of the same typs).ablote also
that the copies are shallow; nested structures are not copied. This often haunts new Python programmers;
consider:

>>> lists = [[]] * 3
>>> lists

i o m

>>> lists[0].append(3)
>>> lists

(3], 3], 31

“They must have since the parser can't tell the type of the operands.

18 Chapter 2. Built-In Objects

What has happened is thiidts is a list containing three copies of the li§f] (a one-element list
containing an empty list), but the contained list is shared by each copy. You can create a list of different lists
this way:

>>> lists = [[] for i in range(3)]
>>> lists[0].append(3)

>>> lists[1].append(5)

>>> lists[2].append(7)

>>> |ists

(3], 58], [71

(3) If i orj is negative, the index is relative to the end of the strieg{ s) + iorlen(s) + |is substituted.

But note thatO is still O.

(4) The slice ofsfromi to is defined as the sequence of items with indlesuch thai <= k < j. Ifiorjis

greater thaten(s), uselen(s). If i is omitted, usd. If j is omitted, uséen(s) . If i is greater than or
equal toj, the slice is empty.

(5) The slice ofsfromi to j with stepk is defined as the sequence of items with index i + n*k such thaD

<= n < abs(i-j) . If i orj is greater thaten(s), uselen(s). If i orj are omitted then they become
“end” values (which end depends on the sigkjpfNote,k cannot be zero.

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:

capitalize 0

Return a copy of the string with only its first character capitalized.

center (width)

Return centered in a string of lengthdth. Padding is done using spaces.

count (sut{, starl[, end]])

Return the number of occurrences of substsngin string § start end . Optional argumentstart and
endare interpreted as in slice notation.

decode ([encodini, errors]])

Decodes the string using the codec registereéhmoding encodingdefaults to the default string encoding.

errors may be given to set a different error handling scheme. The defaigtrist’ , meaning that
encoding errors rais€alueError . Other possible values afignore’ and’replace’ . Newin
version 2.2,

encode ([encodin(i,errors]])

Return an encoded version of the string. Default encoding is the current default string encerang.

may be given to set a different error handling scheme. The defaudtrfors is 'strict’ , meaning that
encoding errors raise\dalueError . Other possible values alignore’ and’replace’ . Newin
version 2.0.

endswith (suffi>{, starl[, end]])

ReturnTrue if the string ends with the specifieliffix otherwise returriralse . With optionalstart, test
beginning at that position. With optionahd stop comparing at that position.

expandtabs ([tabsizd)

Return a copy of the string where all tab characters are expanded using spéaiesizés not given, a tab
size of8 characters is assumed.

find (sut{, starl{, end]])

Return the lowest index in the string where substsnis found, such thasubis contained in the range
[start, end. Optional argumentstart andendare interpreted as in slice notation. Retutnif subis not
found.

2.3. Built-in Types 19

index (sut{, starl[, end]])
Like find() , but raisevalueError when the substring is not found.

isalnum ()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

isalpha ()

Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
isdigit ()

Return true if all characters in the string are digits and there is at least one character, false otherwise.
islower ()

Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

isspace ()
Return true if there are only whitespace characters in the string and there is at least one character, false
otherwise.

istitle 0
Return true if the string is a titlecased string and there is at least one character, i.e. uppercase characters
may only follow uncased characters and lowercase characters only cased ones. Return false otherwise.

isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

join ('seg
Return a string which is the concatenation of the strings in the seqeeqcEhe separator between elements
is the string providing this method.

ljust (width)
Return the string left justified in a string of lengthdth. Padding is done using spaces. The original string
is returned ifwidthis less thaden(s) .

lower ()
Return a copy of the string converted to lowercase.

Istrip ([chars])
Return a copy of the string with leading characters removecthédfrsis omitted orNone, whitespace
characters are removed. If given and Natne, charsmust be a string; the characters in the string will be
stripped from the beginning of the string this method is called on. Changed in version 2.2.2: Support for
thecharsargument.

replace (old, nevs[, count])
Return a copy of the string with all occurrences of substdlitreplaced bynew If the optional argument
countis given, only the firstountoccurrences are replaced.

rfind (sub[,start [,end]])
Return the highest index in the string where substsng is found, such thasubis contained within
s[start,end]. Optional argumerdtart andendare interpreted as in slice notation. Retutnon failure.

rindex (sut{, starl{, end]])
Like rfind() but raises/alueError when the substringubis not found.

rjust (width)
Return the string right justified in a string of lengtidth. Padding is done using spaces. The original string
is returned ifwidthis less thaden(s).

rstrip ([chars])
Return a copy of the string with trailing characters removedchtirsis omitted orNone, whitespace
characters are removed. If given and Naine, charsmust be a string; the characters in the string will be
stripped from the end of the string this method is called on. Changed in version 2.2.2: Supportfarthe
argument.

split [sep[,maxsplit]])

20 Chapter 2. Built-In Objects

Return a list of the words in the string, usisgpas the delimiter string. axsplitis given, at mostnaxsplit
splits are done. Iepis not specified oNone, any whitespace string is a separator.

splitlines ([keepend})
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the
resulting list unles&eependss given and true.

startswith (prefix[, starl{, end]])
ReturnTrue if string starts with theorefix otherwise returfralse . With optionalstart, test string begin-
ning at that position. With optionand stop comparing string at that position.

strip ([Chars])
Return a copy of the string with leading and trailing characters removedhalfsis omitted orNone,
whitespace characters are removed. If given and\Nmote, charsmust be a string; the characters in the
string will be stripped from the both ends of the string this method is called on. Changed in version 2.2.2:
Support for thecharsargument.

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

titte ()
Return a titlecased version of the string: words start with uppercase characters, all remaining cased charac-
ters are lowercase.

translate (table[, deletechari)
Return a copy of the string where all characters occurring in the optional argdeletgcharsre removed,
and the remaining characters have been mapped through the given translation table, which must be a string
of length 256.

For Unicode objects, thganslate() method does not accept the optiodaletecharsargument. In-
stead, it returns a copy of tlewhere all characters have been mapped through the given translation table
which must be a mapping of Unicode ordinals to Unicode ordinals, Unicode stringsree. Unmapped
characters are left untouched. Characters mappétbte are deleted. Note, a more flexible approach is

to create a custom character mapping codec usingdtiecs module (seencodings.cp1251 for an

example).
upper ()

Return a copy of the string converted to uppercase.
zfill (width)

Return the numeric string left filled with zeros in a string of lengildth. The original string is returned if
widthis less thaen(s). New in version 2.2.2.

String Formatting Operations

String and Unicode objects have one unique built-in operationb@erator (modulo). This is also known as the
string formattingor interpolationoperator. Giverformat %values(whereformatis a string or Unicode object),
%conversion specifications flormatare replaced with zero or more elementvalues The effect is similar to
the usingsprintf() in the C language. Hormatis a Unicode object, or if any of the objects being converted
using thedbsconversion are Unicode objects, the result will also be a Unicode object.

If formatrequires a single argumentaluesmay be a single non-tuple object. Otherwise,valuesmust be a
tuple with exactly the number of items specified by the format string, or a single mapping object (for example, a
dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in
this order:

1. The % character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for efgnmEeame)).

3. Conversion flags (optional), which affect the result of some conversion types.

8To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

2.3. Built-in Types 21

4. Minimum field width (optional). If specified as an’* (asterisk), the actual width is read from the next
element of the tuple inalues and the object to convert comes after the minimum field width and optional

precision.

5. Precision (optional), given as a’* (dot) followed by the precision. If specified as’*(an asterisk), the
actual width is read from the next element of the tupledtues and the value to convert comes after the

precision.

6. Length modifier (optional).

7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in therstrstonclude a
parenthesised mapping key into that dictionary inserted immediately afteddloharacter. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print '%(language)s has %(#)03d quote types.” % \

{language’: "Python", "#": 2}

Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

‘# | The value conversion will use the “alternate form” (where defined below).

‘0’ | The conversion will be zero padded for numeric values.

‘-’ | The converted value is left adjusted (overrides ieconversion if both are given).
‘' | (aspace) A blank should be left before a positive number (or empty string) produced by a signed conversion.
‘+' | Asign character ¢ or ‘- ") will precede the conversion (overrides a "space” flag).

The length modifier may ble, | , andL may be present, but are ignored as they are not necessary for Python.

The conversion types are:

Conversion | Meaning Notes

‘d’ Signed integer decimal.
G Signed integer decimal.
‘o’ Unsigned octal. Q)
‘u’ Unsigned decimal.
X’ Unsigned hexidecimal (lowercase). (2)
‘X Unsigned hexidecimal (uppercase). (2)
‘e’ Floating point exponential format (lowercase).
‘E Floating point exponential format (uppercase).
‘f Floating point decimal format.
‘F Floating point decimal format.
‘g’ Same aseé’ if exponent is greater than -4 or less than precisibhptherwise.
‘G Same asE’ if exponent is greater than -4 or less than precisiéhptherwise.
‘c’ Single character (accepts integer or single character string).
‘r’ String (converts any python object usirepr()). 3)
‘s’ String (converts any python object usisg()). 4
‘% No argument is converted, results in% tharacter in the result.

Notes:

(1) The alternate form causes a leading ze®) (o be inserted between left-hand padding and the formatting of
the number if the leading character of the result is not already a zero.

22

Chapter 2. Built-In Objects

(2) The alternate form causes a leadilg’ or’0X’ (depending on whether the"or * X' format was used) to
be inserted between left-hand padding and the formatting of the number if the leading character of the result
is not already a zero.

(3) The%r conversion was added in Python 2.0.

(4) If the object or format provided isanicode string, the resulting string will also henicode .

Since Python strings have an explicit lend¥bs conversions do not assume tA&t is the end of the string.

For safety reasons, floating point precisions are clipped t&@&Gonversions for numbers whose absolute value
is over 1e25 are replaced Bygconversions. All other errors raise exceptions.

Additional string operations are defined in standard modstlésy andre .

XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange type
is that an xrange object will always take the same amount of memory, no matter the size of the range it represents.
There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration, aneitf)e function.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. Other mutable sequence
types (when added to the language) should also support these operations. Strings and tuples are immutable se-
guence types: such objects cannot be modified once created. The following operations are defined on mutable
sequence types (whexéds an arbitrary object):

Operation Result Notes
qgi] = X itemi of sis replaced by
qJi:j] = t slice ofsfromi toj is replaced by
del di:j] same ag i:j] = []
qJi:ij: kK = t the elements off i: j: k] are replaced by those bf Q)
del g i:j: K] removes the elements dfi: j: k] from the list
s.append(x) same agllen(s)len(9] =[X (2)
s.extend(X) same agllen(s)len(9] = x 3)
s.count(X) return number of's for whichg[i] == X
s.index(x[, i[, j]]) return smallesk such thag[k] == xandi <= k < j 4)
sinsert(i, X) sameas i:i] = [X (5)
s.pop([i]) same ax = di]; del di]; return X (6)
sremove(X) same aslel g sindex(X)] (4)
s.reverse() reverses the items afin place 7
s.sort([cmpfunc:Noné) sort the items o§in place (7), (8), (9), (10)

Notes:

(1) t must have the same length as the slice it is replacing.

(2) The Cimplementation of Python has historically accepted multiple parameters and implicitly joined them into
a tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

(3) Raises an exception wharis not a list object.

9These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct
use and without having to know the exact precision of floating point values on a particular machine.

2.3. Built-in Types 23

(4) RaisesValueError whenx is not found ins. When a negative index is passed as the second or third
parameter to thendex() method, the list length is added, as for slice indices. If it is still negative, it is
truncated to zero, as for slice indices. Changed in version 2.3: Previmd#y() didn’t have arguments
for specifying start and stop positions.

(5) When a negative index is passed as the first parameter tngée() method, the list length is added, as
for slice indices. If it is still negative, it is truncated to zero, as for slice indices. Changed in version 2.3:
Previously, all negative indices were truncated to zero.

(6) Thepop() method is only supported by the list and array types. The optional argurdefgults to-1 , so
that by default the last item is removed and returned.

(7) Thesort() andreverse() methods modify the list in place for economy of space when sorting or
reversing a large list. To remind you that they operate by side effect, they don't return the sorted or reversed
list.

(8) Thesort() method takes an optional argument specifying a comparison function of two arguments (list
items) which should return a negative, zero or positive number depending on whether the first argument
is considered smaller than, equal to, or larger than the second argument. Note that this slows the sorting
process down considerably; for example to sort a list in reverse order it is much faster sort@ll
followed byreverse() thantousesort() with a comparison function that reverses the ordering of the
elements. Passingone as the comparison function is semantically equivalent to caflort() with no
comparison function. Changed in version 2.3: SupporiNone as an equivalent to omittingmpfunowas
added.

As an example of using thempfuncargument to thesort() method, consider sorting a list of sequences
by the second element of that list:

def mycmp(a, b):
return cmp(a[l], b[1])

mylist.sort(mycmp)

A more time-efficient approach for reasonably-sized data structures can often be used:

tmplist = [(x[1], x) for x in mylist]
tmplist.sort()
mylist = [x for (key, x) in tmplist]

(9) Whether thesort() method is stable is not defined by the language (a sort is stable if it guarantees not
to change the relative order of elements that compare equal). In the C implementation of Python, sorts
were stable only by accident through Python 2.2. The C implementation of Python 2.3 introduced a stable
sort() method, but code that intends to be portable across implementations and versions must not rely on
stability.

(10) While a list is being sorted, the effect of attempting to mutate, or even inspect, the list is undefined. The C
implementation of Python 2.3 makes the list appear empty for the duration, andVaise&rror if it
can detect that the list has been mutated during a sort.

2.3.7 Mapping Types

A mappingobject maps immutable values to arbitrary objects. Mappings are mutable objects. There is currently
only one standard mapping type, tbietionary. A dictionary’s keys are almost arbitrary values. Only values
containing lists, dictionaries or other mutable types (that are compared by value rather than by object identity)
may not be used as keys. Numeric types used for keys obey the normal rules for numeric comparison: if two
numbers compare equal (suchlaand1.0) then they can be used interchangeably to index the same dictionary
entry.

24 Chapter 2. Built-In Objects

Dictionaries are created by placing a comma-separated likeyf value pairs within braces, for example:
{jack’: 4098, ’sjoerd: 4127} or{4098: ‘jack’, 4127: ’sjoerd’}

The following operations are defined on mappings (wlaexedb are mappingsk is a key, and/ andx are arbitrary
objects):

Operation Result Notes
len(a) the number of items ia
al K] the item ofa with key k 1)
akl = v seta] k] tov
del a[K removea K] froma Q)
a.clear() remove all items frona
a.copy() a (shallow) copy of
ahas _key(k) True if ahas a ke, elseFalse
kin a Equivalent toa.has key(K) (2)
k not in a Equivalent tonot a.has key(K) (2)
a.items() a copy ofa’s list of (key, valug pairs 3)
a.keys() a copy ofa’s list of keys ©)
a.update(b) for k in b.keys(): a[k] = b[K]
a.fromkeys(sec[, vaIue]) Creates a new dictionary with keys frasagand values set tealue @)
a.values() a copy ofa’s list of values 3)
a.get(k[, x|) a[K] ifk in a,elsex 4)
a.setdefault(K|, x]) a[K] if k in a, elsex (also setting it) (5)
a.pop(k[, x| al k] if k in &, elsex (and remove k) (8)
a.popitem() remove and return an arbitrargey, value pair (6)
a.iteritems() return an iterator ovekgy, value pairs (2), (3)
a.iterkeys() return an iterator over the mapping’s keys (2), (3)
a.itervalues() return an iterator over the mapping’s values (2), (3)

Notes:

(1) Raises &eyError exception ifk is not in the map.
(2) New in version 2.2.

(3) Keys and values are listed in random order. itdms() , keys() , values() , iteritems() ,
iterkeys() , and itervalues() are called with no intervening modifications to the dictionary,
the lists will directly correspond. This allows the creation (ofalue key) pairs usingzip()
‘pairs = zip(avalues(), a.keys()) . The same relationship holds for thterkeys()
and itervalues() methods: pairs = zip(a.itervalues(), a.iterkeys()) ' provides
the same value fgpairs . Another way to create the same listairs = [(v, k) for (k, V)
in a.iteritems()]

(4) Never raises an exceptionkfis not in the map, instead it returnsx is optional; wherx is not provided and
k is not in the mapNone is returned.

(5) setdefault() is like get() , exceptthatikis missingxis both returned and inserted into the dictionary
as the value ok.

(6) popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms.
(7) fromkeys() is a class method that returns a new dictionagyuedefaults toNone. New in version 2.3.

(8) pop() raises &KeyError when no default value is given and the key is not found. New in version 2.3.

2.3.8 File Objects

File objects are implemented using Gslio package and can be created with the built-in constriieg)
described in section 2.1, “Built-in Function¥’File objects are also returned by some other built-in functions and

1%ile() is new in Python 2.2. The older built-bpen() is an alias foffile()

2.3. Built-in Types 25

methods, such ass.popen() andos.fdopen() and themakefile() method of socket objects.

When a file operation fails for an 1/O-related reason, the excep@&hror is raised. This includes situations
where the operation is not defined for some reason,déek() on a tty device or writing a file opened for
reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written any more. Any operation which requires that the
file be open will raise &alueError after the file has been closed. Callidgse() = more than once is
allowed.

flush ()
Flush the internal buffer, liketdio s fflush() . This may be a no-op on some file-like objects.

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request 1/O operations
from the operating system. This can be useful for other, lower level interfaces that use file descriptors, such
as thefcntl module oros.read() and friends.Note: File-like objects which do not have a real file
descriptor shouldot provide this method!

isatty ()
ReturnTrue if the file is connected to a tty(-like) device, elBalse . Note: If a file-like object is not
associated with a real file, this method showdd be implemented.

next ()
A file object is its own iterator, for exampleer() returnsf (unlessf is closed). When a file is used
as an iterator, typically in or loop (for examplefor line in f: print line), thenext()
method is called repeatedly. This method returns the next input line, or Bigelseration whenEeEoF
is hit. In order to make #or loop the most efficient way of looping over the lines of a file (a very common
operation), thanext() method uses a hidden read-ahead buffer. As a consequence of using a read-ahead
buffer, combiningnext() with other file methods (likeeadline()) does not work right. However,
usingseek() to reposition the file to an absolute position will flush the read-ahead buffer. New in version
2.3.

read ([size])
Read at mossizebytes from the file (less if the read hiOF before obtainingsizebytes). If thesize
argument is negative or omitted, read all data urik is reached. The bytes are returned as a string object.
An empty string is returned whemoF is encountered immediately. (For certain files, like ttys, it makes
sense to continue reading after maF is hit.) Note that this method may call the underlying C function
fread() more than once in an effort to acquire as clossimebytes as possible. Also note that when
in non-blocking mode, less data than what was requested may be returned, eveizdparameter was
given.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the $tribgt may be absent
when a file ends with an incomplete line). If thizeargument is present and non-negative, it is a maximum
byte count (including the trailing newline) and an incomplete line may be returned. An empty string is
returnedonly wheneoris encountered immediateljote: Unlike stdio s fgets() , the returned string
contains null character8@’) if they occurred in the input.

readlines ([sizehint])
Read untileoF usingreadline() and return a list containing the lines thus read. If the optisizhint
argument is present, instead of reading ugd, whole lines totalling approximatelyizehintbytes (pos-
sibly after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may
choose to ignoreizehintif it cannot be implemented, or cannot be implemented efficiently.

xreadlines ()
This method returns the same thingtas(f) . New in version 2.1.Deprecated since release 2.8lse
for line in file instead.

11The advantage of leaving the newline on is that returning an empty string is then an unamtsigeduication. It is also possible (in
cases where it might matter, for example, if you want to make an exact copy of a file while scanning its lines) to tell whether the last line of a
file ended in a newline or not (yes this happens!).

26 Chapter 2. Built-In Objects

seek (offse{, whencd)
Set the file’s current position, liketdio 's fseek() . Thewhenceargument is optional and defaults@o
(absolute file positioning); other values dréseek relative to the current position) abdseek relative to
the file’s end). There is no return value. Note that if the file is opened for appending (aloder 'a+’),
anyseek() operations will be undone at the next write. If the file is only opened for writing in append
mode (modeéa’), this method is essentially a no-op, but it remains useful for files opened in append mode
with reading enabled (moda+’). If the file is opened in text mode (modé), only offsets returned by
tell() are legal. Use of other offsets causes undefined behavior.

Note that not all file objects are seekable.

tell ()
Return the file’s current position, likedio s ftell()

truncate ([size])
Truncate the file's size. If the optionsizeargument is present, the file is truncated to (at most) that size.
The size defaults to the current position. The current file position is not changed. Note that if a specified size
exceeds the file’s current size, the result is platform-dependent: possibilities include that file may remain
unchanged, increase to the specified size as if zero-filled, or increase to the specified size with undefined
new content. Availability: Windows, manyux variants.

write ('str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually show up in
the file until theflush() orclose() method is called.

writelines (sequence
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typically a
list of strings. There is no return value. (The name is intended to mesahines() ; writelines()
does not add line separators.)

Files support the iterator protocol. Each iteration returns the same reéidtrasdline() , and iteration ends
when thereadline() method returns an empty string.

File objects also offer a hnumber of other interesting attributes. These are not required for file-like objects, but
should be implemented if they make sense for the particular object.

closed
bool indicating the current state of the file object. This is a read-only attributegltise() = method
changes the value. It may not be available on all file-like objects.

encoding
The encoding that this file uses. When Unicode strings are written to a file, they will be converted to byte
strings using this encoding. In addition, when the file is connected to a terminal, the attribute gives the
encoding that the terminal is likely to use (that information might be incorrect if the user has misconfigured
the terminal). The attribute is read-only and may not be present on all file-like objects. It may Alende
in which case the file uses the system default encoding for converting Unicode strings.

New in version 2.3.

mode
The 1/0 mode for the file. If the file was created using gpen() built-in function, this will be the value
of themodeparameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created usirmgpen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the forr...> . This is a read-only attribute and may not be present on all
file-like objects.

newlines
If Python was built with the-with-universal-newlines option (the default) this read-only at-
tribute exists, and for files opened in universal newline read mode it keeps track of the types of newlines
encountered while reading the file. The values it can také&rre ,\n’ ,\r\n’ , None (unknown, no
newlines read yet) or a tuple containing all the newline types seen, to indicate that multiple newline conven-
tions were encountered. For files not opened in universal newline read mode the value of this attribute will
beNone.

2.3. Built-in Types 27

softspace
Boolean that indicates whether a space character needs to be printed before another value when using the
print statement. Classes that are trying to simulate a file object should also have a veofédpace
attribute, which should be initialized to zero. This will be automatic for most classes implemented in Python
(care may be needed for objects that override attribute access); types implemented in C will have to provide
a writablesoftspace attribute. Note: This attribute is not used to control tipgeint statement, but to
allow the implementation grint to keep track of its internal state.

2.3.9 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute accessiame wherem is a module anchameaccesses a
name defined im's symbol table. Module attributes can be assigned to. (Note thatihert statement is not,
strictly speaking, an operation on a module obj@ofport foo does not require a module object nanfedto
exist, rather it requires an (externdgfinitionfor a module nametbo somewhere.)

A special member of every module is dict __. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignmenttathet __
attribute is not possible (you can write __dict __['a] = 1 , which defineam.a to bel, but you can’t
writem. __dict __ = {}).

Modules built into the interpreter are written like thiamodule 'sys’ (built-in)> . If loaded from afile,
they are written asmodule 'os’ from ‘/usr/local/lib/python2.3/0s.pyc’>

Classes and Class Instances

See chapters 3 and 7 of tRgthon Reference Manufdr these.

Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
fung argument-lis} .

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the
same operation (to call the function), but the implementation is different, hence the different object types.

The implementation adds two special read-only attribufefsinc _code is a function’scode objecisee be-
low) andf.func _globals is the dictionary used as the function’s global namespace (this is the same as
m. __dict __ wheremis the module in which the functiohwas defined).

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to attach
metadata to functions. Regular attribute dot-notation is used to get and set such attiNmtieshat the cur-

rent implementation only supports function attributes on user-defined functions. Function attributes on built-in
functions may be supported in the future.

Functions have another special attribfite _dict __ (a.k.a. f.func _dict) which contains the namespace
used to support function attributes. dict __ andfunc _dict can be accessed directly or set to a dictionary
object. A function’s dictionary cannot be deleted.

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

28 Chapter 2. Built-In Objects

The implementation adds two special read-only attributes to class instance mettiods:self is the object on
which the method operates, andm _func is the function implementing the method. Callim§arg-1, arg-

2, ..., arg-n) is completely equivalent to callingh.im _func(m.im _self, arg-1, arg-2, ..., arg-

n .

Class instance methods are eitheundor unbound referring to whether the method was accessed through an
instance or a class, respectively. When a method is unboumah, itself ~ attribute will beNone and if called, an
explicitself object must be passed as the first argument. In this salfe, must be an instance of the unbound
method’s class (or a subclass of that class), otherwiggaError is raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function objetigth.im _func), setting method attributes on either bound or
unbound methods is disallowed. Attempting to set a method attribute resulfByipedrror being raised. In

order to set a method attribute, you need to explicitly set it on the underlying function object:

class C:
def method(self):
pass

c = C()
c.method.im_func.whoami = 'my name is ¢’

See thePython Reference Manufdr more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a
function body. They differ from function objects because they don’t contain a reference to their global execution
environment. Code objects are returned by the buittempile() function and can be extracted from function
objects through theifiunc _code attribute.

A code object can be executed or evaluated by passing it (instead of a source stringgxecthetatement or the
built-in eval() function.

See thePython Reference Manufdr more information.

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in fiypet{dn .
There are no special operations on types. The standard mtghds defines names for all standard built-in

types.
Types are written like thisctype ’'int'>

The Null Object

This object is returned by functions that don'’t explicitly return a value. It supports no special operations. There is
exactly one null object, namédione (a built-in name).

It is written asNone.

The Ellipsis Object

This object is used by extended slice notation (se@ttieon Reference Manyalt supports no special operations.
There is exactly one ellipsis object, nanteitipsis (a built-in name).

It is written asEllipsis

2.3. Built-in Types 29

Boolean Values

Boolean values are the two constant objéilse andTrue . They are used to represent truth values (although

other values can also be considered false or true). In numeric contexts (for example when used as the argument to
an arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in flbuiGn can be

used to cast any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing
above).

They are written afalse andTrue , respectively.

Internal Objects

See thePython Reference Manu#dr this information. It describes stack frame objects, traceback objects, and
slice objects.

2.3.10 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some
of these are not reported by tdeg() built-in function.

__dict __
A dictionary or other mapping object used to store an object’s (writable) attributes.

__methods __
Deprecated since release 2.2Jse the built-in functiordir() to get a list of an object’s attributes. This
attribute is no longer available.

__members__
Deprecated since release 2.2Jse the built-in functiordir() to get a list of an object’s attributes. This
attribute is no longer available.

__class __
The class to which a class instance belongs.

__bases __
The tuple of base classes of a class object. If there are no base classes, this will be an empty tuple.

__hame__
The name of the class or type.

2.4 Built-in Exceptions

Exceptions should be class objects. The exceptions are defined in the rerdeggions . This module never
needs to be imported explicitly: the exceptions are provided in the built-in namespace as wetbasfit®ons
module.

Note: In past versions of Python string exceptions were supported. In Python 1.5 and newer versions, all standard
exceptions have been converted to class objects and users are encouraged to do the same. String exceptions will
raise aPendingDeprecationWarning . In future versions, support for string exceptions will be removed.

Two distinct string objects with the same value are considered different exceptions. This is done to force program-
mers to use exception names rather than their string value when specifying exception handlers. The string value of
all built-in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined
by library modules.

For class exceptions, intey statement with aexcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes front istdehived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where men-
tioned, they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple

30 Chapter 2. Built-In Objects

containing several items of information (e.g., an error code and a string explaining the code). The associated value
is the second argument to thaise statement. For string exceptions, the associated value itself will be stored

in the variable named as the second argument oéxeept clause (if any). For class exceptions, that variable
receives the exception instance. If the exception class is derived from the standard roBkctgston , the
associated value is present as the exception instaaiggss attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to
prevent user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from thexception base class. More information on defining exceptions is available in
the Python Tutorialunder the heading “User-defined Exceptions.”

The following exceptions are only used as base classes for other exceptions.

exceptionException
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforcedsfff)e function, when applied to
an instance of this class (or most derived classes) returns the string value of the argument or arguments, or
an empty string if no arguments were given to the constructor. When used as a sequence, this accesses the
arguments given to the constructor (handy for backward compatibility with old code). The arguments are
also available on the instanceisgs attribute, as a tuple.

exceptionStandardError
The base class for all built-in exceptions excgfaplteration andSystemExit . StandardError
itself is derived from the root clagsxception

exceptionArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic @wrerBowError
ZeroDivisionError , FloatingPointError

exceptionLookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is
invalid: IndexError , KeyError . This can be raised directly tsys.setdefaultencoding()

exceptionEnvironmentError
The base class for exceptions that can occur outside the Python syi€@&mor , OSError . When
exceptions of this type are created with a 2-tuple, the first item is available on the instmce’s attribute
(it is assumed to be an error number), and the second item is available strdirer attribute (it is
usually the associated error message). The tuple itself is also available argtheattribute. New in
version 1.5.2.

When arEnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on tllename attribute. However, for backwards compatibility,
theargs attribute contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute isNone when this exception is created with other than 3 argumentseirhe
andstrerror attributes are alsblone when the instance was created with other than 2 or 3 arguments.
In this last caseargs contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exceptionAssertionError
Raised when amssert statement fails.

exceptionAttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references
or attribute assignments at allypeError s raised.)

exceptionEOFError
Raised when one of the built-in functioriggut() orraw _input()) hits an end-of-file conditiorg0F)
without reading any data. (N.B.: thead() andreadline() methods of file objects return an empty
string when they hiEOF.)

exceptionFloatingPointError

2.4. Built-in Exceptions 31

Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with thewith-fpectl option, or theWANTSIGFPE_HANDLERYmbol is defined in
the ‘pyconfig.h’ file.

exceptionlOError
Raised when an 1/O operation (such gwimt statement, the built-iopen() function or a method of a
file object) fails for an 1/0O-related reason, e.g., “file not found” or “disk full”.

This class is derived fronEnvironmentError . See the discussion above for more information on
exception instance attributes.

exceptionimportError
Raised when amport statement fails to find the module definition or whefncem ... import fails
to find a name that is to be imported.

exceptionindexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integdiypeError s raised.)

exceptionKeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exceptionKeyboardinterrupt
Raised when the user hits the interrupt key (norm@tytrol-C or Delete). During execution, a check
for interrupts is made regularly. Interrupts typed when a built-in fundtipuoit() — orraw _input() s
waiting for input also raise this exception.

exceptionMemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some ob-
jects). The associated value is a string indicating what kind of (internal) operation ran out of memory. Note
that because of the underlying memory management architecturm@litec() function), the interpreter
may not always be able to completely recover from this situation; it nevertheless raises an exception so that
a stack traceback can be printed, in case a run-away program was the cause.

exceptionNameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated
value is an error message that includes the name that could not be found.

exceptionNotimplementedError
This exception is derived frorRuntimeError . In user defined base classes, abstract methods should
raise this exception when they require derived classes to override the method. New in version 1.5.2.

exceptionOSError
This class is derived frorkEnvironmentError and is used primarily as thes module’sos.error
exception. Se&nvironmentError above for a description of the possible associated values. New in
version 1.5.2.

exceptionOverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiddéemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits
than raise an exception.

exceptionReferenceError
This exception is raised when a weak reference proxy, created bydh&ref .proxy() function,
is used to access an attribute of the referent after it has been garbage collected. For more informa-
tion on weak references, see theeakref module. New in version 2.2: Previously known as the
weakref .ReferenceError exception.

exceptionRuntimeError
Raised when an error is detected that doesn't fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of
the interpreter; it is not used very much any more.)

exceptionStoplteration

32 Chapter 2. Built-In Objects

Raised by an iterator'sext() method to signal that there are no further values. This is derived from
Exception rather tharStandardError , since this is not considered an error in its normal application.
New in version 2.2.

exceptionSyntaxError
Raised when the parser encounters a syntax error. This may occuiritpart statement, in aexec
statement, in a call to the built-in functieval() or input() , or when reading the initial script or
standard input (also interactively).

Instances of this class have atttribufdésname , lineno , offset andtext for easier access to the
details.str() of the exception instance returns only the message.

exceptionSystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version
of the Python interpretersys.version ; it is also printed at the start of an interactive Python session),

the exact error message (the exception’s associated value) and if possible the source of the program that
triggered the error.

exceptionSystemExit
This exception is raised by tlsys.exit() function. When it is not handled, the Python interpreter exits;
no stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status
(passed to C'exit() function); if it is None, the exit status is zero; if it has another type (such as a
string), the object’s value is printed and the exit status is one.

Instances have an attributede which is set to the proposed exit status or error message (defaulting to
None). Also, this exception derives directly froBxception and notStandardError |, since it is not
technically an error.

A call to sys.exit() is translated into an exception so that clean-up handieely clauses ofry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. _exit() function can be used if it is absolutely positively necessary to exit immediately

(for example, in the child process after a calfook()).

exceptionTypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is
a string giving details about the type mismatch.

exceptionUnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to
that variable. This is a subclassdameError . New in version 2.0.

exceptionUnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subdladgadfrror . New
in version 2.0.

exceptionUnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subcldsikofieError . Newin
version 2.3.

exceptionUnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclasgofleError . Newin
version 2.3.

exceptionUnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subcldegotieError . New
in version 2.3.

exceptionValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception skncleakrror

exceptionWindowsError
Raised when a Windows-specific error occurs or when the error number does not correspoedrio an
value. Theerrno andstrerror values are created from the return values of @etLastError()

2.4. Built-in Exceptions 33

and FormatMessage() functions from the Windows Platform API. This is a subclassO&Error .
New in version 2.0.

exceptionZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; seedirengs module for more information.

exceptionWarning
Base class for warning categories.

exceptionUserWarning
Base class for warnings generated by user code.

exceptionDeprecationWarning
Base class for warnings about deprecated features.

exceptionPendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exceptionSyntaxWarning
Base class for warnings about dubious syntax

exceptionRuntimeWarning
Base class for warnings about dubious runtime behavior.

exceptionFutureWarning
Base class for warnings about constructs that will change semantically in the future.

The class hierarchy for built-in exceptions is:

34 Chapter 2. Built-In Objects

Exception

+-- SystemExit

+-- Stoplteration

+-- StandardError
+-- Keyboardinterrupt
+-- ImportError
+-- EnvironmentError

| +-- I0Error

| +-- OSError

| +-- WindowsError
+-- EOFETrror

I
I
I
I
I
I
I
| +-- RuntimeError
| | +-- NotlmplementedError
| +-- NameError
| | +-- UnboundLocalError
| +-- AttributeError
| +-- SyntaxError
| | +-- IndentationError
| | +-- TabError
| +-- TypeError
| +-- AssertionError
| +-- LookupError
| | +-- IndexError
| | +-- KeyError
| +-- ArithmeticError
| | +-- OverflowError
| | +-- ZeroDivisionError
| | +-- FloatingPointError
| +-- ValueError
| | +-- UnicodeError
| | +-- UnicodeEncodeError
| | +-- UnicodeDecodeError
| | +-- UnicodeTranslateError
| +-- ReferenceError
| +-- SystemError
| +-- MemoryError
+---Warning
+-- UserWarning
+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- SyntaxWarning
+-- OverflowWarning
+-- RuntimeWarning
+-- FutureWarning

2.5 Built-in Constants

A small number of constants live in the built-in namespace. They are:

False
The false value of thbool type. New in version 2.3.

True
The true value of theool type. New in version 2.3.

None
The sole value ofypes .NoneType . None is frequently used to represent the absence of a value, as
when default arguments are not passed to a function.

2.5. Built-in Constants 35

Notlmplemented
Special value which can be returned by the “rich comparison” special methodg (() , It __() ,
and friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
Special value used in conjunction with extended slicing syntax.

36 Chapter 2. Built-In Objects

CHAPTER
THREE

Python Runtime Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its
interaction with its environment. Here’s an overview:

sys Access system-specific parameters and functions.

gc Interface to the cycle-detecting garbage collector.
weakref Support for weak references and weak dictionaries.
fpectl Provide control for floating point exception handling.
atexit Register and execute cleanup functions.

types Names for built-in types.

UserDict Class wrapper for dictionary objects.

UserList Class wrapper for list objects.

UserString Class wrapper for string objects.

operator All Python’s standard operators as built-in functions.
inspect Extract information and source code from live objects.
traceback Print or retrieve a stack traceback.

linecache This module provides random access to individual lines from text files.
pickle Convert Python objects to streams of bytes and back.
cPickle Faster version gpickle , but not subclassable.

copy _reg Registempickle support functions.

shelve Python object persistence.

copy Shallow and deep copy operations.

marshal Convert Python objects to streams of bytes and back (with different constraints).
warnings Issue warning messages and control their disposition.
imp Access the implementation of tiraport statement.
pkgutil Utilities to support extension of packages.

code Base classes for interactive Python interpreters.
codeop Compile (possibly incomplete) Python code.

pprint Data pretty printer.

repr Alternaterepr() implementation with size limits.
new Interface to the creation of runtime implementation objects.
site A standard way to reference site-specific modules.
user A standard way to reference user-specific modules.
__builtin - __ The set of built-in functions.

__main __ The environment where the top-level script is run.
__future __ Future statement definitions

3.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv
The list of command line arguments passed to a Python serigw[0] is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed ustg the

37

command line option to the interpretargv[0] is set to the string-c’ . If no script name was passed
to the Python interpreteargv has zero length.

byteorder

An indicator of the native byte order. This will have the valoig' on big-endian (most-signigicant byte
first) platforms, andittle’ on little-endian (least-significant byte first) platforms. New in version 2.0.

builtin _module _names

A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This
information is not available in any other way modules.keys() only lists the imported modules.)

copyright

A string containing the copyright pertaining to the Python interpreter.

dllhandle

Integer specifying the handle of the Python DLL. Availability: Windows.

displayhook (valué

If valueis notNone, this function prints it tesys.stdout , and saves itin__builtin ~ __. _.

sys.displayhook is called on the result of evaluating an expression entered in an interactive Python
session. The display of these values can be customized by assigning another one-argument function to
sys.displayhook

excepthook (type, value, tracebagk

This function prints out a given traceback and exceptiosygstderr

When an exception is raised and uncaught, the interpretersyallexcepthook with three arguments,

the exception class, exception instance, and a traceback object. In an interactive session this happens just
before control is returned to the prompt; in a Python program this happens just before the program exits.
The handling of such top-level exceptions can be customized by assigning another three-argument function
to sys.excepthook

__displayhook
__excepthook __

These objects contain the original valueslisplayhook andexcepthook at the start of the program.
They are saved so thaisplayhook andexcepthook can be restored in case they happen to get
replaced with broken objects.

exc _info ()

This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception”
is defined as “executing or having executed an except clause.” For any stack frame, only information about
the most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containingNtbreeevalues is returned.
Otherwise, the values returned drigpe value tracebacl . Their meaning istypegets the exception

type of the exception being handled (a class objeetljegets the exception parameter @ssociated value

or the second argument taise , which is always a class instance if the exception type is a class object);
tracebackgets a traceback object (see the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.

If exc _clear() s called, this function will return threlone values until either another exception is
raised in the current thread or the execution stack returns to a frame where another exception is being
handled.

Warning: Assigning tharacebackreturn value to a local variable in a function that is handling an exception

will cause a circular reference. This will prevent anything referenced by a local variable in the same function
or by the traceback from being garbage collected. Since most functions don’t need access to the traceback,
the best solution is to use something likrctype, value = sys.exc _info()[:2] to extract

only the exception type and value. If you do need the traceback, make sure to delete it after use (best
done with atry ... finally statement) or to caéxc _info() in a function that does not itself handle

an exception.Note: Beginning with Python 2.2, such cycles are automatically reclaimed when garbage
collection is enabled and they become unreachable, but it remains more efficient to avoid creating cycles.

38

Chapter 3. Python Runtime Services

exc _clear ()
This function clears all information relating to the current or last exception that occured in the current thread.
After calling this functionexc _info() will return threeNone values until another exception is raised in
the current thread or the execution stack returns to a frame where another exception is being handled.

This function is only needed in only a few obscure situations. These include logging and error handling
systems that report information on the last or current exception. This function can also be used to try to free
resources and trigger object finalization, though no guarantee is made as to what objects will be freed, if
any. New in version 2.3.

exc _type
exc _value
exc _traceback
Deprecated since release 1.%Iseexc _info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being handed, type is set toNone and the other two are

undefined.

exec _prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed;
by default, this is als&/usr/local’ . This can be set at build time with theexec-prefixargument
to the configure script. Specifically, all configuration files (e.g. ths/éonfig.h’ header file) are installed
in the directoryexec _prefix + '/lib/python versioriconfig’ , and shared library modules are
installed inexec _prefix + ’/lib/python versiorlib-dynload’ , Whereversionis equal to
version[:3]

executable
A string giving the name of the executable binary for the Python interpreter, on systems where this makes
sense.

exit ([arg])
Exit from Python. This is implemented by raising tBgstemExit exception, so cleanup actions specified
by finally clauses ofry statements are honored, and it is possible to intercept the exit attempt at an outer
level. The optional argumerarg can be an integer giving the exit status (defaulting to zero), or another
type of object. If it is an integer, zero is considered “successful termination” and any nonzero value is
considered “abnormal termination” by shells and the like. Most systems require it to be in the range 0-127,
and produce undefined results otherwise. Some systems have a convention for assigning specific meanings
to specific exit codes, but these are generally underdevelopead; pfograms generally use 2 for command
line syntax errors and 1 for all other kind of errors. If another type of object is padsee,is equivalent to
passing zero, and any other object is printegyte.stderr and results in an exit code of 1. In particular,
sys.exit("some error message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify
a clean-up action at program exit. When set, it should be a parameterless function. This function will be
called when the interpreter exits. Only one function may be installed in this way; to allow multiple functions
which will be called at termination, use tl¢exit module. Note: The exit function is not called when
the program is killed by a signal, when a Python fatal internal error is detected, orogherexit() is

called.
getcheckinterval 0
Return the interpreter’s “check interval”; ssetcheckinterval() . New in version 2.3.

getdefaultencoding 0
Return the name of the current default string encoding used by the Unicode implementation. New in
version 2.0.

getdlopenflags 0
Return the current value of the flags that are usedlfopen() calls. The flag constants are defined in
thedl andDLFCNmodules. Availability: Wix. New in version 2.2.

getfilesystemencoding 0
Return the name of the encoding used to convert Unicode filenames into system file naNw drthe

3.1. sys — System-specific parameters and functions 39

system default encoding is used. The result value depends on the operating system:

¢On Windows 9x, the encoding is “mbcs”.

¢On Mac OS X, the encoding is “utf-8”".

o¢On Unix, the encoding is the user’s preference according to the resultlaiginfo(CODESET), or
None if the nLlanginfo(CODESET) failed.

¢On Windows NT+, file names are Unicode natively, so no conversion is performed.

New in version 2.3.

getrefcount (objec)
Return the reference count of thbject The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argumgetrescount()

getrecursionlimit 0
Return the current value of the recursion limit, the maximum depth of the Python interpreter stack. This

limit prevents infinite recursion from causing an overflow of the C stack and crashing Python. It can be set
by setrecursionlimit()

_getframe ([depth])
Return a frame object from the call stack. If optional intedepthis given, return the frame object that
many calls below the top of the stack. If that is deeper than the call st@keError s raised. The
default fordepthis zero, returning the frame at the top of the call stack.

This function should be used for internal and specialized purposes only.

getwindowsversion ()
Return a tuple containing five components, describing the Windows version currently running. The elements

aremajor, minor, build, platform, andtext textcontains a string while all other values are integers.

platformmay be one of the following values:

0 (VER_PLATFORMWIN32s)Win32s on Windows 3.1.

1 (VER_.PLATFORMWIN32_WINDOWSVindows 95/98/ME
2 (VER_PLATFORMWIN32_NT)Windows NT/2000/XP

3 (VER_.PLATFORMWIN32_CEWindows CE.

This function wraps the Win3&etVersionEx() function; see the Microsoft Documentation for more
information about these fields.

Availability: Windows. New in version 2.3.

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each version, including

proper support for non-production releases. For example, to test that the Python interpreter is at least version
1.5.2, use:

if sys.hexversion >= 0x010502FO:
use some advanced feature

else:
use an alternative implementation or warn the user

This is called hexversion ' since it only really looks meaningful when viewed as the result of passing
it to the built-inhex() function. Theversion _info value may be used for a more human-friendly
encoding of the same information. New in version 1.5.2.

last _type
last _value

last _traceback
These three variables are not always defined; they are set when an exception is not handled and the inter-

preter prints an error message and a stack traceback. Their intended use is to allow an interactive user to

40 Chapter 3. Python Runtime Services

import a debugger module and engage in post-mortem debugging without having to re-execute the command
that caused the error. (Typical useimmport pdb; pdb.pm() ' to enter the post-mortem debugger; see
chapter 9, “The Python Debugger,” for more information.)

The meaning of the variables is the same as that of the return valueskoninfo() above. (Since
there is only one interactive thread, thread-safety is not a concern for these variables, ueice_fiype

etc.)
maxint
The largest positive integer supported by Python'’s regular integer type. This is at least 2**31-1. The largest
negative integer ismaxint-1 — the asymmetry results from the use of 2's complement binary arithmetic.
maxunicode

An integer giving the largest supported code point for a Unicode character. The value of this depends on the
configuration option that specifies whether Unicode characters are stored as UCS-2 or UCS-4.

modules
This is a dictionary that maps module names to modules which have already been loaded. This can be ma-
nipulated to force reloading of modules and other tricks. Note that removing a module from this dictionary
is notthe same as callinggload() on the corresponding module object.

path
A list of strings that specifies the search path for modules. Initialized from the environment variable
PYTHONPATH, plus an installation-dependent default.

As initialized upon program startup, the first item of this IEth[0] , is the directory containing the script

that was used to invoke the Python interpreter. If the script directory is not available (e.g. if the interpreter
is invoked interactively or if the script is read from standard inpp&th[0] is the empty string, which
directs Python to search modules in the current directory first. Notice that the script directory is inserted
beforethe entries inserted as a result of PYTHONPATH.

