
Extending and Embedding the Python
Interpreter
Release 2.4a0

Guido van Rossum
Fred L. Drake, Jr., editor

September 23, 2003

PythonLabs
Email: docs@python.org

Copyright c© 2001, 2002, 2003 Python Software Foundation. All rights reserved.

Copyright c© 2000 BeOpen.com. All rights reserved.

Copyright c© 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright c© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an interpreted, object-oriented programming language. This document describes how to write modules
in C or C++ to extend the Python interpreter with new modules. Those modules can define new functions but also
new object types and their methods. The document also describes how to embed the Python interpreter in another
application, for use as an extension language. Finally, it shows how to compile and link extension modules so that
they can be loaded dynamically (at run time) into the interpreter, if the underlying operating system supports this
feature.

This document assumes basic knowledge about Python. For an informal introduction to the language, see the
Python Tutorial. The Python Reference Manualgives a more formal definition of the language. ThePython
Library Referencedocuments the existing object types, functions and modules (both built-in and written in Python)
that give the language its wide application range.

For a detailed description of the whole Python/C API, see the separatePython/C API Reference Manual.

CONTENTS

1 Extending Python with C or C++ 1
1.1 A Simple Example. 1
1.2 Intermezzo: Errors and Exceptions. 2
1.3 Back to the Example. 4
1.4 The Module’s Method Table and Initialization Function. 4
1.5 Compilation and Linkage. 6
1.6 Calling Python Functions from C. 6
1.7 Extracting Parameters in Extension Functions. 8
1.8 Keyword Parameters for Extension Functions. 9
1.9 Building Arbitrary Values . 10
1.10 Reference Counts. 11
1.11 Writing Extensions in C++ . 15
1.12 Providing a C API for an Extension Module. 15

2 Defining New Types 19
2.1 The Basics. 19
2.2 Type Methods . 40

3 Building C and C++ Extensions with distutils 51
3.1 Distributing your extension modules. 52

4 Building C and C++ Extensions on Windows 55
4.1 A Cookbook Approach . 55
4.2 Differences Between UNIX and Windows . 57
4.3 Using DLLs in Practice . 58

5 Embedding Python in Another Application 59
5.1 Very High Level Embedding . 59
5.2 Beyond Very High Level Embedding: An overview. 60
5.3 Pure Embedding. 60
5.4 Extending Embedded Python. 63
5.5 Embedding Python in C++ . 63
5.6 Linking Requirements. 63

A Reporting Bugs 65

B History and License 67
B.1 History of the software. 67
B.2 Terms and conditions for accessing or otherwise using Python. 67

i

ii

CHAPTER

ONE

Extending Python with C or C++

It is quite easy to add new built-in modules to Python, if you know how to program in C. Suchextension modules
can do two things that can’t be done directly in Python: they can implement new built-in object types, and they
can call C library functions and system calls.

To support extensions, the Python API (Application Programmers Interface) defines a set of functions, macros and
variables that provide access to most aspects of the Python run-time system. The Python API is incorporated in a
C source file by including the header"Python.h" .

The compilation of an extension module depends on its intended use as well as on your system setup; details are
given in later chapters.

1.1 A Simple Example

Let’s create an extension module called ‘spam’ (the favorite food of Monty Python fans...) and let’s say we want
to create a Python interface to the C library functionsystem() .1 This function takes a null-terminated character
string as argument and returns an integer. We want this function to be callable from Python as follows:

>>> import spam
>>> status = spam.system("ls -l")

Begin by creating a file ‘spammodule.c’. (Historically, if a module is called ‘spam’, the C file containing its
implementation is called ‘spammodule.c’; if the module name is very long, like ‘spammify ’, the module name
can be just ‘spammify.c’.)

The first line of our file can be:

#include <Python.h>

which pulls in the Python API (you can add a comment describing the purpose of the module and a copyright
notice if you like). Since Python may define some pre-processor definitions which affect the standard headers on
some systems, you must include ‘Python.h’ before any standard headers are included.

All user-visible symbols defined by ‘Python.h’ have a prefix of ‘Py’ or ‘ PY’, except those defined in standard
header files. For convenience, and since they are used extensively by the Python interpreter,"Python.h"
includes a few standard header files:<stdio.h> , <string.h> , <errno.h> , and<stdlib.h> . If the
latter header file does not exist on your system, it declares the functionsmalloc() , free() andrealloc()
directly.

The next thing we add to our module file is the C function that will be called when the Python expression
‘spam.system(string) ’ is evaluated (we’ll see shortly how it ends up being called):

1An interface for this function already exists in the standard moduleos — it was chosen as a simple and straightfoward example.

1

static PyObject *
spam_system(PyObject *self, PyObject *args)
{

char *command;
int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command);
return Py_BuildValue("i", sts);

}

There is a straightforward translation from the argument list in Python (for example, the single expression"ls
-l") to the arguments passed to the C function. The C function always has two arguments, conventionally named
self andargs.

Theself argument is only used when the C function implements a built-in method, not a function. In the example,
self will always be aNULL pointer, since we are defining a function, not a method. (This is done so that the
interpreter doesn’t have to understand two different types of C functions.)

The args argument will be a pointer to a Python tuple object containing the arguments. Each item of the tuple
corresponds to an argument in the call’s argument list. The arguments are Python objects — in order to do anything
with them in our C function we have to convert them to C values. The functionPyArg ParseTuple() in the
Python API checks the argument types and converts them to C values. It uses a template string to determine the
required types of the arguments as well as the types of the C variables into which to store the converted values.
More about this later.

PyArg ParseTuple() returns true (nonzero) if all arguments have the right type and its components have been
stored in the variables whose addresses are passed. It returns false (zero) if an invalid argument list was passed.
In the latter case it also raises an appropriate exception so the calling function can returnNULL immediately (as
we saw in the example).

1.2 Intermezzo: Errors and Exceptions

An important convention throughout the Python interpreter is the following: when a function fails, it should set
an exception condition and return an error value (usually aNULLpointer). Exceptions are stored in a static global
variable inside the interpreter; if this variable isNULLno exception has occurred. A second global variable stores
the “associated value” of the exception (the second argument toraise). A third variable contains the stack
traceback in case the error originated in Python code. These three variables are the C equivalents of the Python
variablessys.exc type , sys.exc value andsys.exc traceback (see the section on modulesys in
thePython Library Reference). It is important to know about them to understand how errors are passed around.

The Python API defines a number of functions to set various types of exceptions.

The most common one isPyErr SetString() . Its arguments are an exception object and a C string. The
exception object is usually a predefined object likePyExc ZeroDivisionError . The C string indicates the
cause of the error and is converted to a Python string object and stored as the “associated value” of the exception.

Another useful function isPyErr SetFromErrno() , which only takes an exception argument and con-
structs the associated value by inspection of the global variableerrno . The most general function is
PyErr SetObject() , which takes two object arguments, the exception and its associated value. You don’t
need toPy INCREF() the objects passed to any of these functions.

You can test non-destructively whether an exception has been set withPyErr Occurred() . This re-
turns the current exception object, orNULL if no exception has occurred. You normally don’t need to call
PyErr Occurred() to see whether an error occurred in a function call, since you should be able to tell from
the return value.

When a functionf that calls another functiong detects that the latter fails,f should itself return an error value
(usuallyNULLor -1). It shouldnot call one of thePyErr *() functions — one has already been called byg.

2 Chapter 1. Extending Python with C or C++

f ’s caller is then supposed to also return an error indication toits caller, againwithoutcalling PyErr *() , and
so on — the most detailed cause of the error was already reported by the function that first detected it. Once the
error reaches the Python interpreter’s main loop, this aborts the currently executing Python code and tries to find
an exception handler specified by the Python programmer.

(There are situations where a module can actually give a more detailed error message by calling another
PyErr *() function, and in such cases it is fine to do so. As a general rule, however, this is not necessary,
and can cause information about the cause of the error to be lost: most operations can fail for a variety of reasons.)

To ignore an exception set by a function call that failed, the exception condition must be cleared explicitly by
calling PyErr Clear() . The only time C code should callPyErr Clear() is if it doesn’t want to pass
the error on to the interpreter but wants to handle it completely by itself (possibly by trying something else, or
pretending nothing went wrong).

Every failing malloc() call must be turned into an exception — the direct caller ofmalloc() (or
realloc()) must callPyErr NoMemory() and return a failure indicator itself. All the object-creating
functions (for example,PyInt FromLong()) already do this, so this note is only relevant to those who call
malloc() directly.

Also note that, with the important exception ofPyArg ParseTuple() and friends, functions that return an
integer status usually return a positive value or zero for success and-1 for failure, like UNIX system calls.

Finally, be careful to clean up garbage (by makingPy XDECREF() or Py DECREF() calls for objects you
have already created) when you return an error indicator!

The choice of which exception to raise is entirely yours. There are predeclared C objects corresponding to
all built-in Python exceptions, such asPyExc ZeroDivisionError , which you can use directly. Of
course, you should choose exceptions wisely — don’t usePyExc TypeError to mean that a file couldn’t
be opened (that should probably bePyExc IOError). If something’s wrong with the argument list, the
PyArg ParseTuple() function usually raisesPyExc TypeError . If you have an argument whose value
must be in a particular range or must satisfy other conditions,PyExc ValueError is appropriate.

You can also define a new exception that is unique to your module. For this, you usually declare a static object
variable at the beginning of your file:

static PyObject *SpamError;

and initialize it in your module’s initialization function (initspam()) with an exception object (leaving out the
error checking for now):

PyMODINIT_FUNC
initspam(void)
{

PyObject *m;

m = Py_InitModule("spam", SpamMethods);

SpamError = PyErr_NewException("spam.error", NULL, NULL);
Py_INCREF(SpamError);
PyModule_AddObject(m, "error", SpamError);

}

Note that the Python name for the exception object isspam.error . ThePyErr NewException() function
may create a class with the base class beingException (unless another class is passed in instead ofNULL),
described in thePython Library Referenceunder “Built-in Exceptions.”

Note also that theSpamError variable retains a reference to the newly created exception class; this is intentional!
Since the exception could be removed from the module by external code, an owned reference to the class is needed
to ensure that it will not be discarded, causingSpamError to become a dangling pointer. Should it become a
dangling pointer, C code which raises the exception could cause a core dump or other unintended side effects.

1.2. Intermezzo: Errors and Exceptions 3

We discuss the use of PyMODINITFUNC later in this sample.

1.3 Back to the Example

Going back to our example function, you should now be able to understand this statement:

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

It returnsNULL (the error indicator for functions returning object pointers) if an error is detected in the argument
list, relying on the exception set byPyArg ParseTuple() . Otherwise the string value of the argument has
been copied to the local variablecommand. This is a pointer assignment and you are not supposed to modify the
string to which it points (so in Standard C, the variablecommandshould properly be declared as ‘const char
*command’).

The next statement is a call to the UNIX function system() , passing it the string we just got from
PyArg ParseTuple() :

sts = system(command);

Ourspam.system() function must return the value ofsts as a Python object. This is done using the function
Py BuildValue() , which is something like the inverse ofPyArg ParseTuple() : it takes a format string
and an arbitrary number of C values, and returns a new Python object. More info onPy BuildValue() is
given later.

return Py_BuildValue("i", sts);

In this case, it will return an integer object. (Yes, even integers are objects on the heap in Python!)

If you have a C function that returns no useful argument (a function returningvoid), the corresponding Python
function must returnNone. You need this idiom to do so:

Py_INCREF(Py_None);
return Py_None;

Py None is the C name for the special Python objectNone. It is a genuine Python object rather than aNULL
pointer, which means “error” in most contexts, as we have seen.

1.4 The Module’s Method Table and Initialization Function

I promised to show howspam system() is called from Python programs. First, we need to list its name and
address in a “method table”:

static PyMethodDef SpamMethods[] = {
...
{"system", spam_system, METH_VARARGS,

"Execute a shell command."},
...
{NULL, NULL, 0, NULL} /* Sentinel */

};

4 Chapter 1. Extending Python with C or C++

Note the third entry (‘METH VARARGS’). This is a flag telling the interpreter the calling convention to be used for
the C function. It should normally always be ‘METH VARARGS’ or ‘ METH VARARGS | METHKEYWORDS’;
a value of0 means that an obsolete variant ofPyArg ParseTuple() is used.

When using only ‘METH VARARGS’, the function should expect the Python-level parameters to be passed in as a
tuple acceptable for parsing viaPyArg ParseTuple() ; more information on this function is provided below.

TheMETH KEYWORDSbit may be set in the third field if keyword arguments should be passed to the function. In
this case, the C function should accept a third ‘PyObject * ’ parameter which will be a dictionary of keywords.
UsePyArg ParseTupleAndKeywords() to parse the arguments to such a function.

The method table must be passed to the interpreter in the module’s initialization function. The initialization
function must be namedinit name() , wherenameis the name of the module, and should be the only non-
static item defined in the module file:

PyMODINIT_FUNC
initspam(void)
{

(void) Py_InitModule("spam", SpamMethods);
}

Note that PyMODINIT FUNC declares the function asvoid return type, declares any special linkage declara-
tions required by the platform, and for C++ declares the function asextern "C" .

When the Python program imports modulespam for the first time,initspam() is called. (See below for
comments about embedding Python.) It callsPy InitModule() , which creates a “module object” (which is
inserted in the dictionarysys.modules under the key"spam"), and inserts built-in function objects into the
newly created module based upon the table (an array ofPyMethodDef structures) that was passed as its second
argument.Py InitModule() returns a pointer to the module object that it creates (which is unused here). It
aborts with a fatal error if the module could not be initialized satisfactorily, so the caller doesn’t need to check for
errors.

When embedding Python, theinitspam() function is not called automatically unless there’s an entry in the
PyImport Inittab table. The easiest way to handle this is to statically initialize your statically-linked

modules by directly callinginitspam() after the call toPy Initialize() or PyMac Initialize() :

int
main(int argc, char *argv[])
{

/* Pass argv[0] to the Python interpreter */
Py_SetProgramName(argv[0]);

/* Initialize the Python interpreter. Required. */
Py_Initialize();

/* Add a static module */
initspam();

An example may be found in the file ‘Demo/embed/demo.c’ in the Python source distribution.

Note: Removing entries fromsys.modules or importing compiled modules into multiple interpreters within
a process (or following afork() without an interveningexec()) can create problems for some extension
modules. Extension module authors should exercise caution when initializing internal data structures. Note also
that thereload() function can be used with extension modules, and will call the module initialization function
(initspam() in the example), but will not load the module again if it was loaded from a dynamically loadable
object file (‘.so’ on UNIX , ‘ .dll’ on Windows).

A more substantial example module is included in the Python source distribution as ‘Modules/xxmodule.c’. This
file may be used as a template or simply read as an example. Themodulator.py script included in the source
distribution or Windows install provides a simple graphical user interface for declaring the functions and objects

1.4. The Module’s Method Table and Initialization Function 5

which a module should implement, and can generate a template which can be filled in. The script lives in the
‘Tools/modulator/’ directory; see the ‘README’ file there for more information.

1.5 Compilation and Linkage

There are two more things to do before you can use your new extension: compiling and linking it with the Python
system. If you use dynamic loading, the details may depend on the style of dynamic loading your system uses; see
the chapters about building extension modules (chapter 3) and additional information that pertains only to building
on Windows (chapter 4) for more information about this.