A program is free to modify this list for its own purposes.
Changed in version 2.3: Unicode strings are no longer ignored..

platform
This string contains a platform identifier, e.¢gsunos5’ or 'linux1’ . This can be used to append
platform-specific components pmth , for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed;
by default, this is the stringusr/local’ . This can be set at build time with theprefix argument to
theconfigure script. The main collection of Python library modules is installed in the direqioefix +
‘llib/python versiori while the platform independent header files (all exceptonfig.h’) are stored
in prefix + 'finclude/python version , whereversionis equal toversion[:3]

psl

ps2

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the inter-
preter is in interactive mode. Their initial values in this case’are * and’... ' . If a hon-string

object is assigned to either variable,sts() is re-evaluated each time the interpreter prepares to read a
new interactive command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter checks for
periodic things such as thread switches and signal handlers. The defa0l jameaning the check is
performed every 100 Python virtual instructions. Setting it to a larger value may increase performance for
programs using threads. Setting it to a vadwe0 checks every virtual instruction, maximizing responsive-
ness as well as overhead.

setdefaultencoding (namg
Set the current default string encoding used by the Unicode implementatinamiédoes not match any
available encodind,ookupError israised. This function is only intended to be used bysitee module
implementation and, where needed difecustomize . Once used by theite module, it is removed
from thesys module’s namespace. New in version 2.0.

3.1. sys — System-specific parameters and functions 41

setdlopenflags (n)
Set the flags used by the interpreter @open() calls, such as when the interpreter loads extension
modules. Among other things, this will enable a lazy resolving of symbols when importing a mod-
ule, if called assys.setdlopenflags(0) . To share symbols across extension modules, call as
sys.setdlopenflags(dl.RTLD _NOW | dI.RTLD _GLOBAL). Symbolic names for the flag mod-
ules can be either found in tli#2 module, or in theDLFCNmodule. IfDLFCNis not available, it can be
generated fromvusr/include/dlfcn.h’ using theh2py script. Availability: UNIX. New in version 2.2.

setprofile (profilefung
Set the system’s profile function, which allows you to implement a Python source code profiler in Python.
See chapter 10 for more information on the Python profiler. The system’s profile function is called similarly
to the system’s trace function (ssettrace()), but it isn’t called for each executed line of code (only
on call and return, but the return event is reported even when an exception has been set). The function is
thread-specific, but there is no way for the profiler to know about context switches between threads, so it
does not make sense to use this in the presence of multiple threads. Also, its return value is not used, so it
can simply returiNone.

setrecursionlimit (limit)
Set the maximum depth of the Python interpreter stadkrtir. This limit prevents infinite recursion from
causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when she has a
program that requires deep recursion and a platform that supports a higher limit. This should be done with
care, because a too-high limit can lead to a crash.

settrace (tracefung
Set the system’s trace function, which allows you to implement a Python source code debugger in Python.
See section 9.2, “How It Works,” in the chapter on the Python debugger. The function is thread-specific;
for a debugger to support multiple threads, it must be registered settrgce() for each thread being
debugged.

stdin
stdout
stderr
File objects corresponding to the interpreter’s standard input, output and error stsédims. is used for all
interpreter input except for scripts but including callsriput() andraw _input() . stdout is used
for the output oforint and expression statements and for the prompitspaft() andraw _input()
The interpreter’s own prompts and (almost all of) its error messagessidéa . stdout andstderr
needn’t be built-in file objects: any object is acceptable as long as it haide) method that takes a
string argument. (Changing these objects doesn't affect the standard 1/O streams of processes executed by
os.popen() ,os.system() ortheexec*() family of functions in theos module.)

__stdin __

__stdout __

__stderr __
These objects contain the original valuestfin , stderr andstdout at the start of the program. They
are used during finalization, and could be useful to restore the actual files to known working file objects in
case they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback
information printed when an unhandled exception occurs. The defal®8. When set td or less, all
traceback information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter plus additional information on the
build number and compiler used. It has a value of the fowersion (# build_number build_date
build_time) [compilef]’ . The first three characters are used to identify the version in the installation
directories (where appropriate on each platform). An example:
>>> import sys

>>> gys.version
'1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 hit (Intel)]’

42 Chapter 3. Python Runtime Services

api _version
The C API version for this interpreter. Programmers may find this useful when debugging version conflicts
between Python and extension modules. New in version 2.3.

version _info
A tuple containing the five components of the version numb®ajor, minor, micro, releaselevelandse-

rial. All values excepteleaselevebre integers; the release levelaipha’ |, ’beta’ , 'candidate’ ,
or ‘final . Theversion _info value corresponding to the Python version 2.0ds 0, O,
final’, 0) . New in version 2.0.

warnoptions
This is an implementation detail of the warnings framework; do not modify this value. Refer to the
warnings module for more information on the warnings framework.

winver
The version number used to form registry keys on Windows platforms. This is stored as string resource
1000 in the Python DLL. The value is normally the first three charactex®isfion . It is provided in
thesys module for informational purposes; modifying this value has no effect on the registry keys used by
Python. Availability: Windows.

See Also:

Modulesite (section 3.28):
This describes how to use .pth files to extasyd.path

3.2 gc — Garbage Collector interface

Thegc module is only available if the interpreter was built with the optional cyclic garbage detector (enabled by
default). If this was not enabled, &mportError is raised by attempts to import this module.

This module provides an interface to the optional garbage collector. It provides the ability to disable the collector,
tune the collection frequency, and set debugging options. It also provides access to unreachable objects that the
collector found but cannot free. Since the collector supplements the reference counting already used in Python, you
can disable the collector if you are sure your program does not create reference cycles. Automatic collection can be
disabled by callingyc.disable() . To debug a leaking program cajt.set _debug(gc.DEBUG _LEAK).

Thegc module provides the following functions:

enable ()
Enable automatic garbage collection.

disable ()
Disable automatic garbage collection.

isenabled ()
Returns true if automatic collection is enabled.

collect ()
Run a full collection. All generations are examined and the number of unreachable objects found is returned.

set _debug (flag9
Set the garbage collection debugging flags. Debugging information will be writteystetderr . See
below for a list of debugging flags which can be combined using bit operations to control debugging.

get _debug ()
Return the debugging flags currently set.

get _objects ()
Returns a list of all objects tracked by the collector, excluding the list returned. New in version 2.2.

set _threshold (threshold(f, threshold{, thresholdj])
Set the garbage collection thresholds (the collection frequency). StttegholdOto zero disables collec-
tion.

The GC classifies objects into three generations depending on how many collection sweeps they have sur-

3.2. gc — Garbage Collector interface 43

vived. New objects are placed in the youngest generation (genefgtidhan object survives a collection

it is moved into the next older generation. Since gener&i@the oldest generation, objects in that gener-
ation remain there after a collection. In order to decide when to run, the collector keeps track of the number
object allocations and deallocations since the last collection. When the number of allocations minus the
number of deallocations exceetiisesholdQ collection starts. Initially only generatidhis examined. If
generatiorD has been examined more thdmeshold1times since generatioh has been examined, then
generatiorl is examined as well. Similarlyhreshold2controls the number of collections of generatibn
before collecting generatidh

get _threshold ()
Return the current collection thresholds as a tupletbfesholdQ threshold]l threshold? .

get _referrers (*objs)
Return the list of objects that directly refer to any of objs. This function will only locate those containers
which support garbage collection; extension types which do refer to other objects but do not support garbage
collection will not be found.

Note that objects which have already been dereferenced, but which live in cycles and have not yet been
collected by the garbage collector can be listed among the resulting referrers. To get only currently live
objects, calkollect() before callingget _referrers()

New in version 2.2.

get _referents (*objs)
Return a list of objects directly referred to by any of the arguments. The referents returned are those objects
visited by the arguments’ C-levgpp _traverse methods (if any), and may not be all objects actually
directly reachabletp _traverse methods are supported only by objects that support garbage collection,
and are only required to visit objects that may be involved in a cycle. So, for example, if an integer is
directly reachable from an argument, that integer object may or may not appear in the result list.

New in version 2.3.
The following variable is provided for read-only access (you can mutate its value but should not rebind it):

garbage
A list of objects which the collector found to be unreachable but could not be freed (uncollectable objects).
By default, this list contains only objects with_del __() methods. Objects that have _del __()
methods and are part of a reference cycle cause the entire reference cycle to be uncollectable, including
objects not necessarily in the cycle but reachable only from it. Python doesn't collect such cycles automati-
cally because, in general, it isn’t possible for Python to guess a safe order in which to rurdile__()
methods. If you know a safe order, you can force the issue by examinirgatbagelist, and explicitly
breaking cycles due to your objects within the list. Note that these objects are kept alive even so by virtue of
being in thegarbagelist, so they should be removed frogarbagetoo. For example, after breaking cycles,
dodel gc.garbage[:] to empty the list. It's generally better to avoid the issue by not creating cycles
containing objects with._del __() methods, angarbagecan be examined in that case to verify that no
such cycles are being created.

If DEBUGSAVEALLIs set, then all unreachable objects will be added to this list rather than freed.
The following constants are provided for use wset _debug() :

DEBUGSTATS
Print statistics during collection. This information can be useful when tuning the collection frequency.

DEBUGCOLLECTABLE
Print information on collectable objects found.

DEBUGUNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be freed by the
collector). These objects will be added to thewbage list.

DEBUGINSTANCES
WhenDEBUGCOLLECTABLEr DEBUGUNCOLLECTABLIES set, print information about instance ob-
jects found.

1Prior to Python 2.2, the list contained all instance objects in unreachable cycles, not only thosedeith__() methods.

44 Chapter 3. Python Runtime Services

DEBUGOBJECTS
WhenDEBUGCOLLECTABLEr DEBUGUNCOLLECTABLIS set, printinformation about objects other
than instance objects found.

DEBUGSAVEALL
When set, all unreachable objects found will be appendeggtbagerather than being freed. This can be
useful for debugging a leaking program.

DEBUGLEAK
The debugging flags necessary for the collector to print information about a leaking pro-
gram (equal toDEBUGCOLLECTABLE | DEBUGUNCOLLECTABLE | DEBUGNSTANCES |
DEBUGOBJECTS | DEBUGSAVEALL.

3.3 weakref — Weak references

New in version 2.1.
Theweakref module allows the Python programmer to creaméak referencew objects.
In the following, the ternmreferentmeans the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a
referent are weak references, garbage collection is free to destroy the referent and reuse its memory for something
else. A primary use for weak references is to implement caches or mappings holding large objects, where it's
desired that a large object not be kept alive solely because it appears in a cache or mapping. For example, if you
have a number of large binary image objects, you may wish to associate a name with each. If you used a Python
dictionary to map names to images, or images to names, the image objects would remain alive just because they
appeared as values or keys in the dictionaries. WeakKeyDictionary and WeakValueDictionary

classes supplied by theeakref module are an alternative, using weak references to construct mappings that
don't keep objects alive solely because they appear in the mapping objects. If, for example, an image object is a
value in aWeakValueDictionary , then when the last remaining references to that image object are the weak
references held by weak mappings, garbage collection can reclaim the object, and its corresponding entries in
weak mappings are simply deleted.

WeakKeyDictionary ~ and WeakValueDictionary use weak references in their implementation, setting

up callback functions on the weak references that notify the weak dictionaries when a key or value has been
reclaimed by garbage collection. Most programs should find that using one of these weak dictionary types is all
they need — it's not usually necessary to create your own weak references directly. The low-level machinery used
by the weak dictionary implementations is exposed bytkakref module for the benefit of advanced uses.

Not all objects can be weakly referenced; those objects which can include class instances, functions written in
Python (but not in C), and methods (both bound and unbound). Extension types can easily be made to support
weak references; see section 3.3.3, “Weak References in Extension Types,” for more information.

ref (objec{, callback])
Return a weak reference tvject The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will ddaee to be
returned. Ifcallbackis provided and naione, it will be called when the object is about to be finalized; the
weak reference object will be passed as the only parameter to the callback; the referent will no longer be
available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they
are handled in exactly the same way as exceptions raised from an objedés __() method.

Weak references are hashable if tigectis hashable. They will maintain their hash value even after the
objectwas deleted. Ihash() is called the first time only after thebjectwas deleted, the call will raise
TypeError

Weak references support tests for equality, but not ordering. If the referents are still alive, two references
have the same equality relationship as their referents (regardlessaafiitbeck). If either referent has been
deleted, the references are equal only if the reference objects are the same object.

3.3. weakref — Weak references 45

proxy (objec{, caIIback])
Return a proxy tmbjectwhich uses a weak reference. This supports use of the proxy in most contexts
instead of requiring the explicit dereferencing used with weak reference objects. The returned object will
have a type of eitheProxyType or CallableProxyType , depending on whethabjectis callable.
Proxy objects are not hashable regardless of the referent; this avoids a number of problems related to their
fundamentally mutable nature, and prevent their use as dictionarydaisackis the same as the parameter
of the same name to thef() function.

getweakrefcount (objec)
Return the number of weak references and proxies which refsjéxt

getweakrefs (objec)
Return a list of all weak reference and proxy objects which refebject

classWeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no
longer a strong reference to the key. This can be used to associate additional data with an object owned by
other parts of an application without adding attributes to those objects. This can be especially useful with
objects that override attribute accesses.

Note: Caution: Because #WeakKeyDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure eakKeyDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish "by magic”
(as a side effect of garbage collection).

classWeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong
reference to the value exists any more.

Note: Caution: Because WeakValueDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure WéeakValueDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish "by magic”
(as a side effect of garbage collection).

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

exceptionReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This is the same
as the standarReferenceError exception.

See Also:

PEP 0205, Weak Referencés
The proposal and rationale for this feature, including links to earlier implementations and information about
similar features in other languages.

3.3.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

46 Chapter 3. Python Runtime Services

>>> import weakref
>>> class Object:

pass
>>> 0 = Object()
>>> r = weakref.ref(o)

>>> 02 = 1()
>>> 0 iS 02
True

If the referent no longer exists, calling the reference object retlome:

>>> del o, 02
>>> print r()
None

Testing that a weak reference object is still live should be done using the expresjoris not None
Normally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
o =r1()
if o is None:
referent has been garbage collected
print "Object has been allocated; can't frobnicate."
else:
print "Object is still live!"
0.do_something_useful()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause
a weak reference to become invalidated before the weak reference is called; the idiom shown above is safe in
threaded applications as well as single-threaded applications.

3.3.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The
IDs of the objects can then be used in other data structures without forcing the objects to remain alive, but the
objects can still be retrieved by ID if they do.

import weakref
_id2obj_dict = weakref.WeakValueDictionary()
def remember(obj):

oid = id(obj)

_id2obj_dict[oid] = obj

return oid

def id2obj(oid):
return _id2obj_dict[oid]

3.3.3 Weak References in Extension Types

One of the goals of the implementation is to allow any type to participate in the weak reference mechanism without
incurring the overhead on those objects which do not benefit by weak referencing (such as numbers).

3.3. weakref — Weak references 47

For an object to be weakly referencable, the extension must incleg©hject* field in the instance structure
for the use of the weak reference mechanism; it must be initializédiol by the object’s constructor. It must
also set thép _weaklistoffset field of the corresponding type object to the offset of the field. Also, it needs
to addPy_TPFLAGS HAVE_ WEAKREF® the tp_flags slot. For example, the instance type is defined with the
following structure:

typedef struct {
PyObject HEAD

PyClassObject *in_class; /* The class object */
PyObject *in_dict; /* A dictionary */
PyObject *in_weakreflist; /* List of weak references */

} PylnstanceObject;

The statically-declared type object for instances is defined this way:

PyTypeObject Pylnstance_Type = {
PyObject_ HEAD_INIT(&PyType_Type)
0,
"module.instance”,

/* Lots of stuff omitted for brevity... */

Py TPFLAGS_DEFAULT | Py TPFLAGS_HAVE WEAKREFS /* tp_flags */

0, [* tp_doc */

0, [* tp_traverse */

0, [* tp_clear */

0, [* tp_richcompare */

offsetof(PylnstanceObject, in_weakreflist), /* tp_weaklistoffset */

The type constructor is responsible for initializing the weak reference IIstiol:

static PyObject *
instance_new() {
/* Other initialization stuff omitted for brevity */

self->in_weakreflist = NULL;

return (PyObject *) self;

The only further addition is that the destructor needs to call the weak reference manager to clear any weak ref-
erences. This should be done before any other parts of the destruction have occurred, but is only required if the
weak reference list is noNULL

48 Chapter 3. Python Runtime Services

static void
instance_dealloc(PylnstanceObject *inst)

[* Allocate temporaries if needed, but do not begin
destruction just yet.
*/

if (inst->in_weakreflist != NULL)
PyObject_ClearWeakRefs((PyObject *) inst);

/* Proceed with object destruction normally. */

3.4 fpectl — Floating point exception control

Most computers carry out floating point operations in conformance with the so-called IEEE-754 standard. On any
real computer, some floating point operations produce results that cannot be expressed as a normal floating point
value. For example, try

>>> import math

>>> math.exp(1000)

inf

>>> math.exp(1000) / math.exp(1000)
nan

(The example above will work on many platforms. DEC Alpha may be one exception.) "Inf" is a special, non-
numeric value in IEEE-754 that stands for "infinity”, and "nan” means "not a number.” Note that, other than the
non-numeric results, nothing special happened when you asked Python to carry out those calculations. That is in
fact the default behaviour prescribed in the IEEE-754 standard, and if it works for you, stop reading now.

In some circumstances, it would be better to raise an exception and stop processing at the point where the faulty
operation was attempted. Theectl module is for use in that situation. It provides control over floating point
units from several hardware manufacturers, allowing the user to turn on the generaBt@RRE whenever

any of the IEEE-754 exceptions Division by Zero, Overflow, or Invalid Operation occurs. In tandem with a pair

of wrapper macros that are inserted into the C code comprising your python sY&@RFPE is trapped and
converted into the PythdRloatingPointError exception.

Thefpectl module defines the following functions and may raise the given exception:

turnon _sigfpe ()
Turn on the generation @IGFPE, and set up an appropriate signal handler.

turnoff _sigfpe ()
Reset default handling of floating point exceptions.

exceptionFloatingPointError
After turnon _sigfpe() has been executed, a floating point operation that raises one of the IEEE-754
exceptions Division by Zero, Overflow, or Invalid operation will in turn raise this standard Python exception.

3.4.1 Example

The following example demonstrates how to start up and test operationfpieitte module.

3.4. fpectl — Floating point exception control 49

>>> import fpectl

>>> import fpetest

>>> fpectl.turnon_sigfpe()
>>> fpetest.test()

overflow PASS
FloatingPointError: Overflow

div by 0 PASS

FloatingPointError: Division by zero
[more output from test elided]

>>> import math

>>> math.exp(1000)

Traceback (most recent call last):
File "<stdin>", line 1, in ?

FloatingPointError: in math_1

3.4.2 Limitations and other considerations

Setting up a given processor to trap IEEE-754 floating point errors currently requires custom code on a per-
architecture basis. You may have to modifgctl to control your particular hardware.

Conversion of an IEEE-754 exception to a Python exception requires that the wrapper macros
PyFPE_START_PROTECTandPyFPE_END PROTECTbe inserted into your code in an appropriate fashion.
Python itself has been modified to support fhectl module, but many other codes of interest to numerical
analysts have not.

Thefpectl module is not thread-safe.
See Also:

Some files in the source distribution may be interesting in learning more about how this module operates. The in-
clude file ‘include/pyfpe.h’ discusses the implementation of this module at some lenitbddles/fpetestmodule.c’
gives several examples of use. Many additional examples can be foubbjéets/floatobject.c’.

3.5 atexit — Exit handlers

New in version 2.0.

Theatexit module defines a single function to register cleanup functions. Functions thus registered are auto-
matically executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal, when a Python
fatal internal error is detected, or whes. _exit() is called.

This is an alternate interface to the functionality provided bysygexitfunc variable.

Note: This module is unlikely to work correctly when used with other code thasgstexitfunc . In partic-
ular, other core Python modules are free to atexit ~ without the programmer’s knowledge. Authors who use
sys.exitfunc should convert their code to usg¢exit instead. The simplest way to convert code that sets
sys.exitfunc is to importatexit ~ and register the function that had been bounsymexitfunc

register (func[, *args[, **kargs]])
Registerfuncas a function to be executed at termination. Any optional arguments that are to be passed to
funcmust be passed as argumentsdgister()

At normal program termination (for instance,sys.exit() is called or the main module’s execution
completes), all functions registered are called in last in, first out order. The assumption is that lower level
modules will normally be imported before higher level modules and thus must be cleaned up later.

See Also:

50 Chapter 3. Python Runtime Services

Modulereadline (section 7.20):
Useful example oétexit to read and writeeadline history files.

3.5.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it is imported
and save the counter’s updated value automatically when the program terminates without relying on the application
making an explicit call into this module at termination.

try:

_count = int(open("/tmp/counter").read())
except IOError:

_count = 0

def incrcounter(n):
global _count
_count = _count + n

def savecounter():
open("/tmp/counter”, "w").write("%d" % _count)

import atexit
atexit.register(savecounter)

Positional and keyword arguments may also be passedgister() to be passed along to the registered
function when it is called:

def goodbye(name, adjective):
print 'Goodbye, %s, it was %s to meet you.' % (name, adjective)

import atexit
atexit.register(goodbye, 'Donny’, ’nice’)

or:
atexit.register(goodbye, adjective="nice’, name='Donny’)

3.6 types — Names for built-in types

This module defines names for some object types that are used by the standard Python interpreter, but not for
the types defined by various extension modules. Also, it does not include some of the types that arise during
processing such thiestiterator type. It is safe to useffom types import * " — the module does

not export any names besides the ones listed here. New names exported by future versions of this module will all
end in Type".

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(mylist, item):
if type(item) is IntType:
del mylist[item]
else:
mylist.remove(item)

Starting in Python 2.2, built-in factory functions suchrg) andstr() are also names for the corresponding

3.6. types — Names for built-in types 51

types. This is now the preferred way to access the type instead of usitgpt®® module. Accordingly, the
example above should be written as follows:

def delete(mylist, item):
if isinstance(item, int):
del mylist[item]
else:
mylist.remove(item)

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returnedype()).
BooleanType

The type of thébool valuesTrue andFalse ; this is an alias of the built-ibool() function. New in
version 2.3.

IntType
The type of integers (e.d.).

LongType
The type of long integers (e.gL).

FloatType
The type of floating point numbers (e.4.0).

ComplexType
The type of complex numbers (e0j). Thisis not defined if Python was built without complex number
support.

StringType
The type of character strings (e!§pam’).
UnicodeType

The type of Unicode character strings (eigSpam’). This is not defined if Python was built without
Unicode support.

TupleType
The type of tuples (e.d1, 2, 3, 'Spam’)).
ListType
The type of lists (e.g[0, 1, 2, 3]).
DictType
The type of dictionaries (e.g'Bacon’. 1, 'Ham’: 0}).
DictionaryType
An alternate name fdDictType

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name fdrunctionType

GeneratorType
The type of generator-iterator objects, produced by calling a generator function. New in version 2.2.

CodeType
The type for code objects such as returnecbmpile()

ClassType
The type of user-defined classes.

52 Chapter 3. Python Runtime Services

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name fdvlethodType .

BuiltinFunctionType
The type of built-in functions likéen() or sys.exit()

BuiltinMethodType
An alternate name fdBuiltinFunction

ModuleType
The type of modules.

FileType
The type of open file objects such sgs.stdout

XRangeType
The type of range objects returnedXnange()

SliceType
The type of objects returned Isjice()

EllipsisType
The type ofEllipsis

TracebackType
The type of traceback objects such as foundyis.exc _traceback

FrameType
The type of frame objects such as foundbrtb _frame if tb is a traceback object.

BufferType
The type of buffer objects created by theffer() function.

StringTypes
A sequence containingtringType andUnicodeType used to facilitate easier checking for any string
object. Using this is more portable than using a sequence of the two string types constructed elsewhere
since it only containd&JnicodeType if it has been built in the running version of Python. For example:
isinstance(s, types.StringTypes) . New in version 2.2.

3.7 UserDict — Class wrapper for dictionary objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to
work with versions of Python earlier than Python 2.2, please consider subclassing directly from thedailt-in

type.

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class for your own
dictionary-like classes, which can inherit from them and override existing methods or add new ones. In this way
one can add new behaviors to dictionaries.

The module also defines a mixin defining all dictionary methods for classes that already have a minimum mapping
interface. This greatly simplifies writing classes that need to be substitutable for dictionaries (such as the shelve
module).

TheUserDict module defines thEserDict class andictMixin

classUserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via thedata attribute ofUserDict instances. lfinitialdata is provided,data is initialized with its
contents; note that a referencendialdata will not be kept, allowing it be used for other purposes.

3.7. UserDict — Class wrapper for dictionary objects 53

In addition to supporting the methods and operations of mappings (see section2sgrDict instances pro-
vide the following attribute:

data
A real dictionary used to store the contents oftheerDict class.

classDictMixin ()
Mixin defining all dictionary methods for classes that already have a minimum dictionary interface including
__getitem __() , __setitem __() ,__delitem __() , andkeys()

This mixin should be used as a superclass. Adding each of the above methods adds progressively more
functionality. For instance, defining all but_delitem __ will preclude onlypop andpopitem from
the full interface.

In addition to the four base methods, progessively more efficiency comes with defining
__contains __() ,__iter __() , anditeritems()

Since the mixin has no knowledge of the subclass constructor, it does not defivie __() orcopy()

3.8 UserList — Class wrapper for list objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to
work with versions of Python earlier than Python 2.2, please consider subclassing directly from theltsilt-in

type.

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to lists.

TheUserList module defines thEserList class:

classUserList ([Iist])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessiblgati the
attribute ofUserList instances. The instance’s contents are initially set to a copgtpéiefaulting to the
empty list[] . list can be either a regular Python list, or an instancessdrList (or a subclass).

In addition to supporting the methods and operations of mutable sequences (see sectiobseB.&t in-
stances provide the following attribute:

data
A real Python list object used to store the contents oltberList class.

Subclassing requirements:Subclasses dfiserList are expect to offer a constructor which can be called with

either no arguments or one argument. List operations which return a new sequence attempt to create an instance
of the actual implementation class. To do so, it assumes that the constructor can be called with a single parameter,
which is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this
class will need to be overridden; please consult the sources for information about the methods which need to be
provided in that case.

Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with no
parameters, and offer a mutaldata attribute. Earlier versions of Python did not attempt to create instances of
the derived class.

3.9 UserString — Class wrapper for string objects

Note: This UserString class from this module is available for backward compatibility only. If you are
writing code that does not need to work with versions of Python earlier than Python 2.2, please consider sub-
classing directly from the built-istr type instead of usingJserString (there is no built-in equivalent to
MutableString).

54 Chapter 3. Python Runtime Services

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own
string-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is
especially the case fdutableString

TheUserString module defines the following classes:

classUserString ([sequenc}e)
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible viadlaga attribute ofUserString instances. The instance’s
contents are initially set to a copy séquencesequencean be either a regular Python string or Unicode
string, an instance dfiserString (or a subclass) or an arbitrary sequence which can be converted into a
string using the built-irstr() function.

classMutableString ([sequenc]e)
This class is derived from thdserString above and redefines strings to meitable Mutable strings
can’t be used as dictionary keys, because dictionaries reiquinatableobjects as keys. The main intention
of this class is to serve as an educational example for inheritance and necessity to remove (override) the
__hash __() method in order to trap attempts to use a mutable object as dictionary key, which would be
otherwise very error prone and hard to track down.

In addition to supporting the methods and operations of string and Unicode objects (see section 2.3.6, “String
Methods”),UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content dfsleeString class.

3.10 operator — Standard operators as functions.

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of
Python. For examplegperator.add(x, y) is equivalent to the expressiorty . The function names are
those used for special class methods; variants without leading and trailihgre also provided for convenience.

The functions fall into categories that perform object comparisons, logical operations, mathematical operations,
sequence operations, and abstract type tests.

The object comparison functions are useful for all objects, and are named after the rich comparison operators they
support:

It (a, b

le (a, b

eq(a, b

ne(a,b)

ge(a, b

ot (a, b

__It __(a,b

_le__(a/b

__eq__(a,b

__ne__(ab

__ge__(a/b

_ot__(ab
Perform “rich comparisons” betweerandb. Specificallylt(a, b) isequivalentta < b,le(a, b)
isequivalentta <= b,eq(a, b) isequivalentt@ == b,ne(a, b) isequivalentt@a != b, gt(a,
b) is equivalenttaa > bandge(a, b) is equivalentta >= b. Note that unlike the built-ikmp() ,
these functions can return any value, which may or may not be interpretable as a Boolean value. See the
Python Reference Manufdr more informations about rich comparisons. New in version 2.2.

The logical operations are also generally applicable to all objects, and support truth tests, identity tests, and
boolean operations:

3.10. operator — Standard operators as functions. 55

not _(o)

__not __(0)
Return the outcome afot o. (Note that there is na_not __() method for object instances; only the
interpreter core defines this operation. The result is affected by thenzero __() and__len __()

methods.)
truth (o)

ReturnTrue if oistrue, and=alse otherwise. This is equivalent to using theol constructor.
is _(a, b

Returna is b. Tests object identity. New in version 2.3.

is _not (a, b
Returna is not b. Tests object identity. New in version 2.3.

The mathematical and bitwise operations are the most numerous:

abs (0)
__abs__(0)
Return the absolute value of

add(a, b
__add__(a,b
Returna + b, for aandb numbers.

and _(a, b
__and__(a,b
Return the bitwise and & andb.

div (a, b
__div __(a,b
Returna/ bwhen__future __.division is not in effect. This is also known as “classic” division.

floordiv (a, b)
__floordiv. __(a,b)
Returna// b. New in version 2.2.

inv (0)

invert (0)

__inv __(0)

__invert __(0)
Return the bitwise inverse of the number This is equivalent t6' 0. The namesdnvert() and
__invert __() were added in Python 2.0.

Ishift (&, b
__Ishift __(a, b
Returna shifted left byb.

mod(a, b)
__mod__(a,b
Returna %b.

mul (a, b)
__mul__(a,b
Returna* b, for a andb numbers.

neg(o)
__neg__(0)
Returno negated.

or _(a,h

_or__(ab
Return the bitwise or of andb.

pos (0)
__pos__(0)

56 Chapter 3. Python Runtime Services

Returno positive.

pow(a, b)
__pow__(a, b
Returna** b, for aandb numbers. New in version 2.3.

rshift (&, b
__rshift __(a, b
Returna shifted right byb.

sub (a, b)
__sub__(a,b
Returna- b.

truediv (a, b

__truediv __(a,b)
Returna/ bwhen__future __.division is in effect. This is also known as division. New in version
2.2.

xor (a, b)
__xor __(a,b)
Return the bitwise exclusive or afandb.

Operations which work with sequences include:

concat (a,b)
__concat __(a,b
Returna + b for a andb sequences.

contains (a, b

__contains __(a,b
Return the outcome of the telstin a. Note the reversed operands. The nameontains __() was
added in Python 2.0.

countOf (a,b)
Return the number of occurrencestah a.

delitem (a, b
__delitem __(a,b)
Remove the value daf at indexb.

delslice (a,b,9
__delslice __(a,b,9
Delete the slice of from indexb to indexc-1 .

getitem (a, b
__getitem __(a,b)
Return the value ad at indexb.

getslice (a,b,9
__getslice __(a,b,9
Return the slice o& from indexb to indexc-1 .

indexOf (a, b)
Return the index of the first of occurrenceloih a.

repeat (a, b

__repeat __(a,b
Returna* b whereais a sequence arlis an integer.

sequencelncludes (..)
Deprecated since release 2.Qsecontains() instead.

Alias for contains()
setitem (a,b, 9

__setitem __(a,b,0
Set the value o at indexb to c.

3.10. operator — Standard operators as functions. 57

setslice (a,b,c,y
__setslice __(a,b,c,V
Set the slice o& from indexb to indexc-1 to the sequence

Theoperator module also defines a few predicates to test the type of objNct®: Be careful not to misin-
terpret the results of these functions; ordZallable() has any measure of reliability with instance objects.
For example:

>>> class C:
pass

>>> jmport operator

>>> 0 = C()

>>> operator.isMappingType(0)
True

isCallable (0)
Deprecated since release 2.Qse thecallable() built-in function instead.

Returns true if the objeat can be called like a function, otherwise it returns false. True is returned for func-
tions, bound and unbound methods, class objects, and instance objects which suppadathe __()
method.

isMappingType (0)
Returns true if the objeat supports the mapping interface. This is true for dictionaries and all instance
objects.Warning: There is no reliable way to test if an instance supports the complete mapping protocol
since the interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isNumberType (0)
Returns true if the objed represents a number. This is true for all numeric types implemented in C, and for
all instance objectdiVarning: There is no reliable way to test if an instance supports the complete numeric
interface since the interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isSequenceType (0)
Returns true if the objeat supports the sequence protocol. This returns true for all objects which define
sequence methods in C, and for all instance objétgning: There is no reliable way to test if an instance
supports the complete sequence interface since the interface itself is ill-defined. This makes this test less
useful than it otherwise might be.

Example: Build a dictionary that maps the ordinals fr@rto 256 to their character equivalents.

>>> import operator

>>>d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.10.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions
in theoperator module.

58 Chapter 3. Python Runtime Services

Operation Syntax Function
Addition a+b add(a, b)
Concatenation seql + seq2 | concat(seql seq3l
Containment Test 0 in seq contains(seq 0)
Division al b div(a, b) # without__future __.division
Division al b truediv(a, b) # with __future __.division
Division all b floordiv(a, b
Bitwise And aé&hb and _(a, b)
Bitwise Exclusive Or a" b xor(a, b)
Bitwise Inversion - invert(a)
Bitwise Or al b or (a b
Exponentiation a*™ b pow(a, b)
Identity ais b is _(a b)
Identity aisnot b is _not(a, b)
Indexed Assignment okl = v setitem(o, k, V)
Indexed Deletion del o[K] delitem(o, k)
Indexing o[K] getitem(o, K)
Left Shift a<<b Ishift(&, b)
Modulo a%b mod(a, b)
Multiplication a* b mul(a, b)
Negation (Arithmetic) - a neg(a)
Negation (Logical) not a not _(a)
Right Shift a>>b rshiftf(a, b)
Sequence Repitition seq* i repeat(seq i)
Slice Assignment seq i: j] =values| setslice(seq i, j, value3
Slice Deletion del seqi:j] delslice(seq i, j)
Slicing seq i: |] getslice(seq i, j)
String Formatting s %o mod(s, 0)
Subtraction a-»b sub(a, b)
Truth Test o] truth(o)
Ordering a<hb lt(a b)
Ordering a<=b le(a, b)
Equality a==>b eq(a, h)
Difference al=»b ne(a, b)
Ordering a>=b ge(a, b)
Ordering a>hb ot(a, b)

3.11 inspect — Inspect live objects

New in version 2.1.

Theinspect module provides several useful functions to help get information about live objects such as mod-
ules, classes, methods, functions, tracebacks, frame objects, and code objects. For example, it can help you
examine the contents of a class, retrieve the source code of a method, extract and format the argument list for a
function, or get all the information you need to display a detailed traceback.

There are four main kinds of services provided by this module: type checking, getting source code, inspecting
classes and functions, and examining the interpreter stack.

3.11.1 Types and members

The getmembers() function retrieves the members of an object such as a class or module. The eleven
functions whose names begin with “is” are mainly provided as convenient choices for the second argument to
getmembers() . They also help you determine when you can expect to find the following special attributes:

3.11. inspect — Inspect live objects 59

Type Attribute Description Notes
module | __doc__ documentation string
__file__ filename (missing for built-in modules)
class | __doc__ documentation string
__module__ name of module in which this class was defined
method | __doc__ documentation string
__name__ name with which this method was defined
im_class class object that asked for this method Q)
im_func function object containing implementation of method
im_self instance to which this method is bound,NMone
function | __doc__ documentation string
__nhame__ name with which this function was defined
func_code code object containing compiled function bytecode
func_defaults tuple of any default values for arguments
func_doc (same as__doc__)
func_globals global namespace in which this function was defined
func_name (same as__name__)
traceback| tb_frame frame object at this level
tb_lasti index of last attempted instruction in bytecode
tb_lineno current line number in Python source code
tb_next next inner traceback object (called by this level)
frame | f_back next outer frame object (this frame’s caller)
f_builtins built-in namespace seen by this frame
f_code code object being executed in this frame
f_exc_traceback| traceback if raised in this frame, bione
f_exc_type exception type if raised in this frame, Nione
f_exc_value exception value if raised in this frame, None
f_globals global namespace seen by this frame
f_lasti index of last attempted instruction in bytecode
f_lineno current line number in Python source code
f_locals local namespace seen by this frame
f_restricted 0 or 1 if frame is in restricted execution mode
f_trace tracing function for this frame, ddone
code co_argcount number of arguments (not including * or ** args)
co_code string of raw compiled bytecode
co_consts tuple of constants used in the bytecode
co_filename name of file in which this code object was created
co_firstlineno number of first line in Python source code
co_flags bitmap: 1=optimized 2=newlocald 4=*arg| 8=**arg
co_lnotab encoded mapping of line numbers to bytecode indices
co_name name with which this code object was defined
co_names tuple of names of local variables
co_nlocals number of local variables
co_stacksize virtual machine stack space required
co_varnames tuple of names of arguments and local variables
builtin __doc__ documentation string
__name__ original name of this function or method
__self__ instance to which a method is bound,Nwone

Note:

(1) Changed in version 2.2n _class used to refer to the class that defined the method.

getmembers (objec{, predicatd)
Return all the members of an object in a list of (hame, value) pairs sorted by name. If the opteatichte
argument is supplied, only members for which the predicate returns a true value are included.

getmoduleinfo (path
Return a tuple of values that describe how Python will interpret the file identifiguhthf it is a module,

60 Chapter 3. Python Runtime Services

or None if it would not be identified as a module. The return tuplé ame suffix mode mtypg,
wherenameis the name of the module without the name of any enclosing pacgafiixis the trailing part

of the file name (which may not be a dot-delimited extensiom)deis theopen() mode that would be
used ' or’rb’), andmtypeis an integer giving the type of the modulatypewill have a value which
can be compared to the constants defined inirtie module; see the documentation for that module for
more information on module types.

getmodulename (path)
Return the name of the module named by theddéh, without including the names of enclosing packages.
This uses the same algorithm as the interpreter uses when searching for modules. If the name cannot be
matched according to the interpreter’s ruldsne is returned.

ismodule (objec)
Return true if the object is a module.

isclass (objec)
Return true if the object is a class.

ismethod (objec)
Return true if the object is a method.

isfunction (objec)
Return true if the object is a Python function or unnamed (lambda) function.

istraceback (objec)
Return true if the object is a traceback.

isframe (objec)
Return true if the object is a frame.

iscode (objec)
Return true if the object is a code.

isbuiltin (objech
Return true if the object is a built-in function.

isroutine (objec)
Return true if the object is a user-defined or built-in function or method.

ismethoddescriptor (objec)
Return true if the object is a method descriptor, but not if ismethod() or isclass() or isfunction() are true.

This is new as of Python 2.2, and, for example, is true of inhdd__. An object passing this test has a
__get__ attribute but not a__set__ attribute, but beyond that the set of attributes varieshame__ is
usually sensible, and_doc__ often is.

Methods implemented via descriptors that also pass one of the other tests return false from the ismethod-
descriptor() test, simply because the other tests promise more — you can, e.g., count on havinfutine im
attribute (etc) when an object passes ismethod().

isdatadescriptor (objech
Return true if the object is a data descriptor.

Data descriptors have both aget _ and a__set__ attribute. Examples are properties (defined in Python)

and getsets and members (defined in C). Typically, data descriptors will alsa hasene__and__doc__

attributes (properties, getsets, and members have both of these attributes), but this is not guaranteed. New
in version 2.3.

3.11.2 Retrieving source code

getdoc (objec)
Get the documentation string for an object. All tabs are expanded to spaces. To clean up docstrings that are
indented to line up with blocks of code, any whitespace than can be uniformly removed from the second
line onwards is removed.

getcomments (objec)

3.11. inspect — Inspect live objects 61

Return in a single string any lines of comments immediately preceding the object’s source code (for a class,
function, or method), or at the top of the Python source file (if the object is a module).

getfile (objec)
Return the name of the (text or binary) file in which an object was defined. This will fail vilisipaError
if the object is a built-in module, class, or function.

getmodule (objec)
Try to guess which module an object was defined in.

getsourcefile (objec)
Return the name of the Python source file in which an object was defined. This will fail WitheError
if the object is a built-in module, class, or function.

getsourcelines (objec)
Return a list of source lines and starting line number for an object. The argument may be a module, class,
method, function, traceback, frame, or code object. The source code is returned as a list of the lines corre-
sponding to the object and the line number indicates where in the original source file the first line of code
was found. AnOError s raised if the source code cannot be retrieved.

getsource (objec)
Return the text of the source code for an object. The argument may be a module, class, method, function,
traceback, frame, or code object. The source code is returned as a single stril@Emar s raised if
the source code cannot be retrieved.

3.11.3 Classes and functions

getclasstree (classeg, unique])
Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it contains
classes derived from the class whose entry immediately precedes the list. Each entry is a 2-tuple containing
a class and a tuple of its base classes. Ifuh@ueargument is true, exactly one entry appears in the
returned structure for each class in the given list. Otherwise, classes using multiple inheritance and their
descendants will appear multiple times.

getargspec (fung
Get the names and default values of a function’s arguments. A tuple of four things is ret(argd;
varargs varkw, defaultd . argsis a list of the argument names (it may contain nested ligtsjrgsand
varkware the names of theand** arguments oNone. defaultsis a tuple of default argument values; if
this tuple has elements, they correspond to the lagtiements listed imrgs

getargvalues (frame
Get information about arguments passed into a particular frame. A tuple of four things is reiuangs!:
varargs varkw, locals) . argsis a list of the argument names (it may contain nested liseargsand
varkware the names of tHeand** arguments oNone. localsis the locals dictionary of the given frame.

formatargspec (args[, varargs, varkw, defaults, argformat, varargsformat, varkwformat, defaultfo}bnat
Format a pretty argument spec from the four values returnegtargspec() . The other four arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

formatargvalues (args[, varargs, varkw, locals, argformat, varargsformat, varkwformat, vaIuefoﬂmat

Format a pretty argument spec from the four values returnegebgrgvalues() . The other four ar-
guments are the corresponding optional formatting functions that are called to turn names and values into
strings.

getmro (cls)
Return a tuple of class cls’s base classes, including cls, in method resolution order. No class appears more
than once in this tuple. Note that the method resolution order depends on cls’s type. Unless a very peculiar
user-defined metatype is in use, cls will be the first element of the tuple.

62 Chapter 3. Python Runtime Services

3.11.4 The interpreter stack

When the following functions return “frame records,” each record is a tuple of six items: the frame object, the
filename, the line number of the current line, the function name, a list of lines of context from the source code,
and the index of the current line within that list.

Warning: Keeping references to frame objects, as found in the first element of the frame records thede func-
tions return, can cause your program to create reference cycles. Once a reference cycle has been crgated, the
lifespan of all objects which can be accessed from the objects which form the cycle can become mucly longer
even if Python’s optional cycle detector is enabled. If such cycles must be created, it is important to ensure
they are explicitly broken to avoid the delayed destruction of objects and increased memory consumption
which occurs.
Though the cycle detector will catch these, destruction of the frames (and local variables) can be made deter-
ministic by removing the cycle infinally clause. This is also important if the cycle detector was disaljled
when Python was compiled or using .disable() . For example:
def handle_stackframe_without_leak():
frame = inspect.currentframe()

try:

do something with the frame
finally:

del frame

The optionalcontextargument supported by most of these functions specifies the number of lines of context to
return, which are centered around the current line.

getframeinfo (framd:, contexl])
Get information about a frame or traceback object. A 5-tuple is returned, the last five elements of the frame’s
frame record.

getouterframes (frame{, contexﬂ)
Get a list of frame records for a frame and all outer frames. These frames represent the calls that lead to the
creation offrame The first entry in the returned list represefngsne the last entry represents the outermost
call onframes stack.

getinnerframes (tracebacl[, contexﬂ)
Get a list of frame records for a traceback’s frame and all inner frames. These frames represent calls made
as a consequence fshme The first entry in the list represerttmceback the last entry represents where
the exception was raised.

currentframe ()
Return the frame object for the caller’s stack frame.

stack ([contexﬂ)
Return a list of frame records for the caller’'s stack. The first entry in the returned list represents the caller;
the last entry represents the outermost call on the stack.

trace ([context])
Return a list of frame records for the stack between the current frame and the frame in which an exception
currently being handled was raised in. The first entry in the list represents the caller; the last entry represents
where the exception was raised.

3.12 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print
stack traces under program control, such as in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the vayaldes _traceback
(deprecated) anslys.last _traceback and returned as the third item frosgs.exc _info()

3.12. traceback — Print or retrieve a stack traceback 63

The module defines the following functions:

print _tb (tracebacl[, Iimit[, file]])
Print up tolimit stack trace entries fromnaceback If limit is omitted orNone, all entries are printed. ffle
is omitted orNone, the output goes teys.stderr ; otherwise it should be an open file or file-like object
to receive the output.

print _exception (type, value, traceba{klimit[, file]])
Print exception information and up tonit stack trace entries fromracebackto file. This differs from
print _tb() inthe following ways: (1) itracebackis notNone, it prints a headerTraceback (most
recent call last): "+ (2) it prints the exceptiortype andvalue after the stack trace; (3) tiypeis
SyntaxError andvalue has the appropriate format, it prints the line where the syntax error occurred
with a caret indicating the approximate position of the error.

print _exc ([limit[, file]])
This is a shorthand for print _exception(sys.exc _type, sys.exc _value,
sys.exc _traceback, limit, file). (In fact, it usessys.exc _info() to retrieve the same
information in a thread-safe way instead of using the deprecated variables.)

print _last ([limit[, file]])
This is a shorthand for print _exception(sys.last _type, sys.last _value,
sys.last _traceback, limit, file) .

print _stack ([f[, timit[, file]]])
This function prints a stack trace from its invocation point. The optiéreeigument can be used to spec-
ify an alternate stack frame to start. The optiolalt andfile arguments have the same meaning as for
print _exception()

extract _tb (tracebacl[, Iimit])
Return a list of up tdimit “pre-processed” stack trace entries extracted from the traceback trhssthack
It is useful for alternate formatting of stack tracesliriit is omitted orNone, all entries are extracted. A
“pre-processed” stack trace entry is a quadrufilienameline numberfunction nametext) representing the
information that is usually printed for a stack trace. Téetis a string with leading and trailing whitespace
stripped; if the source is not available ithine.

extract _stack ([f[, Iimit]])
Extract the raw traceback from the current stack frame. The return value has the same format as for
extract _tb() . The optionaF andlimit arguments have the same meaning apfort _stack()

format _list (list)
Given alist of tuples as returned bytract _tb() orextract _stack() ,returnalistof strings ready
for printing. Each string in the resulting list corresponds to the item with the same index in the argument
list. Each string ends in a newline; the strings may contain internal newlines as well, for those items whose
source text line is ndtlone.

format _exception _only (type, valug
Format the exception part of a traceback. The arguments are the exception type and value such as given
by sys.last _type andsys.last _value . The return value is a list of strings, each ending in a
newline. Normally, the list contains a single string; however,SgntaxError exceptions, it contains
several lines that (when printed) display detailed information about where the syntax error occurred. The
message indicating which exception occurred is the always last string in the list.

format _exception (type, value, t[), Iimit])
Format a stack trace and the exception information. The arguments have the same meaning as the cor-
responding arguments fint _exception() . The return value is a list of strings, each ending in a
newline and some containing internal newlines. When these lines are concatenated and printed, exactly the
same text is printed as dopent _exception()

format _tb (tb[, limit)

A shorthand foformat _list(extract _tb(th, limit)) .
format _stack ([f[, limit]])
A shorthand foformat _list(extract _stack(f, limit)) .

tb _lineno (tb)

64 Chapter 3. Python Runtime Services

This function returns the current line number set in the traceback object. This function was necessary
because in versions of Python prior to 2.3 when-tBdlag was passed to Python ttietb _lineno was
not updated correctly. This function has no use in versions past 2.3.

3.12.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refecdo¢henodule.

import sys, traceback

def run_user_code(envdir):
source = raw_input(">>> ")

try:
exec source in envdir
except:
print "Exception in user code:"
print ’-*60
traceback.print_exc(file=sys.stdout)
print '-*60
envdir = {}
while 1:

run_user_code(envdir)

3.13 linecache — Random access to text lines

Thelinecache module allows one to get any line from any file, while attempting to optimize internally, using
a cache, the common case where many lines are read from a single file. This is usettdgetbeeck module
to retrieve source lines for inclusion in the formatted traceback.

Thelinecache module defines the following functions:

getline (filename, linenp
Get linelinenofrom file namedilename This function will never throw an exception — it will retuth
on errors (the terminating newline character will be included for lines that are found).

If a file namedfilenameis not found, the function will look for it in the module search patys.path

clearcache ()
Clear the cache. Use this function if you no longer need lines from files previously readyetling()

checkcache ()
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you
require the updated version.

Example:

>>> import linecache
>>> |inecache.getline('/etc/passwd’, 4)
'sys:x:3:3:sys:/dev:/bin/sh\n’

3.13. linecache = — Random access to text lines 65

3.14 pickle — Python object serialization

The pickle module implements a fundamental, but powerful algorithm for serializing and de-serializing a
Python object structure. “Pickling” is the process whereby a Python object hierarchy is converted into a byte
stream, and “unpickling” is the inverse operation, whereby a byte stream is converted back into an object hierar-

chy. Pickling (and unpickling) is alternatively known as “serialization”, “marshalltngy™flattening”, however,
to avoid confusion, the terms used here are “pickling” and “unpickling”.

This documentation describes both fliekle module and thePickle module.

3.14.1 Relationship to other Python modules

The pickle module has an optimized cousin called ttieickle module. As its name impliegPickle

is written in C, so it can be up to 1000 times faster tipckle . However it does not support subclassing

of the Pickler() and Unpickler() classes, because @Pickle these are functions, not classes. Most
applications have no need for this functionality, and can benefit from the improved performacieieldé

Other than that, the interfaces of the two modules are nearly identical; the common interface is described in this
manual and differences are pointed out where necessary. In the following discussions, we use the term “pickle” to
collectively describe thpickle andcPickle modules.

The data streams the two modules produce are guaranteed to be interchangeable.

Python has a more primitive serialization module caftemtshal , but in generapickle should always be the
preferred way to serialize Python objeatsarshal exists primarily to support Python’spyc’ files.

Thepickle module differs frommarshal several significant ways:

e Thepickle module keeps track of the objects it has already serialized, so that later references to the same
object won't be serialized agaimarshal doesn't do this.

This has implications both for recursive objects and object sharing. Recursive objects are objects that contain
references to themselves. These are not handled by marshal, and in fact, attempting to marshal recursive
objects will crash your Python interpreter. Object sharing happens when there are multiple references to the
same obiject in different places in the object hierarchy being serializiellle stores such objects only

once, and ensures that all other references point to the master copy. Shared objects remain shared, which
can be very important for mutable objects.

e marshal cannotbe used to serialize user-defined classes and their instpickés. can save and restore
class instances transparently, however the class definition must be importable and live in the same module
as when the object was stored.

e Themarshal serialization format is not guaranteed to be portable across Python versions. Because its
primary job in life is to support.pyc’ files, the Python implementers reserve the right to change the serial-
ization format in non-backwards compatible ways should the need arisquidiie serialization format
is guaranteed to be backwards compatible across Python releases.

Warning: Thepickle module is not intended to be secure against erroneous or maliciously constjucted
data. Never unpickle data received from an untrusted or unauthenticated source.

Note that serialization is a more primitive notion than persistence; althpicgle reads and writes file objects,

it does not handle the issue of nhaming persistent objects, nor the (even more complicated) issue of concurrent
access to persistent objects. Tgiekle module can transform a complex object into a byte stream and it can
transform the byte stream into an object with the same internal structure. Perhaps the most obvious thing to do
with these byte streams is to write them onto a file, but it is also conceivable to send them across a network or store
them in a database. The modsleslve provides a simple interface to pickle and unpickle objects on DBM-style
database files.

2Don't confuse this with thenarshal module

66 Chapter 3. Python Runtime Services

3.14.2 Data stream format

The data format used lpickle is Python-specific. This has the advantage that there are no restrictions imposed
by external standards such as XDR (which can’t represent pointer sharing); however it means that non-Python
programs may not be able to reconstruct pickled Python objects.

By default, thepickle data format uses a printabdecii representation. This is slightly more voluminous than a
binary representation. The big advantage of using printabtal (and of some other characteristicpitkle ’'s
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

There are currently 3 different protocols which can be used for pickling.

e Protocol version 0O is the original ASCII protocol and is backwards compatible with earlier versions of
Python.

e Protocol version 1 is the old binary format which is also compatible with earlier versions of Python.

e Protocol version 2 was introduced in Python 2.3. It provides much more efficient pickling of new-style
classes.

Refer to PEP 307 for more information.

If a protocol is not specified, protocol 0 is used. [rotocol is specified as a negative value or
HIGHEST_PROTOCAQLthe highest protocol version available will be used.

Changed in version 2.3: THain parameter is deprecated and only provided for backwards compatibility. You
should use therotocolparameter instead.

A binary format, which is slightly more efficient, can be chosen by specifying a true value foirtleegument
to thePickler constructor or thelump() anddumps() functions. Aprotocolversion ¢= 1 implies use of a
binary format.

3.14.3 Usage

To serialize an object hierarchy, you first create a pickler, then you call the picllerip() method. To de-
serialize a data stream, you first create an unpickler, then you call the unpitddel(3 method. Theickle
module provides the following constant:

HIGHEST_PROTOCOL
The highest protocol version available. This value can be passepra®aolvalue. New in version 2.3.

Thepickle module provides the following functions to make this process more convenient:

dump(object, file[, protoco[, bin]])
Write a pickled representation objectto the open file objedile. This is equivalent tdickler(file,
protocol bin).dump(objec) .
If the protocol parameter is ommitted, protocol O is used.ptbtocol is specified as a negative value or
HIGHEST_PROTOCAQ]Lthe highest protocol version will be used.
Changed in version 2.3: Tharotocol parameter was added. Tlbén parameter is deprecated and only
provided for backwards compatibility. You should use pinetocol parameter instead.
If the optionalbin argument is true, the binary pickle format is used; otherwise the (less efficient) text pickle
format is used (for backwards compatibility, this is the default).

file must have avrite() ~ method that accepts a single string argument. It can thus be a file object opened
for writing, aStringlO object, or any other custom object that meets this interface.

load (file)
Read a string from the open file objdile and interpret it as a pickle data stream, reconstructing and
returning the original object hierarchy. This is equivalenttwickler(file).load()

file must have two methodsyead() method that takes an integer argument, arehalline() method
that requires no arguments. Both methods should return a string.fildnoan be a file object opened for
reading, eéStringlO object, or any other custom object that meets this interface.

3.14. pickle — Python object serialization 67

This function automatically determines whether the data stream was written in binary mode or not.

dumps(objec{, protoco[, bin]])
Return the pickled representation of the object as a string, instead of writing it to a file.

If the protocol parameter is ommitted, protocol 0 is used.ptbtocol is specified as a negative value or
HIGHEST_PROTOCAQ]lthe highest protocol version will be used.

Changed in version 2.3: Tharotocol parameter was added. Thén parameter is deprecated and only
provided for backwards compatibility. You should use pinetocol parameter instead.

If the optionalbin argument is true, the binary pickle format is used; otherwise the (less efficient) text pickle
format is used (this is the default).

loads (string)
Read a pickled object hierarchy from a string. Characters in the string past the pickled object’s representa-

tion are ignored.
Thepickle module also defines three exceptions:

exceptionPickleError
A common base class for the other exceptions defined below. This inherité&ikoeption

exceptionPicklingError
This exception is raised when an unpicklable object is passed thuthe() method.

exceptionUnpicklingError
This exception is raised when there is a problem unpickling an object. Note that other exceptions may also
be raised during unpickling, including (but not necessarily limited&tiibuteError , EOFError
ImportError , andindexError

Thepickle module also exports two callablg®ickler andUnpickler
classPickler (file[, protoco[, bin]])
This takes a file-like object to which it will write a pickle data stream.

If the protocol parameter is ommitted, protocol 0 is usedpibtocolis specified as a negative value, the
highest protocol version will be used.

Changed in version 2.3: THan parameter is deprecated and only provided for backwards compatibility.
You should use thprotocolparameter instead.

Optionalbin if true, tells the pickler to use the more efficient binary pickle format, otherwiseniw|
format is used (this is the default).

file must have avrite() method that accepts a single string argument. It can thus be an open file object,
aStringlO object, or any other custom object that meets this interface.

Pickler objects define one (or two) public methods:

dump(objec)
Write a pickled representation objectto the open file object given in the constructor. Either the binary or
Ascli format will be used, depending on the value of teflag passed to the constructor.

clear _memq)
Clears the pickler’'s “memo”. The memo is the data structure that remembers which objects the pickler has
already seen, so that shared or recursive objects pickled by reference and not by value. This method is useful
when re-using picklers.

Note: Prior to Python 2.3clear _memo() was only available on the picklers createdd®ickle . In
thepickle module, picklers have an instance variable caitegmowhich is a Python dictionary. So to
clear the memo for pickle module pickler, you could do the following:

mypickler.memo.clear()

Code that does not need to support older versions of Python should simaliease _memo() .

3In the pickle module these callables are classes, which you could subclass to customize the behavior. HoweveRiikithe
module these callables are factory functions and so cannot be subclassed. One common reason to subclass is to control what objects can
actually be unpickled. See section 3.14.6 for more details.

68 Chapter 3. Python Runtime Services

It is possible to make multiple calls to tlleemp() method of the samBickler instance. These must then be
matched to the same number of calls to fibed() method of the correspondingnpickler instance. If the
same object is pickled by multiptump() calls, theload() will all yield references to the same objéct

Unpickler objects are defined as:

classUnpickler (file)
This takes a file-like object from which it will read a pickle data stream. This class automatically determines
whether the data stream was written in binary mode or not, so it does not need a flag aBioklie
factory.

file must have two methodsyaad() method that takes an integer argument, arehalline() method
that requires no arguments. Both methods should return a string.fildhaan be a file object opened for
reading, eStringlO object, or any other custom object that meets this interface.

Unpickler objects have one (or two) public methods:

load ()
Read a pickled object representation from the open file object given in the constructor, and return the recon-
stituted object hierarchy specified therein.

noload ()
This is just likeload() except that it doesn’t actually create any objects. This is useful primarily for
finding what's called “persistent ids” that may be referenced in a pickle data stream. See section 3.14.5
below for more details.

Note: the noload() method is currently only available obdnpickler objects created with the
cPickle module.pickle moduleUnpickler s do not have theoload() method.

3.14.4 What can be pickled and unpickled?

The following types can be pickled:

e None, True , andFalse

e integers, long integers, floating point numbers, complex humbers
e normal and Unicode strings

e tuples, lists, and dictionaries containing only picklable objects

¢ functions defined at the top level of a module

e built-in functions defined at the top level of a module

e classes that are defined at the top level of a module

e instances of such classes whosedict __ or __setstate __() is picklable (see section 3.14.5 for
details)
Attempts to pickle unpicklable objects will raise tRecklingError exception; when this happens, an unspec-

ified number of bytes may have already been written to the underlying file.

Note that functions (built-in and user-defined) are pickled by “fully qualified” name reference, not by value. This
means that only the function name is pickled, along with the name of module the function is defined in. Neither
the function’s code, nor any of its function attributes are pickled. Thus the defining module must be importable
in the unpickling environment, and the module must contain the named object, otherwise an exception will be
raised.

4Warning this is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify
an object and then pickle it again using the sdPiekler instance, the object is not pickled again — a reference to it is pickled and the
Unpickler will return the old value, not the modified one. There are two problems here: (1) detecting changes, and (2) marshalling a
minimal set of changes. Garbage Collection may also become a problem here.

5The exception raised will likely be dmportError or anAttributeError but it could be something else.

3.14. pickle — Python object serialization 69

Similarly, classes are pickled by named reference, so the same restrictions in the unpickling environment apply.
Note that none of the class’s code or data is pickled, so in the following example the class aiftibutes not
restored in the unpickling environment:

class Foo:
attr = 'a class attr’

picklestring = pickle.dumps(Foo)

These restrictions are why picklable functions and classes must be defined in the top level of a module.

Similarly, when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods to the class and
still load objects that were created with an earlier version of the class. If you plan to have long-lived objects that
will see many versions of a class, it may be worthwhile to put a version number in the objects so that suitable
conversions can be made by the class'setstate __() method.

3.14.5 The pickle protocol

This section describes the “pickling protocol” that defines the interface between the pickler/unpickler and the ob-
jects that are being serialized. This protocol provides a standard way for you to define, customize, and control how
your objects are serialized and de-serialized. The description in this section doesn’t cover specific customizations
that you can employ to make the unpickling environment slightly safer from untrusted pickle data streams; see
section 3.14.6 for more details.

Pickling and unpickling normal class instances

When a pickled class instance is unpickled, itsinit __() method is normallynot invoked. If it is
desirable that the__init __() method be called on unpickling, an old-style class can define a method
__getinitargs __() , which should return a&uple containing the arguments to be passed to the class con-
structor (i.e.__init __()). The__getinitargs __() method is called at pickle time; the tuple it returns is
incorporated in the pickle for the instance.

New-style types can provide a_getnewargs __() method that is used for protocol 2. Implementing this
method is needed if the type establishes some internal invariants when the instance is created, or if the memory
allocation is affected by the values passed to_theew__() method for the type (as it is for tuples and strings).
Instances of a new-style tyfigare created using

obj = C._new_ (C, * arg9

where args is the result of calling__getnewargs __() on the original object; if there is no
__getnewargs __() , an empty tuple is assumed.

Classes can further influence how their instances are pickled; if the class defines the megbistate __() ,
it is called and the return state is pickled as the contents for the instance, instead of the contents of the instance’s
dictionary. If there is na__getstate __() method, the instance’s_dict __is pickled.

Upon unpickling, if the class also defines the methadetstate __() , it is called with the unpickled stdte

If there is no__setstate __() method, the pickled state must be a dictionary and its items are assigned to the
new instance’s dictionary. If a class defines baotlgetstate __() and__setstate __() , the state object
needn’t be a dictionary and these methods can do what they’want.

Warning: For new-style classes, if_getstate __() returns a false value, the_setstate __()
method will not be called.

8These methods can also be used to implement copying class instances.
"This protocol is also used by the shallow and deep copying operations definedimpthenodule.

70 Chapter 3. Python Runtime Services

Pickling and unpickling extension types

When thePickler encounters an object of a type it knows nothing about — such as an extension type — it looks
in two places for a hint of how to pickle it. One alternative is for the object to implementraduce __()
method. If provided, at pickling time_reduce __() will be called with no arguments, and it must return either

a string or a tuple.

If a string is returned, it names a global variable whose contents are pickled as normal. When a tuple is returned,
it must be of length two or three, with the following semantics:

e A callable object, which in the unpickling environment must be either a class, a callable registered as a “safe
constructor” (see below), or it must have an attributesafe _for _unpickling __ with a true value.
Otherwise, arUnpicklingError will be raised in the unpickling environment. Note that as usual, the
callable itself is pickled by name.

e A tuple of arguments for the callable object, done. Deprecated since release 2.3Use the tuple of
arguments instead

e Optionally, the object’s state, which will be passed to the object'setstate __() method as described
in section 3.14.5. If the object has no setstate __() method, then, as above, the value must be a
dictionary and it will be added to the object'sdict __.

Upon unpickling, the callable will be called (provided that it meets the above criteria), passing in the tuple of
arguments; it should return the unpickled object.

If the second item walslone, then instead of calling the callable directly, itsbasicnew __() method is called
without arguments. It should also return the unpickled object.

Deprecated since release 2.8Ise the tuple of arguments instead

An alternative to implementing a_reduce __() method on the object to be pickled, is to register the callable

with the copy _reg module. This module provides a way for programs to register “reduction functions”

and constructors for user-defined types. Reduction functions have the same semantics and interface as the
__reduce __() method described above, except that they are called with a single argument, the object to be
pickled.

The registered constructor is deemed a “safe constructor” for purposes of unpickling as described above.

Pickling and unpickling external objects

For the benefit of object persistence, fliekle module supports the notion of a reference to an object outside
the pickled data stream. Such objects are referenced by a “persistent id”, which is just an arbitrary string of
printableascii characters. The resolution of such names is not defined byitckkee module; it will delegate

this resolution to user defined functions on the pickler and unpftkler

To define external persistent id resolution, you need to sgbéngistent _id attribute of the pickler object
and thepersistent _load attribute of the unpickler object.
To pickle objects that have an external persistent id, the pickler must have a @esistent _id() method

that takes an object as an argument and returns ditbee or the persistent id for that object. Whé&lone is
returned, the pickler simply pickles the object as normal. When a persistent id string is returned, the pickler will
pickle that string, along with a marker so that the unpickler will recognize the string as a persistent id.

To unpickle external objects, the unpickler must have a cugtersistent _load() function that takes a
persistent id string and returns the referenced object.

Here’s a silly example thahightshed more light:

8The actual mechanism for associating these user defined functions is slightly differgickfer andcPickle . The description given
here works the same for both implementations. Users gbitide module could also use subclassing to effect the same results, overriding
thepersistent _id() andpersistent _load() methods in the derived classes.

3.14. pickle — Python object serialization 71

import pickle
from c¢StringlO import StringlO

src = StringlO()
p = pickle.Pickler(src)

def persistent_id(obj):
if hasattr(obj, 'X):
return 'the value %d’ % obj.x
else:
return None

p.persistent_id = persistent_id

class Integer:
def __init__ (self, x):
self.x = x
def __str__ (self):
return 'My name is integer %d’ % self.x

i = Integer(7)
print i
p.dump(i)

datastream = src.getvalue()
print repr(datastream)
dst = StringlO(datastream)

up = pickle.Unpickler(dst)

class Fancylnteger(Integer):
def _ str_ (self):
return 'l am the integer %d’ % self.x

def persistent_load(persid):
if persid.startswith('the value °):
value = int(persid.split()[2])
return Fancylnteger(value)
else:
raise pickle.UnpicklingError, ’'Invalid persistent id’

up.persistent_load = persistent_load

j = up.load()
print j
In the cPickle module, the unpicklerpersistent _load attribute can also be set to a Python list, in

which case, when the unpickler reaches a persistent id, the persistent id string will simply be appended to this
list. This functionality exists so that a pickle data stream can be “sniffed” for object references without actually
instantiating all the objects in a picRleSettingpersistent _load to a listis usually used in conjunction with
thenoload() method on the Unpickler.

3.14.6 Subclassing Unpicklers

By default, unpickling will import any class that it finds in the pickle data. You can control exactly what gets
unpickled and what gets called by customizing your unpickler. Unfortunately, exactly how you do this is different

SWe'll leave you with the image of Guido and Jim sitting around sniffing pickles in their living rooms.

72 Chapter 3. Python Runtime Services

depending on whether you're usipigkle orcPickle .1°,

In the pickle module, you need to derive a subclass frompickler , overriding theload _global()
method.load _global() should read two lines from the pickle data stream where the first line will the name

of the module containing the class and the second line will be the name of the instance’s class. It then looks up the
class, possibly importing the module and digging out the attribute, then it appends what it finds to the unpickler’s
stack. Later on, this class will be assigned to thelass __ attribute of an empty class, as a way of magically
creating an instance without calling its class’sinit __() . Your job (should you choose to accept it), would

be to havdoad _global() push onto the unpickler’s stack, a known safe version of any class you deem safe to
unpickle. It is up to you to produce such a class. Or you could raise an error if you want to disallow all unpickling
of instances. If this sounds like a hack, you're right. Refer to the source code to make this work.

Things are a little cleaner withPickle , but not by much. To control what gets unpickled, you can set the
unpicklersfind _global attribute to a function oNone. If it is None then any attempts to unpickle instances

will raise anUnpicklingError . If it is a function, then it should accept a module name and a class name,
and return the corresponding class object. It is responsible for looking up the class and performing any necessary
imports, and it may raise an error to prevent instances of the class from being unpickled.

The moral of the story is that you should be really careful about the source of the strings your application unpickles.

3.14.7 Example

Here’s a simple example of how to modify pickling behavior for a class. ThéReader class opens a text file,
and returns the line number and line contents each tintedtdline() method is called. If &extReader
instance is pickled, all attribute=xceptthe file object member are saved. When the instance is unpickled, the
file is reopened, and reading resumes from the last location_Thketstate __() and__getstate __()
methods are used to implement this behavior.

class TextReader:
""Print and number lines in a text file."™"
def __init__(self, file):
self.file = file
self.th = open(file)
self.lineno = 0

def readline(self):
self.lineno = selflineno + 1
line = self.fh.readline()
if not line:
return None
if line.endswith("\n"):
line = line[:-1]
return "%d: %s" % (self.lineno, line)

def __ getstate__ (self):
odict = self.__dict__.copy() # copy the dict since we change it
del odict['fh’] # remove filehandle entry
return odict

def __ setstate__ (self,dict):

fh = open(dict[‘file’]) # reopen file
count = dict['lineno’] # read from file...
while count: # until line count is restored

fh.readline()
count = count - 1
self.__dict__.update(dict) # update attributes
self.th = fh # save the file object

10A word of caution: the mechanisms described here use internal attributes and methods, which are subject to change in future versions of
Python. We intend to someday provide a common interface for controlling this behavior, which will work inpgitkler or cPickle

3.14. pickle — Python object serialization 73

A sample usage might be something like this:

>>> import TextReader

>>> obj = TextReader.TextReader("TextReader.py")
>>> obj.readline()

'1: #!/usr/local/bin/python’

>>> # (more invocations of obj.readline() here)

. obj.readline()

'7: class TextReader:’

>>> import pickle

>>> pickle.dump(obj,open('save.p’,’'w’))

If you want to see thapickle works across Python processes, start another Python session, before continuing.
What follows can happen from either the same process or a new process.

>>> import pickle

>>> reader = pickle.load(open('save.p’))

>>> reader.readline()

'8: "Print and number lines in a text file."

See Also:

Modulecopy _reg (section 3.16):
Pickle interface constructor registration for extension types.

Moduleshelve (section 3.17):
Indexed databases of objects; upekle

Modulecopy (section 3.18):
Shallow and deep object copying.

Modulemarshal (section 3.19):
High-performance serialization of built-in types.

3.15 cPickle — A faster pickle

ThecPickle module supports serialization and de-serialization of Python objects, providing an interface and
functionality nearly identical to theickle module. There are several differences, the most important being
performance and subclassability.

First,cPickle can be up to 1000 times faster thgickle because the former is implemented in C. Second, in
thecPickle module the callableBickler() andUnpickler() are functions, not classes. This means that

you cannot use them to derive custom pickling and unpickling subclasses. Most applications have no need for this
functionality and should benefit from the greatly improved performance afRiekle module.

The pickle data stream produced pigkle andcPickle are identical, so it is possible to up&ekle and
cPickle interchangeably with existing pickl¥s

There are additional minor differences in API betwegickle andpickle , however for most applications,
they are interchangable. More documentation is provided ipitide module documentation, which includes
a list of the documented differences.

3.16 copy _reg — Register pickle support functions

HSince the pickle data format is actually a tiny stack-oriented programming language, and some freedom is taken in the encodings of certain
objects, it is possible that the two modules produce different data streams for the same input objects. However it is guaranteed that they will
always be able to read each other’s data streams.

74 Chapter 3. Python Runtime Services

Thecopy _reg module provides support for theckle andcPickle modules. Theopy module is likely
to use this in the future as well. It provides configuration information about object constructors which are not
classes. Such constructors may be factory functions or class instances.

constructor (objec)
Declaresobjectto be a valid constructor. kbbjectis not callable (and hence not valid as a constructor),
raisesTypeError

pickle (type, functimﬁ, constructoﬂ)
Declares thafunctionshould be used as a “reduction” function for objects of tiygee typemust not be
a “classic” class object. (Classic classes are handled differently; see the documentationpfokithe
module for details.Junctionshould return either a string or a tuple containing two or three elements.

The optionalconstructorparameter, if provided, is a callable object which can be used to reconstruct the
object when called with the tuple of arguments returnedumgtionat pickling time. TypeError will be
raised ifobjectis a class oconstructoris not callable.

See thepickle module for more details on the interface expectefiinttionandconstructor

3.17 shelve — Python object persistence

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the
keys!) in a shelf can be essentially arbitrary Python objects — anything thaittkie module can handle. This

includes most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are
ordinary strings.

open (filename[,flag:’c’ [,protocoI:None[,Writeback:FaIse [,binary:None]]]])
Open a persistent dictionary. The filename specified is the base filename for the underlying database. As a
side-effect, an extension may be added to the filename and more than one file may be created. By default,
the underlying database file is opened for reading and writing. The opfiaggdararameter has the same
interpretation as thitag parameter oinydbm.open .

By default, version 0 pickles are used to serialize values. The version of the pickle protocol can be specified
with the protocol parameter. Changed in version 2.3: Tpretocol parameter was added. Th@ary
parameter is deprecated and provided for backwards compatibility only.

By default, mutations to persistent-dictionary mutable entries are not automatically written back. If the
optionalwritebackparameter is set torue, all entries accessed are cached in memory, and written back at
close time; this can make it handier to mutate mutable entries in the persistent dictionary, but, if many entries
are accessed, it can consume vast amounts of memory for the cache, and it can make the close operation
very slow since all accessed entries are written back (there is no way to determine which accessed entries
are mutable, nor which ones were actually mutated).

Shelve objects support all methods supported by dictionaries. This eases the transition from dictionary based
scripts to those requiring persistent storage.

3.17.1 Restrictions

e The choice of which database package will be used (suatbas gdbm or bsddb) depends on which
interface is available. Therefore it is not safe to open the database directlydising he database is also
(unfortunately) subject to the limitations dbm, if it is used — this means that (the pickled representation
of) the objects stored in the database should be fairly small, and in rare cases key collisions may cause the
database to refuse updates.

e Depending on the implementation, closing a persistent dictionary may or may not be necessary to flush
changes to disk. The_del __ method of theShelf class calls thelose method, so the programmer
generally need not do this explicitly.

e Theshelve module does not supparbncurrentread/write access to shelved objects. (Multiple simulta-
neous read accesses are safe.) When a program has a shelf open for writing, no other program should have
it open for reading or writing. Wix file locking can be used to solve this, but this differs acrossxU
versions and requires knowledge about the database implementation used.

3.17. shelve — Python object persistence 75

classShelf (dict[, protocoI=None[, writeback=FaIs¥, binary=None]]])
A subclass ofJserDict.DictMixin which stores pickled values in tlaict object.

By default, version 0 pickles are used to serialize values. The version of the pickle protocol can be speci-
fied with theprotocol parameter. See thgckle documentation for a discussion of the pickle protocols.
Changed in version 2.3: Th@rotocol parameter was added. Thaary parameter is deprecated and pro-
vided for backwards compatibility only.

If the writebackparameter igrue , the object will hold a cache of all entries accessed and write them back
to thedict at sync and close times. This allows natural operations on mutable entries, but can consume much
more memory and make sync and close take a long time.

classBsdDbShelf (dict[, protocoI:Non{, writeback:Falsé, binary:None]]])
A subclass oShelf which expose$irst |, next , previous ,last andset _location which are
available in thdosddb module but not in other database modules. @it object passed to the construc-
tor must support those methods. This is generally accomplished by calling drseldif.hashopen
bsddb.btopen or bsddb.rnopen . The optionalprotocol writeback andbinary parameters have the
same interpretation as for tighelf class.

classDbfilenameShelf (filename{, flag:’c’[, protocoI:Non({, Writeback:Falsé, binary:None]]]])
A subclass ofShelf which accepts dilenameinstead of a dict-like object. The underlying file will be
opened using@nydbm.open . By default, the file will be created and opened for both read and write.
The optionalflag parameter has the same interpretation as fooffen function. The optionaprotocol
writeback andbinary parameters have the same interpretation as fostiedf class.

3.17.2 Example

To summarize the interfackdy is a stringdata is an arbitrary object):

import shelve

d = shelve.open(flename) # open -- file may get suffix added by low-level
library

dlkey] = data # store data at key (overwrites old data if
using an existing key)

data = dlkey] # retrieve a COPY of data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = d.has_key(key) # true if the key exists

list = d.keys() # a list of all existing keys (slow!)

as d was opened WITHOUT writeback=True, beware:

d['xx] = range(4) # this works as expected, but...

d['xx’].append(5) # *this doesn’t’* -- d['xx] is STILL range(4)!!

having opened d without writeback=True, you need to code carefully:

temp = d['xx] # extracts the copy
temp.append(5) # mutates the copy
dI'xx’] = temp # stores the copy right back, to persist it

or, d=shelve.open(filename,writeback=True) would let you just code
d['xx’].append(5) and have it work as expected, BUT it would also
consume more memory and make the d.close() operation slower.

d.close() # close it

See Also:

Moduleanydbm (section 7.10):
Generic interface tdbm-style databases.

76 Chapter 3. Python Runtime Services

Modulebsddb (section 7.13):
BSD db database interface.

Moduledbhash (section 7.11):
Thin layer around thésddb which provides ampen function like the other database modules.

Moduledbm (section 8.6):
Standard Wix database interface.

Moduledumbdbm(section 7.14):
Portable implementation of thdbminterface.

Modulegdbm (section 8.7):
GNU database interface, based ondlbeninterface.

Modulepickle (section 3.14):
Obiject serialization used tshelve .

ModulecPickle (section 3.15):
High-performance version gfickle

3.18 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy

X
X

copy.copy(y) # make a shallow copy of y
copy.deepcopy(y) # make a deep copy of y

For module specific errorsppy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain
other objects, like lists or class instances):

e A shallow copyconstructs a new compound object and then (to the extent possible) ireferemcesnto
it to the objects found in the original.

e A deep copyconstructs a new compound object and then, recursively, insgpissinto it of the objects
found in the original.

Two problems often exist with deep copy operations that don't exist with shallow copy operations:

e Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may
cause a recursive loop.

e Because deep copy copiegerythingt may copy too much, e.g., administrative data structures that should
be shared even between copies.

Thedeepcopy() function avoids these problems by:

e keeping a “memao” dictionary of objects already copied during the current copying pass; and

e letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file, socket,
window, array, or any similar types.

3.18. copy — Shallow and deep copy operations 77

Classes can use the same interfaces to control copying that they use to control pickling. See the description of
modulepickle for information on these methods. Thepy module does not use tlwpy _reg registration
module.

In order for a class to define its own copy implementation, it can define special methadgpy __() and
__deepcopy __() . The former is called to implement the shallow copy operation; no additional arguments
are passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo
dictionary. If the__deepcopy __() implementation needs to make a deep copy of a component, it should call
thedeepcopy() function with the component as first argument and the memo dictionary as second argument.

See Also:

Modulepickle (section 3.14):
Discussion of the special methods used to support object state retrieval and restoration.

3.19 marshal — Internal Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is specific
to Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC,
transport the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may
change between Python versions (although it rarely ddes).

This is not a general “persistence” module. For general persistence and transfer of Python objects through RPC
calls, see the modulgsckle andshelve . Themarshal module exists mainly to support reading and writing

the “pseudo-compiled” code for Python modules of¢’ files. Therefore, the Python maintainers reserve the

right to modify the marshal format in backward incompatible ways should the need arise. If you're serializing and
de-serializing Python objects, use thiekle module instead.

Warning: Themarshal module is not intended to be secure against erroneous or maliciously constllucted
data. Never unmarshal data received from an untrusted or unauthenticated source.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are suppdotes:integers,

long integers, floating point numbers, strings, Unicode objects, tuples, lists, dictionaries, and code objects, where
it should be understood that tuples, lists and dictionaries are only supported as long as the values contained therein
are themselves supported; and recursive lists and dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where Cleng int type has more than 32 bits (such as the DEC Alpha), it is possible

to create plain Python integers that are longer than 32 bits. If such an integer is marshaled and read back in on a
machine where C'®ong int type has only 32 bits, a Python long integer object is returned instead. While of a
different type, the numeric value is the same. (This behavior is new in Python 2.2. In earlier versions, all but the
least-significant 32 bits of the value were lost, and a warning message was printed.)

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump(value, fil§
Write the value on the open file. The value must be a supported type. The file must be an open file object
such assys.stdout or returned byopen() or posix.popen() . It must be opened in binary mode
(wb’ or'w+b’).
If the value has (or contains an object that has) an unsupported tyjady@Error exception is raised —
but garbage data will also be written to the file. The object will not be properly read bdokdh)

load (file)
Read one value from the open file and return it. If no valid value is read, E&$&=rror , ValueError
or TypeError . The file must be an open file object opened in binary maté (or'r+b’).

12The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “mar-
shalling” for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to
external form (in an RPC buffer for instance) and “unmarshalling” for the reverse process.

78 Chapter 3. Python Runtime Services

Warning: If an object containing an unsupported type was marshalledduithp() , load() will substi-
tute None for the unmarshallable type.

dumps(value
Return the string that would be written to a file bymp(valug file) . The value must be a supported
type. Raise &alueError exception if value has (or contains an object that has) an unsupported type.

loads (string)
Convert the string to a value. If no valid value is found, rd&i€@~Error , ValueError or TypeError
Extra characters in the string are ignored.

3.20 warnings — Warning control

New in version 2.1.

Warning messages are typically issued in situations where it is useful to alert the user of some condition in a
program, where that condition (normally) doesn’t warrant raising an exception and terminating the program. For
example, one might want to issue a warning when a program uses an obsolete module.

Python programmers issue warnings by callingwizen() function defined in this module. (C programmers use
PyErr _Warn() ; see thePython/C API Reference Manu@air details).

Warning messages are normally writtensigs.stderr , but their disposition can be changed flexibly, from
ignoring all warnings to turning them into exceptions. The disposition of warnings can vary based on the warning
category (see below), the text of the warning message, and the source location where it is issued. Repetitions of a
particular warning for the same source location are typically suppressed.

There are two stages in warning control: first, each time a warning is issued, a determination is made whether a
message should be issued or not; next, if a message is to be issued, it is formatted and printed using a user-settable
hook.

The determination whether to issue a warning message is controlled by the warning filter, which is a sequence
of matching rules and actions. Rules can be added to the filter by céiltergvarnings() and reset to its
default state by callingesetwarnings()

The printing of warning messages is done by caligwwarning() , which may be overidden; the default
implementation of this function formats the message by caftingnatwarning() , which is also available for
use by custom implementations.

3.20.1 Warning Categories

There are a number of built-in exceptions that represent warning categories. This categorization is useful to be
able to filter out groups of warnings. The following warnings category classes are currently defined:

Class Description

Warning This is the base class of all warning category classes. It is a subclesseyfition
UserWarning The default category fovarn() .

DeprecationWarning Base category for warnings about deprecated features.

SyntaxWarning Base category for warnings about dubious syntactic features.

RuntimeWarning Base category for warnings about dubious runtime features.

FutureWarning Base category for warnings about constructs that will change semantically in the future.

While these are technically built-in exceptions, they are documented here, because conceptually they belong to
the warnings mechanism.

User code can define additional warning categories by subclassing one of the standard warning categories. A
warning category must always be a subclass ofttaening class.

3.20. warnings — Warning control 79

3.20.2 The Warnings Filter

The warnings filter controls whether warnings are ignored, displayed, or turned into errors (raising an exception).

Conceptually, the warnings filter maintains an ordered list of filter specifications; any specific warning is matched
against each filter specification in the list in turn until a match is found; the match determines the disposition of
the match. Each entry is a tuple of the forat{jon messagecategory module lineno), where:

e actionis one of the following strings:

Value Disposition

"error" turn matching warnings into exceptions

"ignore" never print matching warnings

"always" always print matching warnings

"default” print the first occurrence of matching warnings for each location where the warning is issued
"module” print the first occurrence of matching warnings for each module where the warning is issued
"once" print only the first occurrence of matching warnings, regardless of location

e messages a string containing a regular expression that the warning message must match (the match is
compiled to always be case-insensitive)

e categoryis a class (a subclass W¥farning) of which the warning category must be a subclass in order to
match

e moduleis a string containing a regular expression that the module name must match (the match is compiled
to be case-sensitive)

¢ linenois an integer that the line number where the warning occurred must matéhtoomatch all line
numbers

Since theWarning class is derived from the built-iBxception class, to turn a warning into an error we simply
raisecategory(message)

The warnings filter is initialized byW options passed to the Python interpreter command line. The interpreter
saves the arguments for alV options without interpretation isys.warnoptions ; thewarnings module
parses these when it is first imported (invalid options are ignored, after printing a messggstderr).

3.20.3 Available Functions

warn (messag[: categor)[, stackleve]])
Issue a warning, or maybe ignore it or raise an exception.caktegoryargument, if given, must be a warn-
ing category class (see above); it defaultdJgerWarning . Alternatively messagean be aVarning
instance, in which caseategorywill be ignored andnessage. __class __ will be used. In this case the
message text will bstr(message) . This function raises an exception if the particular warning issued
is changed into an error by the warnings filter see above.stdeklevebrgument can be used by wrapper
functions written in Python, like this:

def deprecation(message):
warnings.warn(message, DeprecationWarning, stacklevel=2)

This makes the warning refer teprecation() s caller, rather than to the sourceddprecation()
itself (since the latter would defeat the purpose of the warning message).

warn _explicit ~ (message, category, filename, Iinénmodule{, registry]])
This is a low-level interface to the functionality efarn() , passing in explicitly the message, cate-
gory, filename and line number, and optionally the module name and the registry (which should be the
__warningregistry __ dictionary of the module). The module name defaults to the filename with
.py stripped,; if no registry is passed, the warning is never suppressessagenust be a string andat-
egorya subclass ofvarning or messagenay be aWarning instance, in which caseategorywill be
ignored.

80 Chapter 3. Python Runtime Services

showwarning (message, category, flename, IinEnﬁie])
Write a warning to a file. The default implementation cédisnatwarning(message category file-
name lineng) and writes the resulting string fde, which defaults tesys.stderr . You may replace
this function with an alternative implementation by assigningi&nings.showwarning

formatwarning (message, category, filename, lingno
Format a warning the standard way. This returns a string which may contain embedded newlines and ends
in a newline.

filterwarnings (actior{, messag[e categor)[, module[, Iinenc{, appencl]]]])
Insert an entry into the list of warnings filters. The entry is inserted at the front by defaagipénds true,
it is inserted at the end. This checks the types of the arguments, compiles the message and module regular
expressions, and inserts them as a tuple in front of the warnings filter. Entries inserted later override entries
inserted earlier, if both match a particular warning. Omitted arguments default to a value that matches
everything.

resetwarnings ()
Reset the warnings filter. This discards the effect of all previous cafikgnvarnings() , including
that of the-W command line options.

3.21 imp — Access the import internals

This module provides an interface to the mechanisms used to implementgbg statement. It defines the
following constants and functions:

get _magic ()
Return the magic string value used to recognize byte-compiled code figs {iles). (This value may be
different for each Python version.)

get _suffixes ()
Return a list of triples, each describing a particular type of module. Each triple has thedoffix mode
type , wheresuffixis a string to be appended to the module name to form the filename to seantiodiar,
is the mode string to pass to the builtépen() function to open the file (this can b for text files or
rb’ for binary files), andypeis the file type, which has one of the valu@¥_SOURCHY_COMPILED
or C_LEXTENSION described below.

find _module (name[, path])
Try to find the modulenameon the search patpath If pathis a list of directory nhames, each directory
is searched for files with any of the suffixes returnedyby _suffixes() above. Invalid names in the
list are silently ignored (but all list items must be strings)pdthis omitted orNone, the list of directory
names given bgys.path is searched, but first it searches a few special places: it tries to find a built-in
module with the given nameC(BUILTIN), then a frozen moduldP(Y_FROZEN, and on some systems
some other places are looked in as well (on the Mac, it looks for a res@RYc&RESOURCEoN Windows,
it looks in the registry which may point to a specific file).

If search is successful, the return value is a tr{diee, pathname descriptior) wherefile is an open file

object positioned at the beginningathnames the pathname of the file found, addscriptionis a triple as
contained in the list returned met _suffixes() describing the kind of module found. If the module
does not live in a file, the returndde is None, filenameis the empty string, and théescriptiontuple
contains empty strings for its suffix and mode; the module type is as indicate in parentheses above. If the
search is unsuccessflimportError is raised. Other exceptions indicate problems with the arguments

or environment.

This function does not handle hierarchical module names (names containing dots). In ordePtvlfititht
is, submoduléM of packageP, usefind _module() andload _module() to find and load package,
and then uséind _module() with thepathargument set t®. __path __. WhenP itself has a dotted
name, apply this recipe recursively.

load _module (name, file, filename, descriptipn
Load a module that was previously found figd _module() (or by an otherwise conducted search
yielding compatible results). This function does more than importing the module: if the module was already
imported, it is equivalent to eeload() ! The nameargument indicates the full module name (including

3.21. imp — Access the import internals 81

the package name, if this is a submodule of a package).filEh@rgument is an open file, aritenameis

the corresponding file name; these carNmme and” , respectively, when the module is not being loaded
from a file. Thedescriptionargument is a tuple, as would be returnedgey _suffixes() , describing
what kind of module must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (usually
ImportError) is raised.

Important: the caller is responsible for closing tfile argument, if it was noone, even when an excep-
tion is raised. This is best done usingra ... finally statement.

new_module (nam§
Return a new empty module object callegime This object isnotinserted insys.modules

lock _held ()
ReturnTrue if the import lock is currently held, eldéalse . On platforms without threads, always return
False .

On platforms with threads, a thread executing an import holds an internal lock until the import is complete.
This lock blocks other threads from doing an import until the original import completes, which in turn
prevents other threads from seeing incomplete module objects constructed by the original thread while in
the process of completing its import (and the imports, if any, triggered by that).

acquire _lock ()
Acquires the interpreter’s import lock for the current thread. This lock should be used by import hooks to
ensure thread-safety when importing modules. On platforms without threads, this function does nothing.
New in version 2.3.

release _lock ()
Release the interpreter’s import lock. On platforms without threads, this function does nothing. New in
version 2.3.

The following constants with integer values, defined in this module, are used to indicate the search result of
find _module()

PY_SOURCE
The module was found as a source file.

PY_COMPILED
The module was found as a compiled code object file.

C_EXTENSION
The module was found as dynamically loadable shared library.

PY_RESOURCE
The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

PKG_DIRECTORY
The module was found as a package directory.

C_BUILTIN
The module was found as a built-in module.
PY_FROZEN

The module was found as a frozen module (e _frozen()).

The following constant and functions are obsolete; their functionality is available thfowegh_module() or
load _module() . They are kept around for backward compatibility:

SEARCHERROR
Unused.

init _builtin (nameg
Initialize the built-in module calledameand return its module object. If the module was already initialized,
it will be initialized again A few modules cannot be initialized twice — attempting to initialize these again
will raise anlmportError exception. If there is no built-in module calledme None is returned.

init _frozen (namg
Initialize the frozen module callesemeand return its module object. If the module was already initialized,

82 Chapter 3. Python Runtime Services

it will be initialized again If there is no frozen module callethme None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python
interpreter by Python'freezeutility. See Tools/freeze/’ for now.)

is _builtin (nam@
Returnl if there is a built-in module calledamewhich can be initialized again. Returfh if there is a
built-in module callechamewhich cannot be initialized again (segt _builtin()). ReturnoO if there
is no built-in module calletiame

is _frozen (nam¢
ReturnTrue if thereis afrozen module (sé@t _frozen()) calledname orFalse if thereis no such
module.

load _compiled (name, pathname, file
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the
module was already initialized, it will be initializeahain Thenameargument is used to create or access
a module object. Theathnameargument points to the byte-compiled code file. Titeeargument is the
byte-compiled code file, open for reading in binary mode, from the beginning. It must currently be a real
file object, not a user-defined class emulating a file.

load _dynamic (hame, pathnan{efile])
Load and initialize a module implemented as a dynamically loadable shared library and return its module
object. If the module was already initialized, it will be initializadain Some modules don't like that and
may raise an exception. Thmthnameargument must point to the shared library. TH@neargument is
used to construct the name of the initialization function: an external C function calied hamé) ’in
the shared library is called. The optioridé argument is ignored. (Note: using shared libraries is highly
system dependent, and not all systems support it.)

load _source (nhame, pathname, file
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initializedgain Thenameargument is used to create or access a module
object. Thepathnameargument points to the source file. Tfie argument is the source file, open for
reading as text, from the beginning. It must currently be a real file object, not a user-defined class emulating
a file. Note that if a properly matching byte-compiled file (with suffpyt’ or ‘.pyo’) exists, it will be used
instead of parsing the given source file.

3.21.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (no hierarchical module
names). (Thismplementationwouldn’t work in that version, sinchd _module() has been extended and
load _module() has been addedin 1.4.)

3.21. imp — Access the import internals 83

import imp
import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
try:
return sys.modules[name]
except KeyError:
pass

If any of the following calls raises an exception,
there’s a problem we can't handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(name, fp, pathname, description)
finally:
Since we may exit via an exception, close fp explicitly.
if fp:
fp.close()

A more complete example that implements hierarchical module names and inchadtesd) function can be
found in the modul&nee . Theknee module can be found irDemo/imputil/’ in the Python source distribution.

3.22 pkgutii — Package extension utility

New in version 2.3.
This module provides a single function:

extend _path (path, namg

Extend the search path for the modules which comprise a package. Intended use is to place the following

code in a package’s "init__.py’:

from pkgutil import extend_path
__path__ = extend_path(_path__, _ name_)

This will add to the package’s_path __ all subdirectories of directories @ys.path named after the

package. This is useful if one wants to distribute different parts of a single logical package as multiple

directories.

It also looks for *.pkg’ files beginning wherer matches thenameargument. This feature is similar to
‘> pth’ files (see thesite module for more information), except that it doesn't special-case lines starting
with import . A ‘*.pkg’ file is trusted at face value: apart from checking for duplicates, all entries found in
a *.pkg’ file are added to the path, regardless of whether they exist the filesystem. (This is a feature.)