If you can’t use dynamic loading, or if you want to make your module a permanent part of the Python interpreter,
you will have to change the configuration setup and rebuild the interpreter. Luckily, this is very simple on UNIX :
just place your file (‘spammodule.c’ for example) in the ‘Modules/’ directory of an unpacked source distribution,
add a line to the file ‘Modules/Setup.local’ describing your file:

spam spammodule.o

and rebuild the interpreter by runningmake in the toplevel directory. You can also runmake in the ‘Modules/’
subdirectory, but then you must first rebuild ‘Makefile’ there by running ‘makeMakefile’. (This is necessary each
time you change the ‘Setup’ file.)

If your module requires additional libraries to link with, these can be listed on the line in the configuration file as
well, for instance:

spam spammodule.o -lX11

1.6 Calling Python Functions from C

So far we have concentrated on making C functions callable from Python. The reverse is also useful: calling
Python functions from C. This is especially the case for libraries that support so-called “callback” functions. If
a C interface makes use of callbacks, the equivalent Python often needs to provide a callback mechanism to the
Python programmer; the implementation will require calling the Python callback functions from a C callback.
Other uses are also imaginable.

Fortunately, the Python interpreter is easily called recursively, and there is a standard interface to call a Python
function. (I won’t dwell on how to call the Python parser with a particular string as input — if you’re interested,
have a look at the implementation of the-c command line option in ‘Python/pythonmain.c’ from the Python source
code.)

Calling a Python function is easy. First, the Python program must somehow pass you the Python function object.
You should provide a function (or some other interface) to do this. When this function is called, save a pointer to
the Python function object (be careful toPy INCREF() it!) in a global variable — or wherever you see fit. For
example, the following function might be part of a module definition:

6 Chapter 1. Extending Python with C or C++

static PyObject *my_callback = NULL;

static PyObject *
my_set_callback(PyObject *dummy, PyObject *args)
{

PyObject *result = NULL;
PyObject *temp;

if (PyArg_ParseTuple(args, "O:set_callback", &temp)) {
if (!PyCallable_Check(temp)) {

PyErr_SetString(PyExc_TypeError, "parameter must be callable");
return NULL;

}
Py_XINCREF(temp); /* Add a reference to new callback */
Py_XDECREF(my_callback); /* Dispose of previous callback */
my_callback = temp; /* Remember new callback */
/* Boilerplate to return "None" */
Py_INCREF(Py_None);
result = Py_None;

}
return result;

}

This function must be registered with the interpreter using theMETH VARARGSflag; this is described in section
1.4, “The Module’s Method Table and Initialization Function.” ThePyArg ParseTuple() function and its
arguments are documented in section 1.7, “Extracting Parameters in Extension Functions.”

The macrosPy XINCREF() andPy XDECREF() increment/decrement the reference count of an object and
are safe in the presence ofNULLpointers (but note thattempwill not beNULL in this context). More info on them
in section 1.10, “Reference Counts.”

Later, when it is time to call the function, you call the C functionPyEval CallObject() . This function has
two arguments, both pointers to arbitrary Python objects: the Python function, and the argument list. The argument
list must always be a tuple object, whose length is the number of arguments. To call the Python function with no
arguments, pass an empty tuple; to call it with one argument, pass a singleton tuple.Py BuildValue() returns
a tuple when its format string consists of zero or more format codes between parentheses. For example:

int arg;
PyObject *arglist;
PyObject *result;
...
arg = 123;
...
/* Time to call the callback */
arglist = Py_BuildValue("(i)", arg);
result = PyEval_CallObject(my_callback, arglist);
Py_DECREF(arglist);

PyEval CallObject() returns a Python object pointer: this is the return value of the Python function.
PyEval CallObject() is “reference-count-neutral” with respect to its arguments. In the example a new
tuple was created to serve as the argument list, which isPy DECREF()-ed immediately after the call.

The return value ofPyEval CallObject() is “new”: either it is a brand new object, or it is an existing object
whose reference count has been incremented. So, unless you want to save it in a global variable, you should
somehowPy DECREF() the result, even (especially!) if you are not interested in its value.

Before you do this, however, it is important to check that the return value isn’tNULL. If it is, the Python function
terminated by raising an exception. If the C code that calledPyEval CallObject() is called from Python,
it should now return an error indication to its Python caller, so the interpreter can print a stack trace, or the calling
Python code can handle the exception. If this is not possible or desirable, the exception should be cleared by

1.6. Calling Python Functions from C 7

callingPyErr Clear() . For example:

if (result == NULL)
return NULL; /* Pass error back */

...use result...
Py_DECREF(result);

Depending on the desired interface to the Python callback function, you may also have to provide an argument list
to PyEval CallObject() . In some cases the argument list is also provided by the Python program, through
the same interface that specified the callback function. It can then be saved and used in the same manner as the
function object. In other cases, you may have to construct a new tuple to pass as the argument list. The simplest
way to do this is to callPy BuildValue() . For example, if you want to pass an integral event code, you might
use the following code:

PyObject *arglist;
...
arglist = Py_BuildValue("(l)", eventcode);
result = PyEval_CallObject(my_callback, arglist);
Py_DECREF(arglist);
if (result == NULL)

return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF(result);

Note the placement of ‘Py DECREF(arglist) ’ immediately after the call, before the error check! Also note
that strictly spoken this code is not complete:Py BuildValue() may run out of memory, and this should be
checked.

1.7 Extracting Parameters in Extension Functions

ThePyArg ParseTuple() function is declared as follows:

int PyArg_ParseTuple(PyObject *arg, char *format, ...);

The arg argument must be a tuple object containing an argument list passed from Python to a C function. The
formatargument must be a format string, whose syntax is explained in “Parsing arguments and building values”
in thePython/C API Reference Manual. The remaining arguments must be addresses of variables whose type is
determined by the format string.

Note that whilePyArg ParseTuple() checks that the Python arguments have the required types, it cannot
check the validity of the addresses of C variables passed to the call: if you make mistakes there, your code will
probably crash or at least overwrite random bits in memory. So be careful!

Note that any Python object references which are provided to the caller areborrowedreferences; do not decrement
their reference count!

Some example calls:

int ok;
int i, j;
long k, l;
char *s;
int size;

ok = PyArg_ParseTuple(args, ""); /* No arguments */
/* Python call: f() */

8 Chapter 1. Extending Python with C or C++

ok = PyArg_ParseTuple(args, "s", &s); /* A string */
/* Possible Python call: f(’whoops!’) */

ok = PyArg_ParseTuple(args, "lls", &k, &l, &s); /* Two longs and a string */
/* Possible Python call: f(1, 2, ’three’) */

ok = PyArg_ParseTuple(args, "(ii)s#", &i, &j, &s, &size);
/* A pair of ints and a string, whose size is also returned */
/* Possible Python call: f((1, 2), ’three’) */

{
char *file;
char *mode = "r";
int bufsize = 0;
ok = PyArg_ParseTuple(args, "s|si", &file, &mode, &bufsize);
/* A string, and optionally another string and an integer */
/* Possible Python calls:

f(’spam’)
f(’spam’, ’w’)
f(’spam’, ’wb’, 100000) */

}

{
int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple(args, "((ii)(ii))(ii)",

&left, &top, &right, &bottom, &h, &v);
/* A rectangle and a point */
/* Possible Python call:

f(((0, 0), (400, 300)), (10, 10)) */
}

{
Py_complex c;
ok = PyArg_ParseTuple(args, "D:myfunction", &c);
/* a complex, also providing a function name for errors */
/* Possible Python call: myfunction(1+2j) */

}

1.8 Keyword Parameters for Extension Functions

ThePyArg ParseTupleAndKeywords() function is declared as follows:

int PyArg_ParseTupleAndKeywords(PyObject *arg, PyObject *kwdict,
char *format, char *kwlist[], ...);

The arg and format parameters are identical to those of thePyArg ParseTuple() function. Thekwdict
parameter is the dictionary of keywords received as the third parameter from the Python runtime. Thekwlist
parameter is aNULL-terminated list of strings which identify the parameters; the names are matched with the type
information fromformat from left to right. On success,PyArg ParseTupleAndKeywords() returns true,

1.8. Keyword Parameters for Extension Functions 9

otherwise it returns false and raises an appropriate exception.

Note: Nested tuples cannot be parsed when using keyword arguments! Keyword parameters passed in which are
not present in thekwlist will causeTypeError to be raised.

Here is an example module which uses keywords, based on an example by Geoff Philbrick (philbrick@hks.com):

#include "Python.h"

static PyObject *
keywdarg_parrot(PyObject *self, PyObject *args, PyObject *keywds)
{

int voltage;
char *state = "a stiff";
char *action = "voom";
char *type = "Norwegian Blue";

static char *kwlist[] = {"voltage", "state", "action", "type", NULL};

if (!PyArg_ParseTupleAndKeywords(args, keywds, "i|sss", kwlist,
&voltage, &state, &action, &type))

return NULL;

printf("-- This parrot wouldn’t %s if you put %i Volts through it.\n",
action, voltage);

printf("-- Lovely plumage, the %s -- It’s %s!\n", type, state);

Py_INCREF(Py_None);

return Py_None;
}

static PyMethodDef keywdarg_methods[] = {
/* The cast of the function is necessary since PyCFunction values

* only take two PyObject* parameters, and keywdarg_parrot() takes
* three.
*/

{"parrot", (PyCFunction)keywdarg_parrot, METH_VARARGS | METH_KEYWORDS,
"Print a lovely skit to standard output."},

{NULL, NULL, 0, NULL} /* sentinel */
};

void
initkeywdarg(void)
{

/* Create the module and add the functions */
Py_InitModule("keywdarg", keywdarg_methods);

}

1.9 Building Arbitrary Values

This function is the counterpart toPyArg ParseTuple() . It is declared as follows:

PyObject *Py_BuildValue(char *format, ...);

It recognizes a set of format units similar to the ones recognized byPyArg ParseTuple() , but the arguments
(which are input to the function, not output) must not be pointers, just values. It returns a new Python object,
suitable for returning from a C function called from Python.

10 Chapter 1. Extending Python with C or C++

One difference withPyArg ParseTuple() : while the latter requires its first argument to be a tuple (since
Python argument lists are always represented as tuples internally),Py BuildValue() does not always build a
tuple. It builds a tuple only if its format string contains two or more format units. If the format string is empty, it
returnsNone; if it contains exactly one format unit, it returns whatever object is described by that format unit. To
force it to return a tuple of size 0 or one, parenthesize the format string.

Examples (to the left the call, to the right the resulting Python value):

Py_BuildValue("") None
Py_BuildValue("i", 123) 123
Py_BuildValue("iii", 123, 456, 789) (123, 456, 789)
Py_BuildValue("s", "hello") ’hello’
Py_BuildValue("ss", "hello", "world") (’hello’, ’world’)
Py_BuildValue("s#", "hello", 4) ’hell’
Py_BuildValue("()") ()
Py_BuildValue("(i)", 123) (123,)
Py_BuildValue("(ii)", 123, 456) (123, 456)
Py_BuildValue("(i,i)", 123, 456) (123, 456)
Py_BuildValue("[i,i]", 123, 456) [123, 456]
Py_BuildValue("{s:i,s:i}",

"abc", 123, "def", 456) {’abc’: 123, ’def’: 456}
Py_BuildValue("((ii)(ii)) (ii)",

1, 2, 3, 4, 5, 6) (((1, 2), (3, 4)), (5, 6))

1.10 Reference Counts

In languages like C or C++, the programmer is responsible for dynamic allocation and deallocation of memory on
the heap. In C, this is done using the functionsmalloc() andfree() . In C++, the operatorsnew anddelete
are used with essentially the same meaning and we’ll restrict the following discussion to the latter.

Every block of memory allocated withmalloc() should eventually be returned to the pool of available memory
by exactly one call tofree() . It is important to callfree() at the right time. If a block’s address is forgotten
but free() is not called for it, the memory it occupies cannot be reused until the program terminates. This
is called amemory leak. On the other hand, if a program callsfree() for a block and then continues to use
the block, it creates a conflict with re-use of the block through anothermalloc() call. This is calledusing
freed memory. It has the same bad consequences as referencing uninitialized data — core dumps, wrong results,
mysterious crashes.

Common causes of memory leaks are unusual paths through the code. For instance, a function may allocate a
block of memory, do some calculation, and then free the block again. Now a change in the requirements for the
function may add a test to the calculation that detects an error condition and can return prematurely from the
function. It’s easy to forget to free the allocated memory block when taking this premature exit, especially when it
is added later to the code. Such leaks, once introduced, often go undetected for a long time: the error exit is taken
only in a small fraction of all calls, and most modern machines have plenty of virtual memory, so the leak only
becomes apparent in a long-running process that uses the leaking function frequently. Therefore, it’s important to
prevent leaks from happening by having a coding convention or strategy that minimizes this kind of errors.

Since Python makes heavy use ofmalloc() and free() , it needs a strategy to avoid memory leaks as well
as the use of freed memory. The chosen method is calledreference counting. The principle is simple: every
object contains a counter, which is incremented when a reference to the object is stored somewhere, and which is
decremented when a reference to it is deleted. When the counter reaches zero, the last reference to the object has
been deleted and the object is freed.

An alternative strategy is calledautomatic garbage collection. (Sometimes, reference counting is also referred
to as a garbage collection strategy, hence my use of “automatic” to distinguish the two.) The big advantage of
automatic garbage collection is that the user doesn’t need to callfree() explicitly. (Another claimed advantage
is an improvement in speed or memory usage — this is no hard fact however.) The disadvantage is that for C,
there is no truly portable automatic garbage collector, while reference counting can be implemented portably (as
long as the functionsmalloc() andfree() are available — which the C Standard guarantees). Maybe some

1.10. Reference Counts 11

day a sufficiently portable automatic garbage collector will be available for C. Until then, we’ll have to live with
reference counts.

While Python uses the traditional reference counting implementation, it also offers a cycle detector that works to
detect reference cycles. This allows applications to not worry about creating direct or indirect circular references;
these are the weakness of garbage collection implemented using only reference counting. Reference cycles consist
of objects which contain (possibly indirect) references to themselves, so that each object in the cycle has a ref-
erence count which is non-zero. Typical reference counting implementations are not able to reclaim the memory
belonging to any objects in a reference cycle, or referenced from the objects in the cycle, even though there are no
further references to the cycle itself.

The cycle detector is able to detect garbage cycles and can reclaim them so long as there are no finalizers imple-
mented in Python (del () methods). When there are such finalizers, the detector exposes the cycles through
thegc module(specifically, thegarbage variable in that module). Thegc module also exposes a way to run
the detector (thecollect() function), as well as configuration interfaces and the ability to disable the detector
at runtime. The cycle detector is considered an optional component; though it is included by default, it can be
disabled at build time using the--without-cycle-gcoption to theconfigure script on UNIX platforms (including
Mac OS X) or by removing the definition ofWITH CYCLE GCin the ‘pyconfig.h’ header on other platforms. If
the cycle detector is disabled in this way, thegc module will not be available.

1.10.1 Reference Counting in Python

There are two macros,Py INCREF(x) andPy DECREF(x) , which handle the incrementing and decrementing
of the reference count.Py DECREF() also frees the object when the count reaches zero. For flexibility, it doesn’t
call free() directly — rather, it makes a call through a function pointer in the object’stype object. For this
purpose (and others), every object also contains a pointer to its type object.

The big question now remains: when to usePy INCREF(x) andPy DECREF(x)? Let’s first introduce some
terms. Nobody “owns” an object; however, you canown a referenceto an object. An object’s reference count
is now defined as the number of owned references to it. The owner of a reference is responsible for calling
Py DECREF() when the reference is no longer needed. Ownership of a reference can be transferred. There are
three ways to dispose of an owned reference: pass it on, store it, or callPy DECREF(). Forgetting to dispose of
an owned reference creates a memory leak.