If the input path is not a list (as is the case for frozen packages) it is returned unchanged. The input path is

not modified; an extended copy is returned. Items are only appended to the copy at the end.

It is assumed thadys.path is a sequence. Items af/s.path that are not (Unicode or 8-bit) strings
referring to existing directories are ignored. Unicode itemsyspath that cause errors when used as
filenames may cause this function to raise an exception (in lineasighath.isdir() behavior).

3.23 code — Interpreter base classes

84 Chapter 3. Python Runtime Services

Thecode module provides facilities to implement read-eval-print loops in Python. Two classes and convenience
functions are included which can be used to build applications which provide an interactive interpreter prompt.

classinteractivelnterpreter ([Iocals])
This class deals with parsing and interpreter state (the user's namespace); it does not deal with input buffer-
ing or prompting or input file naming (the filename is always passed in explicitly). The optmrels
argument specifies the dictionary in which code will be executed; it defaults to a newly created dictionary

with key’ __name__' setto’ __console __' andkey __doc__' settoNone.

classinteractiveConsole ([Iocals[, filenamd])
Closely emulate the behavior of the interactive Python interpreter. This class builds on
Interactivelnterpreter and adds prompting using the familisys.ps1 andsys.ps2 , and in-
put buffering.

interact ([bannel[, readfun«{, Iocal]]])
Convenience function to run a read-eval-print loop. This creates a new instance of
InteractiveConsole and setsreadfuncto be used as theaw _input() method, if provided.
If local is provided, it is passed to thimteractiveConsole constructor for use as the default
namespace for the interpreter loop. Tiheeract() method of the instance is then run witkanner

passed as the banner to use, if provided. The console object is discarded after use.

compile _command source[, ﬁlenamé, symboﬂ])
This function is useful for programs that want to emulate Python'’s interpreter main loop (a.k.a. the read-
eval-print loop). The tricky part is to determine when the user has entered an incomplete command that can
be completed by entering more text (as opposed to a complete command or a syntax error). This function
almostalways makes the same decision as the real interpreter main loop.

sourceis the source stringfilenameis the optional filename from which source was read, defaulting to
<input>' ; andsymbolis the optional grammar start symbol, which should be eitiagle’ (the
default) oreval’

Returns a code object (the samecampile(source filename symbao)) if the command is complete
and valid; None if the command is incomplete; rais&yntaxError if the command is complete and
contains a syntax error, or rais@serflowError or ValueError if the command contains an invalid
literal.

3.23.1 Interactive Interpreter Objects

runsource (source[, filenamti, symboﬂ])
Compile and run some source in the interpreter. Arguments are the samecamfite _command() ;
the default foffilenameis '<input>" , and forsymbolis 'single’ . One several things can happen:

eThe input is incorrect; compile _command() raised an exception SyntaxError or
OverflowError). A syntax traceback will be printed by calling ttlslowsyntaxerror()
method.runsource() returnsFalse .

eThe input is incomplete, and more input is requirethmpile _command() returnedNone.
runsource() returnsTrue .

eThe input is completecompile _command() returned a code object. The code is executed
by calling theruncode() (which also handles run-time exceptions, except3gstemExit).
runsource() returnsFalse .

The return value can be used to decide whether tays@sl orsys.ps2 to prompt the next line.

runcode (code
Execute a code object. When an exception ocahewtraceback() is called to display a traceback.
All exceptions are caught excepystemExit , which is allowed to propagate.

A note aboutKeyboardInterrupt . this exception may occur elsewhere in this code, and may not
always be caught. The caller should be prepared to deal with it.

showsyntaxerror ([filenamd)
Display the syntax error that just occurred. This does not display a stack trace because there isn’t one for

3.23. code — Interpreter base classes 85

syntax errors. Ifilenameis given, it is stuffed into the exception instead of the default filename provided
by Python’s parser, because it always ussting>’ when reading from a string. The output is written
by thewrite() method.

showtraceback ()
Display the exception that just occurred. We remove the first stack item because it is within the interpreter
object implementation. The output is written by thdte() method.

write (data)
Write a string to the standard error streasyig.stderr). Derived classes should override this to provide
the appropriate output handling as needed.

3.23.2 Interactive Console Objects

ThelnteractiveConsole class is a subclass tfteractivelnterpreter , and so offers all the meth-
ods of the interpreter objects as well as the following additions.

interact [banner])
Closely emulate the interactive Python console. The optional banner argument specify the banner to print
before the first interaction; by default it prints a banner similar to the one printed by the standard Python
interpreter, followed by the class hame of the console object in parentheses (so as not to confuse this with
the real interpreter — since it’s so close!).

push (line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may have internal
newlines. The line is appended to a buffer and the interpretem'source() method is called with the
concatenated contents of the buffer as source. If this indicates that the command was executed or invalid,
the buffer is reset; otherwise, the command is incomplete, and the buffer is left as it was after the line was
appended. The return valueTsue if more input is requiredfFalse if the line was dealt with in some
way (this is the same asnsource()).

resetbuffer 0
Remove any unhandled source text from the input buffer.

raw _input ([prompt])
Write a prompt and read a line. The returned line does not include the trailing newline. When the user
enters theeOF key sequenceizOFError is raised. The base implementation uses the built-in function
raw _input() ; a subclass may replace this with a different implementation.

3.24 codeop — Compile Python code

Thecodeop module provides utilities upon which the Python read-eval-print loop can be emulated, as is done in
thecode module. As a result, you probably don’t want to use the module directly; if you want to include such a
loop in your program you probably want to use tieele module instead.

There are two parts to this job:

1. Being able to tell if a line of input completes a Python statement: in short, telling whether tosprint or
‘ " next.

2. Remembering which future statements the user has entered, so subsequent input can be compiled with these
in effect.

Thecodeop module provides a way of doing each of these things, and a way of doing them both.
To do just the former:

compile _command source[, fiIename{, symboﬂ])
Tries to compilesource which should be a string of Python code and return a code objectuifceis
valid Python code. In that case, the filename attribute of the code object \iilkbame which defaults to
<input>' . ReturnsNone if sourceis notvalid Python code, but is a prefix of valid Python code.

86 Chapter 3. Python Runtime Services

If there is a problem witlsource an exception will be raisedsyntaxError is raised if there is invalid
Python syntax, an@verflowError or ValueError if there is an invalid literal.

Thesymbolargument determines whetlsyurceis compiled as a statemersiqgle’ , the default) or as
an expressiondval’). Any other value will caus®¥alueError to be raised.

Caveat: Itis possible (but not likely) that the parser stops parsing with a successful outcome before reaching
the end of the source; in this case, trailing symbols may be ignored instead of causing an error. For example,
a backslash followed by two newlines may be followed by arbitrary garbage. This will be fixed once the
API for the parser is better.

classCompile ()
Instances of this class have_call __() methods indentical in signature to the built-in function
compile() , butwith the difference that if the instance compiles program text containindgure __
statement, the instance 'remembers’ and compiles all subsequent program texts with the statement in force.

classCommandCompiler ()
Instances of this class havecall __() methods identical in signature tmmpile _command() ; the
difference is that if the instance compiles program text containingfature __ statement, the instance
‘remembers’ and compiles all subsequent program texts with the statement in force.

A note on version compatibility: thEompile andCommandCompiler are new in Python 2.2. If you want to
enable the future-tracking features of 2.2 but also retain compatibility with 2.1 and earlier versions of Python you
can either write

try:
from codeop import CommandCompiler
compile_command = CommandCompiler()
del CommandCompiler

except ImportError:
from codeop import compile_command

which is a low-impact change, but introduces possibly unwanted global state into your program, or you can write:

try:
from codeop import CommandCompiler
except ImportError:
def CommandCompiler():
from codeop import compile_command
return compile_command

and then calCommandCompiler every time you need a fresh compiler object.

3.25 pprint — Data pretty printer

Thepprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can

be used as input to the interpreter. If the formatted structures include objects which are not fundamental Python
types, the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or
instances are included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they
don't fit within the allowed width. Constru@rettyPrinter objects explicitly if you need to adjust the width
constraint.

Thepprint module defines one class:

classPrettyPrinter (..)
Construct aPrettyPrinter instance. This constructor understands several keyword parameters. An
output stream may be set using tsieeamkeyword; the only method used on the stream object is the

3.25. pprint — Data pretty printer 87

file protocol'swrite() ~ method. If not specified, thErettyPrinter adoptssys.stdout . Three
additional parameters may be used to control the formatted representation. The keywordsrgrdepth
andwidth. The amount of indentation added for each recursive level is specifigtibpt the default is

one. Other values can cause output to look a little odd, but can make nesting easier to spot. The number

of levels which may be printed is controlled lbgpth if the data structure being printed is too deep, the
next contained level is replaced by.' '. By default, there is no constraint on the depth of the objects
being formatted. The desired output width is constrained usingvitith parameter; the default is eighty
characters. If a structure cannot be formatted within the constrained width, a best effort will be made.

>>> import pprint, sys

>>> stuff = sys.path[:]

>>> stuff.insert(0, stufff:])

>>> pp = pprint.PrettyPrinter(indent=4)

>>> pp.pprint(stuff)

I
'lusr/local/lib/pythonl.5’,
'lusr/local/lib/pythonl.5/test’,
'lusr/local/lib/pythonl.5/sunos5’,
'lusr/local/lib/pythonl.5/sharedmodules’,
'lusr/local/lib/pythonl.5/tkinter’],

"lusr/local/lib/pythonl.5’,
"lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/pythonl.5/sunos5’,
"lusr/local/lib/pythonl.5/sharedmodules’,
"lusr/local/lib/pythonl.5/tkinter’]

>>>

>>> import parser

>>> tup = parser.ast2tuple(

parser.suite(open(’pprint.py’).read()))[1][1][1]

>>> pp = pprint.PrettyPrinter(depth=6)

>>> pp.pprint(tup)

(266, (267, (307, (287, (288, (..)N))

ThePrettyPrinter class supports several derivative functions:

pformat (objec)
Return the formatted representatiorobfectas a string. The default parameters for formatting are used.

pprint (objec{, stream])
Prints the formatted representation abject on stream followed by a newline. Ifstreamis omitted,
sys.stdout is used. This may be used in the interactive interpreter insteacgpohta statement for
inspecting values. The default parameters for formatting are used.

>>> stuff = sys.path[:]

>>> gstuff.insert(0, stuff)

>>> pprint.pprint(stuff)

[<Recursion on list with id=869440>,

'lusr/local/lib/pythonl.5’,
"lusr/local/lib/pythonl.5/test’,
'lusr/local/lib/pythonl1.5/sunos5’,
"lusr/local/lib/pythonl.5/sharedmodules’,
"lusr/local/lib/pythonl.5/tkinter’]

isreadable (objec)
Determine if the formatted representationatfjectis “readable,” or can be used to reconstruct the value
usingeval() . This always returns false for recursive objects.

>>> pprint.isreadable(stuff)
False

88 Chapter 3. Python Runtime Services

isrecursive (objec)
Determine ifobjectrequires a recursive representation.

One more support function is also defined:

saferepr (objec)
Return a string representationafject protected against recursive data structures. If the representation of
objectexposes a recursive entry, the recursive reference will be representedexsifsion on type-
name with id= numbep’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)

"[<Recursion on list with id=682968>, ", ’/usr/local/lib/pythonl.5’, 'fusr/loca
Illib/pythonl.5/test’, '/usr/local/lib/pythonl.5/sunos5’, '/usr/local/lib/python
1.5/sharedmodules’, ’/ust/local/lib/pythonl.5/tkinter’]"

3.25.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (objec)
Return the formatted representation abject This takes into Account the options passed to the
PrettyPrinter constructor.

pprint (objec)
Print the formatted representationalfjecton the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using
these methods on an instance is slightly more efficient sinceRrettyPrinter objects don’t need to be
created.

isreadable (objec)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the
value usingeval() . Note that this returns false for recursive objects. If tepthparameter of the
PrettyPrinter is set and the object is deeper than allowed, this returns false.

isrecursive (objec)
Determine if the object requires a recursive representation.

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The
default implementation uses the internals of shéerepr() implementation.

format (object, context, maxlevels, leyel
Returns three values: the formatted versiorobfectas a string, a flag indicating whether the result is
readable, and a flag indicating whether recursion was detected. The first argument is the object to be
presented. The second is a dictionary which containddfj)e of objects that are part of the current
presentation context (direct and indirect containerefijectthat are affecting the presentation) as the keys;
if an object needs to be presented which is already representamhiaxt the third return value should
be true. Recursive calls to tHermat() = method should add additionaly entries for containers to this
dictionary. The fourth argumeninaxlevelsgives the requested limit to recursion; this will 8ef there
is no requested limit. This argument should be passed unmodified to recursive calls. The fourth argument,
levelgives the current level; recursive calls should be passed a value less than that of the current call. New
in version 2.3.

3.26 repr — Alternate repr() implementation

Therepr module provides a means for producing object representations with limits on the size of the resulting
strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

3.26. repr — Alternate repr() implementation 89

classRepr ()
Class which provides formatting services useful in implementing functions similar to the brelpiif) ;
size limits for different object types are added to avoid the generation of representations which are exces-
sively long.

aRepr
This is an instance dRepr which is used to provide theepr() function described below. Changing the
attributes of this object will affect the size limits usediepr() and the Python debugger.

repr (obj)
This is therepr() method ofaRepr . It returns a string similar to that returned by the built-in function of
the same name, but with limits on most sizes.

3.26.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of
different object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The defa@ilt is

maxdict

maxlist

maxtuple
Limits on the number of entries represented for the named object type. The defantxdict is 4, for
the others6.

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default is40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation
of the string is used as the character source: if escape sequences are needed in the representation, these may
be mangled when the representation is shortened. The def&0dlt is

maxother
This limit is used to control the size of object types for which no specific formatting method is available on
theRepr object. It is applied in a similar manner amxstring . The default i0.

repr (obj)
The equivalent to the built-irepr() that uses the formatting imposed by the instance.

reprl (obj, leve)
Recursive implementation used bgpr() . This uses the type adbj to determine which formatting
method to call, passing @bj andlevel The type-specific methods should a&prl() to perform recur-
sive formatting, withevel - 1 for the value ofevelin the recursive call.

repr _typg obj, leve)
Formatting methods for specific types are implemented as methods with a name based on the type name.
In the method nameypeis replaced bystring.join(string.split(type(obj). __name__,
" ")) . Dispatch to these methods is handledregrl() . Type-specific methods which need to recur-
sively format a value should cakélf.repri(subobj level - 1) .

3.26.2 Subclassing Repr Objects

The use of dynamic dispatching ®epr.reprl() allows subclasses d®epr to add support for additional
built-in object types or to modify the handling of types already supported. This example shows how special
support for file objects could be added:

20 Chapter 3. Python Runtime Services

import repr
import sys

class MyRepr(repr.Repr):
def repr_file(self, obj, level):
if obj.name in ['<stdin>’, '<stdout>’, '<stderr>']:
return obj.name
else:
return ‘obj*

aRepr = MyRepr()
print aRepr.repr(sys.stdin) # prints '<stdin>’

3.27 new — Creation of runtime internal objects

The new module allows an interface to the interpreter object creation functions. This is for use primarily in
marshal-type functions, when a new object needs to be created “magically” and not by using the regular creation
functions. This module provides a low-level interface to the interpreter, so care must be exercised when using this
module.

Thenew module defines the following functions:

instance (class[, dict])
This function creates an instanceatdsswith dictionarydict without calling the__init __() constructor.
If dictis omitted orNone, a new, empty dictionary is created for the new instance. Note that there are no
guarantees that the object will be in a consistent state.

instancemethod (function, instance, cla$s
This function will return a method object, bounditstance or unbound ifinstances None. functionmust
be callable.

function (code, gIobaIE, name{, argdefs]])
Returns a (Python) function with the given code and globalsatheis given, it must be a string ddone.
If it is a string, the function will have the given name, otherwise the function name will be taken from
codeco _name. If argdefsis given, it must be a tuple and will be used to determine the default values of
parameters.

code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno,

Inotab)
This function is an interface to tHeyCode_New() C function.

module (namg
This function returns a new module object with nanane namemust be a string.

classobj (name, baseclasses, dict
This function returns a new class object, with nanaene derived frombaseclasseéwvhich should be a
tuple of classes) and with namespaloet.

3.28 site — Site-specific configuration hook

This module is automatically imported during initialization.

In earlier versions of Python (up to and including 1.5a3), scripts or modules that needed to use site-specific
modules would placdamport site ' somewhere near the top of their code. This is no longer necessary.

This will append site-specific paths to the module search path.

It starts by constructing up to four directories from a head and a tail part. For the head partsitsipesfix
andsys.exec _prefix ; empty heads are skipped. For the tail part, it uses the empty string (on Macintosh

3.27. new — Creation of runtime internal objects 91

or Windows) or it uses firstlib/python2.3/site-packages’ and then lib/site-python’ (on UNIX). For each of the
distinct head-tail combinations, it sees if it refers to an existing directory, and if so, addy&.pmth and also
inspects the newly added path for configuration files.

A path configuration file is a file whose name has the fopackagepth’; its contents are additional items (one
per line) to be added teys.path . Non-existing items are never addedstgs.path , but no check is made

that the item refers to a directory (rather than a file). No item is addegstpath more than once. Blank lines

and lines beginning witl are skipped. Lines starting wittport are executed.

For example, suppossys.prefix andsys.exec _prefix are setto/usr/local’. The Python 2.3.4 library
is then installed in/usr/local/lib/python2.3’ (where only the first three characters ofs.version are used to
form the installation path name). Suppose this has a subdiregtarldcal/lib/python2.3/site-packages’ with
three subsubdirectoriedpd’, ‘ bar’ and ‘spam’, and two path configuration filesfoo.pth’ and ‘bar.pth’. Assume
‘foo.pth’ contains the following:

foo package configuration

foo
bar
bletch

and ar.pth’ contains:

bar package configuration

bar

Then the following directories are addedslys.path | in this order:

/usr/local/lib/python2.3/site-packages/bar
lusr/local/lib/python2.3/site-packages/foo

Note that bletch’ is omitted because it doesn’t exist; thieal’ directory precedes thefdo’ directory because
‘bar.pth’ comes alphabetically befordoo.pth’; and ‘spam’ is omitted because it is not mentioned in either path
configuration file.

After these path manipulations, an attempt is made to import a module nsiteedstomize , Which can
perform arbitrary site-specific customizations. If this import fails witHraportError ~ exception, it is silently
ignored.

Note that for some non-Mix systemssys.prefix andsys.exec _prefix are empty, and the path manip-
ulations are skipped; however the importsitecustomize is still attempted.

3.29 user — User-specific configuration hook

As a policy, Python doesn't run user-specified code on startup of Python programs. (Only interactive sessions
execute the script specified in the PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization file, which
gets run when a program requests it. This module implements such a mechanism. A program that wishes to use
the mechanism must execute the statement

import user

Theuser module looks for a file.pythonrc.py’ in the user's home directory and if it can be opened, executes it
(usingexecfile()) in its own (the modul@iser ’s) global namespace. Errors during this phase are not caught;

92 Chapter 3. Python Runtime Services

that's up to the program that imports theer module, if it wishes. The home directory is assumed to be named
by the HOME environment variable; if this is not set, the current directory is used.

The user’s pythonrc.py’ could conceivably test fosys.version if it wishes to do different things depending
on the Python version.

A warning to users: be very conservative in what you place in ygythonrc.py’ file. Since you don’t know
which programs will use it, changing the behavior of standard modules or functions is generally not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options for your
package is to have them define variables in thejthonrc.py’ file that you test in your module. For example, a
modulespam that has a verbosity level can look for a variabfer.spam _verbose , as follows:

import user
try:

verbose = user.spam_verbose # user’s verbosity preference
except AttributeError:

verbose = 0 # default verbosity

Programs with extensive customization needs are better off reading a program-specific customization file.

Programs with security or privacy concerns shaubdimport this module; a user can easily break into a program
by placing arbitrary code in thepythonrc.py’ file.

Modules for general use shoufbt import this module; it may interfere with the operation of the importing
program.

See Also:

Modulesite (section 3.28):
Site-wide customization mechanism.

3.30 __Dbuiltin ___ — Built-in functions

This module provides direct access to all ‘built-in’ identifiers of Python; e.gbuiltin ~ __.open is the full
name for the built-in functiompen() . See section 2.1, “Built-in Functions.”

3.31 __main __ — Top-level script environment

This module represents the (otherwise anonymous) scope in which the interpreter’s main program executes —
commands read either from standard input, from a script file, or from an interactive prompt. It is this environment
in which the idiomatic “conditional script” stanza causes a script to run:

if _name__ == "_ main_"
main()
3.32 __future __ — Future statement definitions
__future __is areal module, and serves three purposes:

e To avoid confusing existing tools that analyze import statements and expect to find the modules they're
importing.

e To ensure that futurestatements run under releases prior to 2.1 at least yield runtime exceptions (the import
of __future __ will fail, because there was no module of that name prior to 2.1).

3.30. __builtin __ — Built-in functions 93

e To document when incompatible changes were introduced, and when they will be — or were — made

mandatory. This is a form of executable documentation, and can be inspected programatically via importing
__future __ and examining its contents.

Each statement in__future__.py’ is of the form:

FeatureName = "_Feature(" OptionalRelease "," MandatoryRelease ","
CompilerFlag ")"

where, normally, OptionalRelease is less then MandatoryRelease, and both are 5-tuples of the same form as
sys.version _info

(PY_MAJOR_VERSION, # the 2 in 2.1.0a3; an int
PY_MINOR_VERSION, # the 1; an int

PY_MICRO_VERSION, # the 0; an int

PY_RELEASE_LEVEL, # "alpha", "beta", "candidate" or "final"; string
PY_RELEASE_SERIAL # the 3; an int
)

OptionalRelease records the first release in which the feature was accepted.

In the case of MandatoryReleases that have not yet occurred, MandatoryRelease predicts the release in which the
feature will become part of the language.

Else MandatoryRelease records when the feature became part of the language; in releases at or after that, modules
no longer need a future statement to use the feature in question, but may continue to use such imports.

MandatoryRelease may also Hene, meaning that a planned feature got dropped.

Instances of class_Feature have two corresponding methodsgetOptionalRelease() and
getMandatoryRelease()

CompilerFlag is the (bitfield) flag that should be passed in the fourth argument to the builtin furatipie()

to enable the feature in dynamically compiled code. This flag is stored inaitmpiler _flag attribute on
_Future instances.

No feature description will ever be deleted framfuture

94 Chapter 3. Python Runtime Services

CHAPTER
FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s an overview:

string Common string operations.

re Regular expression search and match operations with a Perl-style expression syntax.
struct Interpret strings as packed binary data.

difflib Helpers for computing differences between objects.
fpformat General floating point formatting functions.
StringlO Read and write strings as if they were files.
cStringlO Faster version aBtringlO , but not subclassable.
textwrap Text wrapping and filling

encodings.idna Internationalized Domain Names implementation
unicodedata Access the Unicode Database.

stringprep String preparation, as per RFC 3453

Information on the methods of string objects can be found in section 2.3.6, “String Methods.”

4.1 string — Common string operations

This module defines some constants useful for checking character classes and some useful string functions. See
the modulere for string functions based on regular expressions.

The constants defined in this module are:

ascii _letters
The concatenation of thescii _lowercase andascii _uppercase constants described below. This
value is not locale-dependent.

ascii _lowercase
The lowercase letteraibcdefghijkimnopqgrstuvwxyz’ . This value is not locale-dependent and
will not change.

ascii _uppercase
The uppercase lette S BCDEFGHIJKLMNOPQRSTUVWXY Zhis value is not locale-dependent and will
not change.

digits
The string’0123456789

hexdigits
The string0123456789abcdefABCDEF’

letters
The concatenation of the strindgmwvercase anduppercase described below. The specific value is
locale-dependent, and will be updated wihaceale.setlocale() is called.

lowercase

A string containing all the characters that are considered lowercase letters. On most systems this is the
string'abcdefghijkimnopgrstuvwxyz’ . Do not change its definition — the effect on the routines

95

upper() andswapcase() is undefined. The specific value is locale-dependent, and will be updated
whenlocale.setlocale() is called.

octdigits
The string01234567"

punctuation
String of AsciI characters which are considered punctuation characters iCtlueale.

printable
String of characters which are considered printable. This is a combinatialigité , letters
punctuation , andwhitespace

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this is the
string’ABCDEFGHIJKLMNOPQRSTUVWXYDo not change its definition — the effect on the routines
lower() andswapcase() is undefined. The specific value is locale-dependent, and will be updated
whenlocale.setlocale() is called.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the char-
acters space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition — the effect on
the routinesstrip() andsplit() is undefined.

Many of the functions provided by this module are also defined as methods of string and Unicode objects; see
“String Methods” (section 2.3.6) for more information on those. The functions defined in this module are:

atof (s)
Deprecated since release 2.WUse thefloat() built-in function.

Convert a string to a floating point number. The string must have the standard syntax for a floating point
literal in Python, optionally preceded by a siga’(br ‘-). Note that this behaves identical to the built-in
functionfloat() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying
C library. The specific set of strings accepted which cause these values to be returned depends entirely on
the C library and is known to vary.

atoi (s[, basd)
Deprecated since release 2.Qse theint() built-in function.

Convert strings to an integer in the givebase The string must consist of one or more digits, optionally
preceded by a sign{’ or ‘-’). The basedefaults to 10. If it is 0, a default base is chosen depending
on the leading characters of the string (after stripping the sighy! 6r ‘0X’ means 16, 0’ means 8,
anything else means 10.bhseis 16, a leading0x’ or ‘ OX’ is always accepted, though not required. This
behaves identically to the built-in functiant() when passed a string. (Also note: for a more flexible
interpretation of numeric literals, use the built-in functeral())

atol (s[, basd)
Deprecated since release 2.Qse thelong() built-in function.

Convert stringsto a long integer in the givelbase The string must consist of one or more digits, optionally
preceded by a sign{’ or ‘- '). The baseargument has the same meaning asafoi() . A trailing ‘l * or
‘L"is not allowed, except if the base is 0. Note that when invoked withastor with baseset to 10, this
behaves identical to the built-in functideng() when passed a string.

capitalize ('word)
Return a copy ofvord with only its first character capitalized.

capwords (9)
Split the argument into words usirsglit() , capitalize each word usingppitalize() , and join the
capitalized words usingin() . Note that this replaces runs of whitespace characters by a single space,
and removes leading and trailing whitespace.

expandtabs (s[, tabsizd)
Expand tabs in a string, i.e. replace them by one or more spaces, depending on the current column and the
given tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t

96 Chapter 4. String Services

understand other non-printing characters or escape sequences. The tab size defaults to 8.

find (s, sut[, starl{,end]])
Return the lowest index is where the substringub is found such thasubis wholly contained in
q start end . Return-1 on failure. Defaults foistart andend and interpretation of negative values is
the same as for slices.

rfind (s, suk[, starl{, end]])
Like find() but find the highest index.

index (s, suk{, starl{, end]])
Like find() butraiseValueError when the substring is not found.

rindex (s, sul{, starl{, end]])
Like rfind() but raiseValueError when the substring is not found.

count (s, suk{, starl[, end]])
Return the number of (non-overlapping) occurrences of subsitibn string g start end . Defaults for
startandendand interpretation of negative values are the same as for slices.

lower (s)
Return a copy o§, but with upper case letters converted to lower case.

maketrans (from, tg
Return a translation table suitable for passingrémslate() or regex.compile() , that will map
each character ifrominto the character at the same positionianfrom andto must have the same length.

Warning: Don't use strings derived frofowercase anduppercase as arguments; in some locales,
these don’t have the same length. For case conversions, alwalsvwes€ andupper()

split (s[, sep[, maxsplit]])
Return a list of the words of the strirgg If the optional second argumesepis absent oNone, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the
second argumerstepis present and ndtlone, it specifies a string to be used as the word separator. The
returned list will then have one more item than the number of non-overlapping occurrences of the separator
in the string. The optional third argumemiaxsplitdefaults to O. If it is nonzero, at mostaxsplithumber
of splits occur, and the remainder of the string is returned as the final element of the list (thus, the list will
have at mosmaxsplit1 elements).

splitfields (s[, se;{, maxsplit]])
This function behaves identically split() . (In the pastsplit() was only used with one argument,
while splitfields() was only used with two arguments.)

join (Words[, sep])
Concatenate a list or tuple of words with intervening occurrencespiThe default value fosepis a single
space character. It is always true thatting.join(string.split(S, sep, sep’equalss.

joinfields (Words{, sep])
This function behaves identicallyjoin() . (Inthe pastjoin() was only used with one argument, while
joinfields() was only used with two arguments.) Note that there igontfields() method on
string objects; use thein() method instead.

Istrip (s[, chars])
Return a copy of the string with leading characters removecthéfrsis omitted orNone, whitespace
characters are removed. If given and Naine, charsmust be a string; the characters in the string will be
stripped from the beginning of the string this method is called on. Changed in version 2.2.&nhdarse
parameter was added. Thiearsparameter cannot be passed in earlier 2.2 versions.

rstrip (s[, chars])
Return a copy of the string with trailing characters removedchiéirsis omitted orNone, whitespace
characters are removed. If given and Naine, charsmust be a string; the characters in the string will be
stripped from the end of the string this method is called on. Changed in version 2.2 hamsparameter
was added. Theharsparameter cannot be passed in 2.2 versions.

strip (s[, chars])
Return a copy of the string with leading and trailing characters removedhalfsis omitted orNone,

4.1. string — Common string operations 97

whitespace characters are removed. If given and\Nmote, charsmust be a string; the characters in the
string will be stripped from the both ends of the string this method is called on. Changed in version 2.2.3:
Thecharsparameter was added. Thlearsparameter cannot be passed in earlier 2.2 versions.

swapcase (9)
Return a copy o§, but with lower case letters converted to upper case and vice versa.

translate (s, table[, deletechari)
Delete all characters frosthat are indeletechargif present), and then translate the characters usibig,
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.

upper ()
Return a copy 0§, but with lower case letters converted to upper case.

ljust (s, width

rjust (s, width

center (s, width
These functions respectively left-justify, right-justify and center a string in a field of given width. They
return a string that is at leastidth characters wide, created by padding the stength spaces until the
given width on the right, left or both sides. The string is never truncated.

Zfill (s, width
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign
are handled correctly.

replace (str, old, nev[, maxreplacé)
Return a copy of stringtr with all occurrences of substrirmjd replaced bynew If the optional argument
maxreplacas given, the firsmaxreplaceoccurrences are replaced.

4.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Regular expression
pattern strings may not contain null bytes, but can specify the null byte usingitihrebemotation. Both patterns
and strings to be searched can be Unicode strings as well as 8-bit stringg Tiedule is always available.

Regular expressions use the backslash chara&tgrt¢ indicate special forms or to allow special characters to

be used without invoking their special meaning. This collides with Python’s usage of the same character for the
same purpose in string literals; for example, to match a literal backslash, one might have td\Write as the

pattern string, because the regular expression mudt Beand each backslash must be expressed\ asinside

a regular Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in
any special way in a string literal prefixed with’! So r"\n" is a two-character string containing’‘and ‘n’,

while "\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code
using this raw string notation.

See Also:

Mastering Regular Expressions
Book on regular expressions by Jeffrey Friedl, published by O'Reilly. The second edition of the book no
longer covers Python at all, but the first edition covered writing good regular expression patterns in great
detail.

4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if
a particular string matches a given regular expression (or if a given regular expression matches a particular string,
which comes down to the same thing).

Regular expressions can be concatenated to form new regular expresstomsglB are both regular expressions,
thenABis also a regular expression. In general, if a stgmgatchegA and another string matched$, the stringpq

98 Chapter 4. String Services

will match AB. This holds unles& or B contain low precedence operations; boundary conditions betiveedB;

or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions,
consult the Friedl book referenced above, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the Regular Expression HOWTO, accessible fiiapy/www.python.org/doc/howto/.

Regular expressions can contain both special and ordinary characters. Most ordinary charactérs; dikeor

‘07, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
sollast ;matches the stringast’ . (In the rest of this section, we’ll write RE’s ithis special style I

usually without quotes, and strings to be matchedsingle quotes’)

Some characters, likg * or ‘ (', are special. Special characters either stand for classes of ordinary characters, or
affect how the regular expressions around them are interpreted.

The special characters are:

‘.’ (Dot.) In the default mode, this matches any character except a newline.DIQAALLflag has been
specified, this matches any character including a newline.

>

(Caret.) Matches the start of the string, andiULTILINE mode also matches immediately after
each newline.

&

Matches the end of the string or just before the newline at the end of the string, &dLmILINE
mode also matches before a newlirfimo ; matches both *foo’ and 'foobar’, while the regular ex-
pressionfoo$; matches only 'foo’. More interestingly, searching ft@o.$; in 'fool\nfoo2\n’
matches 'foo2’ normally, but 'fool’ iIMULTILINE mode.

‘*’ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as
are possiblelab* ; will match ’a’, 'ab’, or 'a’ followed by any number of 'b’s.

‘+’ Causes the resulting RE to match 1 or more repetitions of the precedinggBE will match 'a’
followed by any non-zero number of 'b’s; it will not match just 'a’.

‘?’ Causes the resulting RE to match 0 or 1 repetitions of the precedindaBE.will match either 'a’
or’ab’.

*?,+?,?? The *’, '+, and ‘?’ qualifiers are allgreedy they match as much text as possible. Sometimes this
behaviour isn’t desired; if the RE.*> | is matched againstH1>title</H1>’ , it will match
the entire string, and not justH1>" . Adding ‘?’ after the qualifier makes it perform the match
in non-greedyor minimalfashion; afew characters as possible will be matched. USitg ; in the
previous expression will match onlgH1>’

{m} Specifies that exactly copies of the previous RE should be matched; fewer matches cause the entire
RE not to match. For exampl@{6} ;will match exactly six &’ characters, but not five.

{m, n} Causes the resulting RE to match fromto n repetitions of the preceding RE, attempting to match as
many repetitions as possible. For examf@€3,5} ;will match from 3 to 5 &’ characters. Omitting
m specifies a lower bound of zero, and omittimgpecifies an infinite upper bound. As an example,
a{4,}b ;willmatchaaaab or a thousandd’ characters followed by b, but notaaab . The comma
may not be omitted or the modifier would be confused with the previously described form.

{m, n}? Causes the resulting RE to match fromo n repetitions of the preceding RE, attempting to match as
fewrepetitions as possible. This is the non-greedy version of the previous qualifier. For example, on
the 6-character stringaaaaa’ |, a{3,5} ;will match 5 ‘a’ characters, whiléa{3,5}? ;will only
match 3 characters.

—

Either escapes special characters (permitting you to match characters’|ik@’; and so forth), or
signals a special sequence; special sequences are discussed below.

If you're not using a raw string to express the pattern, remember that Python also uses the backslash
as an escape sequence in string literals; if the escape sequence isn't recognized by Python's parser,
the backslash and subsequent character are included in the resulting string. However, if Python would

4.2. re — Regular expression operations 99

..

..

)

)

(?iLmsux)

(?:...)

recognize the resulting sequence, the backslash should be repeated twice. This is complicated and
hard to understand, so it's highly recommended that you use raw strings for all but the simplest
expressions.

Used to indicate a set of characters. Characters can be listed individually, or a range of characters can
be indicated by giving two characters and separating them b¥y &pecial characters are not active
inside sets. For exampl&akm$] ;will match any of the charactera®, ‘k’, ‘m, or ‘$"; Ta-z] ;will

match any lowercase letter, afatzA-Z0-9] matches any letter or digit. Character classes such
as\w or\S (defined below) are also acceptable inside a range. If you want to incljdesna ‘-’

inside a set, precede it with a backslash, or place it as the first character. The fttewill match

T ,for example.

You can match the characters not within a rangecbgnplementinghe set. This is indicated by
including a “ ’ as the first character of the set; ‘elsewhere will simply match thé * character. For
example[’5] ;will match any character excef@”, and[™] ;will match any character except”

A|B , where A and B can be arbitrary REs, creates a regular expression that will match either A or B.
An arbitrary number of REs can be separated by fhén' this way. This can be used inside groups
(see below) as well. As the target string is scanned, REs separatgtdrg tried from left to right.
When one pattern completely matches, that branch is accepted. This means thanustchesB

will not be tested further, even if it would produce a longer overall match. In other wordg, ‘the *
operator is never greedy. To match a litefdl ‘use\| , or enclose it inside a character class, as in

m .

Matches whatever regular expression is inside the parentheses, and indicates the start and end of a
group; the contents of a group can be retrieved after a match has been performed, and can be matched
later in the string with thd numberspecial sequence, described below. To match the litefalsr’

), usel\(jor\) , or enclose them inside a character cldgk:[)] .

This is an extension notation (2" following a ‘(' is not meaningful otherwise). The first character
after the ?’ determines what the meaning and further syntax of the construct is. Extensions usually
do not create a new grouff?P< name-...) | is the only exception to this rule. Following are the
currently supported extensions.

(One or more letters fromthe sét,; ‘L', ‘m, ‘s’, ‘u’, * x'.) The group matches the empty string; the
letters set the corresponding flags.[,re.L ,re.M ,re.S ,re.U ,re.X) for the entire regular
expression. This is useful if you wish to include the flags as part of the regular expression, instead of
passing dlag argument to theompile() function.

Note that the(?x) |flag changes how the expressionis parsed. It should be used first in the expression
string, or after one or more whitespace characters. If there are non-whitespace characters before the
flag, the results are undefined.

A non-grouping version of regular parentheses. Matches whatever regular expression is inside the
parentheses, but the substring matched by the granpotbe retrieved after performing a match or
referenced later in the pattern.

(?P< name-...) Similar to regular parentheses, but the substring matched by the group is accessible via the

symbolic group namaame Group names must be valid Python identifiers, and each group name
must be defined only once within a regular expression. A symbolic group is also a numbered group,
just as if the group were not named. So the group named ’'id’ in the example above can also be
referenced as the numbered group 1.

For example, if the pattern i?P<id>[a-zA-Z _]\w*) |, the group can be referenced by its name
in arguments to methods of match objects, suctagoup(’id’) or m.end(’id’) , and also
by name in pattern text (for exampl§?P=id)) and replacement text (such\asid>).

(?P=namg Matches whatever text was matched by the earlier group naisea

(?#..) A comment; the contents of the parentheses are simply ignored.

(?=..) Matches if’... | matches next, but doesn’t consume any of the string. This is called a lookahead
assertion. For exampldsaac (?=Asimov) ; will match’lsaac ' only if it's followed by
'Asimov’

100 Chapter 4. String Services

(?<!L..)

Matches if’... ;doesn’t match next. This is a negative lookahead assertion. For exdisaies,
(?!Asimov) jwill match’lsaac ' only if it's notfollowed by’Asimov’

Matches if the current position in the string is preceded by a match.for that ends at the cur-

rent position. This is called positive lookbehind assertiori{(?<=abc)def ;| will find a match in
‘abcdef ’, since the lookbehind will back up 3 characters and check if the contained pattern matches.
The contained pattern must only match strings of some fixed length, meanirigtibatr 'ajb | are
allowed, buta* ;anda{3,4} are not. Note that patterns which start with positive lookbehind asser-
tions will never match at the beginning of the string being searched; you will most likely want to use
thesearch() function rather than thmatch() function:

>>> import re

>>> m = re.search('(?<=abc)def’, 'abcdef’)
>>> m.group(0)

‘def’

This example looks for a word following a hyphen:

>>> m = re.search(’(?<=-)\w+’, 'spam-egg’)
>>> m.group(0)
'egy

Matches if the current position in the string is not preceded by a match.for. This is called a
negative lookbehind assertioSimilar to positive lookbehind assertions, the contained pattern must
only match strings of some fixed length. Patterns which start with negative lookbehind assertions
may match at the beginning of the string being searched.

The special sequences consist\dfand a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For exarfplenatches the characte’

\ number Matches the contents of the group of the same number. Groups are numbered starting from 1. For

\b

\B

\d
\D
\s

\S

example/(.+) \1 ;matchesthe the’ or’55 55 |, butnot'the end” (note the space after

the group). This special sequence can only be used to match one of the first 99 groups. If the first
digit of numberis 0, ornumberis 3 octal digits long, it will not be interpreted as a group match, but as
the character with octal valueimber Inside the[' and ‘] ’ of a character class, all numeric escapes

are treated as characters.

Matches only at the start of the string.

Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence
of alphanumeric or underscore characters, so the end of a word is indicated by whitespace or a non-
alphanumeric, non-underscore character. Notékhas$ defined as the boundary betwaenand\W,

so the precise set of characters deemed to be alphanumeric depends on the valueNeEOBE
andLOCALEflags. Inside a character rangdb, represents the backspace character, for compatibility
with Python’s string literals.

Matches the empty string, but only when itriet at the beginning or end of a word. This is just the
opposite ofb , so is also subject to the settingslLdCALEandUNICODE

Matches any decimal digit; this is equivalent to the e8] .
Matches any non-digit character; this is equivalent to th €8] .
Matches any whitespace character; this is equivalent to thHe &i\r\fiv] .

Matches any non-whitespace character; this is equivalent to ti{e $8n\r\fiv] i

4.2. re — Regular expression operations 101

\w When theLOCALEandUNICODEflags are not specified, matches any alphanumeric character and
the underscore; this is equivalent to the fzA-Z0-9 _] .. With LOCALE it will match the set
T0-9 _], plus whatever characters are defined as alphanumeric for the current lodal!CODE
is set, this will match the characteff-9 _], plus whatever is classified as alphanumeric in the
Unicode character properties database.

\W When theLOCALEandUNICODEHEflags are not specified, matches any non-alphanumeric character;
this is equivalent to the s§ta-zA-Z0-9 _],. With LOCALE it will match any character not in the
set0-9 _],, and not defined as alphanumeric for the current local&JNfCODEis set, this will
match anything other the[0-9 _] ;and characters marked as alphanumeric in the Unicode character
properties database.

\Z Matches only at the end of the string.
Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\r \t \v \X
\\

Octal escapes are included in a limited form: If the first digitis a 0, or if there are three octal digits, it is considered
an octal escape. Otherwise, it is a group reference.

4.2.2 Matching vs Searching

Python offers two different primitive operations based on regular expressions: match and search. If you are
accustomed to Perl's semantics, the search operation is what you're looking for. Seartt®) function and
corresponding method of compiled regular expression objects.

Note that match may differ from search using a regular expression beginning with * matches only at the start

of the string, or INMULTILINE mode also immediately following a newline. The “match” operation succeeds
only if the pattern matches at the start of the string regardless of mode, or at the starting position given by the
optionalposargument regardless of whether a newline precedes it.

re.compile("a").match("ba", 1) # succeeds
re.compile(""a").search("ba", 1) # fails; 'a’ not at start
re.compile(""a").search("\na", 1) # fails; 'a’ not at start

re.compile(""a", re.M).search(\na", 1) # succeeds
re.compile("a", re.M).search("ba", 1) # fails; no preceding \n

4.2.3 Module Contents

The module defines the following functions and constants, and an exception:

compile (patterr{, flags])
Compile a regular expression pattern into a regular expression object, which can be used for matching using
itsmatch() andsearch() methods, described below.

The expression’s behaviour can be modified by specifyifigggvalue. Values can be any of the following
variables, combined using bitwise OR (th@perator).

The sequence

prog = re.compile(pat)
result = prog.match(str)

is equivalent to

102 Chapter 4. String Services

result = re.match(pat, str)

but the version usingompile() is more efficient when the expression will be used several times in a
single program.

|

IGNORECASE
Perform case-insensitive matching; expressions/likeZ] ; will match lowercase letters, too. This is not
affected by the current locale.

L
LOCALE
Make \w, \W,, \b , and\B, dependent on the current locale.
M
MULTILINE
When specified, the pattern charactermatches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern chara8tenatches at the end of the string and
at the end of each line (immediately preceding each newline). By defaufhdtches only at the beginning
of the string, and$’ only at the end of the string and immediately before the newline (if any) at the end of
the string.
S
DOTALL
Make the !’ special character match any character at all, including a newline; without this flagill
match anythingexcepta newline.
U
UNICODE
Make \w ;, \W,, \b }, and\B , dependent on the Unicode character properties database. New in version 2.0.
X
VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,

except when in a character class or preceded by an unescaped backslash, and, when a line cihtains a *
neither in a character class or preceded by an unescaped backslash, all characters from the leftr#ost such
through the end of the line are ignored.

search (pattern, string{, flags])
Scan througistringlooking for a location where the regular expresspatternproduces a match, and return
a correspondingatchObject instance. ReturiNone if no position in the string matches the pattern;
note that this is different from finding a zero-length match at some point in the string.

match (pattern, string{, flags])
If zero or more characters at the beginningsbfng match the regular expressigattern return a corre-
spondingMatchObject instance. ReturiNone if the string does not match the pattern; note that this is
different from a zero-length match.

Note: If you want to locate a match anywherestring, usesearch() instead.

split (pattern, string{, maxsplit = 0])
Split string by the occurrences gfattern If capturing parentheses are usegattern then the text of all
groups in the pattern are also returned as part of the resulting listaxgplitis nonzero, at mosnaxsplit
splits occur, and the remainder of the string is returned as the final element of the list. (Incompatibility note:
in the original Python 1.5 releasmaxsplitwas ignored. This has been fixed in later releases.)

>>> re.split(\W+', 'Words, words, words.’)
[Words’, 'words’, 'words’, "]

>>> re.split((\W+)’, 'Words, words, words.’)
[Words', ’, ', 'words’, ', ', 'words’, ", "]
>>> re.split(\W+', 'Words, words, words.’, 1)
[Words’, 'words, words.’]

4.2. re — Regular expression operations 103

This function combines and extends the functionality of the alelysub.split() and
regsub.splitx()

findall ~ (pattern, string
Return a list of all non-overlapping matchespftternin string. If one or more groups are present in the
pattern, return a list of groups; this will be a list of tuples if the pattern has more than one group. Empty
matches are included in the result unless they touch the beginning of another match. New in version 1.5.2.

finditer (pattern, string
Return an iterator over all non-overlapping matches for theg&Eernin string. For each match, the iterator
returns a match object. Empty matches are included in the result unless they touch the beginning of another
match. New in version 2.2.

sub (pattern, repl, strin&, count])
Return the string obtained by replacing the leftmost non-overlapping occurrenpastexnin string by
the replacementepl. If the pattern isn’t foundstring is returned unchangedepl can be a string or a
function; if it is a string, any backslash escapes in it are processed. Thet Iss‘converted to a single
newline character,\f ' is converted to a linefeed, and so forth. Unknown escapes suci asre left
alone. Backreferences, such & *, are replaced with the substring matched by group 6 in the pattern. For
example:

>>> re.sub(rdefis+([a-zA-Z_][a-zA-Z_0-9]*)\s*\(\s*\)’,
r'static PyObject®\npy_\1(void)\n{’,

‘def myfunc():’)

'static PyObject*\npy_myfunc(void)\n{’

If replis a function, it is called for every non-overlapping occurrencgatfern The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl(matchobj):
if matchobj.group(0) == ’-": return
else: return '~
>>> re.sub(’-{1,2}, dashrepl, 'pro----gram-files’)
‘pro--gram files’

[

The pattern may be a string or an RE object; if you need to specify regular expression flags, you must
use a RE object, or use embedded modifiers in a pattern; for examst; (?i)b+", "x", "bbbb
BBBB") ' returns’x X’

The optional argumentountis the maximum number of pattern occurrences to be replammdt must

be a non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the
pattern are replaced only when not adjacent to a previous matayls@x*’, '-', 'abc’) "returns
"-a-b-c-’

In addition to character escapes and backreferences as described ‘@smame> " will use the substring
matched by the group nameadedme’, as defined by th§?P<name>...) | syntax. \g<number> ' uses

the corresponding group numbeig<2> ' is therefore equivalent td2 ’, but isn’t ambiguous in a replace-
ment such as\g<2>0 . ‘\20 ’ would be interpreted as a reference to group 20, not a reference to group 2
followed by the literal characte®’. The backreferencag<0> ’ substitutes in the entire substring matched

by the RE.

subn (pattern, repl, strini, count])
Perform the same operationsigh() , but return a tuplé new_string, number of_subs madg .

escape (string)
Returnstring with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

exceptionerror
Exception raised when a string passed to one of the functions here is not a valid regular expression (for
example, it might contain unmatched parentheses) or when some other error occurs during compilation or
matching. It is never an error if a string contains no match for a pattern.