It is also possible toborrow2 a reference to an object. The borrower of a reference should not callPy DECREF().
The borrower must not hold on to the object longer than the owner from which it was borrowed. Using a borrowed
reference after the owner has disposed of it risks using freed memory and should be avoided completely.3

The advantage of borrowing over owning a reference is that you don’t need to take care of disposing of the
reference on all possible paths through the code — in other words, with a borrowed reference you don’t run the
risk of leaking when a premature exit is taken. The disadvantage of borrowing over leaking is that there are some
subtle situations where in seemingly correct code a borrowed reference can be used after the owner from which it
was borrowed has in fact disposed of it.

A borrowed reference can be changed into an owned reference by callingPy INCREF() . This does not affect
the status of the owner from which the reference was borrowed — it creates a new owned reference, and gives full
owner responsibilities (the new owner must dispose of the reference properly, as well as the previous owner).

1.10.2 Ownership Rules

Whenever an object reference is passed into or out of a function, it is part of the function’s interface specification
whether ownership is transferred with the reference or not.

Most functions that return a reference to an object pass on ownership with the reference. In particular, all functions
whose function it is to create a new object, such asPyInt FromLong() and Py BuildValue() , pass
ownership to the receiver. Even if the object is not actually new, you still receive ownership of a new reference to

2The metaphor of “borrowing” a reference is not completely correct: the owner still has a copy of the reference.
3Checking that the reference count is at least 1does not work — the reference count itself could be in freed memory and may thus be

reused for another object!

12 Chapter 1. Extending Python with C or C++

that object. For instance,PyInt FromLong() maintains a cache of popular values and can return a reference
to a cached item.

Many functions that extract objects from other objects also transfer ownership with the reference, for in-
stancePyObject GetAttrString() . The picture is less clear, here, however, since a few com-
mon routines are exceptions:PyTuple GetItem() , PyList GetItem() , PyDict GetItem() , and
PyDict GetItemString() all return references that you borrow from the tuple, list or dictionary.

The functionPyImport AddModule() also returns a borrowed reference, even though it may actually create
the object it returns: this is possible because an owned reference to the object is stored insys.modules .

When you pass an object reference into another function, in general, the function borrows the reference from you
— if it needs to store it, it will usePy INCREF() to become an independent owner. There are exactly two
important exceptions to this rule:PyTuple SetItem() andPyList SetItem() . These functions take
over ownership of the item passed to them — even if they fail! (Note thatPyDict SetItem() and friends
don’t take over ownership — they are “normal.”)

When a C function is called from Python, it borrows references to its arguments from the caller. The caller owns
a reference to the object, so the borrowed reference’s lifetime is guaranteed until the function returns. Only when
such a borrowed reference must be stored or passed on, it must be turned into an owned reference by calling
Py INCREF() .

The object reference returned from a C function that is called from Python must be an owned reference — owner-
ship is tranferred from the function to its caller.

1.10.3 Thin Ice

There are a few situations where seemingly harmless use of a borrowed reference can lead to problems. These all
have to do with implicit invocations of the interpreter, which can cause the owner of a reference to dispose of it.

The first and most important case to know about is usingPy DECREF() on an unrelated object while borrowing
a reference to a list item. For instance:

void
bug(PyObject *list)
{

PyObject *item = PyList_GetItem(list, 0);

PyList_SetItem(list, 1, PyInt_FromLong(0L));
PyObject_Print(item, stdout, 0); /* BUG! */

}

This function first borrows a reference tolist[0] , then replaceslist[1] with the value0, and finally prints
the borrowed reference. Looks harmless, right? But it’s not!

Let’s follow the control flow intoPyList SetItem() . The list owns references to all its items, so when item
1 is replaced, it has to dispose of the original item 1. Now let’s suppose the original item 1 was an instance of a
user-defined class, and let’s further suppose that the class defined adel () method. If this class instance
has a reference count of 1, disposing of it will call itsdel () method.

Since it is written in Python, the del () method can execute arbitrary Python code. Could it perhaps do
something to invalidate the reference toitem in bug() ? You bet! Assuming that the list passed intobug()
is accessible to the del () method, it could execute a statement to the effect of ‘del list[0] ’, and
assuming this was the last reference to that object, it would free the memory associated with it, thereby invalidating
item .

The solution, once you know the source of the problem, is easy: temporarily increment the reference count. The
correct version of the function reads:

1.10. Reference Counts 13

void
no_bug(PyObject *list)
{

PyObject *item = PyList_GetItem(list, 0);

Py_INCREF(item);
PyList_SetItem(list, 1, PyInt_FromLong(0L));
PyObject_Print(item, stdout, 0);
Py_DECREF(item);

}

This is a true story. An older version of Python contained variants of this bug and someone spent a considerable
amount of time in a C debugger to figure out why hisdel () methods would fail...

The second case of problems with a borrowed reference is a variant involving threads. Normally, multi-
ple threads in the Python interpreter can’t get in each other’s way, because there is a global lock protect-
ing Python’s entire object space. However, it is possible to temporarily release this lock using the macro
Py BEGIN ALLOWTHREADS, and to re-acquire it usingPy END ALLOWTHREADS. This is common
around blocking I/O calls, to let other threads use the processor while waiting for the I/O to complete. Obvi-
ously, the following function has the same problem as the previous one:

void
bug(PyObject *list)
{

PyObject *item = PyList_GetItem(list, 0);
Py_BEGIN_ALLOW_THREADS
...some blocking I/O call...
Py_END_ALLOW_THREADS
PyObject_Print(item, stdout, 0); /* BUG! */

}

1.10.4 NULL Pointers

In general, functions that take object references as arguments do not expect you to pass themNULLpointers, and
will dump core (or cause later core dumps) if you do so. Functions that return object references generally return
NULLonly to indicate that an exception occurred. The reason for not testing forNULLarguments is that functions
often pass the objects they receive on to other function — if each function were to test forNULL, there would be
a lot of redundant tests and the code would run more slowly.

It is better to test forNULLonly at the “source:” when a pointer that may beNULL is received, for example, from
malloc() or from a function that may raise an exception.

The macrosPy INCREF() and Py DECREF() do not check forNULL pointers — however, their variants
Py XINCREF() andPy XDECREF() do.

The macros for checking for a particular object type (Pytype Check()) don’t check forNULLpointers — again,
there is much code that calls several of these in a row to test an object against various different expected types,
and this would generate redundant tests. There are no variants withNULLchecking.

The C function calling mechanism guarantees that the argument list passed to C functions (args in the examples)
is neverNULL— in fact it guarantees that it is always a tuple.4

It is a severe error to ever let aNULLpointer “escape” to the Python user.

4These guarantees don’t hold when you use the “old” style calling convention — this is still found in much existing code.

14 Chapter 1. Extending Python with C or C++

1.11 Writing Extensions in C++

It is possible to write extension modules in C++. Some restrictions apply. If the main program (the Python
interpreter) is compiled and linked by the C compiler, global or static objects with constructors cannot be used.
This is not a problem if the main program is linked by the C++ compiler. Functions that will be called by the
Python interpreter (in particular, module initalization functions) have to be declared usingextern "C" . It is
unnecessary to enclose the Python header files inextern "C" {...} — they use this form already if the
symbol ‘ cplusplus ’ is defined (all recent C++ compilers define this symbol).

1.12 Providing a C API for an Extension Module

Many extension modules just provide new functions and types to be used from Python, but sometimes the code
in an extension module can be useful for other extension modules. For example, an extension module could
implement a type “collection” which works like lists without order. Just like the standard Python list type has a C
API which permits extension modules to create and manipulate lists, this new collection type should have a set of
C functions for direct manipulation from other extension modules.

At first sight this seems easy: just write the functions (without declaring themstatic , of course), provide an
appropriate header file, and document the C API. And in fact this would work if all extension modules were
always linked statically with the Python interpreter. When modules are used as shared libraries, however, the
symbols defined in one module may not be visible to another module. The details of visibility depend on the
operating system; some systems use one global namespace for the Python interpreter and all extension modules
(Windows, for example), whereas others require an explicit list of imported symbols at module link time (AIX is
one example), or offer a choice of different strategies (most Unices). And even if symbols are globally visible, the
module whose functions one wishes to call might not have been loaded yet!

Portability therefore requires not to make any assumptions about symbol visibility. This means that all symbols in
extension modules should be declaredstatic , except for the module’s initialization function, in order to avoid
name clashes with other extension modules (as discussed in section 1.4). And it means that symbols thatshould
be accessible from other extension modules must be exported in a different way.

Python provides a special mechanism to pass C-level information (pointers) from one extension module to another
one: CObjects. A CObject is a Python data type which stores a pointer (void *). CObjects can only be created
and accessed via their C API, but they can be passed around like any other Python object. In particular, they can be
assigned to a name in an extension module’s namespace. Other extension modules can then import this module,
retrieve the value of this name, and then retrieve the pointer from the CObject.

There are many ways in which CObjects can be used to export the C API of an extension module. Each name
could get its own CObject, or all C API pointers could be stored in an array whose address is published in a
CObject. And the various tasks of storing and retrieving the pointers can be distributed in different ways between
the module providing the code and the client modules.

The following example demonstrates an approach that puts most of the burden on the writer of the exporting
module, which is appropriate for commonly used library modules. It stores all C API pointers (just one in the
example!) in an array ofvoid pointers which becomes the value of a CObject. The header file corresponding
to the module provides a macro that takes care of importing the module and retrieving its C API pointers; client
modules only have to call this macro before accessing the C API.

The exporting module is a modification of thespam module from section 1.1. The functionspam.system()
does not call the C library functionsystem() directly, but a functionPySpam System() , which would of
course do something more complicated in reality (such as adding “spam” to every command). This function
PySpam System() is also exported to other extension modules.

The functionPySpam System() is a plain C function, declaredstatic like everything else:

1.11. Writing Extensions in C++ 15

static int
PySpam_System(char *command)
{

return system(command);
}

The functionspam system() is modified in a trivial way:

static PyObject *
spam_system(PyObject *self, PyObject *args)
{

char *command;
int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = PySpam_System(command);
return Py_BuildValue("i", sts);

}

In the beginning of the module, right after the line

#include "Python.h"

two more lines must be added:

#define SPAM_MODULE
#include "spammodule.h"

The#define is used to tell the header file that it is being included in the exporting module, not a client module.
Finally, the module’s initialization function must take care of initializing the C API pointer array:

PyMODINIT_FUNC
initspam(void)
{

PyObject *m;
static void *PySpam_API[PySpam_API_pointers];
PyObject *c_api_object;

m = Py_InitModule("spam", SpamMethods);

/* Initialize the C API pointer array */
PySpam_API[PySpam_System_NUM] = (void *)PySpam_System;

/* Create a CObject containing the API pointer array’s address */
c_api_object = PyCObject_FromVoidPtr((void *)PySpam_API, NULL);

if (c_api_object != NULL)
PyModule_AddObject(m, "_C_API", c_api_object);

}

Note thatPySpam API is declaredstatic ; otherwise the pointer array would disappear wheninitspam()
terminates!

16 Chapter 1. Extending Python with C or C++

The bulk of the work is in the header file ‘spammodule.h’, which looks like this:

#ifndef Py_SPAMMODULE_H
#define Py_SPAMMODULE_H
#ifdef __cplusplus
extern "C" {
#endif

/* Header file for spammodule */

/* C API functions */
#define PySpam_System_NUM 0
#define PySpam_System_RETURN int
#define PySpam_System_PROTO (char *command)

/* Total number of C API pointers */
#define PySpam_API_pointers 1

#ifdef SPAM_MODULE
/* This section is used when compiling spammodule.c */

static PySpam_System_RETURN PySpam_System PySpam_System_PROTO;

#else
/* This section is used in modules that use spammodule’s API */

static void **PySpam_API;

#define PySpam_System \
(*(PySpam_System_RETURN (*)PySpam_System_PROTO) PySpam_API[PySpam_System_NUM])

/* Return -1 and set exception on error, 0 on success. */
static int
import_spam(void)
{

PyObject *module = PyImport_ImportModule("spam");

if (module != NULL) {
PyObject *c_api_object = PyObject_GetAttrString(module, "_C_API");
if (c_api_object == NULL)

return -1;
if (PyCObject_Check(c_api_object))

PySpam_API = (void **)PyCObject_AsVoidPtr(c_api_object);
Py_DECREF(c_api_object);

}
return 0;

}

#endif

#ifdef __cplusplus
}
#endif

#endif /* !defined(Py_SPAMMODULE_H) */

All that a client module must do in order to have access to the functionPySpam System() is to call the function
(or rather macro)import spam() in its initialization function:

1.12. Providing a C API for an Extension Module 17

PyMODINIT_FUNC
initclient(void)
{

PyObject *m;

Py_InitModule("client", ClientMethods);
if (import_spam() < 0)

return;
/* additional initialization can happen here */

}

The main disadvantage of this approach is that the file ‘spammodule.h’ is rather complicated. However, the basic
structure is the same for each function that is exported, so it has to be learned only once.

Finally it should be mentioned that CObjects offer additional functionality, which is especially useful for memory
allocation and deallocation of the pointer stored in a CObject. The details are described in thePython/C API
Reference Manualin the section “CObjects” and in the implementation of CObjects (files ‘Include/cobject.h’ and
‘Objects/cobject.c’ in the Python source code distribution).

18 Chapter 1. Extending Python with C or C++

CHAPTER

TWO

Defining New Types

As mentioned in the last chapter, Python allows the writer of an extension module to define new types that can be
manipulated from Python code, much like strings and lists in core Python.

This is not hard; the code for all extension types follows a pattern, but there are some details that you need to
understand before you can get started.

Note: The way new types are defined changed dramatically (and for the better) in Python 2.2. This document
documents how to define new types for Python 2.2 and later. If you need to support older versions of Python, you
will need to refer to older versions of this documentation.

2.1 The Basics

The Python runtime sees all Python objects as variables of typePyObject* . A PyObject is not a very
magnificent object - it just contains the refcount and a pointer to the object’s “type object”. This is where the
action is; the type object determines which (C) functions get called when, for instance, an attribute gets looked up
on an object or it is multiplied by another object. These C functions are called “type methods” to distinguish them
from things like[].append (which we call “object methods”).

So, if you want to define a new object type, you need to create a new type object.

This sort of thing can only be explained by example, so here’s a minimal, but complete, module that defines a new
type:

#include <Python.h>

typedef struct {
PyObject_HEAD
/* Type-specific fields go here. */

} noddy_NoddyObject;

static PyTypeObject noddy_NoddyType = {
PyObject_HEAD_INIT(NULL)
0, /*ob_size*/
"noddy.Noddy", /*tp_name*/
sizeof(noddy_NoddyObject), /*tp_basicsize*/
0, /*tp_itemsize*/
0, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash */
0, /*tp_call*/

19

0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT, /*tp_flags*/
"Noddy objects", /* tp_doc */

};

static PyMethodDef noddy_methods[] = {
{NULL} /* Sentinel */

};

#ifndef PyMODINIT_FUNC /* declarations for DLL import/export */
#define PyMODINIT_FUNC void
#endif
PyMODINIT_FUNC
initnoddy(void)
{

PyObject* m;

noddy_NoddyType.tp_new = PyType_GenericNew;
if (PyType_Ready(&noddy_NoddyType) < 0)

return;

m = Py_InitModule3("noddy", noddy_methods,
"Example module that creates an extension type.");

Py_INCREF(&noddy_NoddyType);
PyModule_AddObject(m, "Noddy", (PyObject *)&noddy_NoddyType);

}

Now that’s quite a bit to take in at once, but hopefully bits will seem familiar from the last chapter.

The first bit that will be new is:

typedef struct {
PyObject_HEAD

} noddy_NoddyObject;

This is what a Noddy object will contain—in this case, nothing more than every Python object contains, namely a
refcount and a pointer to a type object. These are the fields thePyObject HEADmacro brings in. The reason
for the macro is to standardize the layout and to enable special debugging fields in debug builds. Note that there is
no semicolon after thePyObject HEADmacro; one is included in the macro definition. Be wary of adding one
by accident; it’s easy to do from habit, and your compiler might not complain, but someone else’s probably will!
(On Windows, MSVC is known to call this an error and refuse to compile the code.)

For contrast, let’s take a look at the corresponding definition for standard Python integers:

typedef struct {
PyObject_HEAD
long ob_ival;

} PyIntObject;

Moving on, we come to the crunch — the type object.

20 Chapter 2. Defining New Types

static PyTypeObject noddy_NoddyType = {
PyObject_HEAD_INIT(NULL)
0, /*ob_size*/
"noddy.Noddy", /*tp_name*/
sizeof(noddy_NoddyObject), /*tp_basicsize*/
0, /*tp_itemsize*/
0, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash */
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT, /*tp_flags*/
"Noddy objects", /* tp_doc */

};

Now if you go and look up the definition ofPyTypeObject in ‘object.h’ you’ll see that it has many more fields
that the definition above. The remaining fields will be filled with zeros by the C compiler, and it’s common practice
to not specify them explicitly unless you need them.

This is so important that we’re going to pick the top of it apart still further:

PyObject_HEAD_INIT(NULL)

This line is a bit of a wart; what we’d like to write is:

PyObject_HEAD_INIT(&PyType_Type)

as the type of a type object is “type”, but this isn’t strictly conforming C and some compilers complain. Fortunately,
this member will be filled in for us byPyType Ready() .

0, /* ob_size */

The ob size field of the header is not used; its presence in the type structure is a historical artifact that is
maintained for binary compatibility with extension modules compiled for older versions of Python. Always set
this field to zero.

"noddy.Noddy", /* tp_name */

The name of our type. This will appear in the default textual representation of our objects and in some error
messages, for example:

2.1. The Basics 21

>>> "" + noddy.new_noddy()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: cannot add type "noddy.Noddy" to string

Note that the name is a dotted name that includes both the module name and the name of the type within the
module. The module in this case isnoddy and the type isNoddy , so we set the type name tonoddy.Noddy .

sizeof(noddy_NoddyObject), /* tp_basicsize */

This is so that Python knows how much memory to allocate when you callPyObject New() .

0, /* tp_itemsize */

This has to do with variable length objects like lists and strings. Ignore this for now.

Skipping a number of type methods that we don’t provide, we set the class flags toPy TPFLAGS DEFAULT.

Py_TPFLAGS_DEFAULT, /*tp_flags*/

All types should include this constant in their flags. It enables all of the members defined by the current version
of Python.

We provide a doc string for the type intp doc .

"Noddy objects", /* tp_doc */

Now we get into the type methods, the things that make your objects different from the others. We aren’t going
to implement any of these in this version of the module. We’ll expand this example later to have more interesting
behavior.

For now, all we want to be able to do is to create newNoddy objects. To enable object creation, we have to
provide atp new implementation. In this case, we can just use the default implementation provided by the
API function PyType GenericNew() . We’d like to just assign this to thetp new slot, but we can’t, for
portability sake, On some platforms or compilers, we can’t statically initialize a structure member with a function
defined in another C module, so, instead, we’ll assign thetp new slot in the module initialization function just
before callingPyType Ready() :

noddy_NoddyType.tp_new = PyType_GenericNew;
if (PyType_Ready(&noddy_NoddyType) < 0)

return;

All the other type methods areNULL, so we’ll go over them later — that’s for a later section!

Everything else in the file should be familiar, except for some code ininitnoddy() :

if (PyType_Ready(&noddy_NoddyType) < 0)
return;

This initializes theNoddy type, filing in a number of members, includingob type that we initially set toNULL.

PyModule_AddObject(m, "Noddy", (PyObject *)&noddy_NoddyType);

This adds the type to the module dictionary. This allows us to createNoddy instances by calling theNoddy class:

22 Chapter 2. Defining New Types

import noddy
mynoddy = noddy.Noddy()

That’s it! All that remains is to build it; put the above code in a file called ‘noddy.c’ and

from distutils.core import setup, Extension
setup(name="noddy", version="1.0",

ext_modules=[Extension("noddy", ["noddy.c"])])

in a file called ‘setup.py’; then typing

$ python setup.py build

at a shell should produce a file ‘noddy.so’ in a subdirectory; move to that directory and fire up Python — you
should be able toimport noddy and play around with Noddy objects.

That wasn’t so hard, was it?

Of course, the current Noddy type is pretty uninteresting. It has no data and doesn’t do anything. It can’t even be
subclassed.

2.1.1 Adding data and methods to the Basic example

Let’s expend the basic example to add some data and methods. Let’s also make the type usable as a base class.
We’ll create a new module,noddy2 that adds these capabilities:

#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first;
PyObject *last;
int number;

} Noddy;

static void
Noddy_dealloc(Noddy* self)
{

Py_XDECREF(self->first);
Py_XDECREF(self->last);
self->ob_type->tp_free((PyObject*)self);

}

static PyObject *
Noddy_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{

Noddy *self;

self = (Noddy *)type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyString_FromString("");
if (self->first == NULL)

{
Py_DECREF(self);
return NULL;

}

2.1. The Basics 23

self->last = PyString_FromString("");
if (self->last == NULL)

{
Py_DECREF(self);
return NULL;

}

self->number = 0;
}

return (PyObject *)self;
}

static int
Noddy_init(Noddy *self, PyObject *args, PyObject *kwds)
{

PyObject *first=NULL, *last=NULL;

static char *kwlist[] = {"first", "last", "number", NULL};

if (! PyArg_ParseTupleAndKeywords(args, kwds, "|OOi", kwlist,
&first, &last,
&self->number))

return -1;

if (first) {
Py_XDECREF(self->first);
Py_INCREF(first);
self->first = first;

}

if (last) {
Py_XDECREF(self->last);
Py_INCREF(last);
self->last = last;

}

return 0;
}

static PyMemberDef Noddy_members[] = {
{"first", T_OBJECT_EX, offsetof(Noddy, first), 0,

"first name"},
{"last", T_OBJECT_EX, offsetof(Noddy, last), 0,

"last name"},
{"number", T_INT, offsetof(Noddy, number), 0,

"noddy number"},
{NULL} /* Sentinel */

};

static PyObject *
Noddy_name(Noddy* self)
{

static PyObject *format = NULL;
PyObject *args, *result;

if (format == NULL) {
format = PyString_FromString("%s %s");
if (format == NULL)

return NULL;
}

24 Chapter 2. Defining New Types

if (self->first == NULL) {
PyErr_SetString(PyExc_AttributeError, "first");
return NULL;

}

if (self->last == NULL) {
PyErr_SetString(PyExc_AttributeError, "last");
return NULL;

}

args = Py_BuildValue("OO", self->first, self->last);
if (args == NULL)

return NULL;

result = PyString_Format(format, args);
Py_DECREF(args);

return result;
}

static PyMethodDef Noddy_methods[] = {
{"name", (PyCFunction)Noddy_name, METH_NOARGS,

"Return the name, combining the first and last name"
},
{NULL} /* Sentinel */

};

static PyTypeObject NoddyType = {
PyObject_HEAD_INIT(NULL)
0, /*ob_size*/
"noddy.Noddy", /*tp_name*/
sizeof(Noddy), /*tp_basicsize*/
0, /*tp_itemsize*/
(destructor)Noddy_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash */
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
"Noddy objects", /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
Noddy_methods, /* tp_methods */
Noddy_members, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */

2.1. The Basics 25

0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)Noddy_init, /* tp_init */
0, /* tp_alloc */
Noddy_new, /* tp_new */

};

static PyMethodDef module_methods[] = {
{NULL} /* Sentinel */

};

#ifndef PyMODINIT_FUNC /* declarations for DLL import/export */
#define PyMODINIT_FUNC void
#endif
PyMODINIT_FUNC
initnoddy2(void)
{

PyObject* m;

if (PyType_Ready(&NoddyType) < 0)
return;

m = Py_InitModule3("noddy2", module_methods,
"Example module that creates an extension type.");

if (m == NULL)
return;

Py_INCREF(&NoddyType);
PyModule_AddObject(m, "Noddy", (PyObject *)&NoddyType);

}

This version of the module has a number of changes.

We’ve added an extra include:

#include "structmember.h"

This include provides declarations that we use to handle attributes, as described a bit later.

The name of theNoddy object structure has been shortened toNoddy . The type object name has been shortened
to NoddyType .

The Noddy type now has three data attributes,first, last, andnumber. The first and last variables are Python
strings containing first and last names. Thenumberattribute is an integer.

The object structure is updated accordingly:

typedef struct {
PyObject_HEAD
PyObject *first;
PyObject *last;
int number;

} Noddy;

Because we now have data to manage, we have to be more careful about object allocation and deallocation. At a
minimum, we need a deallocation method:

26 Chapter 2. Defining New Types

static void
Noddy_dealloc(Noddy* self)
{

Py_XDECREF(self->first);
Py_XDECREF(self->last);
self->ob_type->tp_free((PyObject*)self);

}

which is assigned to thetp dealloc member:

(destructor)Noddy_dealloc, /*tp_dealloc*/

This method decrements the reference counts of the two Python attributes. We usePy XDECREF() here because
thefirst andlast members could beNULL. It then calls thetp free member of the object’s type to free the
object’s memory. Note that the object’s type might not beNoddyType , because the object may be an instance of
a subclass.

We want to make sure that the first and last names are initialized to empty strings, so we provide a new method:

static PyObject *
Noddy_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{

Noddy *self;

self = (Noddy *)type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyString_FromString("");
if (self->first == NULL)

{
Py_DECREF(self);
return NULL;

}

self->last = PyString_FromString("");
if (self->last == NULL)

{
Py_DECREF(self);
return NULL;

}

self->number = 0;
}

return (PyObject *)self;
}

and install it in thetp new member:

Noddy_new, /* tp_new */

The new member is responsible for creating (as opposed to initializing) objects of the type. It is exposed in
Python as the new () method. See the paper titled “Unifying types and classes in Python” for a detailed
discussion of the new () method. One reason to implement a new method is to assure the initial values
of instance variables. In this case, we use the new method to make sure that the initial values of the members
first and last are notNULL. If we didn’t care whether the initial values wereNULL, we could have used
PyType GenericNew() as our new method, as we did before.PyType GenericNew() initializes all of

2.1. The Basics 27

the instance variable members to NULLs.

The new method is a static method that is passed the type being instantiated and any arguments passed when the
type was called, and that returns the new object created. New methods always accept positional and keyword
arguments, but they often ignore the arguments, leaving the argument handling to initializer methods. Note that
if the type supports subclassing, the type passed may not be the type being defined. The new method calls the
tp alloc slot to allocate memory. We don’t fill thetp alloc slot ourselves. RatherPyType Ready() fills it
for us by inheriting it from our base class, which isobject by default. Most types use the default allocation.

We provide an initialization function:

static int
Noddy_init(Noddy *self, PyObject *args, PyObject *kwds)
{

PyObject *first=NULL, *last=NULL;

static char *kwlist[] = {"first", "last", "number", NULL};

if (! PyArg_ParseTupleAndKeywords(args, kwds, "|OOi", kwlist,
&first, &last,
&self->number))

return -1;

if (first) {
Py_XDECREF(self->first);
Py_INCREF(first);
self->first = first;

}

if (last) {
Py_XDECREF(self->last);
Py_INCREF(last);
self->last = last;

}

return 0;
}

by filling the tp init slot.

(initproc)Noddy_init, /* tp_init */

The tp init slot is exposed in Python as the init () method. It is used to initialize an object after it’s
created. Unlike the new method, we can’t guarantee that the initializer is called. The initializer isn’t called when
unpickling objects and it can be overridden. Our initializer accepts arguments to provide initial values for our
instance. Initializers always accept positional and keyword arguments.

We want to want to expose our instance variables as attributes. There are a number of ways to do that. The
simplest way is to define member definitions:

28 Chapter 2. Defining New Types

static PyMemberDef Noddy_members[] = {
{"first", T_OBJECT_EX, offsetof(Noddy, first), 0,

"first name"},
{"last", T_OBJECT_EX, offsetof(Noddy, last), 0,

"last name"},
{"number", T_INT, offsetof(Noddy, number), 0,

"noddy number"},
{NULL} /* Sentinel */

};

and put the definitions in thetp members slot:

Noddy_members, /* tp_members */

Each member definition has a member name, type, offset, access flags and documentation string. See the “Generic
Attribute Management” section below for details.

A disadvantage of this approach is that it doesn’t provide a way to restrict the types of objects that can be assigned
to the Python attributes. We expect the first and last names to be strings, but any Python objects can be assigned.
Further, the attributes can be deleted, setting the C pointers toNULL. Even though we can make sure the members
are initialized to non-NULLvalues, the members can be set toNULL if the attributes are deleted.

We define a single method,name, that outputs the objects name as the concatenation of the first and last names.

static PyObject *
Noddy_name(Noddy* self)
{

static PyObject *format = NULL;
PyObject *args, *result;

if (format == NULL) {
format = PyString_FromString("%s %s");
if (format == NULL)

return NULL;
}

if (self->first == NULL) {
PyErr_SetString(PyExc_AttributeError, "first");
return NULL;

}

if (self->last == NULL) {
PyErr_SetString(PyExc_AttributeError, "last");
return NULL;

}

args = Py_BuildValue("OO", self->first, self->last);
if (args == NULL)

return NULL;

result = PyString_Format(format, args);
Py_DECREF(args);

return result;
}

The method is implemented as a C function that takes aNoddy (or Noddy subclass) instance as the first argument.
Methods always take an instance as the first argument. Methods often take positional and keyword arguments as
well, but in this cased we don’t take any and don’t need to accept a positional argument tuple or keyword argument

2.1. The Basics 29

dictionary. This method is equivalent to the Python method:

def name(self):
return "%s %s" % (self.first, self.last)

Note that we have to check for the possibility that ourfirst andlast members areNULL. This is because they
can be deleted, in which case they are set toNULL. It would be better to prevent deletion of these attributes and to
restrict the attribute values to be strings. We’ll see how to do that in the next section.

Now that we’ve defined the method, we need to create an array of method definitions:

static PyMethodDef Noddy_methods[] = {
{"name", (PyCFunction)Noddy_name, METH_NOARGS,

"Return the name, combining the first and last name"
},
{NULL} /* Sentinel */

};

and assign them to thetp methods slot:

Noddy_methods, /* tp_methods */

Note that used theMETH NOARGSflag to indicate that the method is passed no arguments.

Finally, we’ll make our type usable as a base class. We’ve written our methods carefully so far so that they don’t
make any assumptions about the type of the object being created or used, so all we need to do is to add the
Py TPFLAGS BASETYPEto our class flag definition:

Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/

We renameinitnoddy() to initnoddy2() and update the module name passed toPy InitModule3() .