104 Chapter 4. String Services

4.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

match (string[, pos[, endpo§])
If zero or more characters at the beginningstifng match this regular expression, return a corresponding
MatchObject instance. ReturiNone if the string does not match the pattern; note that this is different

from a zero-length match.
Note: If you want to locate a match anywheregtring, usesearch() instead.

The optional second parameos gives an index in the string where the search is to start; it defaults to

0. This is not completely equivalent to slicing the string; tfie pattern character matches at the real
beginning of the string and at positions just after a newline, but not necessarily at the index where the search
is to start.

The optional parametegndposlimits how far the string will be searched; it will be as if the string is
endposcharacters long, so only the characters frposto endpos- 1 will be searched for a match. If
endposs less tharpos no match will be found, otherwise, ik is a compiled regular expression object,
rx.match(string, 0, 50) is equivalent tax.match(string[:50], 0)

search (string[, pos[, endpoﬁ])
Scan througtstring looking for a location where this regular expression produces a match, and return a
correspondingMatchObject instance. Returilone if ho position in the string matches the pattern; note
that this is different from finding a zero-length match at some point in the string.

The optionaposandendpogarameters have the same meaning as fomaeh() method.

split (string[, maxsplit = 0])
Identical to thesplit() function, using the compiled pattern.

findall (' string)
Identical to theindall() function, using the compiled pattern.

finditer ('string)
Identical to thefinditer() function, using the compiled pattern.

sub (repl, string{, count = 0])
Identical to thesub() function, using the compiled pattern.

subn (repl, string{, count = 0])
Identical to thesubn() function, using the compiled pattern.

flags
The flags argument used when the RE object was compildétiifaro flags were provided.

groupindex
A dictionary mapping any symbolic group names defined i< id>) ; to group numbers. The dictionary
is empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the RE object was compiled.

4.2.5 Match Objects

MatchObject instances support the following methods and attributes:

expand (templat¢
Return the string obtained by doing backslash substitution on the templatetstriptate as done by the
sub() method. Escapes such as ‘ are converted to the appropriate characters, and numeric backrefer-
ences ({1 ', *\2 ’) and named backreference$g&l> ', ‘\g<name>) are replaced by the contents of the
corresponding group.

group ([groupl,])
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if

there are multiple arguments, the result is a tuple with one item per argument. Without arggreems,

4.2. re — Regular expression operations 105

defaults to zero (the whole match is returned). ¢fraupNargument is zero, the corresponding return value

is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the
pattern, arindexError exception is raised. If a group is contained in a part of the pattern that did not
match, the corresponding resultNkne. If a group is contained in a part of the pattern that matched
multiple times, the last match is returned.

If the regular expression uses tff@P< name-...) | syntax, thegroupN arguments may also be strings
identifying groups by their group name. If a string argument is not used as a group name in the pattern, an
IndexError exception is raised.

A moderately complicated example:

m = re.match(r"(?P<int>\d+)\.(\d*)", '3.14’)

After performing this matchm.group(1) is '3’ , as ism.group(int’) , andm.group(2) is
14"

groups ([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the
pattern. Thalefaultargument is used for groups that did not participate in the match; it defallisrie.
(Incompatibility note: in the original Python 1.5 release, if the tuple was one element long, a string would
be returned instead. In later versions (from 1.5.1 on), a singleton tuple is returned in such cases.)

groupdict ([default])
Return a dictionary containing all theamedsubgroups of the match, keyed by the subgroup name. The
defaultargument is used for groups that did not participate in the match; it defaltsrte.

start ([group])

end([group])
Return the indices of the start and end of the substring matchegdooys group defaults to zero (meaning
the whole matched substring). Retufn if group exists but did not contribute to the match. For a match
objectm, and a group that did contribute to the match, the substring matched by ggofgguivalent to

m.group(Q))is

m.string[m.start(g):m.end(g)]

Note thatm.start(group will equal m.end(group) if group matched a null string. For example,
afterm = re.search(’b(c?)’, 'cba’) , m.start(0) is 1, mend(0) is 2, m.start(1)
andm.end(1) are both 2, andh.start(2) raises afindexError exception.

span ([group])
ForMatchObject m, return the 2-tuplé m.start(group), m.end(group)) . Note thatifgroupdid
not contribute to the match, this(sl, -1) . Again,groupdefaults to zero.

pos
The value ofposwhich was passed to theearch() or match() method of theRegexObject . This
is the index into the string at which the RE engine started looking for a match.

endpos
The value ofendposwhich was passed to theearch() or match() method of theRegexObject
This is the index into the string beyond which the RE engine will not go.

lastindex
The integer index of the last matched capturing groupame if no group was matched at all. For example,
the expression$a)b ;, ((a)(b)) ,, and((ab)) will havelastindex == if applyied to the string
‘ab’ , while the expressioffa)(b) ;will havelastindex == , iIf applyied to the same string.

lastgroup
The name of the last matched capturing groupg\one if the group didn’'t have a name, or if no group was
matched at all.

re
The regular expression object whasatch() orsearch() method produced thislatchObject in-

106 Chapter 4. String Services

stance.

string
The string passed tmatch() or search()

4.2.6 Examples
Simulating scanf()

Python does not currently have an equivalens¢anf() . Regular expressions are generally more powerful,
though also more verbose, thacanf() format strings. The table below offers some more-or-less equivalent
mappings betweescanf() format tokens and regular expressions.

scanf() Token | Regular Expression

%cC l]

%5¢c {5} |

%d T-+]Ad+

%e %E %f, %g | T-+]?20\d+(\\d*)?|\d*\.\d+)([eE][-+]?\d+)? J
%i T-+]?(O[xX][\dA-Fa-f]+|0[0-7]*\d+)]

%0 o[o-71*

%s \S+]

%u \d+ |

%x, %X O[xX][\dA-Fa-f]+]

To extract the filename and numbers from a string like

/usr/sbin/sendmail - O errors, 4 warnings

you would use acanf() format like

%s - %d errors, %d warnings

The equivalent regular expression would be
(\S+) - (\d+) errors, (\d+) warnings

Avoiding recursion

If you create regular expressions that require the engine to perform a lot of recursion, you may encounter a
RuntimeError exception with the messagaximum recursion limit exceeded. For example,

>>> import re
>>> s = 'Begin ' + 1000*a very long string ' + 'end’
>>> re.match(’'Begin (\w|)*? end’, s).end()
Traceback (most recent call last):

File "<stdin>", line 1, in ?

File "/usr/localllib/python2.3/sre.py", line 132, in match

return _compile(pattern, flags).match(string)

RuntimeError: maximum recursion limit exceeded

You can often restructure your regular expression to avoid recursion.

Starting with Python 2.3, simple uses of th, pattern are special-cased to avoid recursion. Thus, the above reg-
ular expression can avoid recursion by being reca3egin [a-zA-Z0-9 _]*?end .. As a further benefit,
such regular expressions will run faster than their recursive equivalents.

4.2. re — Regular expression operations 107

4.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python strings. It uses
format stringgexplained below) as compact descriptions of the lay-out of the C structs and the intended conversion
to/from Python values. This can be used in handling binary data stored in files or from network connections, among
other sources.

The module defines the following exception and functions:

exceptionerror
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fmt, v1,v2,..)
Return a string containing the values v2, ... packed according to the given format. The arguments
must match the values required by the format exactly.

unpack (fmt, string
Unpack the string (presumably packedfmck(fmt, ...)) according to the given format. The result is
a tuple even if it contains exactly one item. The string must contain exactly the amount of data required by
the format [en(string) must equatalcsize(fmt)).

calcsize (fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious
given their types:

Format | C Type Python Notes
X’ pad byte no value
‘c’ char string of length 1
‘b’ signed char integer
‘B unsigned char integer
‘h’ short integer
‘H unsigned short integer
i int integer
‘1’ unsigned int long
‘1 long integer
‘L unsigned long long
‘q’ long long long (1)
‘Q unsigned long long long Q)
‘f float float
‘d’ double float
‘s’ char(] string
‘p’ charf] string
‘P void * integer

Notes:

(1) The ‘g’ and ‘Q conversion codes are available in native mode only if the platform C compiler supports C
long long , or, on Windows,__int64 . They are always available in standard modes. New in version
2.2.

A format character may be preceded by an integral repeat count. For example, the form&atktrinmeans
exactly the same @shhh’

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the 5’ format character, the count is interpreted as the size of the string, not a repeat count like for the other
format characters; for exampld,0s’ means a single 10-byte string, whilEDc’ means 10 characters. For
packing, the string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting
string always has exactly the specified number of bytes. As a special'@sise,means a single, empty string
(while’0Oc’ means 0 characters).

108 Chapter 4. String Services

The ‘p’ format character encodes a "Pascal string”, meaning a short variable-length string stored in a fixed number
of bytes. The count is the total number of bytes stored. The first byte stored is the length of the string, or 255,
whichever is smaller. The bytes of the string follow. If the string passed patk() is too long (longer than

the count minus 1), only the leading count-1 bytes of the string are stored. If the string is shorter than count-1,
it is padded with null bytes so that exactly count bytes in all are used. Note thanfaick() , the p’ format
character consumes count bytes, but that the string returned can never contain more than 255 characters.

Forthe1’,'L’, 'q’ and ‘Q format characters, the return value is a Python long integer.

For the P’ format character, the return value is a Python integer or long integer, depending on the size needed to
hold a pointer when it has been cast to an integer typ&UA L pointer will always be returned as the Python
integer0. When packing pointer-sized values, Python integer or long integer objects may be used. For example,
the Alpha and Merced processors use 64-bit pointer values, meaning a Python long integer will be used to hold
the pointer; other platforms use 32-bit pointers and will use a Python integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by
skipping pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of
the packed data, according to the following table:

Character | Byte order Size and alignment
‘@ native native
= native standard
< little-endian standard
> big-endian standard
1D network (= big-endian) standard

If the first character is not one of thes@ls assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Motorola and Sun
processors are big-endian; Intel and DEC processors are little-endian.

Native size and alignment are determined using the C compdieméof expression. This is always combined
with native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes);
short is 2 bytes;int andlong are 4 bytesjong long (__int64 on Windows) is 8 bytesfloat and
double are 32-bit and 64-bit IEEE floating point numbers, respectively.

Note the difference betweei@ and ‘=": both use native byte order, but the size and alignment of the latter is
standardized.

The form 1’ is available for those poor souls who claim they can’t remember whether network byte order is
big-endian or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of".

The ‘P’ format character is only available for the native byte ordering (selected as the default or wit® the *
byte order character). The byte order charactéchooses to use little- or big-endian ordering based on the host
system. The struct module does not interpret this as native ordering, 98 foemat is not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *

>>> pack(hhl’, 1, 2, 3)
"\x00\x01\x00\x02\x00\x00\x00\x03’

>>> unpack(hhl’, "\x00\x01\x00\x02\x00\x00\x00\x03")

1, 2, 3)
>>> calcsize('hhl’)
8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with a repeat count of zero. For example, the forina’ specifies two pad bytes at the end,

4.3. struct — Interpret strings as packed binary data 109

assuming longs are aligned on 4-byte boundaries. This only works when native size and alignment are in effect;
standard size and alignment does not enforce any alignment.

See Also:

Modulearray (section 5.12):
Packed binary storage of homogeneous data.

Modulexdrlib (section 12.17):
Packing and unpacking of XDR data.

4.4 difflib — Helpers for computing deltas

New in version 2.1.

classSequenceMatcher
This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements
are hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late
1980’s by Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find
the longest contiguous matching subsequence that contains no “junk” elements (the Ratcliff and Obershelp
algorithm doesn’t address junk). The same idea is then applied recursively to the pieces of the sequences to
the left and to the right of the matching subsequence. This does not yield minimal edit sequences, but does
tend to yield matches that “look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected caseSequenceMatcher is quadratic time for the worst case and has expected-case behavior
dependent in a complicated way on how many elements the sequences have in common; best case time is
linear.

classDiffer
This is a class for comparing sequences of lines of text, and producing human-readable differences or
deltas. Differ useSequenceMatcher both to compare sequences of lines, and to compare sequences of
characters within similar (near-matching) lines.

Each line of eDiffer delta begins with a two-letter code:
Code | Meaning
- line unique to sequence 1

+ line unique to sequence 2
T line common to both sequences
2 line not present in either input sequence

Lines beginning with? ' attempt to guide the eye to intraline differences, and were not present in either
input sequence. These lines can be confusing if the sequences contain tab characters.

context _diff (a, b[fromfile[, tofile [fromfiledau{, tofiledate[, n [Iineterm]]]]]])
Comparea andb (lists of strings); return a delta (a generator generating the delta lines) in context diff
format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines isrsathigh defaults to three.

By default, the diff control lines (those wittt* or ---) are created with a trailing newline. This is
helpful so that inputs created frofile.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set linetermargument to™ so that the output will be
uniformly newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings fisomfile tofile, fromfiledate andtofiledate The modification times are
normally expressed in the format returned thye.ctime() . If not specified, the strings default to
blanks.

‘Tools/scripts/diff.py’ is a command-line front-end for this function.
New in version 2.3.

110 Chapter 4. String Services

get _close _matches (word, possibilitieg, n[, cutoff]])

ndiff

Return a list of the best “good enough” matchesrd is a sequence for which close matches are desired
(typically a string), angossibilitiesis a list of sequences against which to matadrd (typically a list of
strings).

Optional argument (default3) is the maximum number of close matches to retarmust be greater than
0.

Optional argumentutoff (default0.6) is a float in the range [0, 1]. Possibilities that don’t score at least
that similar toword are ignored.

The best (no more tham) matches among the possibilities are returned in a list, sorted by similarity score,
most similar first.

>>> get_close_matches('appel’, ['ape’, 'apple’, 'peach’, 'puppy’])
['apple’, "ape’]

>>> import keyword

>>> get_close_matches('wheel’, keyword.kwlist)

['while’]

>>> get_close_matches('apple’, keyword.kwlist)

I

>>> get_close_matches('accept’, keyword.kwlist)
[except’]

(a, b[Iinejunk[, charjunk]])
Comparea andb (lists of strings); return ®iffer -style delta (a generator generating the delta lines).

Optional keyword parametelimejunkandcharjunkare for filter functions (oNone):

linejunk A function that accepts a single string argument, and returns true if the string is junk, or false if
not. The defaultisNlone), starting with Python 2.3. Before then, the default was the module-level function
IS _LINE _JUNK() , which filters out lines without visible characters, except for at most one pound char-
acter (#'). As of Python 2.3, the underlyin§equenceMatcher class does a dynamic analysis of which
lines are so frequent as to constitute noise, and this usually works better than the pre-2.3 default.

charjunk A function that accepts a character (a string of length 1), and returns if the character is junk, or
false if not. The default is module-level functit® _CHARACTERIUNK() , which filters out whitespace
characters (a blank or tab; note: bad idea to include newline in this!).

‘Tools/scripts/ndiff.py’ is a command-line front-end to this function.

>>> diff = ndiffCone\ntwo\nthree\n’.splitlines(1),
‘ore\ntree\nemu\n’.splitlines(1))
>>> print ".join(diff),
- one

?
+ ore
o -

two

three
tree
emu

+ + 0

restore (sequence, whigh

Return one of the two sequences that generated a delta.

Given asequencgroduced byDiffer.compare() or ndiff) , extract lines originating from file 1
or 2 (parametewhich), stripping off line prefixes.

Example:

4.4. difflib — Helpers for computing deltas 111

>>> diff = ndiffCone\ntwo\nthree\n’.splitlines(1),
‘ore\ntree\nemu\n’.splitlines(1))
>>> diff = list(diff) # materialize the generated delta into a list
>>> print ”.join(restore(diff, 1)),

one

two

three

>>> print ".join(restore(diff, 2)),

ore

tree

emu

unified _diff (a, b, fromfild], tofile [, fromfiledat¢, tofiledatd, n [, lineterm]]]1]])
Comparea andb (lists of strings); return a delta (a generator generating the delta lines) in unified diff
format.
Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a inline style (instead of separate before/after blocks). The number of context lines is
set byn which defaults to three.
By default, the diff control lines (those with- , +++, or @®are created with a trailing newline. This
is helpful so that inputs created frofite.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set hetermargument td" so that the output will be
uniformly newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings fisomfile tofile, fromfiledate andtofiledate The modification times are
normally expressed in the format returned tipe.ctime() . If not specified, the strings default to
blanks.

‘Tools/scripts/diff.py’ is a command-line front-end for this function.
New in version 2.3.

IS _LINE _JUNKline)
Return true for ignorable lines. The liiee is ignorable ifline is blank or contains a singlé’, otherwise
it is not ignorable. Used as a default for paramétexjunkin ndiff() before Python 2.3.

IS _CHARACTERIUNK(ch)
Return true for ignorable characters. The charagités ignorable ifchis a space or tab, otherwise it is not
ignorable. Used as a default for parametearjunkin ndiff()

See Also:

Pattern Matching: The Gestalt Approach

(http://www.ddj.com/documents/s=1103/ddj8807c/)
Discussion of a similar algorithm by John W. Ratcliff and D. E. Metzener. This was publistedirobb’s
Journalin July, 1988.

4.4.1 SequenceMatcher Objects

The SequenceMatcher class has this constructor:

classSequenceMatcher ([isjunk[, a[b]]])
Optional argumenisjunk must beNone (the default) or a one-argument function that takes a sequence
element and returns true if and only if the element is “junk” and should be ignored. Paksiedor b is
equivalent to passingmbda x: 0 ;in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you're comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

112 Chapter 4. String Services

The optional argumentsandb are sequences to be compared; both default to empty strings. The elements
of both sequences must be hashable.

SequenceMatcher objects have the following methods:

set _segs (a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want to
compare one sequence against many sequencesetusseq2() to set the commonly used sequence once and
callset _seql() repeatedly, once for each of the other sequences.

set _seql (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set _seq2(h)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find _longest _match (alo, ahi, blo, bh)
Find longest matching block ia alo: ahi] andb[blo: bhi] .

If isjunkwas omitted oNone, get _longest _match() returns(i, j, k) suchtha#[i: i+k] isequal
to b[j: j+K] , wherealo <= i <= i+k <= ahiandblo <= j <= j+k <= bhi. Forall(i’, j, k)
meeting those conditions, the additional condititns= k', i <= i, and ifi == ", j <= | are also

met. In other words, of all maximal matching blocks, return one that starts earliastimd of all those
maximal matching blocks that start earliesgjrreturn the one that starts earliestin

>>> s = SequenceMatcher(None, " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
O, 4, 5)

If isjunk was provided, first the longest matching block is determined as above, but with the additional
restriction that no junk element appears in the block. Then that block is extended as far as possible by
matching (only) junk elements on both sides. So the resulting block never matches on junk except as
identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prewdmd’ from
matching the abcd’ at the tail end of the second sequence directly. Instead onlabim’ can
match, and matches the leftméabcd’ in the second sequence:

>>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
1, o, 4)

If no blocks match, this returnsalo, blo, 0) .

get _matching _blocks ()
Return list of triples describing matching subsequences. Each triple is of the formy n), and means
thata[i: i+n] == b[j: j+n] . The triples are monotonically increasingiiandj.

The last triple is a dummy, and has the va{len(a), len(b), 0) . Itisthe only triple withn ==
0.

>>> s = SequenceMatcher(None, "abxcd", "abcd")
>>> s.get_matching_blocks()
[0, 0, 2), (3, 2, 2), (5 4, 0)]

get _opcodes ()
Return list of 5-tuples describing how to tuannto b. Each tuple is of the fornitag, i1, i2, j1, j2).
The firsttuple hagl == j1 == 0, and remaining tuples havk equal to tha2 from the preceeding tuple,
and, likewisejl equal to the previougR.

Thetagvalues are strings, with these meanings:

4.4. difflib — Helpers for computing deltas 113

Value | Meaning

'replace’ a[i1: i2] should be replaced 1y j1: j2] .
‘delete’ a[i1: i2] should be deleted. Note thidt == j2 in this case.
'insert’ b[j1:j2] should be inserted &f i1: i1] . Note thatil == i2 in this case.
‘equal’ alil:i2] == Db[j1:j2] (the sub-sequences are equal).
For example:
>>> a = "gabxcd"

>>> p = "abycdf"
>>> s = SequenceMatcher(None, a, b)
>>> for tag, i1, i2, j1, j2 in s.get_opcodes():
print ("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %

(tag, i1, i2, afi1:i2], j1, j2, b[j1:j2]))
delete a[0:1] (q) b[0:0] ()

equal a[l1:3] (ab) b[0:2] (ab)
replace a[3:4] (x) b[2:3] (y)

equal a[4:6] (cd) b[3:5] (cd)

insert a[6:6] () b[5:6] (f)

get _grouped _opcodes ([n])

ratio

Return a generator of groups with uprtdéines of context.

Starting with the groups returned [ggt _opcodes() , this method splits out smaller change clusters and
eliminates intervening ranges which have no changes.

The groups are returned in the same formagets_opcodes() . New in version 2.3.

0
Return a measure of the sequences’ similarity as a float in the range [0, 1].
Where T is the total number of elements in both sequences, and M is the number of matches, this is 2.0*M
/ T. Note that this i4.0 if the sequences are identical, ah@ if they have nothing in common.
This is expensive to computeget _matching _blocks() orget _opcodes() hasn't already been
called, in which case you may want to fquick _ratio() orreal _quick _ratio() first to get an
upper bound.

quick _ratio ()

real

Return an upper bound aatio() relatively quickly.

This isn’t defined beyond that it is an upper boundatio() , and is faster to compute.
_quick _ratio ()

Return an upper bound aatio() very quickly.

This isn’t defined beyond that it is an upper boundratio() , and is faster to compute than either
ratio() or quick _ratio()

The three methods that return the ratio of matching to total characters can give different results due to differing
levels of approximation, althougiuick _ratio() andreal _quick _ratio() are always at least as large
asratio()

>>> s = SequenceMatcher(None, "abcd", "bcde")
>>> s ratio()

0.75

>>> g.quick_ratio()

0.75

>>> s.real_quick_ratio()

1.0

4.4.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk:”

114

Chapter 4. String Services

>>> s = SequenceMatcher(lambda x: x == ,
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio() returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thuratip@
value over 0.6 means the sequences are close matches:

>>> print round(s.ratio(), 3)
0.866

If you're only interested in where the sequences mageh,_matching _blocks() is handy:

>>> for block in s.get_matching_blocks():

. print "a[%d] and b[%d] match for %d elements" % block
al0] and b[0] match for 8 elements

a[8] and b[17] match for 6 elements

a[14] and b[23] match for 15 elements

a[29] and b[38] match for O elements

Note that the last tuple returned gt _matching _blocks() is always a dummylen(a), len(b),
0) , and this is the only case in which the last tuple element (number of elements matdhed) is

If you want to know how to change the first sequence into the secondetiseopcodes()

>>> for opcode in s.get_opcodes():

. print "%6s a[%d:%d] b[%d:%d]" % opcode
equal af0:8] b[0:8]

insert a[8:8] b[8:17]

equal a[8:14] b[17:23]

equal a[14:29] b[23:38]

See also the functioget _close _matches() in this module, which shows how simple code building on
SequenceMatcher can be used to do useful work.

4.4.3 Differ Objects

Note thatDiffer -generated deltas make no claim torbmimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Re-
stricting synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing
a longer diff.

TheDiffer class has this constructor:
classDiffer ([Iinejunk[, charjunk]])
Optional keyword parametelimejunkandcharjunkare for filter functions (oNone):

linejunk A function that accepts a single string argument, and returns true if the string is junk. The default
is None, meaning that no line is considered junk.

charjunk A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default done, meaning that no character is considered junk.
Differ objects are used (deltas generated) via a single method:
compare (a, b
Compare two sequences of lines, and generate the delta (a sequence of lines).
Each sequence must contain individual single-line strings ending with newlines. Such sequences can be

4.4. difflib — Helpers for computing deltas 115

obtained from theeadlines() method of file-like objects. The delta generated also consists of newline-
terminated strings, ready to be printed as-is viathigelines() method of a file-like object.

4.4.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained frone#uines() method of file-like objects):

>>> textl = " 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.

. ".splitlines(1)

>>> |en(textl)

4

>>> text1[0][-1]

\n'

>>> text2 = ' 1. Beautiful is better than ugly.
3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.

. ".splitlines(1)

Next we instantiate a Differ object:

>>> d = Differ()

Note that when instantiatingRiffer object we may pass functions to filter out line and character “junk.” See
the Differ() constructor for details.

Finally, we compare the two:

>>> result = list(d.compare(textl, text2))

result is alist of strings, so let’s pretty-print it:

>>> from pprint import pprint
>>> pprint(result)
[1. Beautiful is better than ugly.\n’,
2. Explicit is better than implicit.\n’,
- 3. Simple is better than complex.\n’,
3. Simple is better than complex.\n’,
? ++

4. Complex is better than complicated.\n’,

’

\n’,

? \n’,
'+ 4. Complicated is better than complex.\n’,
"
+

++++ .
5. Flat is better than nested.\n’]

\n’,

As a single multi-line string it looks like this:

116 Chapter 4. String Services

>>> import sys

>>> sys.stdout.writelines(result)

1. Beautiful is better than ugly.

2. Explicit is better than implicit.

3. Simple is better than complex.

+ 3. Simple is better than complex.
? ++
- 4. Complex is better than complicated.
” R .
+ 4. Complicated is better than complex.
? ++++ 7)
+ 5. Flat is better than nested.
4.5 fpformat — Floating point conversions

Thefpformat module defines functions for dealing with floating point numbers representations in 100% pure
Python.Note: This module is unneeded: everything here could be done vig#teng interpolation operator.

Thefpformat module defines the following functions and an exception:

fix (x,dig9
Formatx as[-]ddd.ddd with digsdigits after the point and at least one digit beforedijs <= 0, the
decimal point is suppressed.

x can be either a number or a string that looks like afigsis an integer.
Return value is a string.
sci (X, dig9

Formatx as[-]d.dddE[+-]ddd with digsdigits after the point and exactly one digit beforedifis <=
0, one digit is kept and the point is suppressed.

x can be either a real number, or a string that looks like digsis an integer.
Return value is a string.

exceptionNotANumber
Exception raised when a string passefix) orsci() as thex parameter does not look like a number.
This is a subclass dfalueError when the standard exceptions are strings. The exception value is the
improperly formatted string that caused the exception to be raised.

Example:

>>> jmport fpformat
>>> fpformat.fix(1.23, 1)
1.2

4.6 StringlO — Read and write strings as files

This module implements a file-like clasitringlO |, that reads and writes a string buffer (also knowmasnory
fileg). See the description of file objects for operations (section 2.3.8).

classStringlO ([buffer])
When aStringlO object is created, it can be initialized to an existing string by passing the string to the
constructor. If no string is given, th&tringlO will start empty.

TheStringlO object can accept either Unicode or 8-bit strings, but mixing the two may take some care.
If both are used, 8-bit strings that cannot be interpreted as Aduaitl (that use the 8th bit) will cause a

4.5. fpformat — Floating point conversions 117

UnicodeError to be raised whegetvalue() is called.
The following methods o8tringlO objects require special mention:

getvalue ()
Retrieve the entire contents of the “file” at any time before$ienglO object'sclose() method is
called. See the note above for information about mixing Unicode and 8-bit strings; such mixing can cause
this method to rais&nicodeError

close ()
Free the memory buffer.

4.7 cStringl0O — Faster version of StringlO

The modulecStringlO provides an interface similar to that of ti&ringlO module. Heavy use of
StringlO.StringlO objects can be made more efficient by using the funcsitsmglO() from this mod-
ule instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to build your
own version using subclassing. Use the origitinglO module in that case.

Unlike the memory files implemented by théringlO module, those provided by this module are not able to
accept Unicode strings that cannot be encoded as p&in strings.

Another difference from th&tringlO module is that callingstringlO() with a string parameter creates a
read-only object. Unlike an object created without a string parameter, it does not have write methods.

The following data objects are provided as well:

InputType
The type object of the objects created by callBtgnglO with a string parameter.

OutputType
The type object of the objects returned by callBtginglO with no parameters.

There is a C API to the module as well; refer to the module source for more information.

4.8 textwrap — Text wrapping and filling

New in version 2.3.

Thetextwrap module provides two convenience functiomsap() andfill() , as well asTextWrapper
the class that does all the work, and a utility functibedent() . If you're just wrapping or filling one or

two text strings, the convenience functions should be good enough; otherwise, you should use an instance of
TextWrapper for efficiency.

wrap (tex{, width[, ...]])
Wraps the single paragraphtext(a string) so every line is at mogatidth characters long. Returns a list of
output lines, without final newlines.

Optional keyword arguments correspond to the instance attribufBsxé¥Wrapper , documented below.
width defaults to70.

fill (texq, width[, ..]])
Wraps the single paragraphtext, and returns a single string containing the wrapped paragfaifh.
is shorthand for

"\n".join(wrap(text, ...))

In particularfill() accepts exactly the same keyword argumentsrap() .

Bothwrap() andfill() work by creating arextWrapper instance and calling a single method on it. That
instance is not reused, so for applications that wrap/fill many text strings, it will be more efficient for you to create

118 Chapter 4. String Services

your ownTextWrapper object.

An additional utility function,dedent() , is provided to remove indentation from strings that have unwanted
whitespace to the left of the text.

dedent (tex®
Remove any whitespace that can be uniformly removed from the left of every Itegtin

This is typically used to make triple-quoted strings line up with the left edge of screen/whatever, while still
presenting it in the source code in indented form.

For example:

def test():
end first line with \ to avoid the empty line!
s =™
hello
world

)

print repr(s) # prints ’ hello\n world\n
print repr(dedent(s)) # prints ’hello\n world\n’

classTextWrapper (...)
The TextWrapper constructor accepts a number of optional keyword arguments. Each argument corre-
sponds to one instance attribute, so for example

wrapper = TextWrapper(initial_indent="* ")

is the same as

wrapper = TextWrapper()
wrapper.initial_indent = "* "

You can re-use the sam@xtWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

TheTextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the
input text longer thanvidth , TextWrapper guarantees that no output line will be longer thaidth
characters.

expand _tabs
(default: True) If true, then all tab characters itext will be expanded to spaces using the
expand _tabs() method oftext

replace _whitespace
(default: True) If true, each whitespace character (as definedstriing.whitespace) remain-
ing after tab expansion will be replaced by a single spadéote: If expand _tabs is false and
replace _whitespace s true, each tab character will be replaced by a single space, whiait ke
same as tab expansion.

initial _indent
(default:”) String that will be prepended to the first line of wrapped output. Counts towards the length of
the first line.

subsequent _indent
(default:”) String that will be prepended to all lines of wrapped output except the first. Counts towards
the length of each line except the first.

fix _sentence _endings
(default:False) If true, TextWrapper attempts to detect sentence endings and ensure that sentences are
always separated by exactly two spaces. This is generally desired for text in a monospaced font. However,
the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a lowercase

4.8. textwrap — Text wrapping and filling 119

letter followed by one of.'”, ‘1 *, or *?’, possibly followed by one of*’ or *’ ’, followed by a space. One
problem with this is algorithm is that it is unable to detect the difference between “Dr.” in

[..] Dr. Frankenstein's monster [...]

and “Spot.” in

[...] See Spot. See Spot run [...]

fix _sentence _endings is false by default.

Since the sentence detection algorithm relieswing.lowercase for the definition of “lowercase
letter,” and a convention of using two spaces after a period to separate sentences on the same line, it is
specific to English-language texts.

break _long _words
(default: True) If true, then words longer thamidth will be broken in order to ensure that no lines are
longer tharwidth . If itis false, long words will not be broken, and some lines may be longentfdth .
(Long words will be put on a line by themselves, in order to minimize the amount by whidtth is
exceeded.)

TextWrapper also provides two public methods, analogous to the module-level convenience functions:

wrap (tex?
Wraps the single paragraphtiext(a string) so every line is at mogfdth characters long. All wrapping
options are taken from instance attributes of TextWrapper instance. Returns a list of output lines,
without final newlines.

fill (tex)
Wraps the single paragraphtiext and returns a single string containing the wrapped paragraph.

4.9 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry which manages the codec and error handling lookup process.

It defines the following functions:

register (search._function
Register a codec search function. Search functions are expected to take one argument, the encoding
name in all lower case letters, and return a tuple of functipescoder decoder stream.reader,
stream_writer) taking the following arguments:

encoderand decoder These must be functions or methods which have the same interface as the
encode() /decode() methods of Codec instances (see Codec Interface). The functions/methods are
expected to work in a stateless mode.

stream_readerandstream writer: These have to be factory functions providing the following interface:
factory(stream errors='strict’)

The factory functions must return objects providing the interfaces defined by the base classes
StreamWriter andStreamReader , respectively. Stream codecs can maintain state.

Possible values for errors dgtrict’ (raise an exception in case of an encoding erfm@place’ (re-
place malformed data with a suitable replacement marker, suéh)asgnore’ (ignore malformed data
and continue without further noticéymicharrefreplace’ (replace with the appropriate XML char-
acter reference (for encoding only)) althckslashreplace’ (replace with backslashed escape se-
quences (for encoding only)) as well as any other error handling name definedjiger _error()

In case a search function cannot find a given encoding, it should ridtura.

lookup (‘encoding
Looks up a codec tuple in the Python codec registry and returns the function tuple as defined above.

120 Chapter 4. String Services

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is
scanned. If no codecs tuple is found,@kupError is raised. Otherwise, the codecs tuple is stored in
the cache and returned to the caller.

To simplify access to the various codecs, the module provides these additional functions wHmbkupé)
for the codec lookup:

getencoder (encoding
Lookup up the codec for the given encoding and return its encoder function.

Raises d.ookupError in case the encoding cannot be found.

getdecoder (encoding
Lookup up the codec for the given encoding and return its decoder function.

Raises d.ookupError in case the encoding cannot be found.

getreader (encoding
Lookup up the codec for the given encoding and return its StreamReader class or factory function.

Raises d.ookupError in case the encoding cannot be found.

getwriter (encoding
Lookup up the codec for the given encoding and return its StreamWriter class or factory function.

Raises d ookupError in case the encoding cannot be found.

register _error (name, errorhandler)
Register the error handling functi@rror_handler under the nam@&ame error_handler will be called
during encoding and decoding in case of an error, wianeis specified as the errors parameter.

For encodingerror_handlerwill be called with aUnicodeEncodeError instance, which contains in-
formation about the location of the error. The error handler must either raise this or a different exception
or return a tuple with a replacement for the unencodable part of the input and a position where encoding
should continue. The encoder will encode the replacement and continue encoding the original input at the
specified position. Negative position values will be treated as being relative to the end of the input string. If
the resulting position is out of bound an IndexError will be raised.

Decoding and translating works similar, except UnicodeDecodeError or
UnicodeTranslateError will be passed to the handler and that the replacement from the error
handler will be put into the output directly.

lookup _error (nameg
Return the error handler previously register under the naanee

Raises d.ookupError in case the handler cannot be found.

strict _errors (exceptiol
Implements thestrict error handling.

replace _errors (. exceptiol
Implements theeplace error handling.

ignore _errors (exceptiol
Implements thégnore error handling.

xmicharrefreplace _errors _errors (exception
Implements themlcharrefreplace error handling.
backslashreplace _errors _errors (exception

Implements thévackslashreplace error handling.
To simplify working with encoded files or stream, the module also defines these utility functions:

open (filename, moc{e encodini, errors[, buffering]]])
Open an encoded file using the giverodeand return a wrapped version providing transparent encod-
ing/decoding.

Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode objects
for most built-in codecs. Output is also codec-dependent and will usually be Unicode as well.

encodingspecifies the encoding which is to be used for the file.

4.9. codecs — Codec registry and base classes 121

errors may be given to define the error handling. It defaultsstact’ which causes &alueError
to be raised in case an encoding error occurs.

bufferinghas the same meaning as for the builepen() function. It defaults to line buffered.

EncodedFile (file, inpul[, outpu{, errors]])
Return a wrapped version of file which provides transparent encoding translation.

Strings written to the wrapped file are interpreted according to the giyen encoding and then written to
the original file as strings using tleitputencoding. The intermediate encoding will usually be Unicode
but depends on the specified codecs.

If outputis not given, it defaults tinput.

errors may be given to define the error handling. It defaultstact’ , which cause¥alueError to
be raised in case an encoding error occurs.

The module also provides the following constants which are useful for reading and writing to platform dependent
files:

BOM

BOMBE

BOMLE

BOMUTF8

BOMUTF16

BOMUTF16_BE

BOMUTF16_LE

BOMUTF32

BOMUTF32_BE

BOMUTF32_LE
These constants define various encodings of the Unicode byte order mark (BOM) used in UTF-16 and UTF-
32 data streams to indicate the byte order used in the stream or file and in UTF-8 as a Unicode signature.
BOMUTF16 is eitherBOMUTF16_BE or BOMUTF16_LE depending on the platform’s native byte or-
der,BOMs an alias foBOMUTF16, BOMLE for BOMUTF16_LE andBOMBE for BOMUTF16_BE
The others represent the BOM in UTF-8 and UTF-32 encodings.

See Also:

http://sourceforge.net/projects/python-codecs/
A SourceForge project working on additional support for Asian codecs for use with Python. They are in the
early stages of development at the time of this writing — look in their FTP area for downloadable files.

49.1 Codec Base Classes

Thecodecs defines a set of base classes which define the interface and can also be used to easily write you own
codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to
implement the file protocols.

TheCodec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, thecode() anddecode() methods may implement different
error handling schemes by providing teeors string argument. The following string values are defined and
implemented by all standard Python codecs:

Value Meaning

strict’ RaiseUnicodeError (or a subclass); this is the default.

'ignore’ Ignore the character and continue with the next.

replace’ Replace with a suitable replacement character; Python will use the official U+FFFD REPL.
'xmlcharrefreplace’ Replace with the appropriate XML character reference (only for encoding).
'backslashreplace’ Replace with backslashed escape sequences (only for encoding).

122 Chapter 4. String Services

The set of allowed values can be extendedre@ister _error

Codec Objects

The Codec class defines these methods which also define the function interfaces of the stateless encoder and
decoder:

encode (input[, errors])
Encodes the objedhput and returns a tuple (output object, length consumed). While codecs are not re-
stricted to use with Unicode, in a Unicode context, encoding converts a Unicode object to a plain string
using a particular character set encoding (€gl252 oriso-8859-1).

errors defines the error handling to apply. It defaultsdtict’ handling.

The method may not store state in thedec instance. Us&treamCodec for codecs which have to keep

state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type
in this situation.

decode (input[, errors])
Decodes the objedhput and returns a tuple (output object, length consumed). In a Unicode context,
decoding converts a plain string encoded using a particular character set encoding to a Unicode object.

input must be an object which provides thé _getreadbuf buffer slot. Python strings, buffer objects
and memory mapped files are examples of objects providing this slot.

errors defines the error handling to apply. It defaultsdwict’ handling.

The method may not store state in thedec instance. Us&treamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type
in this situation.

The StreamWriter and StreamReader classes provide generic working interfaces which can be used to
implement new encodings submodules very easily. Gemdings.utf _8 for an example on how this is
done.

StreamWriter Objects

TheStreamWriter class is a subclass Gfodec and defines the following methods which every stream writer
must define in order to be compatible to the Python codec registry.

classStreamWriter (strean{, errors])
Constructor for é&streamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for writing (binary) data.

The StreamWriter may implement different error handling schemes by providingetiiers keyword
argument. These parameters are predefined:

e’strict’ RaiseValueError (or a subclass); this is the default.

e’ignore’ Ignore the character and continue with the next.

e'replace’ Replace with a suitable replacement character

e’xmicharrefreplace’ Replace with the appropriate XML character reference
e’backslashreplace’ Replace with backslashed escape sequences.

Theerrors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime &titb@mWriter
object.

The set of allowed values for tlegrors argument can be extended wittgister _error()

4.9. codecs — Codec registry and base classes 123

write (objec)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusingite€) method).

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state, that allows appending
of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, tBeeamWriter must also inherit all other methods and attribute from the
underlying stream.

StreamReader Objects

TheStreamReader class is a subclass @odec and defines the following methods which every stream reader
must define in order to be compatible to the Python codec registry.

classStreamReader (strean{, errors])
Constructor for &streamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for reading (binary) data.

The StreamReader may implement different error handling schemes by providingetiiers keyword
argument. These parameters are defined:

e’strict’ RaiseValueError (or a subclass); this is the default.
e’'ignore’ Ignore the character and continue with the next.
e'replace’ Replace with a suitable replacement character.

Theerrors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime &titb@mReader
object.

The set of allowed values for tlegrors argument can be extended wittgister _error()
read ([size])
Decodes data from the stream and returns the resulting object.

sizeindicates the approximate maximum number of bytes to read from the stream for decoding purposes.
The decoder can modify this setting as appropriate. The default value -1 indicates to read and decode as
much as possiblesizeis intended to prevent having to decode huge files in one step.

The method should use a greedy read strategy meaning that it should read as much data as is allowed within
the definition of the encoding and the given size, e.g. if optional encoding endings or state markers are
available on the stream, these should be read too.

readline ([size])
Read one line from the input stream and return the decoded data.

Unlike thereadlines() method, this method inherits the line breaking knowledge from the underlying
stream’sreadline() method — there is currently no support for line breaking using the codec decoder
due to lack of line buffering. Sublcasses should however, if possible, try to implement this method using
their own knowledge of line breaking.

size if given, is passed as size argument to the streagaidline() method.

readlines ([sizehint])
Read all lines available on the input stream and return them as list of lines.

Line breaks are implemented using the codec’s decoder method and are included in the list entries.
sizehint if given, is passed asizeargument to the stream’sad() method.

124 Chapter 4. String Services

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to recover
from decoding errors.

In addition to the above methods, tBeeamReader must also inherit all other methods and attribute from the
underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may
provide useful in practice.

StreamReaderWriter Objects

The StreamReaderWriter allows wrapping streams which work in both read and write modes.

The design is such that one can use the factory functions returned lyothep() function to construct the
instance.

classStreamReaderWriter (stream, Reader, Writer, erroys
Creates &treamReaderWriter instance.streammust be a file-like objectReaderand Writer must
be factory functions or classes providing tBeeamReader andStreamWriter interface resp. Error
handling is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaceSteamReader andStreamWriter
classes. They inherit all other methods and attribute from the underlying stream.

StreamRecoder Objects

The StreamRecoder provide a frontend - backend view of encoding data which is sometimes useful when
dealing with different encoding environments.

The design is such that one can use the factory functions returned kgothep() function to construct the
instance.

classStreamRecoder (stream, encode, decode, Reader, Writer, ejrors
Creates &treamRecoder instance which implements a two-way conversiencodeanddecodework
on the frontend (the input teead() and output ofwrite()) while Readerand Writer work on the
backend (reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.
streammust be a file-like object.

encode decodemust adhere to th€odec interface,Reader Writer must be factory functions or classes
providing objects of th&treamReader andStreamWriter interface respectively.

encodeanddecodeare needed for the frontend translati®®®aderand Writer for the backend translation.
The intermediate format used is determined by the two sets of codecs, e.g. the Unicode codecs will use
Unicode as intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaceSwéamReader andStreamWriter classes.
They inherit all other methods and attribute from the underlying stream.

4.9.2 Standard Encodings

Python comes with a number of codecs builtin, either implemented as C functions, or with dictionaries as mapping

tables. The following table lists the codecs by name, together with a few common aliases, and the languages for
which the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive.

Notice that spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid
aliases.

4.9. codecs — Codec registry and base classes 125

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

e an ISO 8859 codeset

e a Microsoft Windows code page, which is typically derived from a 8859 codeset, but replaces control
characters with additional graphic characters

e an IBM EBCDIC code page

e an IBM PC code page, which isscii compatible

Codec Aliases Languages
ascii 646, us-ascii English
cp037 IBM037, IBM039 English
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, 1BM437 English
cp500 EBCDIC-CP-BE, EBCDIC-CP-CH, IBM500 Western Europe
cp737 Greek
cp775 IBM775 Baltic languages
cp850 850, IBM850 Western Europe
cp852 852, IBM852 Central and Eastern Europe
cp855 855, IBM855 Bulgarian, Byelorussian, Macedonian, Russian, Serbi
cp856 Hebrew
cp857 857, IBM857 Turkish
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM861 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian
cp864 IBM864 Arabic
cp865 865, IBM865 Danish, Norwegian
cp869 869, CP-GR, IBM869 Greek
cp874 Thai
cp875 Greek
cpl006 Urdu
cp1026 ibm1026 Turkish
cp1140 ibm1140 Western Europe
cpl250 windows-1250 Central and Eastern Europe
cpl251 windows-1251 Bulgarian, Byelorussian, Macedonian, Russian, Serbi
cpl252 windows-1252 Western Europe
cpl1253 windows-1253 Greek
cpl254 windows-1254 Turkish
cpl255 windows-1255 Hebrew
cpl256 windows1256 Arabic
cpl257 windows-1257 Baltic languages
cpl1258 windows-1258 Vietnamese
latin_1 is0-8859-1, is08859-1, 8859, cp819, latin, latinl, L West Europe
is08859 2 is0-8859-2, latin2, L2 Central and Eastern Europe
is08859 3 is0-8859-3, latin3, L3 Esperanto, Maltese
i508859 4 iS0-8859-4, latin4, L4 Baltic languagues
is08859 5 is0-8859-5, cyrillic Bulgarian, Byelorussian, Macedonian, Russian, Serbi
508859 6 is0-8859-6, arabic Arabic
is08859 7 is0-8859-7, greek, greek8 Greek
i508859 8 is0-8859-8, hebrew Hebrew
is08859 9 is0-8859-9, latin5, L5 Turkish
is08852 10 | is0-8859-10, latinG, L6 Nordic languages
is08859 13 | is0-8859-13 Baltic languages
126 Chapter 4. String Services

Codec Aliases Languages

is08859 14 | is0-8859-14, latin8, L8 Celtic languages
is08859 15 | is0-8859-15 Western Europe

koi8_r Russian

koi8_u Ukrainian

mac_cyrillic | maccyrillic Bulgarian, Byelorussian, Macedonian, Russian, Serbi
mac_greek | macgreek Greek

mac_iceland | maciceland Icelandic

mac_latin2 | maclatin2, maccentraleurope Central and Eastern Europe
mac_roman | macroman Western Europe
mac_turkish | macturkish Turkish

utf_16 U16, utflé all languages

utf_16_be UTF-16BE all languages (BMP only)
utf_16_le UTF-16LE all languages (BMP only)
utf_7 u7 all languages

utf_8 U8, UTF, utf8 all languages

A number of codecs are specific to Python, so their codec names have no meaning outside Python. Some of them
don't convert from Unicode strings to byte strings, but instead use the property of the Python codecs machinery
that any bijective function with one argument can be considered as an encoding.