Finally, we update our ‘setup.py’ file to build the new module:

from distutils.core import setup, Extension
setup(name="noddy", version="1.0",

ext_modules=[
Extension("noddy", ["noddy.c"]),
Extension("noddy2", ["noddy2.c"]),
])

2.1.2 Providing finer control over data attributes

In this section, we’ll provide finer control over how thefirst andlast attributes are set in theNoddy example.
In the previous version of our module, the instance variablesfirst andlast could be set to non-string values
or even deleted. We want to make sure that these attributes always contain strings.

#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first;
PyObject *last;
int number;

} Noddy;

30 Chapter 2. Defining New Types

static void
Noddy_dealloc(Noddy* self)
{

Py_XDECREF(self->first);
Py_XDECREF(self->last);
self->ob_type->tp_free((PyObject*)self);

}

static PyObject *
Noddy_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{

Noddy *self;

self = (Noddy *)type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyString_FromString("");
if (self->first == NULL)

{
Py_DECREF(self);
return NULL;

}

self->last = PyString_FromString("");
if (self->last == NULL)

{
Py_DECREF(self);
return NULL;

}

self->number = 0;
}

return (PyObject *)self;
}

static int
Noddy_init(Noddy *self, PyObject *args, PyObject *kwds)
{

PyObject *first=NULL, *last=NULL;

static char *kwlist[] = {"first", "last", "number", NULL};

if (! PyArg_ParseTupleAndKeywords(args, kwds, "|OOi", kwlist,
&first, &last,
&self->number))

return -1;

if (first) {
Py_DECREF(self->first);
Py_INCREF(first);
self->first = first;

}

if (last) {
Py_DECREF(self->last);
Py_INCREF(last);
self->last = last;

}

return 0;
}

2.1. The Basics 31

static PyMemberDef Noddy_members[] = {
{"number", T_INT, offsetof(Noddy, number), 0,

"noddy number"},
{NULL} /* Sentinel */

};

static PyObject *
Noddy_getfirst(Noddy *self, void *closure)
{

Py_INCREF(self->first);
return self->first;

}

static int
Noddy_setfirst(Noddy *self, PyObject *value, void *closure)
{

if (value == NULL) {
PyErr_SetString(PyExc_TypeError, "Cannot delete the first attribute");
return -1;

}

if (! PyString_Check(value)) {
PyErr_SetString(PyExc_TypeError,

"The first attribute value must be a string");
return -1;

}

Py_DECREF(self->first);
Py_INCREF(value);
self->first = value;

return 0;
}

static PyObject *
Noddy_getlast(Noddy *self, void *closure)
{

Py_INCREF(self->last);
return self->last;

}

static int
Noddy_setlast(Noddy *self, PyObject *value, void *closure)
{

if (value == NULL) {
PyErr_SetString(PyExc_TypeError, "Cannot delete the last attribute");
return -1;

}

if (! PyString_Check(value)) {
PyErr_SetString(PyExc_TypeError,

"The last attribute value must be a string");
return -1;

}

Py_DECREF(self->last);
Py_INCREF(value);
self->last = value;

return 0;
}

static PyGetSetDef Noddy_getseters[] = {

32 Chapter 2. Defining New Types

{"first",
(getter)Noddy_getfirst, (setter)Noddy_setfirst,
"first name",
NULL},

{"last",
(getter)Noddy_getlast, (setter)Noddy_setlast,
"last name",
NULL},

{NULL} /* Sentinel */
};

static PyObject *
Noddy_name(Noddy* self)
{

static PyObject *format = NULL;
PyObject *args, *result;

if (format == NULL) {
format = PyString_FromString("%s %s");
if (format == NULL)

return NULL;
}

args = Py_BuildValue("OO", self->first, self->last);
if (args == NULL)

return NULL;

result = PyString_Format(format, args);
Py_DECREF(args);

return result;
}

static PyMethodDef Noddy_methods[] = {
{"name", (PyCFunction)Noddy_name, METH_NOARGS,

"Return the name, combining the first and last name"
},
{NULL} /* Sentinel */

};

static PyTypeObject NoddyType = {
PyObject_HEAD_INIT(NULL)
0, /*ob_size*/
"noddy.Noddy", /*tp_name*/
sizeof(Noddy), /*tp_basicsize*/
0, /*tp_itemsize*/
(destructor)Noddy_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash */
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
"Noddy objects", /* tp_doc */

2.1. The Basics 33

0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
Noddy_methods, /* tp_methods */
Noddy_members, /* tp_members */
Noddy_getseters, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)Noddy_init, /* tp_init */
0, /* tp_alloc */
Noddy_new, /* tp_new */

};

static PyMethodDef module_methods[] = {
{NULL} /* Sentinel */

};

#ifndef PyMODINIT_FUNC /* declarations for DLL import/export */
#define PyMODINIT_FUNC void
#endif
PyMODINIT_FUNC
initnoddy3(void)
{

PyObject* m;

if (PyType_Ready(&NoddyType) < 0)
return;

m = Py_InitModule3("noddy3", module_methods,
"Example module that creates an extension type.");

if (m == NULL)
return;

Py_INCREF(&NoddyType);
PyModule_AddObject(m, "Noddy", (PyObject *)&NoddyType);

}

To provide greater control, over thefirst and last attributes, we’ll use custom getter and setter functions.
Here are the functions for getting and setting thefirst attribute:

34 Chapter 2. Defining New Types

Noddy_getfirst(Noddy *self, void *closure)
{

Py_INCREF(self->first);
return self->first;

}

static int
Noddy_setfirst(Noddy *self, PyObject *value, void *closure)
{

if (value == NULL) {
PyErr_SetString(PyExc_TypeError, "Cannot delete the first attribute");
return -1;

}

if (! PyString_Check(value)) {
PyErr_SetString(PyExc_TypeError,

"The first attribute value must be a string");
return -1;

}

Py_DECREF(self->first);
Py_INCREF(value);
self->first = value;

return 0;
}

The getter function is passed aNoddy object and a “closure”, which is void pointer. In this case, the closure is
ignored. (The closure supports an advanced usage in which definition data is passed to the getter and setter. This
could, for example, be used to allow a single set of getter and setter functions that decide the attribute to get or set
based on data in the closure.)

The setter function is passed theNoddy object, the new value, and the closure. The new value may beNULL, in
which case the attribute is being deleted. In our setter, we raise an error if the attribute is deleted or if the attribute
value is not a string.

We create an array ofPyGetSetDef structures:

static PyGetSetDef Noddy_getseters[] = {
{"first",

(getter)Noddy_getfirst, (setter)Noddy_setfirst,
"first name",
NULL},

{"last",
(getter)Noddy_getlast, (setter)Noddy_setlast,
"last name",
NULL},

{NULL} /* Sentinel */
};

and register it in thetp getset slot:

Noddy_getseters, /* tp_getset */

to register out attribute getters and setters.

The last item in aPyGetSetDef structure is the closure mentioned above. In this case, we aren’t using the
closure, so we just passNULL.

2.1. The Basics 35

We also remove the member definitions for these attributes:

static PyMemberDef Noddy_members[] = {
{"number", T_INT, offsetof(Noddy, number), 0,

"noddy number"},
{NULL} /* Sentinel */

};

With these changes, we can assure that thefirst and last members are never NULL so we can remove
checks forNULLvalues in almost all cases. This means that most of thePy XDECREF() calls can be converted
to Py DECREF() calls. The only place we can’t change these calls is in the deallocator, where there is the
possibility that the initialization of these members failed in the constructor.

We also rename the module initialization function and module name in the initialization function, as we did before,
and we add an extra definition to the ‘setup.py’ file.

2.1.3 Supporting cyclic garbage collection

Python has a cyclic-garbage collector that can identify unneeded objects even when their reference counts are not
zero. This can happen when objects are involved in cycles. For example, consider:

>>> l = []
>>> l.append(l)
>>> del l

In this example, we create a list that contains itself. When we delete it, it still has a reference from itself. It’s
reference count doesn’t drop to zero. Fortunately, Python’s cyclic-garbage collector will eventually figure out that
that the list is garbage and free it.

In the second version of theNoddy example, we allowed any kind of object to be stored in thefirst or last
attributes. This means thatNoddy objects can participate in cycles:

>>> import noddy2
>>> n = noddy2.Noddy()
>>> l = [n]
>>> n.first = l

This is pretty silly, but it gives us an excuse to add support for the cyclic-garbage collector to theNoddy example.
To support cyclic garbage collection, types need to fill two slots and set a class flag that enables these slots:

#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first;
PyObject *last;
int number;

} Noddy;

static int
Noddy_traverse(Noddy *self, visitproc visit, void *arg)
{

if (self->first && visit(self->first, arg) < 0)
return -1;

if (self->last && visit(self->last, arg) < 0)
return -1;

36 Chapter 2. Defining New Types

return 0;
}

static int
Noddy_clear(Noddy *self)
{

Py_XDECREF(self->first);
self->first = NULL;
Py_XDECREF(self->last);
self->last = NULL;

return 0;
}

static void
Noddy_dealloc(Noddy* self)
{

Noddy_clear(self);
self->ob_type->tp_free((PyObject*)self);

}

static PyObject *
Noddy_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{

Noddy *self;

self = (Noddy *)type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyString_FromString("");
if (self->first == NULL)

{
Py_DECREF(self);
return NULL;

}

self->last = PyString_FromString("");
if (self->last == NULL)

{
Py_DECREF(self);
return NULL;

}

self->number = 0;
}

return (PyObject *)self;
}

static int
Noddy_init(Noddy *self, PyObject *args, PyObject *kwds)
{

PyObject *first=NULL, *last=NULL;

static char *kwlist[] = {"first", "last", "number", NULL};

if (! PyArg_ParseTupleAndKeywords(args, kwds, "|OOi", kwlist,
&first, &last,
&self->number))

return -1;

if (first) {
Py_XDECREF(self->first);
Py_INCREF(first);

2.1. The Basics 37

self->first = first;
}

if (last) {
Py_XDECREF(self->last);
Py_INCREF(last);
self->last = last;

}

return 0;
}

static PyMemberDef Noddy_members[] = {
{"first", T_OBJECT_EX, offsetof(Noddy, first), 0,

"first name"},
{"last", T_OBJECT_EX, offsetof(Noddy, last), 0,

"last name"},
{"number", T_INT, offsetof(Noddy, number), 0,

"noddy number"},
{NULL} /* Sentinel */

};

static PyObject *
Noddy_name(Noddy* self)
{

static PyObject *format = NULL;
PyObject *args, *result;

if (format == NULL) {
format = PyString_FromString("%s %s");
if (format == NULL)

return NULL;
}

if (self->first == NULL) {
PyErr_SetString(PyExc_AttributeError, "first");
return NULL;

}

if (self->last == NULL) {
PyErr_SetString(PyExc_AttributeError, "last");
return NULL;

}

args = Py_BuildValue("OO", self->first, self->last);
if (args == NULL)

return NULL;

result = PyString_Format(format, args);
Py_DECREF(args);

return result;
}

static PyMethodDef Noddy_methods[] = {
{"name", (PyCFunction)Noddy_name, METH_NOARGS,

"Return the name, combining the first and last name"
},
{NULL} /* Sentinel */

};

static PyTypeObject NoddyType = {

38 Chapter 2. Defining New Types

PyObject_HEAD_INIT(NULL)
0, /*ob_size*/
"noddy.Noddy", /*tp_name*/
sizeof(Noddy), /*tp_basicsize*/
0, /*tp_itemsize*/
(destructor)Noddy_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash */
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /*tp_flags*/
"Noddy objects", /* tp_doc */
(traverseproc)Noddy_traverse, /* tp_traverse */
(inquiry)Noddy_clear, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
Noddy_methods, /* tp_methods */
Noddy_members, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)Noddy_init, /* tp_init */
0, /* tp_alloc */
Noddy_new, /* tp_new */

};

static PyMethodDef module_methods[] = {
{NULL} /* Sentinel */

};

#ifndef PyMODINIT_FUNC /* declarations for DLL import/export */
#define PyMODINIT_FUNC void
#endif
PyMODINIT_FUNC
initnoddy4(void)
{

PyObject* m;

if (PyType_Ready(&NoddyType) < 0)
return;

m = Py_InitModule3("noddy4", module_methods,
"Example module that creates an extension type.");

if (m == NULL)
return;

Py_INCREF(&NoddyType);

2.1. The Basics 39

PyModule_AddObject(m, "Noddy", (PyObject *)&NoddyType);
}

The traversal method provides access to subobjects that could participate in cycles:

static int
Noddy_traverse(Noddy *self, visitproc visit, void *arg)
{

if (self->first && visit(self->first, arg) < 0)
return -1;

if (self->last && visit(self->last, arg) < 0)
return -1;

return 0;
}

For each subobject that can participate in cycles, we need to call thevisit() function, which is passed to the
traversal method. Thevisit() function takes as arguments the subobject and the extra argumentarg passed to
the traversal method.

We also need to provide a method for clearing any subobjects that can participate in cycles. We implement the
method and reimplement the deallocator to use it:

static int
Noddy_clear(Noddy *self)
{

Py_XDECREF(self->first);
self->first = NULL;
Py_XDECREF(self->last);
self->last = NULL;

return 0;
}

static void
Noddy_dealloc(Noddy* self)
{

Noddy_clear(self);
self->ob_type->tp_free((PyObject*)self);

}

Finally, we add thePy TPFLAGS HAVE GCflag to the class flags:

Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /*tp_flags*/

That’s pretty much it. If we had written customtp alloc or tp free slots, we’d need to modify them for
cyclic-garbage collection. Most extensions will use the versions automatically provided.

2.2 Type Methods

This section aims to give a quick fly-by on the various type methods you can implement and what they do.

Here is the definition ofPyTypeObject , with some fields only used in debug builds omitted:

typedef struct _typeobject {
PyObject_VAR_HEAD

40 Chapter 2. Defining New Types

char *tp_name; /* For printing, in format "<module>.<name>" */
int tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;
printfunc tp_print;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
cmpfunc tp_compare;
reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
long tp_flags;

char *tp_doc; /* Documentation string */

/* Assigned meaning in release 2.0 */
/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* Assigned meaning in release 2.1 */
/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
long tp_weaklistoffset;

/* Added in release 2.2 */
/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;
struct _typeobject *tp_base;
PyObject *tp_dict;
descrgetfunc tp_descr_get;
descrsetfunc tp_descr_set;
long tp_dictoffset;
initproc tp_init;

2.2. Type Methods 41

allocfunc tp_alloc;
newfunc tp_new;
freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;
PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;
PyObject *tp_subclasses;
PyObject *tp_weaklist;

} PyTypeObject;

Now that’s alot of methods. Don’t worry too much though - if you have a type you want to define, the chances
are very good that you will only implement a handful of these.

As you probably expect by now, we’re going to go over this and give more information about the various handlers.
We won’t go in the order they are defined in the structure, because there is a lot of historical baggage that impacts
the ordering of the fields; be sure your type initializaion keeps the fields in the right order! It’s often easiest to find
an example that includes all the fields you need (even if they’re initialized to0) and then change the values to suit
your new type.

char *tp_name; /* For printing */

The name of the type - as mentioned in the last section, this will appear in various places, almost entirely for
diagnostic purposes. Try to choose something that will be helpful in such a situation!

int tp_basicsize, tp_itemsize; /* For allocation */

These fields tell the runtime how much memory to allocate when new objects of this type are created. Python has
some builtin support for variable length structures (think: strings, lists) which is where thetp itemsize field
comes in. This will be dealt with later.

char *tp_doc;

Here you can put a string (or its address) that you want returned when the Python script referencesobj. doc
to retrieve the docstring.

Now we come to the basic type methods—the ones most extension types will implement.

2.2.1 Finalization and De-allocation

destructor tp_dealloc;

This function is called when the reference count of the instance of your type is reduced to zero and the Python
interpreter wants to reclaim it. If your type has memory to free or other clean-up to perform, put it here. The
object itself needs to be freed here as well. Here is an example of this function:

42 Chapter 2. Defining New Types

static void
newdatatype_dealloc(newdatatypeobject * obj)
{

free(obj->obj_UnderlyingDatatypePtr);
obj->ob_type->tp_free(obj);

}

One important requirement of the deallocator function is that it leaves any pending exceptions alone. This is
important since deallocators are frequently called as the interpreter unwinds the Python stack; when the stack is
unwound due to an exception (rather than normal returns), nothing is done to protect the deallocators from seeing
that an exception has already been set. Any actions which a deallocator performs which may cause additional
Python code to be executed may detect that an exception has been set. This can lead to misleading errors from
the interpreter. The proper way to protect against this is to save a pending exception before performing the unsafe
action, and restoring it when done. This can be done using thePyErr Fetch() andPyErr Restore()
functions:

static void
my_dealloc(PyObject *obj)
{

MyObject *self = (MyObject *) obj;
PyObject *cbresult;

if (self->my_callback != NULL) {
PyObject *err_type, *err_value, *err_traceback;
int have_error = PyErr_Occurred() ? 1 : 0;

if (have_error)
PyErr_Fetch(&err_type, &err_value, &err_traceback);

cbresult = PyObject_CallObject(self->my_callback, NULL);
if (cbresult == NULL)

PyErr_WriteUnraisable();
else

Py_DECREF(cbresult);

if (have_error)
PyErr_Restore(err_type, err_value, err_traceback);

Py_DECREF(self->my_callback);
}
obj->ob_type->tp_free((PyObject*)self);

}

2.2.2 Object Presentation

In Python, there are three ways to generate a textual representation of an object: therepr() function (or equiv-
alent backtick syntax), thestr() function, and theprint statement. For most objects, theprint statement is
equivalent to thestr() function, but it is possible to special-case printing to aFILE* if necessary; this should
only be done if efficiency is identified as a problem and profiling suggests that creating a temporary string object
to be written to a file is too expensive.

These handlers are all optional, and most types at most need to implement thetp str andtp repr handlers.

2.2. Type Methods 43

reprfunc tp_repr;
reprfunc tp_str;
printfunc tp_print;

The tp repr handler should return a string object containing a representation of the instance for which it is
called. Here is a simple example:

static PyObject *
newdatatype_repr(newdatatypeobject * obj)
{

return PyString_FromFormat("Repr-ified_newdatatype{{size:\%d}}",
obj->obj_UnderlyingDatatypePtr->size);

}

If no tp repr handler is specified, the interpreter will supply a representation that uses the type’stp name
and a uniquely-identifying value for the object.

Thetp str handler is tostr() what thetp repr handler described above is torepr() ; that is, it is called
when Python code callsstr() on an instance of your object. Its implementation is very similar to thetp repr
function, but the resulting string is intended for human consumption. Iftp str is not specified, thetp repr
handler is used instead.

Here is a simple example:

static PyObject *
newdatatype_str(newdatatypeobject * obj)
{

return PyString_FromFormat("Stringified_newdatatype{{size:\%d}}",
obj->obj_UnderlyingDatatypePtr->size);

}

The print function will be called whenever Python needs to ”print” an instance of the type. For example, if ’node’
is an instance of type TreeNode, then the print function is called when Python code calls:

print node

There is a flags argument and one flag,Py PRINT RAW, and it suggests that you print without string quotes and
possibly without interpreting escape sequences.

The print function receives a file object as an argument. You will likely want to write to that file object.

Here is a sampe print function:

static int
newdatatype_print(newdatatypeobject *obj, FILE *fp, int flags)
{

if (flags & Py_PRINT_RAW) {
fprintf(fp, "<{newdatatype object--size: %d}>",

obj->obj_UnderlyingDatatypePtr->size);
}
else {

fprintf(fp, "\"<{newdatatype object--size: %d}>\"",
obj->obj_UnderlyingDatatypePtr->size);

}
return 0;

}

44 Chapter 2. Defining New Types

2.2.3 Attribute Management

For every object which can support attributes, the corresponding type must provide the functions that control how
the attributes are resolved. There needs to be a function which can retrieve attributes (if any are defined), and
another to set attributes (if setting attributes is allowed). Removing an attribute is a special case, for which the
new value passed to the handler isNULL.

Python supports two pairs of attribute handlers; a type that supports attributes only needs to implement the func-
tions for one pair. The difference is that one pair takes the name of the attribute as achar* , while the other accepts
aPyObject* . Each type can use whichever pair makes more sense for the implementation’s convenience.

getattrfunc tp_getattr; /* char * version */
setattrfunc tp_setattr;
/* ... */
getattrofunc tp_getattrofunc; /* PyObject * version */
setattrofunc tp_setattrofunc;

If accessing attributes of an object is always a simple operation (this will be explained shortly), there are generic
implementations which can be used to provide thePyObject* version of the attribute management functions.
The actual need for type-specific attribute handlers almost completely disappeared starting with Python 2.2, though
there are many examples which have not been updated to use some of the new generic mechanism that is available.

Generic Attribute Management

New in version 2.2.

Most extension types only usesimpleattributes. So, what makes the attributes simple? There are only a couple of
conditions that must be met:

1. The name of the attributes must be known whenPyType Ready() is called.

2. No special processing is needed to record that an attribute was looked up or set, nor do actions need to be
taken based on the value.

Note that this list does not place any restrictions on the values of the attributes, when the values are computed, or
how relevant data is stored.

WhenPyType Ready() is called, it uses three tables referenced by the type object to createdescriptorswhich
are placed in the dictionary of the type object. Each descriptor controls access to one attribute of the instance
object. Each of the tables is optional; if all three areNULL, instances of the type will only have attributes that are
inherited from their base type, and should leave thetp getattro and tp setattro fields NULL as well,
allowing the base type to handle attributes.

The tables are declared as three fields of the type object:

struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;

If tp methods is notNULL, it must refer to an array ofPyMethodDef structures. Each entry in the table is
an instance of this structure:

typedef struct PyMethodDef {
char *ml_name; /* method name */
PyCFunction ml_meth; /* implementation function */
int ml_flags; /* flags */
char *ml_doc; /* docstring */

} PyMethodDef;

2.2. Type Methods 45

One entry should be defined for each method provided by the type; no entries are needed for methods inherited
from a base type. One additional entry is needed at the end; it is a sentinel that marks the end of the array. The
ml name field of the sentinel must beNULL.

XXX Need to refer to some unified discussion of the structure fields, shared with the next section.

The second table is used to define attributes which map directly to data stored in the instance. A variety of primitive
C types are supported, and access may be read-only or read-write. The structures in the table are defined as:

typedef struct PyMemberDef {
char *name;
int type;
int offset;
int flags;
char *doc;

} PyMemberDef;

For each entry in the table, a descriptor will be constructed and added to the type which will be able to ex-
tract a value from the instance structure. Thetype field should contain one of the type codes defined in the
‘structmember.h’ header; the value will be used to determine how to convert Python values to and from C values.
Theflags field is used to store flags which control how the attribute can be accessed.

XXX Need to move some of this to a shared section!

The following flag constants are defined in ‘structmember.h’; they may be combined using bitwise-OR.

Constant Meaning
READONLY Never writable.
RO Shorthand forREADONLY.
READ RESTRICTED Not readable in restricted mode.
WRITE RESTRICTED Not writable in restricted mode.
RESTRICTED Not readable or writable in restricted mode.

An interesting advantage of using thetp members table to build descriptors that are used at runtime is that
any attribute defined this way can have an associated docstring simply by providing the text in the table. An
application can use the introspection API to retrieve the descriptor from the class object, and get the docstring
using its doc attribute.

As with thetp methods table, a sentinel entry with aname value ofNULL is required.

Type-specific Attribute Management

For simplicity, only thechar* version will be demonstrated here; the type of the name parameter is the only
difference between thechar* andPyObject* flavors of the interface. This example effectively does the same
thing as the generic example above, but does not use the generic support added in Python 2.2. The value in
showing this is two-fold: it demonstrates how basic attribute management can be done in a way that is portable to
older versions of Python, and explains how the handler functions are called, so that if you do need to extend their
functionality, you’ll understand what needs to be done.

The tp getattr handler is called when the object requires an attribute look-up. It is called in the same situa-
tions where the getattr () method of a class would be called.

A likely way to handle this is (1) to implement a set of functions (such asnewdatatype getSize() and
newdatatype setSize() in the example below), (2) provide a method table listing these functions, and (3)
provide a getattr function that returns the result of a lookup in that table. The method table uses the same structure
as thetp methods field of the type object.

Here is an example:

46 Chapter 2. Defining New Types

static PyMethodDef newdatatype_methods[] = {
{"getSize", (PyCFunction)newdatatype_getSize, METH_VARARGS,

"Return the current size."},
{"setSize", (PyCFunction)newdatatype_setSize, METH_VARARGS,

"Set the size."},
{NULL, NULL, 0, NULL} /* sentinel */

};

static PyObject *
newdatatype_getattr(newdatatypeobject *obj, char *name)
{

return Py_FindMethod(newdatatype_methods, (PyObject *)obj, name);
}

The tp setattr handler is called when the setattr () or delattr () method of a class in-
stance would be called. When an attribute should be deleted, the third parameter will beNULL. Here is an
example that simply raises an exception; if this were really all you wanted, thetp setattr handler should be
set toNULL.

static int
newdatatype_setattr(newdatatypeobject *obj, char *name, PyObject *v)
{

(void)PyErr_Format(PyExc_RuntimeError, "Read-only attribute: \%s", name);
return -1;

}

2.2.4 Object Comparison

cmpfunc tp_compare;

The tp compare handler is called when comparisons are needed and the object does not implement the spe-
cific rich comparison method which matches the requested comparison. (It is always used if defined and the
PyObject Compare() or PyObject Cmp() functions are used, or ifcmp() is used from Python.) It is
analogous to the cmp () method. This function should return-1 if obj1 is less thanobj2, 0 if they are
equal, and1 if obj1 is greater thanobj2. (It was previously allowed to return arbitrary negative or positive integers
for less than and greater than, respectively; as of Python 2.2, this is no longer allowed. In the future, other return
values may be assigned a different meaning.)

A tp compare handler may raise an exception. In this case it should return a negative value. The caller has to
test for the exception usingPyErr Occurred() .

Here is a sample implementation:

2.2. Type Methods 47

static int
newdatatype_compare(newdatatypeobject * obj1, newdatatypeobject * obj2)
{

long result;

if (obj1->obj_UnderlyingDatatypePtr->size <
obj2->obj_UnderlyingDatatypePtr->size) {
result = -1;

}
else if (obj1->obj_UnderlyingDatatypePtr->size >

obj2->obj_UnderlyingDatatypePtr->size) {
result = 1;

}
else {

result = 0;
}
return result;

}

2.2.5 Abstract Protocol Support

Python supports a variety ofabstract‘protocols;’ the specific interfaces provided to use these interfaces are docu-
mented in thePython/C API Reference Manualin the chapter “Abstract Objects Layer.”

A number of these abstract interfaces were defined early in the development of the Python implementation. In
particular, the number, mapping, and sequence protocols have been part of Python since the beginning. Other
protocols have been added over time. For protocols which depend on several handler routines from the type
implementation, the older protocols have been defined as optional blocks of handlers referenced by the type
object. For newer protocols there are additional slots in the main type object, with a flag bit being set to indicate
that the slots are present and should be checked by the interpreter. (The flag bit does not indicate that the slot
values are non-NULL. The flag may be set to indicate the presense of a slot, but a slot may still be unfilled.)

PyNumberMethods tp_as_number;
PySequenceMethods tp_as_sequence;
PyMappingMethods tp_as_mapping;

If you wish your object to be able to act like a number, a sequence, or a mapping object, then you place
the address of a structure that implements the C typePyNumberMethods , PySequenceMethods , or
PyMappingMethods , respectively. It is up to you to fill in this structure with appropriate values. You can
find examples of the use of each of these in the ‘Objects’ directory of the Python source distribution.

hashfunc tp_hash;

This function, if you choose to provide it, should return a hash number for an instance of your datatype. Here is a
moderately pointless example:

static long
newdatatype_hash(newdatatypeobject *obj)
{

long result;
result = obj->obj_UnderlyingDatatypePtr->size;
result = result * 3;
return result;

}

ternaryfunc tp_call;

48 Chapter 2. Defining New Types

This function is called when an instance of your datatype is ”called”, for example, ifobj1 is an instance of your
datatype and the Python script containsobj1(’hello’) , thetp call handler is invoked.

This function takes three arguments:

1. arg1 is the instance of the datatype which is the subject of the call. If the call isobj1(’hello’) , then
arg1 is obj1 .

2. arg2 is a tuple containing the arguments to the call. You can usePyArg ParseTuple() to extract the
arguments.

3. arg3 is a dictionary of keyword arguments that were passed. If this is non-NULLand you support keyword
arguments, usePyArg ParseTupleAndKeywords() to extract the arguments. If you do not want to
support keyword arguments and this is non-NULL, raise aTypeError with a message saying that keyword
arguments are not supported.

Here is a desultory example of the implementation of the call function.

/* Implement the call function.
* obj1 is the instance receiving the call.
* obj2 is a tuple containing the arguments to the call, in this
* case 3 strings.
*/

static PyObject *
newdatatype_call(newdatatypeobject *obj, PyObject *args, PyObject *other)
{

PyObject *result;
char *arg1;
char *arg2;
char *arg3;

if (!PyArg_ParseTuple(args, "sss:call", &arg1, &arg2, &arg3)) {
return NULL;

}
result = PyString_FromFormat(

"Returning -- value: [\%d] arg1: [\%s] arg2: [\%s] arg3: [\%s]\n",
obj->obj_UnderlyingDatatypePtr->size,
arg1, arg2, arg3);

printf("\%s", PyString_AS_STRING(result));
return result;

}

XXX some fields need to be added here...

/* Added in release 2.2 */
/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

These functions provide support for the iterator protocol. Any object which wishes to support iteration over
its contents (which may be generated during iteration) must implement thetp iter handler. Objects which
are returned by atp iter handler must implement both thetp iter and tp iternext handlers. Both
handlers take exactly one parameter, the instance for which they are being called, and return a new reference. In
the case of an error, they should set an exception and returnNULL.

For an object which represents an iterable collection, thetp iter handler must return an iterator object. The
iterator object is responsible for maintaining the state of the iteration. For collections which can support multiple
iterators which do not interfere with each other (as lists and tuples do), a new iterator should be created and
returned. Objects which can only be iterated over once (usually due to side effects of iteration) should implement

2.2. Type Methods 49

this handler by returning a new reference to themselves, and should also implement thetp iternext handler.
File objects are an example of such an iterator.

Iterator objects should implement both handlers. Thetp iter handler should return a new reference to the
iterator (this is the same as thetp iter handler for objects which can only be iterated over destructively). The
tp iternext handler should return a new reference to the next object in the iteration if there is one. If the
iteration has reached the end, it may returnNULLwithout setting an exception or it may setStopIteration ;
avoiding the exception can yield slightly better performance. If an actual error occurs, it should set an exception
and returnNULL.