For the codecs listed below, the result in the “encoding” direction is always a byte string. The result of the
“decoding” direction is listed as operand type in the table.

Codec Aliases Operand type | Purpose

base64.codec base64, base-64 byte string Convert operand to MIME base64
hex_codec hex byte string Convert operand to hexadecimal repres
idna Unicode string| Implements RFC 3490. New in version
mbcs dbcs Unicode string| Windows only: Encode operand accord
palmos Unicode string| Encoding of PalmOS 3.5

punycode Unicode string| Implements RFC 3492. New in version
guopri_codec quopri, quoted-printable, quotedprintahlebyte string Convert operand to MIME quoted printa
raw_unicode_escape Unicode string| Produce a string that is suitable as raw |
rot_13 rotl3 byte string Returns the Caesar-cypher encryption c
string_escape byte string Produce a string that is suitable as strin
undefined any Raise an exception for all conversion. C
unicode_escape Unicode string| Produce a string that is suitable as Unic
unicode_internal Unicode string| Return the internal represenation of the
uu_codec uu byte string Convert the operand using uuencode
zlib_codec zip, zlib byte string Compress the operand using gzip

4.9.3 encodings.idna

New in version 2.3.

— Internationalized Domain Names in Applications

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492 (Nameprep:
A Stringprep Profile for Internationalized Domain Names (IDN)). It builds uponpilveycode encoding and

stringprep

These RFCs together define a protocol to supporta®@H characters in domain names. A domain name contain-
ing nonAscli characters (such as “www.Alliancefrangaise.nu”) is converted intesami-compatible encoding

(ACE, such as “www.xn—alliancefranaise-npb.nu”). The ACE form of the domain name is then used in all places
where arbitrary characters are not allowed by the protocol, such as DNS queries,Hd3tT Fields, and so on.

This conversion is carried out in the application; if possible invisible to the user: The application should trans-
parently convert Unicode domain labels to IDNA on the wire, and convert back ACE labels to Unicode before
presenting them to the user.

4.9. codecs — Codec registry and base classes 127

Python supports this conversion in several ways: itima codec allows to convert between Unicode and the

ACE. Furthermore, theocket module transparently converts Unicode host names to ACE, so that applications
need not be concerned about converting host names themselves when they pass them to the socket module. On top
of that, modules that have host names as function parameters, shtthléis andftplib , accept Unicode

host namesHtplib then also transparently sends an IDNA hostname irHthise: field if it sends that field at

all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode
is performed: Applications wishing to present such host names to the user should decode them to Unicode.

The moduleencodings.idna also implements the nameprep procedure, which performs certain normaliza-
tions on host names, to achieve case-insensitivity of international domain names, and to unify similar characters.
The nameprep functions can be used directly if desired.

nameprep (label)
Return the nameprepped version label. The implementation currently assumes query strings, so
AllowUnassigned s true.

ToASCII (label)
Convert a label tascii, as specified in RFC 349QUseSTD3ASCIIRules is assumed to be false.

ToUnicode (label)
Convert a label to Unicode, as specified in RFC 3490.

4.10 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for all Unicode
characters. The data in this database is based onutieotleData.txt’ file version 3.2.0 which is publically
available fromftp://ftp.unicode.org/.

The module uses the same names and symbols as defined by the UnicodeData File Format 3.2.0 (see
http://www.unicode.org/Public/lUNIDATA/UnicodeData.html). It defines the following functions:

lookup (namg
Look up character by name. If a character with the given name is found, return the corresponding Unicode
character. If not found<eyError is raised.

name(unichr[, default])
Returns the name assigned to the Unicode charactehr as a string. If no name is definedefaultis
returned, or, if not givenyalueError s raised.

decimal (unichr[, default])
Returns the decimal value assigned to the Unicode chanawcighr as integer. If no such value is defined,
defaultis returned, or, if not giver\ValueError s raised.

digit (unichi], default])
Returns the digit value assigned to the Unicode charagtshr as integer. If no such value is defined,
defaultis returned, or, if not giveriValueError is raised.

numeric (unichr[, default])
Returns the numeric value assigned to the Unicode charaiehr as float. If no such value is defined,
defaultis returned, or, if not giveriValueError is raised.

category (‘unichr)
Returns the general category assigned to the Unicode chauadtér as string.

bidirectional (‘unichr)
Returns the bidirectional category assigned to the Unicode charattdr as string. If no such value is
defined, an empty string is returned.

combining (‘unichr)
Returns the canonical combining class assigned to the Unicode chanaicteras integer. Return® if no
combining class is defined.

128 Chapter 4. String Services

mirrored (unichr)
Returns the mirrored property of assigned to the Unicode charantehr as integer. Returns if the
character has been identified as a “mirrored” character in bidirectionaDtetherwise.

decomposition (unichr)
Returns the character decomposition mapping assigned to the Unicode chamatteas string. An empty
string is returned in case no such mapping is defined.

normalize (form, unist)
Return the normal fornfiorm for the Unicode stringunistr. Valid values forform are 'NFC’, 'NFKC’,
'NFD’, and 'NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition
of canonical equivalence and compatibility equivalence. In Unicode, several characters can be expressed
in various way. For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA)

can also be expressed as the sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING
CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD)
is also known as canonical decomposition, and translates each character into its decomposed form. Normal
form C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For
example, U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL
LETTER I). However, it is supported in Unicode for compatibility with existing character sets (e.g. gh2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility
characters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposi-
tion, followed by the canonical composition.

New in version 2.3.
In addition, the module exposes the following constant:

unidata _version
The version of the Unicode database used in this module.

New in version 2.3.

4.11 stringprep — Internet String Preparation

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications
for “equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it
should be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only
identifications consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto
the wire, they are processed with the preparation procedure, after which they have a certain normalized form. The
RFC defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and
what other optional parts of thetringprep procedure are part of the profile. One example stirengprep

profile isnameprep , which is used for internationalized domain names.

The modulestringprep only exposes the tables from RFC 3454. As these tables would be very large to
represent them as dictionaries or lists, the module uses the Unicode character database internally. The module
source code itself was generated usingrttiestringprep.py utility.

As aresult, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC:
sets and mappings. For a settingprep provides the “characteristic function”, i.e. a function that returns true

if the parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the
associated value. Below is a list of all functions available in the module.

in _table _al(codd
Determine whethetodeis in tableA.1 (Unassigned code points in Unicode 3.2).

4.11. stringprep — Internet String Preparation 129

in

_table _b1(code
Determine whethetodeis in tableB.1 (Commonly mapped to nothing).

map_table _b2(code

Return the mapped value foodeaccording to tableB.2 (Mapping for case-folding used with NFKC).

map_table _b3(code

Return the mapped value foodeaccording to tableB.3 (Mapping for case-folding used with no normaliza-
tion).

_table _cl11(codg
Determine whethetodeis in tableC.1.1 (ASCII space characters).

_table _cl12(codg
Determine whethetodeis in tableC.1.2 (Non-ASCII space characters).

_table _cl11 _c12(code
Determine whethetodeis in tableC.1 (Space characters, union of C.1.1 and C.1.2).

_table _c21(codg
Determine whethetodeis in tableC.2.1 (ASCII control characters).

_table _c22(codg
Determine whethetodeis in tableC.2.2 (Non-ASCII control characters).

_table _c21 _c22(code
Determine whethetodeis in tableC.2 (Control characters, union of C.2.1 and C.2.2).

_table _c3(code
Determine whethetodeis in tableC.3 (Private use).

_table _c4(code
Determine whethetodeis in tableC.4 (Non-character code points).

_table _c5(codg
Determine whethetodeis in tableC.5 (Surrogate codes).

_table _c6(code
Determine whethetodeis in tableC.6 (Inappropriate for plain text).

_table _c7(code
Determine whethetodeis in tableC.7 (Inappropriate for canonical representation).

_table _c8(code
Determine whethetodeis in tableC.8 (Change display properties or are deprecated).

_table _c9(codg
Determine whethetodeis in tableC.9 (Tagging characters).

_table _d1(code
Determine whethetodeis in tableD.1 (Characters with bidirectional property “R” or “AL”).

_table _d2(code
Determine whethetodeis in tableD.2 (Characters with bidirectional property “L").

130 Chapter 4. String Services

CHAPTER
FIVE

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are available in all Python versions.
Here’s an overview:

pydoc Documentation generator and online help system.

doctest A framework for verifying examples in docstrings.

unittest Unit testing framework for Python.

test Regression tests package containing the testing suite for Python.

test.test _support Support for Python regression tests.

math Mathematical functionss{n() etc.).

cmath Mathematical functions for complex numbers.

random Generate pseudo-random numbers with various common distributions.

whrandom Floating point pseudo-random number generator.

bisect Array bisection algorithms for binary searching.

heapq Heap queue algorithm (a.k.a. priority queue).

array Efficient arrays of uniformly typed numeric values.

sets Implementation of sets of unique elements.

itertools Functions creating iterators for efficient looping.

ConfigParser Configuration file parser.

fileinput Perl-like iteration over lines from multiple input streams, with “save in place” capability.
xreadlines Efficient iteration over the lines of a file.

calendar Functions for working with calendars, including some emulation of thexttal program.
cmd Build line-oriented command interpreters.

shlex Simple lexical analysis for Nix shell-like languages.

5.1 pydoc — Documentation generator and online help system

New in version 2.1.

The pydoc module automatically generates documentation from Python modules. The documentation can be
presented as pages of text on the console, served to a Web browser, or saved to HTML files.

The built-in functionhelp() invokes the online help system in the interactive interpreter, whichmgi#sc to

generate its documentation as text on the console. The same text documentation can also be viewed from outside
the Python interpreter by runnimgydoc as a script at the operating system’s command prompt. For example,
running

pydoc sys

at a shell prompt will display documentation on thes module, in a style similar to the manual pages shown by
the UNIX man command. The argument fiydoc can be the name of a function, module, or package, or a dotted
reference to a class, method, or function within a module or module in a package. If the argupyelttdoks

like a path (that is, it contains the path separator for your operating system, such as a slash)jrabd refers to

an existing Python source file, then documentation is produced for that file.

131

Specifying aw flag before the argument will cause HTML documentation to be written out to a file in the current
directory, instead of displaying text on the console.

Specifying a-k flag before the argument will search the synopsis lines of all available modules for the keyword
given as the argument, again in a manner similar to thexUnan command. The synopsis line of a module is
the first line of its documentation string.

You can also uspydoc to start an HTTP server on the local machine that will serve documentation to visiting
Web browserspydoc -p 1234will start a HTTP server on port 1234, allowing you to browse the documentation
athttp://localhost: 1234/ in your preferred Web browsepydoc -gwill start the server and additionally
bring up a smallrkinter -based graphical interface to help you search for documentation pages.

Whenpydocgenerates documentation, it uses the current environment and path to locate modules. Thus, invoking
pydoc spamdocuments precisely the version of the module you would get if you started the Python interpreter
and typedimport spam '

5.2 doctest — Test docstrings represent reality

Thedoctest module searches a module’s docstrings for text that looks like an interactive Python session, then
executes all such sessions to verify they still work exactly as shown. Here’s a complete but small example:

132 Chapter 5. Miscellaneous Services

This is module example.
Example supplies one function, factorial. For example,

>>> factorial(5)
120

def factorial(n):
""Return the factorial of n, an exact integer >= 0.

If the result is small enough to fit in an int, return an int.
Else return a long.

>>> [factorial(n) for n in range(6)]

[1, 1, 2, 6, 24, 120]

>>> [factorial(long(n)) for n in range(6)]
[1, 1, 2, 6, 24, 120]

>>> factorial(30)
265252859812191058636308480000000L
>>> factorial(30L)
265252859812191058636308480000000L
>>> factorial(-1)

Traceback (most recent call last):

ValueError: n must be >= 0

Factorials of floats are OK, but the float must be an exact integer:
>>> factorial(30.1)
Traceback (most recent call last):

ValueError: n must be exact integer
>>> factorial(30.0)
265252859812191058636308480000000L

It must also not be ridiculously large:
>>> factorial(1e100)
Traceback (most recent call last):

OverflowError: n too large

5.2. doctest — Test docstrings represent reality 133

If you run ‘example.py’ directly from the command linejoctest

import math
if not n >= 0:
raise ValueError("n must be >= 0")
if math.floor(n) != n:
raise ValueError("n must be exact integer")

if n+1 == n: # catch a value like 1e300
raise OverflowError("n too large")
result = 1
factor = 2
while factor <= n:
try:

result *= factor
except OverflowError:
result *= long(factor)
factor += 1
return result

def _test():
import doctest, example
return doctest.testmod(example)

if _name__ == "_ main__"
_test()

$ python example.py
$

works its magic:

There’s no output! That's normal, and it means all the examples worked. -P&sshe script, andloctest
prints a detailed log of what it’s trying, and prints a summary at the end:

$ python example.py -v

Running example.__doc__

Trying: factorial(5)

Expecting: 120

ok

0 of 1 examples failed in example.__doc__
Running example.factorial. __doc___

Trying: [factorial(n) for n in range(6)]
Expecting: [1, 1, 2, 6, 24, 120]

ok

Trying: [factorial(long(n)) for n in range(6)]
Expecting: [1, 1, 2, 6, 24, 120]

ok

Trying: factorial(30)

Expecting: 265252859812191058636308480000000L
ok

And so on, eventually ending with:

134

Chapter 5. Miscellaneous Services

Trying: factorial(1e100)
Expecting:
Traceback (most recent call last):

OverflowError: n too large
ok
0 of 8 examples failed in example.factorial.__doc__
2 items passed all tests:
1 tests in example
8 tests in example.factorial
9 tests in 2 items.
9 passed and O failed.
Test passed.
$

That's all you need to know to start making productive usdaftest ! Jump in. The docstrings indbctest.py’
contain detailed information about all aspectslo€test , and we’ll just cover the more important points here.

5.2.1 Normal Usage

In normal use, end each modWNewith:

def _test():
import doctest, M # replace M with your module’s name
return doctest.testmod(M) # ditto

if _name__ == "_ main__"
_test()

If you want to test the module as the main module, you don'’t need to passédttood() ; in this case, it will
test the current module.

Then running the module as a script causes the examples in the docstrings to get executed and verified:

python M.py

This won't display anything unless an example fails, in which case the failing example(s) and the cause(s) of the
failure(s) are printed to stdout, and the final line of outpuTest failed.’

Run it with the-v switch instead:

python M.py -v

and a detailed report of all examples tried is printed to standard output, along with assorted summaries at the end.

You can force verbose mode by passiuggbose=1 totestmod() , or prohibit it by passingerbose=0 . In
either of those casesys.argv is not examined byestmod()

In any casetestmod() returns a 2-tuple of intéf, t), wheref is the number of docstring examples that failed
andt is the total number of docstring examples attempted.

5.2.2 Which Docstrings Are Examined?

See the docstrings imléctest.py’ for all the details. They're unsurprising: the module docstring, and all function,
class and method docstrings are searched. Optionally, the tester can be directed to exclude docstrings attached to

5.2. doctest — Test docstrings represent reality 135

objects with private names. Objects imported into the module are not searched.

In addition, if M. __test __ exists and "is true”, it must be a dict, and each entry maps a (string) name to

a function object, class object, or string. Function and class object docstrings foundvfrontest __ are
searched even if the tester has been directed to skip over private names in the rest of the module. In output, a key
Kin M.__test __ appears with name

<name of M>_ test_ K

Any classes found are recursively searched similarly, to test docstrings in their contained methods and nested
classes. While private hames reached fribt® globals can be optionally skipped, all names reached from
M.__test __ are searched.

5.2.3 What's the Execution Context?

By default, each timéestmod() finds a docstring to test, it usescapyof Ms globals, so that running tests

on a module doesn’t change the module’s real globals, and so that one késairt leave behind crumbs that
accidentally allow another test to work. This means examples can freely use any names defined at topdlevel in
and names defined earlier in the docstring being run.

You can force use of your own dict as the execution context by pagbifig=your _dict to testmod()
instead. Presumably this would be a copywbf__dict __ merged with the globals from other imported modules.

5.2.4 What About Exceptions?

No problem, as long as the only output generated by the example is the traceback itself. For example:

>>> [1, 2, 3].remove(42)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: list.remove(x): x not in list
>>>

Note that only the exception type and value are compared (specifically, only the last line in the traceback). The
various “File” lines in between can be left out (unless they add significantly to the documentation value of the
example).

5.2.5 Advanced Usage

Several module level functions are available for controlling how doctests are run.

debug (module, namge
Debug a single docstring containing doctests.

Provide themodule(or dotted name of the module) containing the docstring to be debugged andrtige
(within the module) of the object with the docstring to be debugged.

The doctest examples are extracted (see fundéstsource()), and written to a temporary file. The
Python debuggepdb, is then invoked on that file. New in version 2.3.

testmod ()
This function provides the most basic interface to the doctests. It creates a local instance Désfess,
runs appropriate methods of that class, and merges the results into theTgetal instancemaster .

To get finer control thatestmod() offers, create an instance déster with custom policies, or run
methods omaster directly. SeeTester. __doc __ for details.

136 Chapter 5. Miscellaneous Services

testsource (module, name

Extract the doctest examples from a docstring.

Provide themodule(or dotted name of the module) containing the tests to be extracted andrttegwithin
the module) of the object with the docstring containing the tests to be extracted.

The doctest examples are returned as a string containing Python code. The expected output blocks in the
examples are converted to Python comments. New in version 2.3.

DocTestSuite ([module])

Convert doctest tests for a module torattest . TestSuite

The returnedrestSuite is to be run by the unittest framework and runs each doctest in the module. If
any of the doctests falil, then the synthesized unit test fails, dbdcd estTestFailure exception is
raised showing the name of the file containing the test and a (sometimes approximate) line number.

The optionalmoduleargument provides the module to be tested. It can be a module object or a (possibly
dotted) module name. If not specified, the module calling this function is used.

Example using one of the many ways that timéitest ~ module can use @estSuite

import unittest
import doctest
import my_module_with_doctests

suite = doctest.DocTestSuite(my_module_with_doctests)
runner = unittest.TextTestRunner()
runner.run(suite)

New in version 2.3. Warning: This function does not currently searbh __test __ and its search
technique does not exactly mattdstmod() in every detail. Future versions will bring the two into
convergence.

5.2.6 How are Docstring Examples Recognized?

In most cases a copy-and-paste of an interactive console session works fine—just make sure the leading whitespace
is rigidly consistent (you can mix tabs and spaces if you're too lazy to do it rightddctest is not in the
business of guessing what you think a tab means).

>>> # comments are ignored

>>> x = 12

>>> X

12

>>> jf x == 13:
print "yes"

. else:
print "no"
print "NO"
print "NO!I!"

no

NO

NO!!M

>>>

Any expected output must immediately follow the firrab> * or’... "’ line containing the code, and the

expected output (if any) extends to the niext> or all-whitespace line.

The fine print:

e Expected output cannot contain an all-whitespace line, since such a line is taken to signal the end of expected

output.

5.2. doctest — Test docstrings represent reality

137

e Output to stdout is captured, but not output to stderr (exception tracebacks are captured via a different

means).

¢ If you continue a line via backslashing in an interactive session, or for any other reason use a backslash, you

need to double the backslash in the docstring version. This is simply because you're in a string, and so the
backslash must be escaped for it to survive intact. Like:

>>> if "yes" == \\
"yt o+
"es":
print 'yes’
yes

e The starting column doesn’t matter:

>>> assert "Easy!"
>>> import math
>>> math.floor(1.9)
1.0

and as many leading whitespace characters are stripped from the expected output as appeared in the initial
'>>> ' line that triggered it.

5.2.7 Warnings

1. doctest is serious about requiring exact matches in expected output. If even a single character doesn't

match, the test fails. This will probably surprise you a few times, as you learn exactly what Python does
and doesn’t guarantee about output. For example, when printing a dict, Python doesn’t guarantee that the
key-value pairs will be printed in any particular order, so a test like

>>> foo()
{"Hermione": "hippogryph", "Harry": "broomstick"}
>>>

is vulnerable! One workaround is to do

>>> foo() == {"Hermione": "hippogryph", "Harry": "broomstick"}
True
>>>

instead. Another is to do

>>> d = foo().items()
>>> d.sort()
>>> d

[(Harry’, ’broomstick’), ("Hermione’, 'hippogryph’)]

There are others, but you get the idea.
Another bad idea is to print things that embed an object address, like

>>> id(1.0) # certain to fail some of the time
7948648
>>>

138

Chapter 5. Miscellaneous Services

Floating-point numbers are also subject to small output variations across platforms, because Python defers
to the platform C library for float formatting, and C libraries vary widely in quality here.

>>> 1./7 # risky
0.14285714285714285

>>> print 1./7 # safer
0.142857142857

>>> print round(1./7, 6) # much safer
0.142857

Numbers of the formi/2.**J are safe across all platforms, and | often contrive doctest examples to
produce numbers of that form:

>>> 3./4 # utterly safe
0.75

Simple fractions are also easier for people to understand, and that makes for better documentation.

2. Be careful if you have code that must only execute once.
If you have module-level code that must only execute once, a more foolproof definitidasif) is

def _test():
import doctest, sys
doctest.testmod()

3. WYSIWYG isn't always the case, starting in Python 2.3. The string form of boolean results changed from
‘0" and'l’ to’False’ and'True’ in Python 2.3. This makes it clumsy to write a doctest showing
boolean results that passes under multiple versions of Python. In Python 2.3, by default, and as a special
case, if an expected output block consists solely0bf and the actual output block consists solely of
‘False’ , that’s accepted as an exact match, and similarlyXor versus'True’ . This behavior can
be turned off by passing the new (in 2.3) module consRE@NTACCEPTTRUE_FOR_1 as the value
of testmod() 's new (in 2.3) optionabptionflagsargument. Some years after the integer spellings of
booleans are history, this hack will probably be removed again.

5.2.8 Soapbox

The first word in “doctest” is “doc,” and that’s why the author wrdtectest : to keep documentation up to date.
It so happens thatoctest makes a pleasant unit testing environment, but that’s not its primary purpose.

Choose docstring examples with care. There’s an art to this that needs to be learned—it may not be natural at
first. Examples should add genuine value to the documentation. A good example can often be worth many words.
If possible, show just a few normal cases, show endcases, show interesting subtle cases, and show an example
of each kind of exception that can be raised. You're probably testing for endcases and subtle cases anyway in an
interactive shell:doctest wants to make it as easy as possible to capture those sessions, and will verify they
continue to work as designed forever after.

If done with care, the examples will be invaluable for your users, and will pay back the time it takes to collect
them many times over as the years go by and things change. I'm still amazed at how often onécatesy
examples stops working after a “harmless” change.

For exhaustive testing, or testing boring cases that add no value to the docs, defitesta __ dict instead.
That's what it's for.

5.3 unittest — Unit testing framework

5.3. unittest ~ — Unit testing framework 139

New in version 2.1.

The Python unit testing framework, often referred to as “PyUnit,” is a Python language version of JUnit, by Kent
Beck and Erich Gamma. JUnit is, in turn, a Java version of Kent's Smalltalk testing framework. Each is the de
facto standard unit testing framework for its respective language.

PyUnit supports test automation, sharing of setup and shutdown code for tests, aggregation of tests into collections,
and independence of the tests from the reporting framework uhiest module provides classes that make
it easy to support these qualities for a set of tests.

To achieve this, PyUnit supports some important concepts:

test fixture
A test fixturerepresents the preparation needed to perform one or more tests, and any associate cleanup
actions. This may involve, for example, creating temporary or proxy databases, directories, or starting a
server process.

test case
A test casds the smallest unit of testing. It checks for a specific response to a particular set of inputs.
PyUnit provides a base clasggstCase , which may be used to create new test cases.

test suite
A test suiteis a collection of test cases, test suites, or both. It is used to aggregate tests that should be
executed together.

test runner
A test runnelis a component which orchestrates the execution of tests and provides the outcome to the user.
The runner may use a graphical interface, a textual interface, or return a special value to indicate the results
of executing the tests.

The test case and test fixture concepts are supported througkgt@ase andFunctionTestCase classes;

the former should be used when creating new tests, and the latter can be used when integrating existing test code
with a PyUnit-driven framework. When building test fixtures uslregtCase , thesetUp() andtearDown()

methods can be overridden to provide initialization and cleanup for the fixture. PAliticitionTestCase

existing functions can be passed to the constructor for these purposes. When the test is run, the fixture initialization
is run first; if it succeeds, the cleanup method is run after the test has been executed, regardless of the outcome of
the test. Each instance of thiestCase will only be used to run a single test method, so a new fixture is created

for each test.

Test suites are implemented by testSuite class. This class allows individual tests and test suites to be
aggregated; when the suite is executed, all tests added directly to the suite and in “child” test suites are run.

A test runner is an object that provides a single metlmod() , which accepts destCase or TestSuite

object as a parameter, and returns a result object. TheTdmstResult is provided for use as the result object.
PyUnit provide theTextTestRunner as an example test runner which reports test results on the standard error
stream by default. Alternate runners can be implemented for other environments (such as graphical environments)
without any need to derive from a specific class.

See Also:

PyUnit Web Site
(http://pyunit.sourceforge.net/)
The source for further information on PyUnit.

Simple Smalltalk Testing: With Patterns
(http://www.XProgramming.com/testfram.htm)
Kent Beck’s original paper on testing frameworks using the pattern shareditbgst

5.3.1 Basic example

Theunittest module provides a rich set of tools for constructing and running tests. This section demonstrates
that a small subset of the tools suffice to meet the needs of most users.

140 Chapter 5. Miscellaneous Services

Here is a short script to test three functions fromitiaedom module:

import random
import unittest

class TestSequenceFunctions(unittest.TestCase):

def setUp(self):
self.seq = range(10)

def testshuffle(self):
make sure the shuffled sequence does not lose any elements
random.shuffle(self.seq)
self.seq.sort()
self.assertEqual(self.seq, range(10))

def testchoice(self):
element = random.choice(self.seq)
self.assert_(element in self.seq)

def testsample(self):
self.assertRaises(ValueError, random.sample, self.seq, 20)
for element in random.sample(self.seq, 5):
self.assert_(element in self.seq)

’ ’

if name__ ==’ main__"
unittest.main()

A testcase is created by subclassimittest. TestCase . The three individual tests are defined with methods
whose names start with the letteest . This naming convention informs the test runner about which methods
represent tests.

The crux of each test is a call mssertEqual() to check for an expected resulissert _() to verify
a condition; orassertRaises() to verify that an expected exception gets raised. These methods are used
instead of theassert statement so the test runner can accumulate all test results and produce a report.

When asetUp() method is defined, the test runner will run that method prior to each test. Likewise, if
atearDown() method is defined, the test runner will invoke that method after each test. In the example,
setUp() was used to create a fresh sequence for each test.

The final block shows a simple way to run the testsittest.main() provides a command line interface to
the test script. When run from the command line, the above script produces an output that looks like this:

Ran 3 tests in 0.000s

OK

Instead ofunittest.main() , there are other ways to run the tests with a finer level of control, less terse
output, and no requirement to be run from the command line. For example, the last two lines may be replaced
with:

suite = unittest.TestSuite()
suite.addTest(unittest. makeSuite(TestSequenceFunctions))
unittest. TextTestRunner(verbosity=2).run(suite)

Running the revised script from the interpreter or another script produces the following output:

5.3. unittest ~ — Unit testing framework 141

testchoice (__main__.TestSequenceFunctions) ... ok
testsample (__main__.TestSequenceFunctions) ... ok
testshuffle (__main__.TestSequenceFunctions) ... ok

Ran 3 tests in 0.110s

OK

The above examples show the most commonly ussittest features which are sufficient to meet many
everyday testing needs. The remainder of the documentation explores the full feature set from first principles.

5.3.2 Organizing test code

The basic building blocks of unit testing atest cases— single scenarios that must be set up and checked for
correctness. In PyUnit, test cases are represented by instanceJ eftliase class in thauinittest ~ module.
To make your own test cases you must write subclasséssifCase , or useFunctionTestCase

An instance of & estCase -derived class is an object that can completely run a single test method, together with
optional set-up and tidy-up code.

The testing code of destCase instance should be entirely self contained, such that it can be run either in
isolation or in arbitrary combination with any number of other test cases.

The simplest test case subclass will simply overridertimest() method in order to perform specific testing
code:

import unittest

class DefaultWidgetSizeTestCase(unittest. TestCase):
def runTest(self):
widget = Widget("The widget")
self.failUnless(widget.size() == (50,50), ’incorrect default size’)

Note that in order to test something, we use the one ofaisert*() or fail*() methods provided by

the TestCase base class. If the test fails when the test case runs, an exception will be raised, and the testing
framework will identify the test case adailure. Other exceptions that do not arise from checks made through the
assert*() andfail*() methods are identified by the testing framework as dfnerrors.

The way to run a test case will be described later. For now, note that to construct an instance of such a test case,
we call its constructor without arguments:

testCase = DefaultWidgetSizeTestCase()

Now, such test cases can be numerous, and their set-up can be repetitive. In the above case, constructing a
“Widget” in each of 100 Widget test case subclasses would mean unsightly duplication.

Luckily, we can factor out such set-up code by implementing a method atép() , which the testing frame-
work will automatically call for us when we run the test:

142 Chapter 5. Miscellaneous Services

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget("The widget")

class DefaultWidgetSizeTestCase(SimpleWidgetTestCase):
def runTest(self):
self.failUnless(self.widget.size() == (50,50),
'incorrect default size’)

class WidgetResizeTestCase(SimpleWidgetTestCase):
def runTest(self):
self.widget.resize(100,150)
self.failUnless(self.widget.size() == (100,150),
‘wrong size after resize’)

If thesetUp() method raises an exception while the test is running, the framework will consider the test to have
suffered an error, and thranTest() method will not be executed.

Similarly, we can provide gearDown() method that tidies up after thanTest() = method has been run:

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget("The widget")

def tearDown(self):
self.widget.dispose()
self.widget = None

If setUp() succeeded, theearDown() method will be run regardless of whether or mohTest() suc-
ceeded.

Such a working environment for the testing code is callégdtare

Often, many small test cases will use the same fixture. In this case, we would end up subclassing
SimpleWidgetTestCase into many small one-method classes sucBafaultWidgetSizeTestCase
This is time-consuming and discouraging, so in the same vein as JUnit, PyUnit provides a simpler mechanism:

import unittest

class WidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget("The widget")

def tearDown(self):
self.widget.dispose()
self.widget = None

def testDefaultSize(self):
self.failUnless(self.widget.size() == (50,50),
'incorrect default size’)

def testResize(self):
self.widget.resize(100,150)
self.failUnless(self.widget.size() == (100,150),
‘wrong size after resize’)

5.3. unittest = — Unit testing framework 143

Here we have not providedranTest() method, but have instead provided two different test methods. Class
instances will now each run one of ttest*() methods, withself.widget created and destroyed separately

for each instance. When creating an instance we must specify the test method it is to run. We do this by passing
the method name in the constructor:

defaultSizeTestCase = WidgetTestCase("testDefaultSize")
resizeTestCase = WidgetTestCase("testResize")

Test case instances are grouped together according to the features they test. PyUnit provides a mechanism for this:
thetest suite , represented by the claggstSuite in theunittest module:

widgetTestSuite = unittest.TestSuite()
widgetTestSuite.addTest(WidgetTestCase("testDefaultSize"))
widgetTestSuite.addTest(WidgetTestCase("testResize"))

For the ease of running tests, as we will see later, it is a good idea to provide in each test module a callable object
that returns a pre-built test suite:

def suite():
suite = unittest.TestSuite()
suite.addTest(WidgetTestCase("testDefaultSize"))
suite.addTest(WidgetTestCase("testResize"))
return suite

or even:

class WidgetTestSuite(unittest. TestSuite):
def __init_ (self):
unittest. TestSuite.__init__(self,map(WidgetTestCase,
("testDefaultSize",
"testResize")))

(The latter is admittedly not for the faint-hearted!)

Since it is a common pattern to creat@estCase subclass with many similarly named test functions, there is a
convenience function calletiakeSuite() provided in theunittest module that constructs a test suite that
comprises all of the test cases in a test case class:

suite = unittest.makeSuite(WidgetTestCase,’test’)

Note that when using thmakeSuite() function, the order in which the various test cases will be run by the
test suite is the order determined by sorting the test function names usiogie built-in function.

Often it is desirable to group suites of test cases together, so as to run tests for the whole system at once. This is
easy, sincdestSuite instances can be added tGestSuite just asTestCase instances can be added to
aTestSuite

suitel = modulel.TheTestSuite()
suite2 = module2.TheTestSuite()
alltests = unittest. TestSuite((suitel, suite2))

You can place the definitions of test cases and test suites in the same modules as the code they are to test (such as
‘widget.py’), but there are several advantages to placing the test code in a separate module \sidghtasts.py’:

144 Chapter 5. Miscellaneous Services

e The test module can be run standalone from the command line.

e The test code can more easily be separated from shipped code.

e There is less temptation to change test code to fit the code it tests without a good reason.

e Test code should be modified much less frequently than the code it tests.

e Tested code can be refactored more easily.

e Tests for modules written in C must be in separate modules anyway, so why not be consistent?

o If the testing strategy changes, there is no need to change the source code.

5.3.3 Re-using old test code

Some users will find that they have existing test code that they would like to run from PyUnit, without converting
every old test function to destCase subclass.

For this reason, PyUnit providesFunctionTestCase class. This subclass dfestCase can be used to
wrap an existing test function. Set-up and tear-down functions can also optionally be wrapped.

Given the following test function:

def testSomething():
something = makeSomething()
assert something.name is not None
..

one can create an equivalent test case instance as follows:

testcase = unittest.FunctionTestCase(testSomething)

If there are additional set-up and tear-down methods that should be called as part of the test case’s operation, they
can also be provided:

testcase = unittest.FunctionTestCase(testSomething,
setUp=makeSomethingDB,
tearDown=deleteSomethingDB)

Note: PyUnit supports the use éfssertionError as an indicator of test failure, but does not recommend it.
Future versions may treaissertionError differently.

5.3.4 Classes and functions

classTestCase ()
Instances of th@estCase class represent the smallest testable units in a set of tests. This class is intended
to be used as a base class, with specific tests being implemented by concrete subclasses. This class imple-
ments the interface needed by the test runner to allow it to drive the test, and methods that the test code can
use to check for and report various kinds of failures.

classFunctionTestCase (testFun{, setU;{, tearDowr{, descriptiorﬂ]])
This class implements the portion of thestCase interface which allows the test runner to drive the test,
but does not provide the methods which test code can use to check and report errors. This is used to create
test cases using legacy test code, allowing it to be integrated intdgtast -based test framework.

5.3. unittest ~ — Unit testing framework 145

classTestSuite ([testé)
This class represents an aggregation of individual tests cases and test suites. The class presents the interface
needed by the test runner to allow it to be run as any other test case, but all the contained tests and test suites
are executed. Additional methods are provided to add test cases and suites to the aggredastsis If
given, it must be a sequence of individual tests that will be added to the suite.

classTestLoader ()
This class is responsible for loading tests according to various criteria and returning them wrapped in a
TestSuite . It can load all tests within a given module destCase class. When loading from a
module, it considers allestCase -derived classes. For each such class, it creates an instance for each
method with a name beginning with the stringst

defaultTestLoader
Instance of thelestLoader class which can be shared. If no customization of TestLoader is
needed, this instance can always be used instead of creating new instances.

classTextTestRunner ([strean{, descriptiong, verbosit)]]])
A basic test runner implementation which prints results on standard output. It has a few configurable
parameters, but is essentially very simple. Graphical applications which run test suites should provide
alternate implementations.

main ([module[, defauItTes[t, argv[, testRunne[r, testRunne}]]]])
A command-line program that runs a set of tests; this is primarily for making test modules conveniently
executable. The simplest use for this function is:

if _name__ =="'_ main__"
unittest.main()

In some cases, the existing tests may have be written usindoittest module. If so, that module provides
aDocTestSuite class that can automatically builohittest. TestSuite instances from the existing test
code. New in version 2.3.

5.3.5 TestCase Objects

EachTestCase instance represents a single test, but each concrete subclass may be used to define multiple tests
— the concrete class represents a single test fixture. The fixture is created and cleaned up for each test case.

TestCase instances provide three groups of methods: one group used to run the test, another used by the test
implementation to check conditions and report failures, and some inquiry methods allowing information about the
test itself to be gathered.

Methods in the first group are:

setUp ()
Method called to prepare the test fixture. This is called immediately before calling the test method; any
exception raised by this method will be considered an error rather than a test failure. The default implemen-
tation does nothing.

tearDown ()
Method called immediately after the test method has been called and the result recorded. This is called
even if the test method raised an exception, so the implementation in subclasses may need to be particularly
careful about checking internal state. Any exception raised by this method will be considered an error rather
than a test failure. This method will only be called if thetUp() succeeds, regardless of the outcome of
the test method. The default implementation does nothing.

run ([result])
Run the test, collecting the result into the test result object passedas If resultis omitted orNone,
a temporary result object is created and used, but is not made available to the caller. This is equivalent to
simply calling theTestCase instance.

debug ()
Run the test without collecting the result. This allows exceptions raised by the test to be propogated to the

146 Chapter 5. Miscellaneous Services

caller, and can be used to support running tests under a debugger.
The test code can use any of the following methods to check for and report failures.

assert _(expr[, msg])
failUnless (‘expnl, msg|)
Signal a test failure iexpris false; the explanation for the error will lmesgif given, otherwise it will be

None.

assertEqual (first, secon@, msg|)

failUnlessEqual (first, secongl, msg])
Test thafirst andsecondare equal. If the values do not compare equal, the test will fail with the explanation
given bymsg or None. Note that usindailUnlessEqual() improves upon doing the comparison as
the first parameter ttailUnless() . the default value fomsgcan be computed to include representa-

tions of bothfirst andsecond

assertNotEqual (first, seconﬂ, msg])

faillfEqual (first, secongl, msg|)
Test thafirst andsecondare not equal. If the values do compare equal, the test will fail with the explanation
given bymsg orNone. Note that usindaillfEqual() improves upon doing the comparison as the first
parameter tdailUnless() is that the default value fansgcan be computed to include representations
of bothfirst andsecond

assertAlmostEqual (first, secon@, places[, ms])

failUnlessAlmostEqual (first, seconﬁ, placeg, msg]])
Test thaffirst andsecondare approximately equal by computing the difference, rounding to the given num-
ber ofplaces and comparing to zero. Note that comparing a given number of decimal places is not the same
as comparing a given number of significant digits. If the values do not compare equal, the test will fail with
the explanation given bmsg or None.

assertNotAlmostEqual (first, secon@, places{, msg]])

faillfAlImostEqual (first, secon@, placeg, msq| |)
Test thaffirst andsecondare not approximately equal by computing the difference, rounding to the given
number ofplaces and comparing to zero. Note that comparing a given number of decimal places is not the
same as comparing a given number of significant digits. If the values do not compare equal, the test will fail
with the explanation given bmnsg or None.

assertRaises (exception, callable,)..

failUnlessRaises (exception, callable,)..
Test that an exception is raised wheadlable is called with any positional or keyword arguments that are
also passed tassertRaises() . The test passes éxceptionis raised, is an error if another exception
is raised, or fails if no exception is raised. To catch any of a group of exceptions, a tuple containing the
exception classes may be passeeéxaeption

faillf (expf, msd)

The inverse of théailUnless() method is thdaillf() method. This signals a test failuresikpris
true, withmsgor None for the error message.
fail ([msg])

Signals a test failure unconditionally, withsgor None for the error message.

failureException
This class attribute gives the exception raised bytds¢() method. If a test framework needs to use a
specialized exception, possibly to carry additional information, it must subclass this exception in order to
“play fair” with the framework. The initial value of this attribute AssertionError

Testing frameworks can use the following methods to collect information on the test:

countTestCases ()
Return the number of tests represented by the this test objecteBtCase instances, this will always be
1, but this method is also implemented by fhestSuite class, which can return larger values.

defaultTestResult 0
Return the default type of test result object to be used to run this test.

5.3. unittest = — Unit testing framework 147

id ()
Return a string identifying the specific test case. This is usually the full name of the test method, including
the module and class names.

shortDescription 0
Returns a one-line description of the testNmme if no description has been provided. The default imple-
mentation of this method returns the first line of the test method’s docstring, if availaiNeper

5.3.6 TestSuite Objects

TestSuite objects behave much likeestCase objects, except they do not actually implement a test. Instead,
they are used to aggregate tests into groups that should be run together. Some additional methods are available to
add tests tdestSuite instances:

addTest (tes)
Add aTestCase orTestSuite to the set of tests that make up the suite.

addTests (test9
Add all the tests from a sequenceT@stCase andTestSuite instances to this test suite.

Therun() method is also slightly different:

run (resulf
Run the tests associated with this suite, collecting the result into the test result object passatl &ote
that unlikeTestCase.run() , TestSuite.run() requires the result object to be passed in.

In the typical usage of @estSuite object, therun() method is invoked by destRunner rather than by
the end-user test harness.

5.3.7 TestResult Objects

A TestResult object stores the results of a set of tests. ThetCase andTestSuite classes ensure that
results are properly stored; test authors do not need to worry about recording the outcome of tests.

Testing frameworks built on top efittest ~ may want access to tiestResult object generated by running
a set of tests for reporting purposesiestResult instance is returned by thieestRunner.run() method
for this purpose.

Each instance holds the total number of tests run, and collections of failures and errors that occurred among
those test runs. The collections contain tuplegtektcase tracebacl , wheretracebackis a string containing a
formatted version of the traceback for the exception.

TestResult instances have the following attributes that will be of interest when inspecting the results of running
a set of tests:

errors
A list containing pairs ofTestCase instances and the formatted tracebacks for tests which raised an
exception but did not signal a test failure. Changed in version 2.2: Contains formatted tracebacks instead
of sys.exc _info() results.

failures
A list containing pairs ofTestCase instances and the formatted tracebacks for tests which signalled
a failure in the code under test. = Changed in version 2.2: Contains formatted tracebacks instead of
sys.exc _info() results.

testsRun
The number of tests which have been started.

wasSuccessful ()
Returns true if all tests run so far have passed, otherwise returns false.

The following methods of th@estResult class are used to maintain the internal data structures, and may be
extended in subclasses to support additional reporting requirements. This is particularly useful in building tools
which support interactive reporting while tests are being run.

148 Chapter 5. Miscellaneous Services

startTest (tes)
Called when the test casestis about to be run.

stopTest (tes)
Called when the test casesthas been executed, regardless of the outcome.

addError (test, ery
Called when the test casestraises an exception without signalling a test failueg.is a tuple of the form
returned bysys.exc _info() : (type value tracebacl.

addFailure (test, er)
Called when the test casestsignals a failureerr is a tuple of the form returned tgys.exc _info()
(type valug tracebach.

addSuccess (tes)
This method is called for a test that does not figktis the test case object.

One additional method is available fbestResult objects:

stop ()
This method can be called to signal that the set of tests being run should be aborted. Once this has been

called, theTestRunner object return to its caller without running any additional tests. This is used by the
TextTestRunner class to stop the test framework when the user signals an interrupt from the keyboard.
Interactive tools which provide runners can use this in a similar manner.

5.3.8 TestLoader Objects

The TestLoader class is used to create test suites from classes and modules. Normally, there is no need
to create an instance of this class; theittest module provides an instance that can be shared as the
defaultTestLoader module attribute. Using a subclass or instance would allow customization of some
configurable properties.

TestLoader objects have the following methods:

loadTestsFromTestCase (testCaseClags
Return a suite of all tests cases contained inliéstCase -derived classestCaseClass

loadTestsFromModule (modulg
Return a suite of all tests cases contained in the given module. This method seaoch#sfor classes
derived fromTestCase and creates an instance of the class for each test method defined for the class.

Warning: While using a hierarchy ofestcase -derived classes can be convenient in sharing fixtures and
helper functions, defining test methods on base classes that are not intended to be instantiated directly does
not play well with this method. Doing so, however, can be useful when the fixtures are different and defined

in subclasses.

loadTestsFromName (name[, moduld)
Return a suite of all tests cases given a string specifier.

The specifiernameis a “dotted name” that may resolve either to a module, a test case class, a test
method within a test case class, or a callable object which returhestCase or TestSuite in-
stance. For example, if you have a mod@ampleTests containing aTestCase -derived class
SampleTestCase with three test methodsgst _one() ,test _two() , andtest _three()), the
specifierSampleTests.SampleTestCase’ would cause this method to return a suite which will run

all three test methods. Using the specifittampleTests.SampleTestCase.test _two’ would

cause it to return a test suite which will run only tiest _two() test method. The specifier can refer to
modules and packages which have not been imported; they will be imported as a side-effect.

The method optionally resolvesmmerelative to a given module.
loadTestsFromNames (name%, moduld)

Similar toloadTestsFromName() , but takes a sequence of names rather than a single name. The return
value is a test suite which supports all the tests defined for each name.

getTestCaseNames (testCaseClags
Return a sorted sequence of method names found wikiCaseClass

5.3. unittest ~ — Unit testing framework 149

The following attributes of destLoader can be configured either by subclassing or assignment on an instance:

testMethodPrefix
String giving the prefix of method names which will be interpreted as test methods. The default value is
'test’

sortTestMethodsUsing
Function to be used to compare method names when sorting trgetiliestCaseNames() . The default
value is the built-ircmp() function; it can be set tblone to disable the sort.

suiteClass
Callable object that constructs a test suite from a list of tests. No methods on the resulting object are needed.
The default value is th€estSuite class.

5.4 test — Regression tests package for Python
Thetest package contains all regression tests for Python as well as the moelsti¢sst _support and
test.regrtest . test.test _support is used to enhance your tests whibst.regrtest drives the

testing suite.

Each module in théest package whose name starts withst _’ is a testing suite for a specific module or
feature. All new tests should be written using thettest module; usinginittest is not required but makes
the tests more flexible and maintenance of the tests easier. Some older tests are writteiptiaste and a
“traditional” testing style; these styles of tests will not be covered.

See Also:

Moduleunittest (section 5.3):
Writing PyUnit regression tests.

Moduledoctest (section 5.2):
Tests embedded in documentation strings.

5.4.1 Writing Unit Tests for the test package

It is preferred that tests for thest package use thenittest module and follow a few guidelines. One is

to have the name of all the test methods start wigst _’ ' as well as the module’s name. This is needed so

that the methods are recognized by the test driver as test methods. Also, no documentation string for the method
should be included. A comment (such &3ésts function returns only True or False ") should

be used to provide documentation for test methods. This is done because documentation strings get printed out if
they exist and thus what test is being run is not stated.

A basic boilerplate is often used:

150 Chapter 5. Miscellaneous Services

import unittest
from test import test_support

class MyTestCasel(unittest.TestCase):
Only use setUp() and tearDown() if necessary

def setUp(self):
. code to execute in preparation for tests ...

def tearDown(self):
. code to execute to clean up after tests ...

def test feature_one(self):
Test feature one.
. testing code ...

def test_feature_two(self):
Test feature two.
. testing code ...

. more test methods ...

class MyTestCase2(unittest.TestCase):
. same structure as MyTestCasel ...

. more test classes ...

def test_main():
test_support.run_unittest(MyTestCasel,
MyTestCase2,
. list other tests ...

if _name__ =="'_main__"
test_main()
This boilerplate code allows the testing suite to be rundsy.regrtest as well as on its own as a script.

The goal for regression testing is to try to break code. This leads to a few guidelines to be followed:

e The testing suite should exercise all classes, functions, and constants. This includes not just the external
API that is to be presented to the outside world but also "private” code.

e Whitebox testing (examining the code being tested when the tests are being written) is preferred. Blackbox
testing (testing only the published user interface) is not complete enough to make sure all boundary and
edge cases are tested.

Make sure all possible values are tested including invalid ones. This makes sure that not only all valid values
are acceptable but also that improper values are handled correctly.

Exhaust as many code paths as possible. Test where branching occurs and thus tailor input to make sure as
many different paths through the code are taken.

Add an explicit test for any bugs discovered for the tested code. This will make sure that the error does not
crop up again if the code is changed in the future.

Make sure to clean up after your tests (such as close and remove all temporary files).

Import as few modules as possible and do it as soon as possible. This minimizes external dependencies of
tests and also minimizes possible anomalous behavior from side-effects of importing a module.

5.4. test — Regression tests package for Python 151

e Try to maximize code reuse. On occasion, tests will vary by something as small as what type of input is
used. Minimize code duplication by subclassing a basic test class with a class that specifies the input:

class TestFuncAcceptsSequences(unittest.TestCase):
func = mySuperWhammyFunction

def test_func(self):
self.func(self.arg)

class AcceptLists(TestFuncAcceptsSequences):
arg = [1,2,3]

class AcceptStrings(TestFuncAcceptsSequences):
arg = 'abc’

class AcceptTuples(TestFuncAcceptsSequences):
arg = (1,2,3)

See Also:

Test Driven Development
A book by Kent Beck on writing tests before code.

5.4.2 Running tests Using test.regrtest

test.regrtest can be used as a script to drive Python’s regression test suite. Running the script by itself
automatically starts running all regression tests intdwt package. It does this by finding all modules in

the package whose name starts wiilst _', importing them, and executing the functisest _main() if

present. The names of tests to execute may also be passed to the script. Specifying a single regression test
(python regrtest.py test_spam.py) will minimize output and only print whether the test passed or failed and thus
minimize output.

Runningtest.regrtest directly allows what resources are available for tests to use to be set. You do this
by using the-u command-line option. Rupython regrtest.py -uall to turn on all resources; specifyirayl

as an option foru enables all possible resources. If all but one resource is desired (a more common case), a
comma-separated list of resources that are not desired may be listedllafidre commangbython regrtest.py
-uall,-audio,-largefile will run test.regrtest with all resources except theudio andlargefile resources.

For a list of all resources and more command-line optionspsthon regrtest.py -h.

Some other ways to execute the regression tests depend on what platform the tests are being executed on. On
UNIX, you can runmake testat the top-level directory where Python was built. On Windows, executibgt
from your ‘PCBuild’ directory will run all regression tests.

5.5 test.test _support — Utility functions for tests

Thetest.test _support module provides support for Python’s regression tests.
This module defines the following exceptions:

exceptionTestFailed
Exception to be raised when a test fails.

exceptionTestSkipped
Subclass offestFailed . Raised when a test is skipped. This occurs when a needed resource (such as a
network connection) is not available at the time of testing.

exceptionResourceDenied
Subclass ofTestSkipped . Raised when a resource (such as a network connection) is not available.

152 Chapter 5. Miscellaneous Services

Raised by theequires() function.
Thetest.test _support module defines the following constants:

verbose
True when verbose output is enabled. Should be checked when more detailed information is desired about
a running testverbosds set bytest.regrtest

have _unicode
True when Unicode support is available.

is _jython
True if the running interpreter is Jython.
TESTFN

Set to the path that a temporary file may be created at. Any temporary that is created should be closed and
unlinked (removed).

Thetest.test _support module defines the following functions:

forget (module_.nameg
Removes the module nametdule_namefrom sys.modules and deletes any byte-compiled files of the
module.

is _resource _enabled (resource
ReturnsTrue if resourceis enabled and available. The list of available resources is only set when
test.regrtest is executing the tests.

requires (resource{, msg])
RaisesResourceDenied if resources not availablemsgis the argument tResourceDenied ifitis
raised. Always returns true if called by a function whasename__is’ __main __' . Used when tests
are executed biest.regrtest

findfile (filenamé
Return the path to the file naméttname If no match is foundilenameis returned. This does not equal a
failure since it could be the path to the file.

run _unittest (*classe$
Executeunittest. TestCase subclasses passed to the function. The function scans the classes for
methods starting with the prefixest _’' and executes the tests individually. This is the preferred way to
execute tests.

run _suite (suite[, testclas:])

Execute thaunittest. TestSuite instancesuite The optional argumenestclassaccepts one of the
test classes in the suite so as to print out more detailed information on where the testing suite originated
from.

5.6 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name fromatithe

module if you require support for complex numbers. The distinction between functions which support complex
numbers and those which don’t is made since most users do not want to learn quite as much mathematics as
required to understand complex numbers. Receiving an exception instead of a complex result allows earlier
detection of the unexpected complex number used as a parameter, so that the programmer can determine how and
why it was generated in the first place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values
are floats:

acos (X)
Return the arc cosine of

asin (x)

5.6. math — Mathematical functions 153

Return the arc sine of

atan (x)
Return the arc tangent af

atan2 (y, %
Returnatan(y / X).

ceil (Xx)
Return the ceiling ok as a float.

cos (X)
Return the cosine of.

cosh (x)

Return the hyperbolic cosine gf
degrees (X)

Converts angle from radians to degrees.
exp (X)

Returne** x.

fabs (X)
Return the absolute value rf

floor (x)
Return the floor ok as a float.

fmod (x, y)
Returnfmod(%, V), as defined by the platform C library. Note that the Python expressi#ny may not
return the same result.

frexp (X)
Return the mantissa and exponenkeafs the pai(m, €). mis a float anceis an integer such that ==
m * 2** e If xis zero, returng0.0, 0) , otherwise0.5 <= abs(m) < 1.

hypot (X,)
Return the Euclidean distancgrt(x*x + y*y).
Idexp (X, i)
Returnx * (2** i).
log (x[, basé)
Returns the logarithm of to the givenbase If the baseis not specified, returns the natural logarithnxof
Changed in version 2.®:aseargument added.

log10 (X)
Return the base-10 logarithm xf
modf (X)
Return the fractional and integer partsxofBoth results carry the sign af The integer part is returned as
a float.
pow(X, y)
Returnx** y.
radians (X)
Converts angle from degrees to radians.
sin (X)
Return the sine af.
sinh (x)
Return the hyperbolic sine af
sqrt (x)

Return the square root a&f

tan (X)

154 Chapter 5. Miscellaneous Services

Return the tangent of

tanh (x)
Return the hyperbolic tangent »f

Note thatfrexp() andmodf() have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

The module also defines two mathematical constants:

pi
The mathematical constapi.

The mathematical constaat

Note: The math module consists mostly of thin wrappers around the platform C math library functions. Be-
havior in exceptional cases is loosely specified by the C standards, and Python inherits much of its math-
function error-reporting behavior from the platform C implementation. As a result, the specific exceptions
raised in error cases (and even whether some arguments are considered to be exceptional at all) are not
defined in any useful cross-platform or cross-release way. For example, wmeétledog(0) returns

-Inf or raisesValueError or OverflowError isn't defined, and in cases whemgath.log(0) raises
OverflowError , math.log(OL) may raiseévalueError instead.

See Also:

Modulecmath (section 5.7):
Complex number versions of many of these functions.

5.7 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The functions
are:

acos (X)
Return the arc cosine of There are two branch cuts: One extends right from 1 along the real axis to
continuous from below. The other extends left from -1 along the real axiet@entinuous from above.

acosh (x)
Return the hyperbolic arc cosine xaf There is one branch cut, extending left from 1 along the real axis to
-00, continuous from above.

asin (x)
Return the arc sine of This has the same branch cutsass()

asinh (x)
Return the hyperbolic arc sine &f There are two branch cuts, extending left frarj to +-ooj , both
continuous from above. These branch cuts should be considered a bug to be corrected in a future release.
The correct branch cuts should extend along the imaginary axis, oneljronp to coj and continuous
from the right, and one fronilj down to ©cj and continuous from the left.

atan (x)
Return the arc tangent af There are two branch cuts: One extends frljmalong the imaginary axis to
oo , continuous from the left. The other extends frohj -along the imaginary axis toxj , continuous
from the left. (This should probably be changed so the upper cut becomes continuous from the other side.)

atanh (x)
Return the hyperbolic arc tangentxfThere are two branch cuts: One extends from 1 along the real axis
to oo, continuous from above. The other extends from -1 along the real axis,toentinuous from above.
(This should probably be changed so the right cut becomes continuous from the other side.)

cos (x)
Return the cosine of.

5.7. cmath — Mathematical functions for complex numbers 155

cosh (x)
Return the hyperbolic cosine &f

exp (x)
Return the exponential valug™* x.

log (X)
Return the natural logarithm of There is one branch cut, from 0 along the negative real axisdo -
continuous from above.

l0g10 (X)
Return the base-10 logarithm xf This has the same branch cutiag()

sin (X)
Return the sine aof.
sinh (X)
Return the hyperbolic sine af
sqrt (X)
Return the square root &f This has the same branch cutiag()
tan (X)
Return the tangent of
tanh (x)

Return the hyperbolic tangent f

The module also defines two mathematical constants:

pi
The mathematical constapit, as a real.

The mathematical constagtas a real.

Note that the selection of functions is similar, but not identical, to that in madalé . The reason for having

two modules is that some users aren't interested in complex numbers, and perhaps don’t even know what they
are. They would rather havaath.sqgrt(-1) raise an exception than return a complex number. Also note that

the functions defined ismath always return a complex number, even if the answer can be expressed as a real
number (in which case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are a necessary
feature of many complex functions. It is assumed that if you need to compute with complex functions, you will
understand about branch cuts. Consult almost any (not too elementary) book on complex variables for enlighten-
ment. For information of the proper choice of branch cuts for numerical purposes, a good reference should be the
following:

See Also:

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothings’s sign bit. In Iserles, A.,
and Powell, M. (eds.)The state of the art in numerical analys@Slarendon Press (1987) pp165-211.

5.8 random — Generate pseudo-random numbers

This module implements pseudo-random number generators for various distributions.

For integers, uniform selection from a range. For sequences, uniform selection of a random element, a function to
generate a random permutation of a list in-place, and a function for random sampling without replacement.

On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential,
gamma, and beta distributions. For generating distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic functimmdom() , which generates a random float uniformly
in the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as the core generator. It produces 53-bit
precision floats and has a period of 2**19937-1. The underlying implementation in C is both fast and threadsafe.

156 Chapter 5. Miscellaneous Services

The Mersenne Twister is one of the most extensively tested random number generators in existence. However,
being completely deterministic, it is not suitable for all purposes, and is completely unsuitable for cryptographic
purposes.

The functions supplied by this module are actually bound methods of a hidden instanceasidbe.Random
class. You can instantiate your own instanceRahdomto get generators that don't share state. This is espe-
cially useful for multi-threaded programs, creating a different instané&aofdomfor each thread, and using the
jumpahead() method to ensure that the generated sequences seen by each thread don't overlap.

ClassRandomcan also be subclassed if you want to use a different basic generator of your own devising: in that
case, override theandom() , seed() , getstate() , setstate() andjumpahead() methods.

As an example of subclassing, trendom module provides th&/ichmannHill class which implements an
alternative generator in pure Python. The class provides a backward compatible way to reproduce results from
earlier versions of Python which used the Wichmann-Hill algorithm as the core generator. Changed in version
2.3: Substituted MersenneTwister for Wichmann-Hill.

Bookkeeping functions:

seed ([x])
Initialize the basic random number generator. Optional argumeain be any hashable object. Xfis
omitted orNone, current system time is used; current system time is also used to initialize the generator
when the module is first imported. Xfis notNone or an int or longhash(x) is used instead. Ikis an
int or long,x is used directly.

getstate ()
Return an object capturing the current internal state of the generator. This object can be passed to
setstate() to restore the state. New in version 2.1.

setstate (state
stateshould have been obtained from a previous caljetstate() , andsetstate() restores the
internal state of the generator to what it was at the thetstate() was called. New in version 2.1.

jumpahead (n)
Change the internal state to one different from and likely far away from the currentrsisenon-negative
integer which is used to scramble the current state vector. This is most useful in multi-threaded programs,
in conjuction with multiple instances of tigandomclass:setstate() orseed() can be used to force
all instances into the same internal state, and pheypahead() can be used to force the instances’ states
far apart. New in version 2.1. Changed in version 2.3: Instead of jumping to a specificnsséps
aheadjumpahead(n) jumps to another state likely to be separated by many steps..

Functions for integers:

randrange ([start,] sto;{, step])
Return a randomly selected element frorange(start, stop step. This is equivalent to
choice(range(start, stop step) , but doesn’t actually build a range object. New in version 1.5.2.

randint (a, b)
Return a random integd&t such thalh <= N <= bh.

Functions for sequences:

choice (seq
Return a random element from the non-empty sequeeqe

shuffle (x[, random])
Shuffle the sequencen place. The optional argumeragndomis a 0-argument function returning a random
float in [0.0, 1.0); by default, this is the functioandom() .

Note that for even rather smaéin(x) , the total number of permutations ®fis larger than the period
of most random number generators; this implies that most permutations of a long sequence can never be
generated.

sample (population, §
Return &k length list of unique elements chosen from the population sequence. Used for random sampling
without replacement. New in version 2.3.

5.8. random — Generate pseudo-random numbers 157

Returns a new list containing elements from the population while leaving the original population unchanged.
The resulting list is in selection order so that all sub-slices will also be valid random samples. This allows
raffle winners (the sample) to be partitioned into grand prize and second place winners (the subslices).

Members of the population need not be hashable or unique. If the population contains repeats, then each
occurrence is a possible selection in the sample.

To choose a sample from a range of integersxnaege as an argument. This is especially fast and space
efficient for sampling from a large populatiosample(xrange(10000000), 60)

The following functions generate specific real-valued distributions. Function parameters are named after the
corresponding variables in the distribution’s equation, as used in common mathematical practice; most of these
equations can be found in any statistics text.

random ()
Return the next random floating point number in the range [0.0, 1.0).

uniform (a, b
Return a random real numblrsuch thath <= N < b.

betavariate (alpha, beta
Beta distribution. Conditions on the parametersapha > -1 andbeta > -1 . Returned values range
between 0 and 1.

cunifvariate (mean, arg
Circular uniform distribution.meanis the mean angle, arafc is the range of the distribution, centered
around the mean angle. Both values must be expressed in radians, and can range betwperR@amded
values range betweenean - arc/2 andmean + arc/2 and are normalized to between 0 gid

Deprecated since release 2.3. Instead, use(mean+ arc * (random.random() - 0.5))
%math.pi .

expovariate (lambd
Exponential distribution.lambdis 1.0 divided by the desired mean. (The parameter would be called
“lambda”, but that is a reserved word in Python.) Returned values range from 0 to positive infinity.

gammavariate (alpha, beta
Gamma distribution.Not the gamma function!) Conditions on the parametersafpha > 0 andbeta >
0.

gauss (mu, sigma
Gaussian distributionrmuis the mean, andigmais the standard deviation. This is slightly faster than the
normalvariate() function defined below.

lognormvariate ~ (mu, sigma
Log normal distribution. If you take the natural logarithm of this distribution, you'll get a normal distribution
with meanmuand standard deviatissigma mucan have any value, arsigmamust be greater than zero.

normalvariate (mu, sigma
Normal distribution.muis the mean, andigmais the standard deviation.

vonmisesvariate (mu, kappa
muis the mean angle, expressed in radians between 0 grida2tdkappais the concentration parameter,
which must be greater than or equal to zerckdppais equal to zero, this distribution reduces to a uniform
random angle over the range 0 tgp2*

paretovariate (alphg)
Pareto distributionalphais the shape parameter.

weibullvariate (‘alpha, beta
Weibull distribution.alphais the scale parameter abdtais the shape parameter.

Alternative Generator

classwichmannHill ([seeo])
Class that implements the Wichmann-Hill algorithm as the core generator. Has all of the same methods as
Randomplus thewhseed method described below. Because this class is implemented in pure Python, it
is not threadsafe and may require locks between calls. The period of the generator is 6,953,607,871,644

158 Chapter 5. Miscellaneous Services

which is small enough to require care that two independent random sequences do not overlap.

whseed ([x])
This is obsolete, supplied for bit-level compatibility with versions of Python prior to 2.1.s8ed for
details. whseed does not guarantee that distinct integer arguments yield distinct internal states, and can
yield no more than about 2**24 distinct internal states in all.

See Also:

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudoran-
dom number generatorACM Transactions on Modeling and Computer Simulatfoh 8, No. 1, January pp.3-30
1998.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistic81 (1982) 188-190.

5.9 whrandom — Pseudo-random number generator

Deprecated since release 2.1serandom instead.

Note: This module was an implementation detail of ta@dom module in releases of Python prior to 2.1. It is
no longer used. Please do not use this module directlyrarstom instead.

This module implements a Wichmann-Hill pseudo-random number generator class that is alsevhaaneldm .
Instances of thevhrandom class conform to the Random Number Generator interface described in sggtion
They also offer the following method, specific to the Wichmann-Hill algorithm:

seed ([x, Y, z])
Initializes the random number generator from the integeysaandz. When the module is first imported, the
random number is initialized using values derived from the current time.ylfandz are either omitted or
0, the seed will be computed from the current system time. If one or two of the paramet@rbataot all
three, the zero values are replaced by ones. This causes some apparently different seeds to be equal, with
the corresponding result on the pseudo-random series produced by the generator.

choice (seq
Chooses a random element from the non-empty sequssgand returns it.

randint (a, b
Returns a random integst such thab<=N<=b.

random ()
Returns the next random floating point number in the range [0.0 ... 1.0).

seed (X, Y, 2
Initializes the random number generator from the integeysandz. When the module is first imported, the
random number is initialized using values derived from the current time.

uniform (a, b
Returns a random real numkersuch thab<=N<b.

When imported, thevhrandom module also creates an instance ofwieandom class, and makes the methods
of that instance available at the module level. Therefore one can write Bitherwhrandom.random() or:

generator = whrandom.whrandom()
N = generator.random()

Note that using separate instances of the generator leads to independent sequences of pseudo-random numbers.
See Also:

Modulerandom (section 5.8):
Generators for various random distributions and documentation for the Random Number Generator inter-
face.

5.9. whrandom — Pseudo-random number generator 159

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistic81 (1982) 188-190.

5.10 bisect — Array bisection algorithm

This module provides support for maintaining a list in sorted order without having to sort the list after each
insertion. For long lists of items with expensive comparison operations, this can be an improvement over the more
common approach. The module is calledect because it uses a basic bisection algorithm to do its work.

The source code may be most useful as a working example of the algorithm (the boundary conditions are already
right!).

The following functions are provided:

bisect _left (list, iten], Io[, hi]])
Locate the proper insertion point faemin list to maintain sorted order. The parameterandhi may be
used to specify a subset of the list which should be considered; by default the entire list is utedis|f
already present ilist, the insertion point will be before (to the left of) any existing entries. The return value
is suitable for use as the first parametelistinsert() . This assumes théist is already sorted. New
in version 2.1.

bisect _right (list, itenf, Io[, hi]])
Similar tobisect _left() , butreturns an insertion point which comes after (to the right of) any existing
entries ofitemin list. New in version 2.1.

bisect (..)
Alias for bisect _right()

insort _left (list, itenq, lo[, hi]])
Insertitem in list in sorted order. This is equivalent tist.insert(bisect.bisect _left(list,
item lo, hi), item). This assumes théist is already sorted. New in version 2.1.

insort _right (list, iten, Io[, hi]])
Similar toinsort _left() , but insertingtemin list after any existing entries afem New in version
2.1.

insort (..)
Alias forinsort _right()

5.10.1 Examples

The bisect() function is generally useful for categorizing humeric data. This examplehisest() to
look up a letter grade for an exam total (say) based on a set of ordered numeric breakpoints: 85 and up is an ‘A,
75..84isa ‘B, etc.

>>> grades = "FEDCBA"
>>> breakpoints = [30, 44, 66, 75, 85]
>>> from bisect import bisect
>>> def grade(total):
return grades[bisect(breakpoints, total)]

>>> grade(66)

cr

>>> map(grade, [33, 99, 77, 44, 12, 88])
[IEV’ 7A1, 1Bl’ lD!, VFV’ 1Al]

The bisect module can be used with the Queue module to implement a priority queue (example courtesy of Fredrik
Lundh):

160 Chapter 5. Miscellaneous Services

import Queue, bisect

class PriorityQueue(Queue.Queue):
def _put(self, item):
bisect.insort(self.queue, item)

usage

queue = PriorityQueue(0)
queue.put((2, "second"))
queue.put((1, "first"))
queue.put((3, "third"))
priority, value = queue.get()

5.11 heapg — Heap queue algorithm

New in version 2.3.
This module provides an implementation of the heap queue algorithm, also known as the priority queue algorithm.

Heaps are arrays for whidteag k] <= heag2* k+1] andheaqd k] <= heag2* k+2] for all k, counting el-
ements from zero. For the sake of comparison, non-existing elements are considered to be infinite. The interesting
property of a heap is théteaff0] is always its smallest element.

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This makes
the relationship between the index for a node and the indexes for its children slightly less obvious, but is more
suitable since Python uses zero-based indexing. (b) Our pop method returns the smallest item, not the largest
(called a "min heap” in textbooks; a "max heap” is more common in texts because of its suitability for in-place
sorting).

These two make it possible to view the heap as a regular Python list without survésgi)] is the smallest
item, andheapsort() maintains the heap invariant!

To create a heap, use a list initialized [fo, or you can transform a populated list into a heap via function
heapify()
The following functions are provided:

heappush (heap, item
Push the valugemonto theheap maintaining the heap invariant.

heappop (heap
Pop and return the smallest item from theap maintaining the heap invariant. If the heap is empty,
IndexError s raised.

heapify (X)
Transform listx into a heap, in-place, in linear time.

heapreplace (heap, item
Pop and return the smallest item from tieap and also push the neitem The heap size doesn’t change.
If the heap is emptyJndexError is raised. This is more efficient thameappop() followed by
heappush() , and can be more appropriate when using a fixed-size heap. Note that the value returned
may be larger thaitem That constrains reasonable uses of this routine.

Example of use:

5.11. heapq — Heap queue algorithm 161

>>> from heapq import heappush, heappop
>>> heap = []
>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, Q]
>>> for item in data:

heappush(heap, item)

>>> sorted = []
>>> while heap:
sorted.append(heappop(heap))

>>> print sorted

[0, 1, 2,3, 4,5,6, 7, 8, 9]
>>> data.sort()

>>> print data == sorted
True

>>>

5.11.1 Theory

(This explanation is due to Franois Pinard. The Python code for this module was contributed by Kevin O’Connor.)

Heaps are arrays for whic{ k] <= a[2* k+1] anda[K] <= a[2* k+2] for all k, counting elements from
0. For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a
heap is thaf[0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers
below arek, nota[K] :

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 2324 2526 27 28 29 30

In the tree above, each célis topping2* k+1 and2* k+2. In an usual binary tournament we see in sports, each

cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had.
However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To
be more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and
the rule becomes that a cell and the two cells it tops contain three different items, but the top cell "wins” over the
two topped cells.

If this heap invariant is protected at all time, index 0 is clearly the overall winner. The simplest algorithmic way
to remove it and find the "next” winner is to move some loser (let's say cell 30 in the diagram above) into the O
position, and then percolate this new 0 down the tree, exchanging values, until the invariant is re-established. This
is clearly logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n)
sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that
the inserted items are not "better” than the last 0’th element you extracted. This is especially useful in simulation
contexts, where the tree holds all incoming events, and the "win” condition means the smallest scheduled time.
When an event schedule other events for execution, they are scheduled into the future, so they can easily go into
the heap. So, a heap is a good structure for implementing schedulers (this is what | used for my MIDI sequencer

).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they

162 Chapter 5. Miscellaneous Services

are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case.
However, there are other representations which are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing "runs”
(which are pre-sorted sequences, which size is usually related to the amount of CPU memory), followed by a
merging passes for these runs, which merging is often very cleverly organisisdvery important that the initial

sort produces the longest runs possible. Tournaments are a good way to that. If, using all the memory available to
hold a tournament, you replace and percolate items that happen to fit the current run, you'll produce runs which
are twice the size of the memory for random input, and much better for input fuzzily ordered.

Moreover, if you output the 0'th item on disk and get an input which may not fit in the current tournament (because
the value "wins” over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed
memory could be cleverly reused immediately for progressively building a second heap, which grows at exactly
the same rate the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new
run. Clever and quite effective!

In a word, heaps are useful memory structures to know. | use them in a few applications, and I think it is good to
keep a ‘heap’ module around. :-)

5.12 array — Efficient arrays of numeric values

This module defines an object type which can efficiently represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by ugjpg@dewhich is a single
character. The following type codes are defined:

Type code | C Type Python Type Minimum size in bytes
'c’ char character 1
o’ signed char int 1
B’ unsigned char | int 1
u’ Py_UNICODE | Unicode character 2
'h’ signed short int 2
'H’ unsigned short| int 2
T signed int int 2
T unsigned int long 2
T’ signed long int 4
L unsigned long | long 4
'f float float 4
d’ double float 8

The actual representation of values is determined by the machine architecture (strictly speaking, by the C imple-
mentation). The actual size can be accessed througttetinsize attribute. The values stored fdr' and

'I' items will be represented as Python long integers when retrieved, because Python’s plain integer type cannot
represent the full range of C’'s unsigned (long) integers.

The module defines the following type:

array (typecodE, initializer])
Return a new array whose items are restrictedypecode and initialized from the optionahitializer
value, which must be a list or a string. The list or string is passed to the new afirayitist() ,
fromstring() , or fromunicode() method (see below) to add initial items to the array.

ArrayType
Obsolete alias foarray .

1The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking
capabilities of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to
ensure (far in advance) that each tape movement will be the most effective possible (that is, will best participate at "progressing” the merge).
Some tapes were even able to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite
spectacular to watch! From all times, sorting has always been a Great Art! :-)

5.12. array — Efficient arrays of numeric values 163

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication.
When using slice assignment, the assigned value must be an array object with the same type code; in all other
casesTypeError israised. Array objects also implement the buffer interface, and may be used wherever buffer
objects are supported.

The following data items and methods are also supported:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

append (X)
Append a new item with valueto the end of the array.

buffer _info ()
Return a tuplg address length giving the current memory address and the length in elements of the
buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed as
ray.buffer _info()[1] * array.itemsize . This is occasionally useful when working with low-
level (and inherently unsafe) I/O interfaces that require memory addresses, such asasffpin op-
erations. The returned numbers are valid as long as the array exists and no length-changing operations are
applied to it.

Note: When using array objects from code written in C orithe only way to effectively make use of

this information), it makes more sense to use the buffer interface supported by array objects. This method
is maintained for backward compatibility and should be avoided in new code. The buffer interface is docu-
mented in the®ython/C API Reference Manual

byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size;
for other types of valueRRuntimeError s raised. It is useful when reading data from a file written on a
machine with a different byte order.

count (x)
Return the number of occurencesxah the array.

extend (a)
Append array items frora to the end of the array. The two arrays must hexactlythe same type code; if
not, TypeError will be raised.

fromfile (f, n)
Readn items (as machine values) from the file objeeind append them to the end of the array. If less than
nitems are availableEOFError is raised, but the items that were available are still inserted into the array.
f must be a real built-in file object; something else wittead() method won't do.

fromlist (list)
Append items from the list. This is equivalent for x in list: a.append(x) 'except that if there
is a type error, the array is unchanged.

fromstring (9
Appends items from the string, interpreting the string as an array of machine values (as if it had been read
from a file using théromfile() method).

fromunicode (9)
Extends this array with data from the given unicode string. The array must be a type 'u’ array; otherwise
a ValueError is raised. Usarray.fromstring(ustr.decode(enc)) " to append Unicode data to
an array of some other type.

index (X)
Return the smallestsuch that is the index of the first occurence »fn the array.

insert (i, x)
Insert a new item with valurin the array before position Negative values are treated as being relative to
the end of the array.

pop([i])

164 Chapter 5. Miscellaneous Services

Removes the item with the indéXrom the array and returns it. The optional argument defaults toso
that by default the last item is removed and returned.

read (f, n)
Deprecated since release 1.5.Use thefromfile() method.

Readn items (as machine values) from the file objeeind append them to the end of the array. If less than
nitems are availabl&OFError is raised, but the items that were available are still inserted into the array.
f must be a real built-in file object; something else witiead() method won't do.

remove (X)
Remove the first occurence wfrom the array.

reverse ()
Reverse the order of the items in the array.

tofile (f)
Write all items (as machine values) to the file object

tolist ()
Convert the array to an ordinary list with the same items.

tostring ()
Convert the array to an array of machine values and return the string representation (the same sequence of
bytes that would be written to a file by thefile() method.)

tounicode ()
Convert the array to a unicode string. The array must be a type 'u’ array; otherwise a ValueError is raised.
Use array.tostring().decode(enc) to obtain a unicode string from an array of some other type.

write (f)
Deprecated since release 1.5.Use thetofile() method.

Write all items (as machine values) to the file object

When an array object is printed or converted to a string, it is representedeg$ typecode initializer) . The

initializer is omitted if the array is empty, otherwise it is a string if typecodes 'c’ , otherwise it is a list

of numbers. The string is guaranteed to be able to be converted back to an array with the same type and value
using reverse quotes (), so long as tharray() function has been imported usifigm array import

array . Examples:

array(’l)

array('c’, ’'hello world’)

array('u’, uhello \textbackslash u2641’)
array(l', [1, 2, 3, 4, 5)])

array('d’, [1.0, 2.0, 3.14])

See Also:

Modulestruct (section 4.3):
Packing and unpacking of heterogeneous binary data.

Modulexdrlib (section 12.17):
Packing and unpacking of External Data Representation (XDR) data as used in some remote procedure call
systems.

The Numerical Python Manual

(http://numpy.sourceforge.net/numdoc/HTML/numdoc.htm)
The Numeric Python extension (NumPy) defines another array typehtgegnumpy.sourceforge.net/
for further information about Numerical Python. (A PDF version of the NumPy manual is available at
http://numpy.sourceforge.net/numdoc/numdoc.pdf).

5.13 sets — Unordered collections of unique elements

5.13. sets — Unordered collections of unique elements 165

New in version 2.3.

Thesets module provides classes for constructing and manipulating unordered collections of unique elements.
Common uses include membership testing, removing duplicates from a sequence, and computing standard math
operations on sets such as intersection, union, difference, and symmetric difference.

Like other collections, sets supportin set len(se), andfor x in set Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or
other sequence-like behavior.

Most set applications use tis®et class which provides every set method exceptfanash __() . For advanced
applications requiring a hash method, thenutableSet class addsa_hash __() method but omits methods
which alter the contents of the set. B&ht andimmutableSet derive fromBaseSet , an abstract class useful
for determining whether something is a setnstance(obj, BaseSet)

The set classes are implemented using dictionaries. As a result, sets cannot contain mutable elements such as lists
or dictionaries. However, they can contain immutable collections such as tuples or instaimcesitdbleSet

For convenience in implementing sets of sets, inner sets are automatically converted to immutable form, for
example Set([Set(['dog)]) is transformed t@et([ImmutableSet(['dog’)])

classSet ([iterable])
Constructs a new emptget object. If the optionalterable parameter is supplied, updates the set with
elements obtained from iteration. All of the elementétémable should be immutable or be transformable
to an immutable using the protocol described in section 5.13.3.

classimmutableSet ([iterable])
Constructs a new emptynmutableSet object. If the optionalterable parameter is supplied, updates
the set with elements obtained from iteration. All of the elemeniteirable should be immutable or be
transformable to an immutable using the protocol described in section 5.13.3.

BecausémmutableSet objects provide a_hash __() method, they can be used as set elements or as
dictionary keysImmutableSet objects do not have methods for adding or removing elements, so all of
the elements must be known when the constructor is called.

5.13.1 Set Objects

Instances oSet andimmutableSet both provide the following operations:

Operation Equivalent | Result
len(s) cardinality of ses
X in s testx for membership irs
X not in s testx for non-membership ig
s.issubset(t) s <=t test whether every elementdis in t
s.issuperset(t) s>=t test whether every elementtiis in's
s.union(t) s—t new set with elements from bosfandt
s.intersection(t) s&t new set with elements commongandt
s.difference(t) s-t new set with elements imbut not int
s.symmetric _difference(t) s™t new set with elements in eithsior t but not both
s.copy() new set with a shallow copy &f
Note, the non-operator versions ofunion() , intersection() , difference() , and
symmetric _difference() will accept any iterable as an argument. In contrast, their operator based
counterparts require their arguments to be sets. This precludes error-prone constructie(ite’) &
'cbs’ in favor of the more readablget('abc’).intersection('cbs’) . Changed in version 2.3.1:

Formerly all arguments were required to be sets.

In addition, bothSet andImmutableSet support set to set comparisons. Two sets are equal if and only if
every element of each set is contained in the other (each is a subset of the other). A set is less than another set
if and only if the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than
another set if and only if the first set is a proper superset of the second set (is a superset, but is not equal).

166 Chapter 5. Miscellaneous Services

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two
disjoint sets are not equal and are not subsets of each othat,afdahe following returnFalse : a<b, a==b, or
a>b. Accordingly, sets do not implement the cmp__ method.

Since sets only define partial ordering (subset relationships), the output lidtthert() method is unde-
fined for lists of sets.

The following table lists operations availablelimmutableSet but not found inSet :

Operation | Result
hash(s) \ returns a hash value far

The following table lists operations availableSet but not found innmmutableSet

Operation Equivalent | Result
s.union _update(t) s—=t return ses with elements added from
s.intersection _update(t) S&=t return set keeping only elements also foundtin
s.difference _update(t) s-=t return ses after removing elements found in
s.symmetric _difference _update(t) s'=t return ses with elements frons or t but not both
s.add(x) add elemenx to sets
sremove(X) removex from sets; raises KeyError if not present
sdiscard(x) removes from setsif present
s.pop() remove and return an arbitrary element frgmaises KeyError
s.clear() remove all elements from sst
Note, the non-operator versions of union _update() |, intersection _update() ,
difference _update() , and symmetric _difference _update() will accept any iterable as an

argument. Changed in version 2.3.1: Formerly all arguments were required to be sets.

5.13.2 Example

>>> from sets import Set

>>> engineers = Set(['John’, 'Jane’, 'Jack’, 'Janice’])
>>> programmers = Set(['Jack’, 'Sam’, 'Susan’, 'Janice’])
>>> managers = Set(['Jane’, 'Jack’, 'Susan’, 'Zack’])

>>> employees = engineers | programmers | managers # union

>>> engineering_management = engineers & managers # intersection
>>> fulltime_management = managers - engineers - programmers # difference

>>> engineers.add('Marvin’) # add element

>>> print engineers
Set(['Jane’, 'Marvin’, 'Janice’, 'John’, 'Jack’])

>>> employees.issuperset(engineers) # superset test

False

>>> employees.union_update(engineers) # update from another set

>>> employees.issuperset(engineers)

True

>>> for group in [engineers, programmers, managers, employees]:
group.discard(’'Susan’) # unconditionally remove element
print group

Set(['Jane’, 'Marvin’, 'Janice’, 'John’, 'Jack’])

Set(['Janice’, 'Jack’, 'Sam’])

Set(['Jane’, 'Zack’, 'Jack’])

Set(['Jack’, 'Sam’, 'Jane’, 'Marvin’, 'Janice’, 'John’, 'Zack)

5.13. sets — Unordered collections of unique elements 167

5.13.3 Protocol for automatic conversion to immutable

Sets can only contain immutable elements. For convenience, m@ablebjects are automatically copied to an
ImmutableSet before being added as a set element.

The mechanism is to always add a hashable element, or if it is not hashable, the element is checked to see if it has
an__as_immutable __() method which returns an immutable equivalent.

SinceSet objects have a__as_immutable __() method returning an instance bhmutableSet , it is
possible to construct sets of sets.

A similar mechanism is needed by thecontains __() andremove() methods which need to hash an
element to check for membership in a set. Those methods check an element for hashability and, if not, check for a
__as_temporarily _immutable __() method which returns the element wrapped by a class that provides
temporary methods far_hash __() , __eq__() ,and__ne__() .

The alternate mechanism spares the need to build a separate copy of the original mutable object.

Set objects implement the _as _temporarily =~ _immutable __() method which returns th8et object
wrapped by a new classTemporarilylmmutableSet

The two mechanisms for adding hashability are normally invisible to the user; however, a conflict can arise in
a multi-threaded environment where one thread is updating a set while another has temporarily wrapped it in
_TemporarilyimmutableSet . In other words, sets of mutable sets are not thread-safe.

5.14 itertools — Functions creating iterators for efficient looping

New in version 2.3.

This module implements a number of iterator building blocks inspired by constructs from the Haskell and SML
programming languages. Each has been recast in a form suitable for Python.

The module standardizes a core set of fast, memory efficient tools that are useful by themselves or in combination.
Standardization helps avoid the readability and reliability problems which arise when many different individuals
create their own slightly varying implementations, each with their own quirks and naming conventions.

The tools are designed to combine readily with one another. This makes it easy to construct more specialized tools
succinctly and efficiently in pure Python.

For instance, SML provides a tabulation totalbulate(f) which produces a sequeni@), f(1),
This toolbox providesmap() andcount() which can be combined to forimap(f, count()) and pro-
duce an equivalent result.

Likewise, the functional tools are designed to work well with the high-speed functions provideddpetfagor
module.

The module author welcomes suggestions for other basic building blocks to be added to future versions of the
module.

Whether cast in pure python form or C code, tools that use iterators are more memory efficient (and faster) than
their list based counterparts. Adopting the principles of just-in-time manufacturing, they create data when and
where needed instead of consuming memory with the computer equivalent of “inventory”.

The performance advantage of iterators becomes more acute as the number of elements increases — at some point,
lists grow large enough to severely impact memory cache performance and start running slowly.

See Also:
The Standard ML Basis Library,he Standard ML Basis Library

Haskell, A Purely Functional Languadeefinition of Haskell and the Standard Libraries

168 Chapter 5. Miscellaneous Services

5.14.1 ltertool functions

The following module functions all construct and return iterators. Some provide streams of infinite length, so they
should only be accessed by functions or loops that truncate the stream.

chain (*iterables)
Make an iterator that returns elements from the first iterable until it is exhausted, then proceeds to the
next iterable, until all of the iterables are exhausted. Used for treating consecutive sequences as a single
sequence. Equivalent to:

def chain(*iterables):
for it in iterables:
for element in it:
yield element

count ([n])
Make an iterator that returns consecutive integers startingrwithnot specifiedn defaults to zero. Does
not currently support python long integers. Often used as an argumienapg) to generate consecutive
data points. Also, used wiflzip() to add sequence numbers. Equivalent to:

def count(n=0):
while True:
yield n
n+=1

Note, count() does not check for overflow and will return negative numbers after exceeding
sys.maxint . This behavior may change in the future.

cycle (iterable)
Make an iterator returning elements from the iterable and saving a copy of each. When the iterable is
exhausted, return elements from the saved copy. Repeats indefinitely. Equivalent to:

def cycle(iterable):
saved = []
for element in iterable:
yield element
saved.append(element)
while saved:
for element in saved:
yield element

Note, this is the only member of the toolkit that may require significant auxiliary storage (depending on the
length of the iterable).

dropwhile (predicate, iterablg
Make an iterator that drops elements from the iterable as long as the predicate is true; afterwards, returns
every element. Note, the iterator does not prodarwgoutput until the predicate is true, so it may have a
lengthy start-up time. Equivalent to:

def dropwhile(predicate, iterable):
iterable = iter(iterable)
for x in iterable:
if not predicate(x):
yield x
break
for x in iterable:
yield x

5.14. itertools — Functions creating iterators for efficient looping 169

ifilter

(predicate, iterable
Make an iterator that filters elements from iterable returning only those for which the prediate is If
predicateis None, return the items that are true. Equivalent to:

def fifilter(predicate, iterable):
if predicate is None:
predicate = bool
for x in iterable:
if predicate(x):
yield x

ifilterfalse (predicate, iterabl®

imap

islice

Make an iterator that filters elements from iterable returning only those for which the predi€aisés .
If predicateis None, return the items that are false. Equivalent to:

def fifilterfalse(predicate, iterable):
if predicate is None:
predicate = bool
for x in iterable:
if not predicate(x):
yield x

(function, *iterable$

Make an iterator that computes the function using arguments from each of the iteralflexctibnis set

to None, thenimap() returns the arguments as a tuple. Likap() but stops when the shortest iterable
is exhausted instead of filling iINone for shorter iterables. The reason for the difference is that infinite
iterator arguments are typically an error foap() (because the output is fully evaluated) but represent a
common and useful way of supplying argumentgitap() . Equivalent to:

def imap(function, *iterables):
iterables = map(iter, iterables)
while True:
args = [i.next() for i in iterables]
if function is None:
yield tuple(args)
else:
yield function(*args)

(iterable, [start,] stop[, step])
Make an iterator that returns selected elements from the iterabdgartfis non-zero, then elements from
the iterable are skipped until start is reached. Afterward, elements are returned consecutivelstepiess
set higher than one which results in items being skippestolfis None, then iteration continues until the
iterator is exhausted, if at all; otherwise, it stops at the specified position. Unlike regular stoed)
does not support negative values $tart, stop or step Can be used to extract related fields from data where
the internal structure has been flattened (for example, a multi-line report may list a name field on every third
line). Equivalent to:

def islice(iterable, *args):
s = slice(*args)
next, stop, step = s.start or O, s.stop, s.step or 1
for cnt, element in enumerate(iterable):
if cnt < next:
continue
if stop is not None and cnt >= stop:
break
yield element
next += step

170

Chapter 5. Miscellaneous Services

izip (*iterables)
Make an iterator that aggregates elements from each of the iterablexihfke except that it returns an
iterator instead of a list. Used for lock-step iteration over several iterables at a time. Equivalent to:

def izip(*iterables):
iterables = map(iter, iterables)
while iterables:
result = [i.next() for i in iterables]
yield tuple(result)

Changed in version 2.3.1: When no iterables are specified, returns a zero length iterator instead of raising a
TypeError exception.

repeat (objec{, times])
Make an iterator that returnebjectover and over again. Runs indefinitely unless tineesargument is
specified. Used as argumentitoap() for invariant parameters to the called function. Also used with
izip() to create an invariant part of a tuple record. Equivalent to:

def repeat(object, times=None):
if times is None:
while True:
yield object
else:
for i in xrange(times):
yield object

starmap (function, iterabl¢
Make an iterator that computes the function using arguments tuples obtained from the iterable. Used instead
of imap() when argument parameters are already grouped in tuples from a single iterable (the data has
been “pre-zipped”). The difference betweilemap() andstarmap() parallels the distinction between
function(a,b) andfunction(*c) . Equivalent to:

def starmap(function, iterable):
iterable = iter(iterable)
while True:
yield function(*iterable.next())

takewhile (predicate, iterablg
Make an iterator that returns elements from the iterable as long as the predicate is true. Equivalent to:

def takewhile(predicate, iterable):
for x in iterable:
if predicate(x):
yield x
else:
break

5.14.2 Examples

The following examples show common uses for each tool and demonstrate ways they can be combined.

5.14. itertools — Functions creating iterators for efficient looping 171

>>> amounts = [120.15, 764.05, 823.14]
>>> for checknum, amount in izip(count(1200), amounts):
print 'Check %d is for $%.2f % (checknum, amount)

Check 1200 is for $120.15
Check 1201 is for $764.05
Check 1202 is for $823.14

>>> import operator
>>> for cube in imap(operator.pow, xrange(1,4), repeat(3)):

print cube
1
8
27
>>> reportlines = ['EuroPython’, 'Roster’, ", ’alex’, ", 'laura’,

” ”

, 'martin’, ", 'walter’, ”, 'samuele’]
>>> for name in islice(reportlines, 3, None, 2):
print name.title()

Alex
Laura
Martin
Walter
Samuele

This section shows how itertools can be combined to create other more powerful itertools. Note that
enumerate() anditeritems() already have efficient implementations in Python. They are only included
here to illustrate how higher level tools can be created from building blocks.

172

Chapter 5. Miscellaneous Services

def take(n, seq):
return list(islice(seq, n))

def enumerate(iterable):
return izip(count(), iterable)

def tabulate(function):
"Return function(0), function(1), ..."
return imap(function, count())

def iteritems(mapping):
return izip(mapping.iterkeys(), mapping.itervalues())

def nth(iterable, n):
"Returns the nth item"
return list(islice(iterable, n, n+1))

def all(seq, pred=bool):
"Returns True if pred(x) is True for every element in the iterable"
return False not in imap(pred, seq)

def any(seq, pred=bool):
"Returns True if pred(x) is True at least one element in the iterable"
return True in imap(pred, seq)

def no(seq, pred=bool):
"Returns True if pred(x) is False for every element in the iterable"
return True not in imap(pred, seq)

def quantify(seq, pred=bool):
"Count how many times the predicate is True in the sequence"
return sum(imap(pred, seq))

def padnone(seq):
"Returns the sequence elements and then returns None indefinitely”
return chain(seq, repeat(None))

def ncycles(seq, n):
"Returns the sequence elements n times"
return chain(*repeat(seq, n))

def dotproduct(vecl, vec2):
return sum(imap(operator.mul, vecl, vec2))

def window(seq, n=2):
"Returns a sliding window (of width n) over data from the iterable"
s -> (s0,s1,...s[n-1]), (s1,s2,...,sn), ... "
it = iter(seq)
result = tuple(islice(it, n))
if len(result) == n:
yield result
for elem in it
result = result[1:] + (elem,)
yield result

def tee(iterable):
"Return two independent iterators from a single iterable"
def gen(next, data={}, cnt=[0]):
dpop = data.pop
for i in count():

if i == cnt[0]:
item = data[i] = next()
cnt[0] += 1
else:
5.14. itertools — deﬁ'é'ﬁ@ns_ cqggﬂWg iterators for efficient looping 173
yield item

next = iter(iterable).next
return (gen(next), gen(next))

5.15 ConfigParser = — Configuration file parser

This module defines the cla€onfigParser . TheConfigParser class implements a basic configuration
file parser language which provides a structure similar to what you would find on Microsoft Windows INI files.
You can use this to write Python programs which can be customized by end users easily.