2.2.6 More Suggestions

Remember that you can omit most of these functions, in which case you provide0 as a value. There are type
definitions for each of the functions you must provide. They are in ‘object.h’ in the Python include directory that
comes with the source distribution of Python.

In order to learn how to implement any specific method for your new datatype, do the following: Download and
unpack the Python source distribution. Go the ‘Objects’ directory, then search the C source files fortp plus the
function you want (for example,tp print or tp compare). You will find examples of the function you want
to implement.

When you need to verify that an object is an instance of the type you are implementing, use the
PyObject TypeCheck function. A sample of its use might be something like the following:

if (! PyObject_TypeCheck(some_object, &MyType)) {
PyErr_SetString(PyExc_TypeError, "arg #1 not a mything");
return NULL;

}

50 Chapter 2. Defining New Types

CHAPTER

THREE

Building C and C++ Extensions with
distutils

Starting in Python 1.4, Python provides, on UNIX , a special make file for building make files for building
dynamically-linked extensions and custom interpreters. Starting with Python 2.0, this mechanism (known as
related to Makefile.pre.in, and Setup files) is no longer supported. Building custom interpreters was rarely used,
and extension modules can be built using distutils.

Building an extension module using distutils requires that distutils is installed on the build machine, which is
included in Python 2.x and available separately for Python 1.5. Since distutils also supports creation of binary
packages, users don’t necessarily need a compiler and distutils to install the extension.

A distutils package contains a driver script, ‘setup.py’. This is a plain Python file, which, in the most simple case,
could look like this:

from distutils.core import setup, Extension

module1 = Extension(’demo’,
sources = [’demo.c’])

setup (name = ’PackageName’,
version = ’1.0’,
description = ’This is a demo package’,
ext_modules = [module1])

With this ‘setup.py’, and a file ‘demo.c’, running

python setup.py build

will compile ‘demo.c’, and produce an extension module named ‘demo’ in the ‘build’ directory. Depending on
the system, the module file will end up in a subdirectory ‘build/lib.system’, and may have a name like ‘demo.so’
or ‘demo.pyd’.

In the ‘setup.py’, all execution is performed by calling the ‘setup ’ function. This takes a variable number of
keyword arguments, of which the example above uses only a subset. Specifically, the example specifies meta-
information to build packages, and it specifies the contents of the package. Normally, a package will contain
of addition modules, like Python source modules, documentation, subpackages, etc. Please refer to the distutils
documentation inDistributing Python Modulesto learn more about the features of distutils; this section explains
building extension modules only.

It is common to pre-compute arguments tosetup , to better structure the driver script. In the example above,
the‘ext modules ’ argument tosetup is a list of extension modules, each of which is an instance of the
Extension . In the example, the instance defines an extension named ‘demo’ which is build by compiling a
single source file, ‘demo.c’.

51

In many cases, building an extension is more complex, since additional preprocessor defines and libraries may be
needed. This is demonstrated in the example below.

from distutils.core import setup, Extension

module1 = Extension(’demo’,
define_macros = [(’MAJOR_VERSION’, ’1’),

(’MINOR_VERSION’, ’0’)],
include_dirs = [’/usr/local/include’],
libraries = [’tcl83’],
library_dirs = [’/usr/local/lib’],
sources = [’demo.c’])

setup (name = ’PackageName’,
version = ’1.0’,
description = ’This is a demo package’,
author = ’Martin v. Loewis’,
author_email = ’martin@v.loewis.de’,
url = ’http://www.python.org/doc/current/ext/building.html’,
long_description = ’’’

This is really just a demo package.
’’’,

ext_modules = [module1])

In this example,setup is called with additional meta-information, which is recommended when distribution
packages have to be built. For the extension itself, it specifies preprocessor defines, include directories, library
directories, and libraries. Depending on the compiler, distutils passes this information in different ways to the
compiler. For example, on UNIX , this may result in the compilation commands

gcc -DNDEBUG -g -O3 -Wall -Wstrict-prototypes -fPIC -DMAJOR_VERSION=1 -DMINOR_VERSION=0 -I/usr/local/include -I/usr/local/include/python2.2 -c demo.c -o build/temp.linux-i686-2.2/demo.o

gcc -shared build/temp.linux-i686-2.2/demo.o -L/usr/local/lib -ltcl83 -o build/lib.linux-i686-2.2/demo.so

These lines are for demonstration purposes only; distutils users should trust that distutils gets the invocations right.

3.1 Distributing your extension modules

When an extension has been successfully build, there are three ways to use it.

End-users will typically want to install the module, they do so by running

python setup.py install

Module maintainers should produce source packages; to do so, they run

python setup.py sdist

In some cases, additional files need to be included in a source distribution; this is done through a ‘MANIFEST.in’
file; see the distutils documentation for details.

If the source distribution has been build successfully, maintainers can also create binary distributions. Depending
on the platform, one of the following commands can be used to do so.

52 Chapter 3. Building C and C++ Extensions with distutils

python setup.py bdist_wininst
python setup.py bdist_rpm
python setup.py bdist_dumb

3.1. Distributing your extension modules 53

54

CHAPTER

FOUR

Building C and C++ Extensions on
Windows

This chapter briefly explains how to create a Windows extension module for Python using Microsoft Visual C++,
and follows with more detailed background information on how it works. The explanatory material is useful
for both the Windows programmer learning to build Python extensions and the UNIX programmer interested in
producing software which can be successfully built on both UNIX and Windows.

Module authors are encouraged to use the distutils approach for building extension modules, instead of the one
described in this section. You will still need the C compiler that was used to build Python; typically Microsoft
Visual C++.

Note: This chapter mentions a number of filenames that include an encoded Python version number. These
filenames are represented with the version number shown as ‘XY’; in practive, ‘X’ will be the major version
number and ‘Y’ will be the minor version number of the Python release you’re working with. For example, if you
are using Python 2.2.1, ‘XY’ will actually be ‘22 ’.

4.1 A Cookbook Approach

There are two approaches to building extension modules on Windows, just as there are on UNIX : use the
distutils package to control the build process, or do things manually. The distutils approach works well
for most extensions; documentation on usingdistutils to build and package extension modules is available in
Distributing Python Modules. This section describes the manual approach to building Python extensions written
in C or C++.

To build extensions using these instructions, you need to have a copy of the Python sources of the same version
as your installed Python. You will need Microsoft Visual C++ “Developer Studio”; project files are supplied for
VC++ version 6, but you can use older versions of VC++. The example files described here are distributed with
the Python sources in the ‘PC\example nt\’ directory.

1. Copy the example files
The ‘example nt’ directory is a subdirectory of the ‘PC’ directory, in order to keep all the PC-specific files
under the same directory in the source distribution. However, the ‘example nt’ directory can’t actually be
used from this location. You first need to copy or move it up one level, so that ‘example nt’ is a sibling of
the ‘PC’ and ‘Include’ directories. Do all your work from within this new location.

2. Open the project
From VC++, use theFile > Open Workspace dialog (notFile > Open!). Navigate to and select the file
‘example.dsw’, in the copyof the ‘example nt’ directory you made above. Click Open.

3. Build the example DLL
In order to check that everything is set up right, try building:

(a) Select a configuration. This step is optional. ChooseBuild > Select Active Configuration and
select either “example - Win32 Release” or “example - Win32 Debug.” If you skip this step, VC++
will use the Debug configuration by default.

55

(b) Build the DLL. ChooseBuild > Build example d.dll in Debug mode, orBuild > Build example.dll
in Release mode. This creates all intermediate and result files in a subdirectory called either ‘Debug’
or ‘Release’, depending on which configuration you selected in the preceding step.

4. Testing the debug-mode DLL
Once the Debug build has succeeded, bring up a DOS box, and change to the ‘example nt\Debug’ directory.
You should now be able to repeat the following session (C> is the DOS prompt,>>> is the Python prompt;
note that build information and various debug output from Python may not match this screen dump exactly):

C>..\..\PCbuild\python_d
Adding parser accelerators ...
Done.
Python 2.2 (#28, Dec 19 2001, 23:26:37) [MSC 32 bit (Intel)] on win32
Type "copyright", "credits" or "license" for more information.
>>> import example
[4897 refs]
>>> example.foo()
Hello, world
[4903 refs]
>>>

Congratulations! You’ve successfully built your first Python extension module.

5. Creating your own project
Choose a name and create a directory for it. Copy your C sources into it. Note that the module source
file name does not necessarily have to match the module name, but the name of the initialization function
should match the module name — you can only import a modulespam if its initialization function is called
initspam() , and it should callPy InitModule() with the string"spam" as its first argument (use
the minimal ‘example.c’ in this directory as a guide). By convention, it lives in a file called ‘spam.c’ or
‘spammodule.c’. The output file should be called ‘spam.dll’ or ‘ spam.pyd’ (the latter is supported to avoid
confusion with a system library ‘spam.dll’ to which your module could be a Python interface) in Release
mode, or ‘spam d.dll’ or ‘ spam d.pyd’ in Debug mode.

Now your options are:

(a) Copy ‘example.dsw’ and ‘example.dsp’, rename them to ‘spam.*’, and edit them by hand, or

(b) Create a brand new project; instructions are below.

In either case, copy ‘example nt\example.def’ to ‘ spam\spam.def’, and edit the new ‘spam.def’ so its
second line contains the string ‘initspam ’. If you created a new project yourself, add the file ‘spam.def’
to the project now. (This is an annoying little file with only two lines. An alternative approach is to forget
about the ‘.def’ file, and add the option/export:initspam somewhere to the Link settings, by manually
editing the setting in Project Options dialog).

6. Creating a brand new project
Use theFile > New > Projects dialog to create a new Project Workspace. Select “Win32 Dynamic-Link
Library,” enter the name (‘spam’), and make sure the Location is set to the ‘spam’ directory you have
created (which should be a direct subdirectory of the Python build tree, a sibling of ‘Include’ and ‘PC’).
Select Win32 as the platform (in my version, this is the only choice). Make sure the Create new workspace
radio button is selected. Click OK.

Now open theProject > Settings dialog. You only need to change a few settings. Make sure All Con-
figurations is selected from the Settings for: dropdown list. Select the C/C++ tab. Choose the Preprocessor
category in the popup menu at the top. Type the following text in the entry box labeled Addditional include
directories:

..\Include,..\PC

Then, choose the Input category in the Link tab, and enter

56 Chapter 4. Building C and C++ Extensions on Windows

..\PCbuild

in the text box labelled “Additional library path.”

Now you need to add some mode-specific settings:

Select “Win32 Release” in the “Settings for” dropdown list. Click the Link tab, choose the Input Category,
and appendpythonXY.lib to the list in the “Object/library modules” box.

Select “Win32 Debug” in the “Settings for” dropdown list, and appendpythonXY d.lib to the list in
the “Object/library modules” box. Then click the C/C++ tab, select “Code Generation” from the Category
dropdown list, and select “Debug Multithreaded DLL” from the “Use run-time library” dropdown list.

Select “Win32 Release” again from the “Settings for” dropdown list. Select “Multithreaded DLL” from the
“Use run-time library:” dropdown list.

You should now create the file ‘spam.def’ as instructed in the previous section. Then chose theInsert >
Files into Project dialog. Set the pattern to*.* and select both ‘spam.c’ and ‘spam.def’ and click OK.
(Inserting them one by one is fine too.)

If your module creates a new type, you may have trouble with this line:

PyObject_HEAD_INIT(&PyType_Type)

Change it to:

PyObject_HEAD_INIT(NULL)

and add the following to the module initialization function:

MyObject_Type.ob_type = &PyType_Type;

Refer to section 3 of thePython FAQfor details on why you must do this.

4.2 Differences Between UNIX and Windows

UNIX and Windows use completely different paradigms for run-time loading of code. Before you try to build a
module that can be dynamically loaded, be aware of how your system works.

In UNIX , a shared object (‘.so’) file contains code to be used by the program, and also the names of functions and
data that it expects to find in the program. When the file is joined to the program, all references to those functions
and data in the file’s code are changed to point to the actual locations in the program where the functions and data
are placed in memory. This is basically a link operation.

In Windows, a dynamic-link library (‘.dll’) file has no dangling references. Instead, an access to functions or data
goes through a lookup table. So the DLL code does not have to be fixed up at runtime to refer to the program’s
memory; instead, the code already uses the DLL’s lookup table, and the lookup table is modified at runtime to
point to the functions and data.

In UNIX , there is only one type of library file (‘.a’) which contains code from several object files (‘.o’). During
the link step to create a shared object file (‘.so’), the linker may find that it doesn’t know where an identifier is
defined. The linker will look for it in the object files in the libraries; if it finds it, it will include all the code from
that object file.

In Windows, there are two types of library, a static library and an import library (both called ‘.lib’). A static library
is like a UNIX ‘ .a’ file; it contains code to be included as necessary. An import library is basically used only to

4.2. Differences Between UNIX and Windows 57

reassure the linker that a certain identifier is legal, and will be present in the program when the DLL is loaded.
So the linker uses the information from the import library to build the lookup table for using identifiers that are
not included in the DLL. When an application or a DLL is linked, an import library may be generated, which will
need to be used for all future DLLs that depend on the symbols in the application or DLL.

Suppose you are building two dynamic-load modules, B and C, which should share another block of code A. On
UNIX , you wouldnot pass ‘A.a’ to the linker for ‘B.so’ and ‘C.so’; that would cause it to be included twice, so
that B and C would each have their own copy. In Windows, building ‘A.dll’ will also build ‘A.lib’. You do pass
‘A.lib’ to the linker for B and C. ‘A.lib’ does not contain code; it just contains information which will be used at
runtime to access A’s code.

In Windows, using an import library is sort of like using ‘import spam ’; it gives you access to spam’s names,
but does not create a separate copy. On UNIX , linking with a library is more like ‘from spam import * ’; it
does create a separate copy.

4.3 Using DLLs in Practice

Windows Python is built in Microsoft Visual C++; using other compilers may or may not work (though Borland
seems to). The rest of this section is MSVC++ specific.

When creating DLLs in Windows, you must pass ‘pythonXY.lib’ to the linker. To build two DLLs, spam and ni
(which uses C functions found in spam), you could use these commands:

cl /LD /I/python/include spam.c ../libs/pythonXY.lib
cl /LD /I/python/include ni.c spam.lib ../libs/pythonXY.lib

The first command created three files: ‘spam.obj’, ‘ spam.dll’ and ‘spam.lib’. ‘ Spam.dll’ does not contain any
Python functions (such asPyArg ParseTuple()), but it does know how to find the Python code thanks to
‘pythonXY.lib’.

The second command created ‘ni.dll’ (and ‘.obj’ and ‘.lib’), which knows how to find the necessary functions from
spam, and also from the Python executable.

Not every identifier is exported to the lookup table. If you want any other modules (including Python) to be able to
see your identifiers, you have to say ‘declspec(dllexport) ’, as in ‘void declspec(dllexport)
initspam(void) ’ or ‘ PyObject declspec(dllexport) *NiGetSpamData(void) ’.

Developer Studio will throw in a lot of import libraries that you do not really need, adding about 100K to your
executable. To get rid of them, use the Project Settings dialog, Link tab, to specifyignore default libraries. Add
the correct ‘msvcrtxx.lib’ to the list of libraries.