Warning: This library doesnot interpret or write the value-type prefixes used in the Windows Regiptry
extended version of INI syntax.

The configuration file consists of sections, led bysecttion] ' header and followed bynfame: value
entries, with continuations in the style of RFC 822aime=value 'is also accepted. Note that leading whitespace

is removed from values. The optional values can contain format strings which refer to other values in the same
section, or values in a specREFAULTsection. Additional defaults can be provided on initialization and retrieval.
Lines beginning with#’ or *; ’ are ignored and may be used to provide comments.

For example:

[My Section]
foodir: %(dir)s/whatever
dir=frob

would resolve the%(dir)s ' to the value of tir ’ (‘frob ’in this case). All reference expansions are done on
demand.

Default values can be specified by passing them int@€iafigParser constructor as a dictionary. Additional
defaults may be passed into thet() method which will override all others.

classRawConfigParser ([defaults])
The basic configuration object. Whelefaultsis given, it is initialized into the dictionary of intrinsic
defaults. This class does not support the magical interpolation behavior. New in version 2.3.

classConfigParser ([defaults])
Derived class oRawConfigParser that implements the magical interpolation feature and adds optional
arguments tothget() anditems() methods. The values gefaultsmust be appropriate for thés()s ’
string interpolation. Note that_name__ is an intrinsic default; its value is the section name, and will
override any value provided iefaults

classSafeConfigParser ([defaultﬂ)
Derived class o€onfigParser thatimplements a more-sane variant of the magical interpolation feature.
This implementation is more predictable as well. New applications should prefer this version if they don't
need to be compatible with older versions of Python. New in version 2.3.

exceptionNoSectionError
Exception raised when a specified section is not found.

exceptionDuplicateSectionError
Exception raised when multiple sections with the same name are foundaabu ifsection() is called
with the name of a section that is already present.

exceptionNoOptionError
Exception raised when a specified option is not found in the specified section.

exceptioninterpolationError
Base class for exceptions raised when problems occur performing string interpolation.

exceptioninterpolationDepthError
Exception raised when string interpolation cannot be completed because the number of iterations exceeds
MAXINTERPOLATION_DEPTH Subclass onterpolationError

174 Chapter 5. Miscellaneous Services

exceptioninterpolationMissingOptionError
Exception raised when an option referenced from a value does not exist. Subclass of
InterpolationError . New in version 2.3.

exceptioninterpolationSyntaxError
Exception raised when the source text into which substitutions are made does not conform to the required
syntax. Subclass dfterpolationError . New in version 2.3.

exceptionMissingSectionHeaderError
Exception raised when attempting to parse a file which has no section headers.

exceptionParsingError
Exception raised when errors occur attempting to parse a file.

MAXINTERPOLATION_DEPTH
The maximum depth for recursive interpolation émt() when theraw parameter is false. This is relevant
only for theConfigParser class.

See Also:

Moduleshlex (section 5.20):
Support for a creating Nix shell-like mini-languages which can be used as an alternate format for appli-
cation configuration files.

5.15.1 RawConfigParser Objects

RawConfigParser instances have the following methods:

defaults ()
Return a dictionary containing the instance-wide defaults.

sections ()
Return a list of the sections availabl@EFAULTIs not included in the list.

add _section (section)
Add a section namedsection to the instance. If a section by the given name already exists,
DuplicateSectionError is raised.

has _section (sectior)
Indicates whether the named section is present in the configuratiorDHRAUL Tsection is not acknowl-
edged.

options (section
Returns a list of options available in the specifsttion

has _option (section, optioh
If the given section exists, and contains the given option. return 1; otherwise return 0. New in version 1.6.

read (filename}
Read and parse a list of filenamesfilénamesgs a string or Unicode string, it is treated as a single filename.
If a file named infilenamescannot be opened, that file will be ignored. This is designed so that you can
specify a list of potential configuration file locations (for example, the current directory, the user's home
directory, and some system-wide directory), and all existing configuration files in the list will be read. If
none of the named files exist, tmnfigParser instance will contain an empty dataset. An application
which requires initial values to be loaded from a file should load the required file or filesrasidfp()
before callingread() for any optional files:

import ConfigParser, os
config = ConfigParser.ConfigParser()

config.readfp(open('defaults.cfg’))
config.read(['site.cfg’, os.path.expanduser(”/.myapp.cfg’)])

readfp (fp[, filenamd)

5.15. ConfigParser = — Configuration file parser 175

Read and parse configuration data from the file or file-like objefj {only thereadline() method is
used). Iffilenameis omitted andp has aname attribute, that is used fdilename the default is «??77?>".

get (section, optioh
Get anoptionvalue for the namedection

getint (section, optioh
A convenience method which coerces tionin the specifiegectionto an integer.

getfloat (' section, optioh
A convenience method which coerces tpgionin the specifiedectionto a floating point number.

getboolean (section, optioh
A convenience method which coerces tptionin the specifiedsectionto a Boolean value. Note that the
accepted values for the option are' , "yes" , "true” , and"on" , which cause this method to return
True , and"0" , "no" , "false" , and"off" , which cause it to returfalse . These string values are
checked in a case-insensitive manner. Any other value will cause it tovfalseError

items (sectior)
Return a list off name valug pairs for each option in the givesection

set (section, option, valye
If the given section exists, set the given option to the specified value; otherwis@&EgsetionError
New in version 1.6.

write (fileobjec)
Write a representation of the configuration to the specified file object. This representation can be parsed by
a futureread() call. New in version 1.6.

remove _option (section, optioh
Remove the specifiedbption from the specifiedsection If the section does not exist, raise
NoSectionError . If the option existed to be removed, return 1; otherwise return 0. New in version 1.6.

remove _section (section
Remove the specifieskectionfrom the configuration. If the section in fact existed, retlirne . Otherwise
returnFalse .

optionxform (option)
Transforms the option namaption as found in an input file or as passed in by client code to the form
that should be used in the internal structures. The default implementation returns a lower-case version of
optiony subclasses may override this or client code can set an attribute of this name on instances to affect
this behavior. Setting this tstr() , for example, would make option names case sensitive.

5.15.2 ConfigParser Objects

TheConfigParser class extends some methods of RewConfigParser interface, adding some optional
arguments.

get (section, optioﬁ, raw[, vars]])
Get anoptionvalue for the namesection All the ‘% interpolations are expanded in the return values, based
on the defaults passed into the constructor, as well as the optiosprovided, unless theaw argument is
true.

items (sectior{, raw[, vars]])
Return a list ofl name valug pairs for each option in the givesection Optional arguments have the
same meaning as for tlyet() method. New in version 2.3.

5.16 fileinput — lterate over lines from multiple input streams

This module implements a helper class and functions to quickly write a loop over standard input or a list of files.

The typical use is:

176 Chapter 5. Miscellaneous Services

import fileinput
for line in fileinput.input():
process(line)

This iterates over the lines of all files listedsgs.argv[1:] , defaulting tosys.stdin if the list is empty.

If a filename is-" , itis also replaced bgys.stdin . To specify an alternative list of filenames, pass it as the
first argument tonput() . A single file name is also allowed.

All files are opened in text mode. If an I/O error occurs during opening or reading EXfteror is raised.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for inter-
active use, or if it has been explicitly reset (e.g. usigg.stdin.seek(0)).

Empty files are opened and immediately closed; the only time their presence in the list of filenames is noticeable
at all is when the last file opened is empty.

It is possible that the last line of a file does not end in a newline character; lines are returned including the trailing
newline when it is present.

The following function is the primary interface of this module:

input ([files[, inplace[, backud]])
Create an instance of thiélelnput class. The instance will be used as global state for the functions
of this module, and is also returned to use during iteration. The parameters to this function will be passed
along to the constructor of tHélelnput class.

The following functions use the global state createdrput() ; if there is no active stat&untimeError is
raised.

filename ()
Return the name of the file currently being read. Before the first line has been read, Kgines

lineno ()
Return the cumulative line number of the line that has just been read. Before the first line has been read,
returns0. After the last line of the last file has been read, returns the line number of that line.

filelineno 0
Return the line number in the current file. Before the first line has been read, rétusfter the last line
of the last file has been read, returns the line number of that line within the file.

isfirstline 0
Returns true if the line just read is the first line of its file, otherwise returns false.

isstdin ()
Returns true if the last line was read frays.stdin , otherwise returns false.

nextfile ()
Close the current file so that the next iteration will read the first line from the next file (if any); lines not
read from the file will not count towards the cumulative line count. The filename is not changed until after
the first line of the next file has been read. Before the first line has been read, this function has no effect;
it cannot be used to skip the first file. After the last line of the last file has been read, this function has no
effect.

close ()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing as well:
classFilelnput ([files[, inplace[, backud]])

Class Filelnput is the implementation; its methoddename() , lineno() , fileline() ,
isfirstline() , isstdin() , hextfile() andclose() correspond to the functions of the same
name in the module. In addition it has@adline() method which returns the next input line, and a

__getitem __() method which implements the sequence behavior. The sequence must be accessed in
strictly sequential order; random access egatlline() cannot be mixed.

5.16. fileinput — lterate over lines from multiple input streams 177

Optional in-place filtering: if the keyword argumeninplace=1 is passed tanput() or to theFilelnput
constructor, the file is moved to a backup file and standard output is directed to the input file (if a file of the
same name as the backup file already exists, it will be replaced silently). This makes it possible to write a filter
that rewrites its input file in place. If the keyword argumbatkup'.<some extension>’ is also given,

it specifies the extension for the backup file, and the backup file remains around; by default, the extension is
"bak’ anditis deleted when the output file is closed. In-place filtering is disabled when standard input is read.

Caveat: The current implementation does not work for MS-DOS 8+3 filesystems.

5.17 xreadlines — Efficient iteration over a file

New in version 2.1.
Deprecated since release 2.8Isefor line in file instead.

This module defines a new object type which can efficiently iterate over the lines of a file. An xreadlines object is
a sequence type which implements simple in-order indexing beginnibgeatrequired byor statement or the
filter() function.

Thus, the code

import xreadlines, sys

for line in xreadlines.xreadlines(sys.stdin):
pass

has approximately the same speed and memory consumption as

while 1:
lines = sys.stdin.readlines(8*1024)
if not lines: break
for line in lines:
pass

except the clarity of théor statement is retained in the former case.

xreadlines (fileobj)
Return a new xreadlines object which will iterate over the content§iledbj. fileobj must have a
readlines() method that supports ttezehintparameterNote: Because theeadlines() method
buffers data, this effectively ignores the effects of setting the file object as unbuffered.

An xreadlines objecs$ supports the following sequence operation:

Operation | Result
Si | ithfineofs

If successive values afare not sequential starting frod this code will raiseRuntimeError

After the last line of the file is read, this code will raiseladexError

5.18 calendar — General calendar-related functions

This module allows you to output calendars like theil cal program, and provides additional useful functions
related to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the
last (the European convention). Usetfirstweekday() to set the first day of the week to Sunday (6) or to

any other weekday. Parameters that specify dates are given as integers.

178 Chapter 5. Miscellaneous Services

Most of these functions rely on thdatetime module which uses an idealized calendar, the current Gregorian
calendar indefinitely extended in both directions. This matches the definition of the "proleptic Gregorian” calendar
in Dershowitz and Reingold’s book "Calendrical Calculations”, where it's the base calendar for all computations.

setfirstweekday (weekday
Sets the weekdayO(is Monday, 6 is Sunday) to start each week. The vall®ONDAYTUESDAY
WEDNESDAYHURSDAYFRIDAY, SATURDAYand SUNDAYare provided for convenience. For ex-
ample, to set the first weekday to Sunday:

import calendar
calendar.setfirstweekday(calendar. SUNDAY)

New in version 2.0.

firstweekday ()
Returns the current setting for the weekday to start each week. New in version 2.0.

isleap (yean
Returnsl if yearis a leap year, otherwige

leapdays (y1,yd
Returns the number of leap years in the range.[.y2), whereyl andy2 are years. Changed in version
2.0: This function didn’t work for ranges spanning a century change in Python 1.5.2.

weekday (year, month, day
Returns the day of the wee (s Monday) foryear(1970—...),month(1-12), day (1-31).

monthrange (year, month
Returns weekday of first day of the month and number of days in month, for the spgedfiemhdmonth

monthcalendar (year, month
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month a
represented by zeros. Each week begins with Monday unless setfbrgtweekday()

prmonth (theyear, themon[h W[, I]])
Prints a month’s calendar as returnedrbgnth() .

month (theyear, themon{h w[, I]])
Returns a month’s calendar in a multi-line stringwifs provided, it specifies the width of the date columns,
which are centered. Ifis given, it specifies the number of lines that each week will use. Depends on the
first weekday as set tgetfirstweekday() . New in version 2.0.

prcal (yeal{, w[, I[c]]])

Prints the calendar for an entire year as returneddbgndar()

calendar (year[, vv[I[C]]])

Returns a 3-column calendar for an entire year as a multi-line string. Optional paramedtensdc are for

date column width, lines per week, and number of spaces between month columns, respectively. Depends
on the first weekday as set etfirstweekday() . The earliest year for which a calendar can be
generated is platform-dependent. New in version 2.0.

timegm (tuple)
An unrelated but handy function that takes a time tuple such as returned gsnthee() function in the
time module, and returns the correspondingik timestamp value, assuming an epoch of 1970, and the
POSIX encoding. In factime.gmtime() andtimegm() are each others’ inverse. New in version
2.0.

See Also:

Moduletime (section 6.10):
Low-level time related functions.

5.19 cmd— Support for line-oriented command interpreters

5.19. cmd— Support for line-oriented command interpreters 179

The Cmdclass provides a simple framework for writing line-oriented command interpreters. These are often
useful for test harnesses, administrative tools, and prototypes that will later be wrapped in a more sophisticated
interface.

classCmq [completeke]/,[stdin] ,[stdout])

A Cmdinstance or subclass instance is a line-oriented interpreter framework. There is ho good reason to
instantiateCmditself; rather, it's useful as a superclass of an interpreter class you define yourself in order to
inherit Cmds methods and encapsulate action methods.

The optional argumentompletekeys thereadline name of a completion key; it defaults T@b. If
completekeys notNone andreadline is available, command completion is done automatically.

The optional argumentstdin andstdoutspecify the input and output file objects that the Cmd instance or
subclass instance will use for input and output. If not specified, they will defasjtdstdirandsys.stdout

Changed in version 2.3: Thetdinandstdoutparameters were added..

5.19.1 Cmd Objects

A Cmdinstance has the following methods:

cmdloop ([intro])

Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action
methods, passing them the remainder of the line as argument.

The optional argument is a banner or intro string to be issued before the first prompt (this overrides the
intro class member).

If the readline module is loaded, input will automatically inhebashlike history-list editing (e.g.
Control-P scrolls back to the last commart@ontrol-N forward to the next oneControl-F moves
the cursor to the right non-destructivefpntrol-B moves the cursor to the left non-destructively, etc.).

An end-of-file on input is passed back as the stiEQF’ .

An interpreter instance will recognize a command nafae * if and only if it has a methodlo _foo()
As a special case, a line beginning with the characéris dispatched to the methadb _help() . As
another special case, a line beginning with the charakteas ‘dispatched to the methatb _shell() (if
such a method is defined).

If completion is enabled, completing commands will be done automatically, and completing of commands
args is done by callingomplete _foo() with argumentgext, line, begidx andendidx textis the string

prefix we are attempting to match: all returned matches must begin witimétis the current input line

with leading whitespace removdekgidxandendidxare the beginning and ending indexes of the prefix text,
which could be used to provide different completion depending upon which position the argument is in.

All subclasses of£mdinherit a predefinedio _help() . This method, called with an argumebar’
invokes the corresponding methbdlp _bar() . With no argumentdo _help() lists all available help
topics (that is, all commands with correspondimgp _*() methods), and also lists any undocumented
commands.

onecmd(str)

Interpret the argument as though it had been typed in response to the prompt. This may be overridden, but
should not normally need to be; see firecmd() andpostcmd() methods for useful execution hooks.
The return value is a flag indicating whether interpretation of commands by the interpreter should stop.

emptyline ()

Method called when an empty line is entered in response to the prompt. If this method is not overridden, it
repeats the last nonempty command entered.

default (line)

Method called on an input line when the command prefix is not recognized. If this method is not overridden,
it prints an error message and returns.

completedefault (text, line, begidx, endidx

Method called to complete an input line when no command-spexdfitplete _*() method is available.
By default, it returns an empty list.

180

Chapter 5. Miscellaneous Services

precmd (line)
Hook method executed just before the commandllimeis interpreted, but after the input prompt is gener-
ated and issued. This method is a stulCind it exists to be overridden by subclasses. The return value is
used as the command which will be executed byadhecmd() method; thgorecmd() implementation
may re-write the command or simply retume unchanged.

postcmd (stop, ling
Hook method executed just after a command dispatch is finished. This method is a Sty iih exists
to be overridden by subclassekne is the command line which was executed, atopis a flag which
indicates whether execution will be terminated after the cadlastcmd() ; this will be the return value of
theonecmd() method. The return value of this method will be used as the new value for the internal flag
which corresponds tstop returning false will cause interpretation to continue.

preloop ()
Hook method executed once whemdloop() is called. This method is a stub @md it exists to be

overridden by subclasses.

postloop ()
Hook method executed once whemdloop() is about to return. This method is a stubGmd it exists
to be overridden by subclasses.

Instances o€mdsubclasses have some public instance variables:

prompt
The prompt issued to solicit input.

identchars
The string of characters accepted for the command prefix.

lastcmd
The last nonempty command prefix seen.

intro
A string to issue as an intro or banner. May be overridden by givingtiiioop() method an argument.

doc _header
The header to issue if the help output has a section for documented commands.

misc _header
The header to issue if the help output has a section for miscellaneous help topics (that is, there are
help _*() methods without correspondimlp _*() methods).

undoc _header
The header to issue if the help output has a section for undocumented commands (that is, teer&(are
methods without correspondimglp _*() methods).

ruler
The character used to draw separator lines under the help-message headers. If empty, no ruler line is drawn.
It defaults to ='.

use _rawinput
A flag, defaulting to true. If truegmdloop() usesraw _input() to display a prompt and read the next
command; if falsesys.stdout.write() andsys.stdin.readline() are used. (This means that
by importingreadline , on systems that support it, the interpreter will automatically support Emacs-like
line editing and command-history keystrokes.)

5.20 shlex — Simple lexical analysis

New in version 1.5.2.

Theshlex class makes it easy to write lexical analyzers for simple syntaxes resembling that oftheshéll.
This will often be useful for writing minilanguages, (e.g. in run control files for Python applications) or for parsing
quoted strings.

5.20. shlex — Simple lexical analysis 181

See Also:

Module ConfigParser (section 5.15):
Parser for configuration files similar to the Windowisi* files.

5.20.1 Module Contents

Theshlex module defines the following functions:

split (s[, commentsEalse])
Split the strings using shell-like syntax. IEtommentss False , the parsing of comments in the given
string will be disabled (setting trmommenters member of theshlex instance to the empty string). This
function operates in POSIX mode. New in version 2.3.

Theshlex module defines the following classes:

classshlex ([instream:sys.stdin [infiIe:None[, posix=False]]])
A shlex instance or subclass instance is a lexical analyzer object. The initialization argument, if
present, specifies where to read characters from. It must be a file-/stream-like objertadifh and
readline() methods, or a string (strings are accepted since Python 2.3). If no argument is given, input
will be taken fromsys.stdin . The second optional argument is a filename string, which sets the initial
value of theinfile member. If theinstreamargument is omitted or equal &ys.stdin , this second
argument defaults to “stdin”. Theosixargument was introduced in Python 2.3, and defines the operational
mode. Wherposixis not true (default), thahlex instance will operate in compatibility mode. When
operating in POSIX modeshlex will try to be as close as possible to the POSIX shell parsing rules.
See 5.20.2.

5.20.2 shlex Objects

A shlex instance has the following methods:

get _token ()
Return a token. If tokens have been stacked upirgh _token() , pop a token off the stack. Otherwise,
read one from the input stream. If reading encounters an immediate end-séfilepf is returned (the
empty string {) in non-POSIX mode, andone in POSIX mode).

push _token (str)
Push the argument onto the token stack.

read _token ()
Read a raw token. Ignore the pushback stack, and do not interpret source requests. (This is not ordinarily a
useful entry point, and is documented here only for the sake of completeness.)

sourcehook (filenamé
Whenshlex detects a source request (ssirce below) this method is given the following token as
argument, and expected to return a tuple consisting of a filename and an open file-like object.

Normally, this method first strips any quotes off the argument. If the result is an absolute pathname, or
there was no previous source request in effect, or the previous source was a streasygstdin =~),

the result is left alone. Otherwise, if the result is a relative pathname, the directory part of the name of the
file immediately before it on the source inclusion stack is prepended (this behavior is like the way the C
preprocessor handléggnclude "file.h").

The result of the manipulations is treated as a filename, and returned as the first component of the tuple, with
open() called on it to yield the second component. (Note: this is the reverse of the order of arguments in
instance initialization!)

This hook is exposed so that you can use it to implement directory search paths, addition of file extensions,
and other namespace hacks. There is no corresponding ‘close’ hook, but a shlex instance will call the
close() method of the sourced input stream when it retwros.

For more explicit control of source stacking, use plush _source() andpop _source() methods.

182 Chapter 5. Miscellaneous Services

push _source (strean{, filenamd)
Push an input source stream onto the input stack. If the filename argument is specified it will later be
available for use in error messages. This is the same method used internallysbytbehook method.
New in version 2.1.

pop _source ()
Pop the last-pushed input source from the input stack. This is the same method used internally when the
lexer reachegOF on a stacked input stream. New in version 2.1.

error _leader ([file[, Iine]])
This method generates an error message leader in the formatfxa@compiler error label; the format
is "%s", line %d: , Where the %s is replaced with the name of the current source file and the
‘%d with the current input line number (the optional arguments can be used to override these).

This convenience is provided to encouragfdex users to generate error messages in the standard,
parseable format understood by Emacs and othex Wools.

Instances ofhlex subclasses have some public instance variables which either control lexical analysis or can be
used for debugging:

commenters
The string of characters that are recognized as comment beginners. All characters from the comment begin-
ner to end of line are ignored. Includes just by default.

wordchars
The string of characters that will accumulate into multi-character tokens. By default, includescaill
alphanumerics and underscore.

whitespace
Characters that will be considered whitespace and skipped. Whitespace bounds tokens. By default, includes
space, tab, linefeed and carriage-return.

escape
Characters that will be considered as escape. This will be only used in POSIX mode, and includgs just *
by default. New in version 2.3.

guotes
Characters that will be considered string quotes. The token accumulates until the same quote is encountered
again (thus, different quote types protect each other as in the shell.) By default, inekciesingle and
double quotes.

escapedquotes
Characters imuotes that will interpret escape characters definedsoape . This is only used in POSIX
mode, and includes just * by default. New in version 2.3.

whitespace _split
If True , tokens will only be split in whitespaces. This is useful, for example, for parsing command lines
with shlex , getting tokens in a similar way to shell arguments. New in version 2.3.

infile
The name of the current input file, as initially set at class instantiation time or stacked by later source
requests. It may be useful to examine this when constructing error messages.

instream
The input stream from which thighlex instance is reading characters.

source
This member idNone by default. If you assign a string to it, that string will be recognized as a lexical-level
inclusion request similar to thesburce ' keyword in various shells. That is, the immediately following
token will opened as a filename and input taken from that streamamiil at which point theclose()
method of that stream will be called and the input source will again become the original input stream. Source
requests may be stacked any number of levels deep.

debug
If this member is numeric andl or more, ashlex instance will print verbose progress output on its
behavior. If you need to use this, you can read the module source code to learn the details.

5.20. shlex — Simple lexical analysis 183

lineno

token

eof

Source line number (count of newlines seen so far plus one).

The token buffer. It may be useful to examine this when catching exceptions.

Token used to determine end of file. This will be set to the empty stting, (n non-POSIX mode, and to
None in POSIX mode. New in version 2.3.

5.20.3 Parsing Rules

When operating in non-POSIX modghlex will try to obey to the following rules.

Quote characters are not recognized within worde"(Not"Separate is parsed as the single word
Do"Not"Separate);

Escape characters are not recognized,;
Enclosing characters in quotes preserve the literal value of all characters within the quotes;
Closing quotes separate wordD¢"Separate is parsed asDo" andSeparate);

If whitespace _split is False , any character not declared to be a word character, whitespace, or a
quote will be returned as a single-character token. Ifitrige , shlex will only split words in whitespaces;

EOF is signaled with an empty string ();

It's not possible to parse empty strings, even if quoted.

When operating in POSIX modshlex will try to obey to the following parsing rules.

Quotes are stripped out, and do not separate woRIs'Not"Separate” is parsed as the single word
DoNotSeparate);

Non-quoted escape characters (e\g. preserve the literal value of the next character that follows;

Enclosing characters in quotes which are not pagsafipedquotes (e.g.
of all characters within the quotes;

) preserve the literal value

Enclosing characters in quotes which are paresdapedquotes (e.g. *’) preserves the literal value

of all characters within the quotes, with the exception of the characters mentioaschipe . The escape
characters retain its special meaning only when followed by the quote in use, or the escape character itself.
Otherwise the escape character will be considered a normal character.

EOF is signaled with &lone value;

Quoted empty strings'() are allowed;

184

Chapter 5. Miscellaneous Services

CHAPTER
SIX

Generic Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available on (al-
most) all operating systems, such as files and a clock. The interfaces are generally modeled afiex tved)
interfaces, but they are available on most other systems as well. Here’s an overview:

0s

o0s.path
dircache

stat
statcache
statvfs
filecmp
popen2
datetime
time

sched
mutex
getpass
curses
curses.textpad
curses.wrapper
curses.ascii
curses.panel
getopt
optparse
tempfile
errno

glob
fnmatch
shutil

locale
gettext

logging

Miscellaneous operating system interfaces.
Common pathname manipulations.

Return directory listing, with cache mechanism.
Utilities for interpreting the results afs.stat()
Stat files, and remember results.

Constants for interpreting the resultasd.statvfs()
Compare files efficiently.

Subprocesses with accessible standard I/O streams.

Basic date and time types.

Time access and conversions.

General purpose event scheduler.

Lock and queue for mutual exclusion.

Portable reading of passwords and retrieval of the userid.

An interface to the curses library, providing portable terminal handling.

Emacs-like input editing in a curses window.

Terminal configuration wrapper for curses programs.

Constants and set-membership functionsafecii characters.

A panel stack extension that adds depth to curses windows.

Portable parser for command line options; support both short and long option names.
Powerful, flexible, extensible, easy-to-use command-line parsing library.

Generate temporary files and directories.

Standard errno system symbols.

UNIX shell style pathname pattern expansion.

UNix shell style filename pattern matching.

High-level file operations, including copying.

Internationalization services.

Multilingual internationalization services.

Logging module for Python based on PEP 282.

, 0s.Istat() andos.fstat()

6.1 o0s — Miscellaneous operating system interfaces

This module provides a more portable way of using operating system dependent functionality than importing a
operating system dependent built-in module likesix ornt .

This module searches for an operating system dependent built-in modul@diker posix and exports the
same functions and data as found there. The design of all Python’s built-in operating system dependent modules
is such that as long as the same functionality is available, it uses the same interface; for example, the function

os.stat(

path) returns stat information abopathin the same format (which happens to have originated with
the POSIX interface).

185

Extensions peculiar to a particular operating system are also available througgh thedule, but using them is
of course a threat to portability!

Note that after the first times is imported, there iso performance penalty in using functions fraa instead
of directly from the operating system dependent built-in module, so there shouturbason not to uses!

exceptionerror

name

path

This exception is raised when a function returns a system-related error (not for illegal argument types or
other incidental errors). This is also known as the built-in exce@@8&rror . The accompanying value is

a pair containing the numeric error code fremno and the corresponding string, as would be printed by
the C functionperror() . See the modulerrno , which contains names for the error codes defined by
the underlying operating system.

When exceptions are classes, this exception carries two attriterre®y and strerror . The first
holds the value of the @rrno variable, and the latter holds the corresponding error message from
strerror() . For exceptions that involve a file system path (sucltladir() or unlink()), the
exception instance will contain a third attribufdename , which is the file name passed to the function.

The name of the operating system dependent module imported. The following names have currently been

registered’posix’ ,’'nt ,’java’ ,’riscos’

,’mac’ ,’os2’ ,’ce’
The corresponding operating system dependent standard module for pathname operations, such as
posixpath or macpath . Thus, given the proper importss.path.split(file) is equivalent to

but more portable thaposixpath.split(file) . Note that this is also an importable module: it may be
imported directly a®s.path

6.1.1 Process Parameters

These functions and data items provide information and operate on the current process and user.

environ

chdir
fchdir

A mapping object representing the string environment. For exaraplé,on[HOME’] is the pathname
of your home directory (on some platforms), and is equivalegetenv("HOME") in C.

If the platform supports thputenv() function, this mapping may be used to modify the environment as
well as query the environmenputenv() will be called automatically when the mapping is modified.
Note: On some platforms, including FreeBSD and Mac OS X, setimgron may cause memory leaks.
Refer to the system documentation for putenv.

If putenv() is not provided, this mapping may be passed to the appropriate process-creation functions to
cause child processes to use a modified environment.

(path
(fd)

getcwd ()

cterm

geteg

geteu

These functions are described in “Files and Directories” (section 6.1.4).

id ()

Return the filename corresponding to the controlling terminal of the process. Availabitityc. U

id ()

Return the effective group id of the current process. This corresponds to the ‘set id’ bit on the file being
executed in the current process. Availabilitynix.

id ()

Return the current process’ effective user id. Availabilityxi.

getgid ()

Return the real group id of the current process. Availabilityix.

getgroups ()

Return list of supplemental group ids associated with the current process. Availabiity. U

getlogin ()

186

Chapter 6. Generic Operating System Services

Return the name of the user logged in on the controlling terminal of the process. For most pur-
poses, it is more useful to use the environment variable LOGNAME to find out who the user is, or
pwd.getpwuid(os.getuid())[0] to get the login name of the currently effective user ID. Avail-
ability: UNIX.

getpgid (pid)
Return the process group id of the process with procegslidf pid is 0, the process group id of the current
process is returned. Availability: \Ux. New in version 2.3.

getpgrp ()
Return the id of the current process group. Availabilityxii.

getpid ()
Return the current process id. Availability:Nuk, Windows.

getppid ()
Return the parent’s process id. Availability NUx .

getuid ()
Return the current process’ user id. AvailabilitynLX.

getenv (varname{, value])
Return the value of the environment variabBrnameif it exists, orvalueif it doesn’t. valuedefaults to
None. Availability: most flavors of Wix, Windows.

putenv (varname, valug
Set the environment variable namedrnameto the stringvalue Such changes to the environment af-
fect subprocesses started with.system() , popen() orfork() andexecv() . Availability: most
flavors of WINIx, Windows.

Note: On some platforms, including FreeBSD and Mac OS X, seimgron may cause memory leaks.
Refer to the system documentation for putenv.

Whenputenv() is supported, assignments to itemsomenviron are automatically translated into
corresponding calls tputenv() ; however, calls tqoutenv() don’t updateos.environ , so it is
actually preferable to assign to itemsas.environ

setegid (egid)
Set the current process’s effective group id. Availabilitysii.

seteuid (euid)
Set the current process’s effective user id. Availabilityaik.

setgid (gid)
Set the current process’ group id. Availability N .

setgroups (group9
Set the list of supplemental group ids associated with the current procgssujgs groupsmust be a
sequence, and each element must be an integer identifying a group. This operation is typical available only
to the superuser. Availability: NiX. New in version 2.2.

setpgrp ()
Calls the system calletpgrp() or setpgrp(0, 0) depending on which version is implemented (if
any). See the Nix manual for the semantics. Availability: NUX.

setpgid (pid, pgrp
Calls the system cadletpgid() to set the process group id of the process witpidito the process group
with id pgrp. See the Wix manual for the semantics. Availability: NUX .

setreuid ('ruid, euid)

Set the current process’s real and effective user ids. AvailabilityxU
setregid (rgid, egid

Set the current process’s real and effective group ids. AvailabilityrxU

setsid ()
Calls the system cafletsid() . See the Wix manual for the semantics. Availability: NJX.

6.1. os — Miscellaneous operating system interfaces 187

setuid (uid)
Set the current process’ user id. AvailabilityNX.

strerror (code
Return the error message corresponding to the error cattedi| Availability: UNIX, Windows.

umask(masR
Set the current numeric umask and returns the previous umask. Availabikity, Windows.

uname()
Return a 5-tuple containing information identifying the current operating system. The tuple contains 5
strings: (sysname nodenamg release version maching. Some systems truncate the nodename to
8 characters or to the leading component; a better way to get the hostnsme&es.gethostname()
or even socket.gethostbyaddr(socket.gethostname()) . Availability: recent flavors of
UNIX.

6.1.2 File Object Creation

These functions create new file objects.

fdopen (fd[, modd, bufsizd |)
Return an open file object connected to the file descrifitorThe modeand bufsizearguments have the
same meaning as the corresponding arguments to the boifien() function. Availability: Macintosh,
UNIX, Windows.

Changed in version 2.3: When specified, thedeargument must now start with one of the lettar§ ‘ w,
or ‘a’, otherwise avalueError s raised.

popen (comman@, mode[, bufsizd])
Open a pipe to or froosommand The return value is an open file object connected to the pipe, which can
be read or written depending on whetheodeis'r' (default) orw’ . Thebufsizeargument has the same
meaning as the corresponding argument to the buitigen() function. The exit status of the command
(encoded in the format specified famit()) is available as the return value of tobwse() = method
of the file object, except that when the exit status is zero (termination without efwsg is returned.
Availability: UNIx, Windows.

Changed in version 2.0: This function worked unreliably under Windows in earlier versions of Python. This
was due to the use of thgpopen() function from the libraries provided with Windows. Newer versions
of Python do not use the broken implementation from the Windows libraries.

tmpfile ()
Return a new file object opened in update modetfy’). The file has no directory entries associated with
it and will be automatically deleted once there are no file descriptors for the file. Availabilityix,U
Windows.

For each of thespopen() variants, ifbufsizeis specified, it specifies the buffer size for the 1/O pipesde
if provided, should be the strinp’ or’t’ ; on Windows this is needed to determine whether the file objects
should be opened in binary or text mode. The default valuenfmdeis 't’

These methods do not make it possible to retrieve the return code from the child processes. The only way to
control the input and output streams and also retrieve the return codes is to BepmnS andPopen4 classes
from thepopen2 module; these are only available om1X.

For a discussion of possible deadlock conditions related to the use of these functioridpge€dntrol Issues
(section 6.8.2).

popen2 (cmc{, mode[, bufsizd])
Executexmdas a sub-process. Returns the file objéatsild_stdin, child_stdou) . Availability: UNIX,
Windows. New in version 2.0.

popen3 (cmc{, mode[, bufsize]])
Executescmd as a sub-process. Returns the file objdathild_stdin child_stdout child_stderr) .
Availability: UNix, Windows. New in version 2.0.

popen4 (cmc{, mode[, bufsize]])

188 Chapter 6. Generic Operating System Services

Executexmdas a sub-process. Returns the file objéatsild_stdin, child_stdout_and_stderr) . Avail-
ability: UNIX, Windows. New in version 2.0.

This functionality is also available in thopen2 module using functions of the same names, but the return values
of those functions have a different order.

6.1.3 File Descriptor Operations

These functions operate on I/O streams referred to using file descriptors.

close (fd)
Close file descriptofd. Availability: Macintosh, Wix, Windows.

Note: this function is intended for low-level /0O and must be applied to a file descriptor as returned by
open() orpipe() . To close a “file object” returned by the built-in functiopen() or bypopen() or
fdopen() ,useitsclose() method.

dup (fd)
Return a duplicate of file descriptf. Availability: Macintosh, Wix, Windows.

dup2 (fd, fd2
Duplicate file descriptofd to fd2, closing the latter first if necessary. Availability:Nux, Windows.

fdatasync (fd)
Force write of file with filedescriptodid to disk. Does not force update of metadata. Availabilitydi.

fpathconf (fd, namé
Return system configuration information relevant to an open fiemespecifies the configuration value
to retrieve; it may be a string which is the name of a defined system value; these names are specified in a
number of standards (POSIX.INW 95, UNIx 98, and others). Some platforms define additional names
as well. The names known to the host operating system are given patheonf _names dictionary.
For configuration variables not included in that mapping, passing an integeafeis also accepted.
Availability: UNIX.

If nameis a string and is not knowiValueError s raised. If a specific value forameis not supported by
the host system, even ifitis includedpathconf _names, anOSError is raised witherrno.EINVAL
for the error number.

fstat (fd)
Return status for file descriptéd, like stat() . Availability: UNIx, Windows.

fstatvfs (fd)
Return information about the filesystem containing the file associated with file descfitdike
statvfs() . Availability: UNIX.

fsync (fd)
Force write of file with filedescriptofd to disk. On Wix, this calls the nativédsync() function; on
Windows, the MS_commit() function.

If youre starting with a Python file objectf, first do f.flush) , and then do
os.fsync(f.fileno()) , to ensure that all internal buffers associated wiitare written to disk.
Availability: UNIX, and Windows starting in 2.2.3.

ftruncate (fd, length
Truncate the file corresponding to file descripfhrso that it is at mosiengthbytes in size. Availability:
UNIX.

isatty (fd)
ReturnTrue if the file descriptoifd is open and connected to a tty(-like) device, élatse . Availability:
UNIX.

Iseek (fd, pos, hoy
Set the current position of file descriptiorto positionpos modified byhow. 0 to set the position relative
to the beginning of the filel to set it relative to the current positioP;to set it relative to the end of the file.
Availability: Macintosh, WNIX, Windows.

6.1. os — Miscellaneous operating system interfaces 189

open (file, fIags[, modd)
Open the filefile and set various flags according ftagsand possibly its mode according meode The
defaultmodeis 0777 (octal), and the current umask value is first masked out. Return the file descriptor for
the newly opened file. Availability: Macintosh,Nux, Windows.

For a description of the flag and mode values, see the C run-time documentation; flag constants (like
O_RDONLYandO_WRONL)Yare defined in this module too (see below).

Note: this function is intended for low-level /0. For normal usage, use the built-in fungien() , which
returns a “file object” withread() andwrite() methods (and many more).

openpty ()
Open a new pseudo-terminal pair. Return a pair of file descriptmaster slave for the pty and the tty,
respectively. For a (slightly) more portable approach, usethe module. Availability: Some flavors of
UNIX.

pipe ()
Create a pipe. Return a pair of file descriptbrs w) usable for reading and writing, respectively. Avail-
ability: UNix, Windows.

read (fd, n)
Read at mosh bytes from file descriptdid. Return a string containing the bytes read. If the end of the file
referred to byfd has been reached, an empty string is returned. Availability: Macintoshs Windows.

Note: this function is intended for low-level /0O and must be applied to a file descriptor as returned by
open() orpipe() . Toread a “file object” returned by the built-in functiopen() or by popen() or
fdopen() ,orsys.stdin ,useitsread() orreadline() methods.

tcgetpgrp (fd)
Return the process group associated with the terminal giveid fgn open file descriptor as returned by
open()). Availability: UNIX.

tcsetpgrp (fd, pg
Set the process group associated with the terminal givefdi{gn open file descriptor as returned by

open()) to pg. Availability: UNIX.

ttyname (fd)
Return a string which specifies the terminal device associated with file-desddptbfd is not associated
with a terminal device, an exception is raised. Availabilitysi.

write (fd, str)
Write the stringstr to file descriptoifd. Return the number of bytes actually written. Availability: Macin-
tosh, WNIX, Windows.

Note: this function is intended for low-level 1/0 and must be applied to a file descriptor as returned by
open() orpipe() . To write a “file object” returned by the built-in functiapen() or bypopen() or
fdopen() ,orsys.stdout orsys.stderr ,useitswrite() method.

The following data items are available for use in constructinglégsparameter to thepen() function.

O_RDONLY

O_WRONLY

O_RDWR

O_NDELAY

O_NONBLOCK

O_APPEND

O_DSYNC

O_RSYNC

O_SYNC

O_NOCTTY

O_CREAT

O_EXCL

O_TRUNC
Options for theflag argument to thepen() function. These can be bit-wise OR’d together. Availability:
Macintosh, Wix, Windows.

190 Chapter 6. Generic Operating System Services

O_BINARY
Option for theflag argument to thepen() function. This can be bit-wise OR'd together with those listed
above. Availability: Macintosh, Windows.

O_NOINHERIT

O_SHORTLIVED

O_TEMPORARY

O_RANDOM

O_SEQUENTIAL

O_TEXT
Options for theflag argument to thepen() function. These can be bit-wise OR'd together. Availability:
Windows.

6.1.4 Files and Directories

access (path, modg
Use the real uid/gid to test for accesspath Note that most operations will use the effective uid/gid,
therefore this routine can be used in a suid/sgid environment to test if the invoking user has the specified
access tgpath modeshould be_OKto test the existence @ath or it can be the inclusive OR of one or
more ofR_OK W_OK andX_OKTto test permissions. Retufnif access is allowed) if not. See the Wix
man pageccesf) for more information. Availability: Wix, Windows.

F_OK
Value to pass as thmodeparameter ofccess() to test the existence giath

R_OK
Value to include in thenodeparameter oficcess() to test the readability gfath

W_OK
Value to include in thenodeparameter oficcess() to test the writability ofpath

X_OK
Value to include in thenodeparameter oficcess() to determine ifpathcan be executed.

chdir (path)
Change the current working directorypath Availability: Macintosh, WNix, Windows.

fchdir (fd)
Change the current working directory to the directory represented by the file desdipidre descriptor
must refer to an opened directory, not an open file. Availabilityixd New in version 2.3.

getcwd ()
Return a string representing the current working directory. Availability: Macintosix JWindows.

getcwdu ()
Return a Unicode object representing the current working directory. Availabilitgx{JWindows. New
in version 2.3.

chroot (path
Change the root directory of the current procesgdth Availability: UNIX. New in version 2.2.

chmod(path, modg
Change the mode gfathto the numerianode modemay take one of the following values (as defined in
thestat module):
eS_ISUID
eS_ISGID
oS_ENFMT
eS_ISVTX
eS_IREAD
oS_IWRITE
S_IEXEC

6.1. os — Miscellaneous operating system interfaces 191

oS_IRWXU
oS_IRUSR
oS_IWUSR
oS_IXUSR
oS_IRWXG
oS_IRGRP
oS_IWGRP
oS_IXGRP
oS_IRWXO
¢S_IROTH
oS_IWOTH
oS_IXOTH

Availability: UNIX, Windows.

chown (path, uid, gig
Change the owner and group idmdithto the numeriaiid andgid. Availability: UNIX.

Ichown (path, uid, gid
Change the owner and group idmdithto the numeriaid and gid. This function will not follow symbolic
links. Availability: UNIX. New in version 2.3.

link (src, ds)
Create a hard link pointing terc nameddst Availability: UNIX.

listdir (path)
Return a list containing the names of the entries in the directory. The list is in arbitrary order. It does not
include the special entries and’..” even if they are present in the directory. Availability: Macintosh,
UNIX, Windows.

Changed in version 2.3: On Windows NT/2k/XP and Unixpdthis a Unicode object, the result will be a
list of Unicode objects..

Istat (path
Like stat() , but do not follow symbolic links. Availability: ®iix.

mkfifo (path, modd)
Create a FIFO (a named pipe) nanpath with numeric modemode The defaultmodeis 0666 (octal).
The current umask value is first masked out from the mode. AvailabilityxU

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted (for example with
os.unlink()). Generally, FIFOs are used as rendezvous between “client” and “server” type processes:
the server opens the FIFO for reading, and the client opens it for writing. Noten#fdo() doesn’t

open the FIFO — it just creates the rendezvous point.

mknod(patl*[, mode=0600, devic}a)
Create a filesystem node (file, device special file or named pipe) named filemardespecifies both the
permissions to use and the type of node to be created, being combined (bitwise OR) with offeRES,
S_IFCHR, S_IFBLK, and S_IFIFO (those constants are availablestat). For S IFCHR and SIFBLK,
devicedefines the newly created device special file (probably usgimakedev()), otherwise it is ig-
nored. New in version 2.3.

major (devicg
Extracts a device major number from a raw device number. New in version 2.3.

minor (deviceg
Extracts a device minor number from a raw device number. New in version 2.3.

makedev (major, minoy
Composes a raw device number from the major and minor device numbers. New in version 2.3.

192 Chapter 6. Generic Operating System Services

mkdir (patl{, modﬂ)
Create a directory nameaahth with numeric modenode The defaultmodeis 0777 (octal). On some
systemsmodeis ignored. Where it is used, the current umask value is first masked out. Availability:
Macintosh, Wix, Windows.

makedirs (patl'{, modﬂ)
Recursive directory creation function. Lilkekdir() , but makes all intermediate-level directories needed
to contain the leaf directory. Throws @mror exception if the leaf directory already exists or cannot be
created. The defauthodeis 0777 (octal). This function does not properly handle UNC paths (only relevant
on Windows systems; Universal Naming Convention paths are those that usadlsépath ' syntax).
New in version 1.5.2.

pathconf (path, namg
Return system configuration information relevant to a named fisanespecifies the configuration value
to retrieve; it may be a string which is the name of a defined system value; these names are specified in a
number of standards (POSIX.INW 95, UNix 98, and others). Some platforms define additional names
as well. The names known to the host operating system are given patheonf _names dictionary.
For configuration variables not included in that mapping, passing an integeafeis also accepted.
Availability: UNIX.

If nameis a string and is not knowiValueError s raised. If a specific value forameis not supported by
the host system, even if it is includedpathconf _names, anOSError is raised witherrno.EINVAL
for the error number.

pathconf _names
Dictionary mapping names accepted fthconf() andfpathconf() to the integer values defined
for those names by the host operating system. This can be used to determine the set of names known to the
system. Availability: WNiIXx.

readlink (path
Return a string representing the path to which the symbolic link points. The result may be either
an absolute or relative pathname; if it is relative, it may be converted to an absolute pathname using
os.path.join(os.path.dirname(p