58 Chapter 4. Building C and C++ Extensions on Windows

CHAPTER

FIVE

Embedding Python in Another
Application

The previous chapters discussed how to extend Python, that is, how to extend the functionality of Python by
attaching a library of C functions to it. It is also possible to do it the other way around: enrich your C/C++
application by embedding Python in it. Embedding provides your application with the ability to implement some
of the functionality of your application in Python rather than C or C++. This can be used for many purposes; one
example would be to allow users to tailor the application to their needs by writing some scripts in Python. You
can also use it yourself if some of the functionality can be written in Python more easily.

Embedding Python is similar to extending it, but not quite. The difference is that when you extend Python, the
main program of the application is still the Python interpreter, while if you embed Python, the main program may
have nothing to do with Python — instead, some parts of the application occasionally call the Python interpreter
to run some Python code.

So if you are embedding Python, you are providing your own main program. One of the things this main program
has to do is initialize the Python interpreter. At the very least, you have to call the functionPy Initialize()
(on Mac OS, callPyMac Initialize() instead). There are optional calls to pass command line arguments
to Python. Then later you can call the interpreter from any part of the application.

There are several different ways to call the interpreter: you can pass a string containing Python statements to
PyRun SimpleString() , or you can pass a stdio file pointer and a file name (for identification in error mes-
sages only) toPyRun SimpleFile() . You can also call the lower-level operations described in the previous
chapters to construct and use Python objects.

A simple demo of embedding Python can be found in the directory ‘Demo/embed/’ of the source distribution.

See Also:

Python/C API Reference Manual
(../api/api.html)

The details of Python’s C interface are given in this manual. A great deal of necessary information can be
found here.

5.1 Very High Level Embedding

The simplest form of embedding Python is the use of the very high level interface. This interface is intended to
execute a Python script without needing to interact with the application directly. This can for example be used to
perform some operation on a file.

59

#include <Python.h>

int
main(int argc, char *argv[])
{

Py_Initialize();
PyRun_SimpleString("from time import time,ctime\n"

"print ’Today is’,ctime(time())\n");
Py_Finalize();
return 0;

}

The above code first initializes the Python interpreter withPy Initialize() , followed by the execution of a
hard-coded Python script that print the date and time. Afterwards, thePy Finalize() call shuts the interpreter
down, followed by the end of the program. In a real program, you may want to get the Python script from another
source, perhaps a text-editor routine, a file, or a database. Getting the Python code from a file can better be done
by using thePyRun SimpleFile() function, which saves you the trouble of allocating memory space and
loading the file contents.

5.2 Beyond Very High Level Embedding: An overview

The high level interface gives you the ability to execute arbitrary pieces of Python code from your application, but
exchanging data values is quite cumbersome to say the least. If you want that, you should use lower level calls.
At the cost of having to write more C code, you can achieve almost anything.

It should be noted that extending Python and embedding Python is quite the same activity, despite the different
intent. Most topics discussed in the previous chapters are still valid. To show this, consider what the extension
code from Python to C really does:

1. Convert data values from Python to C,

2. Perform a function call to a C routine using the converted values, and

3. Convert the data values from the call from C to Python.

When embedding Python, the interface code does:

1. Convert data values from C to Python,

2. Perform a function call to a Python interface routine using the converted values, and

3. Convert the data values from the call from Python to C.

As you can see, the data conversion steps are simply swapped to accomodate the different direction of the cross-
language transfer. The only difference is the routine that you call between both data conversions. When extending,
you call a C routine, when embedding, you call a Python routine.

This chapter will not discuss how to convert data from Python to C and vice versa. Also, proper use of refer-
ences and dealing with errors is assumed to be understood. Since these aspects do not differ from extending the
interpreter, you can refer to earlier chapters for the required information.

5.3 Pure Embedding

The first program aims to execute a function in a Python script. Like in the section about the very high level
interface, the Python interpreter does not directly interact with the application (but that will change in th next
section).

The code to run a function defined in a Python script is:

60 Chapter 5. Embedding Python in Another Application

#include <Python.h>

int
main(int argc, char *argv[])
{

PyObject *pName, *pModule, *pDict, *pFunc;
PyObject *pArgs, *pValue;
int i;

if (argc < 3) {
fprintf(stderr,"Usage: call pythonfile funcname [args]\n");
return 1;

}

Py_Initialize();
pName = PyString_FromString(argv[1]);
/* Error checking of pName left out */

pModule = PyImport_Import(pName);
Py_DECREF(pName);

if (pModule != NULL) {
pDict = PyModule_GetDict(pModule);
/* pDict is a borrowed reference */

pFunc = PyDict_GetItemString(pDict, argv[2]);
/* pFun: Borrowed reference */

if (pFunc && PyCallable_Check(pFunc)) {
pArgs = PyTuple_New(argc - 3);
for (i = 0; i < argc - 3; ++i) {

pValue = PyInt_FromLong(atoi(argv[i + 3]));
if (!pValue) {

Py_DECREF(pArgs);
Py_DECREF(pModule);
fprintf(stderr, "Cannot convert argument\n");
return 1;

}
/* pValue reference stolen here: */
PyTuple_SetItem(pArgs, i, pValue);

}
pValue = PyObject_CallObject(pFunc, pArgs);
Py_DECREF(pArgs);
if (pValue != NULL) {

printf("Result of call: %ld\n", PyInt_AsLong(pValue));
Py_DECREF(pValue);

}
else {

Py_DECREF(pModule);
PyErr_Print();
fprintf(stderr,"Call failed\n");
return 1;

}
/* pDict and pFunc are borrowed and must not be Py_DECREF-ed */

}
else {

if (PyErr_Occurred())
PyErr_Print();

fprintf(stderr, "Cannot find function \"%s\"\n", argv[2]);
}
Py_DECREF(pModule);

}
else {

5.3. Pure Embedding 61

PyErr_Print();
fprintf(stderr, "Failed to load \"%s\"\n", argv[1]);
return 1;

}
Py_Finalize();
return 0;

}

This code loads a Python script usingargv[1] , and calls the function named inargv[2] . Its integer arguments
are the other values of theargv array. If you compile and link this program (let’s call the finished executable
call), and use it to execute a Python script, such as:

def multiply(a,b):
print "Will compute", a, "times", b
c = 0
for i in range(0, a):

c = c + b
return c

then the result should be:

$ call multiply multiply 3 2
Will compute 3 times 2
Result of call: 6

Although the program is quite large for its functionality, most of the code is for data conversion between Python
and C, and for error reporting. The interesting part with respect to embedding Python starts with

Py_Initialize();
pName = PyString_FromString(argv[1]);
/* Error checking of pName left out */
pModule = PyImport_Import(pName);

After initializing the interpreter, the script is loaded usingPyImport Import() . This routine needs a Python
string as its argument, which is constructed using thePyString FromString() data conversion routine.

pFunc = PyObject_GetAttrString(pModule, argv[2]);
/* pFunc is a new reference */

if (pFunc && PyCallable_Check(pFunc)) {
...

}
Py_XDECREF(pFunc);

Once the script is loaded, the name we’re looking for is retrieved usingPyObject GetAttrString() . If
the name exists, and the object returned is callable, you can safely assume that it is a function. The program then
proceeds by constructing a tuple of arguments as normal. The call to the Python function is then made with:

pValue = PyObject_CallObject(pFunc, pArgs);

Upon return of the function,pValue is eitherNULLor it contains a reference to the return value of the function.
Be sure to release the reference after examining the value.

62 Chapter 5. Embedding Python in Another Application

5.4 Extending Embedded Python

Until now, the embedded Python interpreter had no access to functionality from the application itself. The Python
API allows this by extending the embedded interpreter. That is, the embedded interpreter gets extended with
routines provided by the application. While it sounds complex, it is not so bad. Simply forget for a while that
the application starts the Python interpreter. Instead, consider the application to be a set of subroutines, and write
some glue code that gives Python access to those routines, just like you would write a normal Python extension.
For example:

static int numargs=0;

/* Return the number of arguments of the application command line */
static PyObject*
emb_numargs(PyObject *self, PyObject *args)
{

if(!PyArg_ParseTuple(args, ":numargs"))
return NULL;

return Py_BuildValue("i", numargs);
}

static PyMethodDef EmbMethods[] = {
{"numargs", emb_numargs, METH_VARARGS,

"Return the number of arguments received by the process."},
{NULL, NULL, 0, NULL}

};

Insert the above code just above themain() function. Also, insert the following two statements directly after
Py Initialize() :

numargs = argc;
Py_InitModule("emb", EmbMethods);

These two lines initialize thenumargs variable, and make theemb.numargs() function accessible to the
embedded Python interpreter. With these extensions, the Python script can do things like

import emb
print "Number of arguments", emb.numargs()

In a real application, the methods will expose an API of the application to Python.

5.5 Embedding Python in C++

It is also possible to embed Python in a C++ program; precisely how this is done will depend on the details of
the C++ system used; in general you will need to write the main program in C++, and use the C++ compiler to
compile and link your program. There is no need to recompile Python itself using C++.

5.6 Linking Requirements

While theconfigure script shipped with the Python sources will correctly build Python to export the symbols
needed by dynamically linked extensions, this is not automatically inherited by applications which embed the
Python library statically, at least on UNIX . This is an issue when the application is linked to the static runtime
library (‘libpython.a’) and needs to load dynamic extensions (implemented as ‘.so’ files).

5.4. Extending Embedded Python 63

The problem is that some entry points are defined by the Python runtime solely for extension modules to use. If
the embedding application does not use any of these entry points, some linkers will not include those entries in the
symbol table of the finished executable. Some additional options are needed to inform the linker not to remove
these symbols.

Determining the right options to use for any given platform can be quite difficult, but fortunately the Python
configuration already has those values. To retrieve them from an installed Python interpreter, start an interactive
interpreter and have a short session like this:

>>> import distutils.sysconfig
>>> distutils.sysconfig.get_config_var(’LINKFORSHARED’)
’-Xlinker -export-dynamic’

The contents of the string presented will be the options that should be used. If the string is empty, there’s no need
to add any additional options. TheLINKFORSHAREDdefinition corresponds to the variable of the same name in
Python’s top-level ‘Makefile’.

64 Chapter 5. Embedding Python in Another Application

APPENDIX

A

Reporting Bugs

Python is a mature programming language which has established a reputation for stability. In order to maintain
this reputation, the developers would like to know of any deficiencies you find in Python or its documentation.

Before submitting a report, you will be required to log into SourceForge; this will make it possible for the devel-
opers to contact you for additional information if needed. It is not possible to submit a bug report anonymously.

All bug reports should be submitted via the Python Bug Tracker on SourceForge
(http://sourceforge.net/bugs/?group id=5470). The bug tracker offers a Web form which allows pertinent
information to be entered and submitted to the developers.

The first step in filing a report is to determine whether the problem has already been reported. The advantage in
doing so, aside from saving the developers time, is that you learn what has been done to fix it; it may be that the
problem has already been fixed for the next release, or additional information is needed (in which case you are
welcome to provide it if you can!). To do this, search the bug database using the search box near the bottom of the
page.

If the problem you’re reporting is not already in the bug tracker, go back to the Python Bug Tracker
(http://sourceforge.net/bugs/?group id=5470). Select the “Submit a Bug” link at the top of the page to open the
bug reporting form.

The submission form has a number of fields. The only fields that are required are the “Summary” and “Details”
fields. For the summary, enter averyshort description of the problem; less than ten words is good. In the Details
field, describe the problem in detail, including what you expected to happen and what did happen. Be sure to
include the version of Python you used, whether any extension modules were involved, and what hardware and
software platform you were using (including version information as appropriate).

The only other field that you may want to set is the “Category” field, which allows you to place the bug report into
a broad category (such as “Documentation” or “Library”).

Each bug report will be assigned to a developer who will determine what needs to be done to correct the problem.
You will receive an update each time action is taken on the bug.

See Also:

How to Report Bugs Effectively
(http://www-mice.cs.ucl.ac.uk/multimedia/software/documentation/ReportingBugs.html)

Article which goes into some detail about how to create a useful bug report. This describes what kind of
information is useful and why it is useful.

Bug Writing Guidelines
(http://www.mozilla.org/quality/bug-writing-guidelines.html)

Information about writing a good bug report. Some of this is specific to the Mozilla project, but describes
general good practices.

65

66

APPENDIX

B

History and License

B.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
seehttp://www.zope.com/). In 2001, the Python Software Foundation (PSF, seehttp://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corpora-
tion is a sponsoring member of the PSF.

All Python releases are Open Source (seehttp://www.opensource.org/ for the Open Source Definition). Histori-
cally, most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various
releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes

1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no

1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no

2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes

2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-2003 PSF yes
2.3 2.2.2 2002-2003 PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible
licenses make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

B.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.4

67

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 2.4 software in source or binary form and
its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 2.4 alone or in any derivative version, provided, how-
ever, that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyrightc© 2001-2003 Python
Software Foundation; All Rights Reserved” are retained in Python 2.4 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.4 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 2.4.

4. PSF is making Python 2.4 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
2.4 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.4 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODI-
FYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.4, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

8. By copying, installing or otherwise using Python 2.4, Licensee agrees to be bound by the terms and condi-
tions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga
Avenue, Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise
using this software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Li-
censee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the Software, alone or in any
derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

68 Appendix B. History and License

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of
California, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a trademark sense to
endorse or promote products or services of Licensee, or any third party. As an exception, the “BeOpen
Python” logos available at http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an
office at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Li-
censee”) accessing and otherwise using Python 1.6.1 software in source or binary form and its associated
documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided,
however, that CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyrightc© 1995-2001
Corporation for National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone
or in any derivative version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement,
Licensee may substitute the following text (omitting the quotes): “Python 1.6.1 is made available sub-
ject to the terms and conditions in CNRI’s License Agreement. This Agreement together with Python
1.6.1 may be located on the Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the Internet using the following
URL: http://hdl.handle.net/1895.22/1013.”

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, in-
cluding without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply,
by the law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstand-
ing the foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable
material that was previously distributed under the GNU General Public License (GPL), the law of the Com-
monwealth of Virginia shall govern this License Agreement only as to issues arising under or with respect
to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between CNRI and Licensee. This License
Agreement does not grant permission to use CNRI trademarks or trade name in a trademark sense to endorse
or promote products or services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python
1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

B.2. Terms and conditions for accessing or otherwise using Python 69

ACCEPT
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright c© 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch
Centrum or CWI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

70 Appendix B. History and License

	1 Extending Python with C or C++
	1.1 A Simple Example
	1.2 Intermezzo: Errors and Exceptions
	1.3 Back to the Example
	1.4 The Module's Method Table and Initialization Function
	1.5 Compilation and Linkage
	1.6 Calling Python Functions from C
	1.7 Extracting Parameters in Extension Functions
	1.8 Keyword Parameters for Extension Functions
	1.9 Building Arbitrary Values
	1.10 Reference Counts
	1.10.1 Reference Counting in Python
	1.10.2 Ownership Rules
	1.10.3 Thin Ice
	1.10.4 NULL Pointers

	1.11 Writing Extensions in C++
	1.12 Providing a C API for an Extension Module

	2 Defining New Types
	2.1 The Basics
	2.1.1 Adding data and methods to the Basic example
	2.1.2 Providing finer control over data attributes
	2.1.3 Supporting cyclic garbage collection

	2.2 Type Methods
	2.2.1 Finalization and De-allocation
	2.2.2 Object Presentation
	2.2.3 Attribute Management
	Generic Attribute Management
	Type-specific Attribute Management

	2.2.4 Object Comparison
	2.2.5 Abstract Protocol Support
	2.2.6 More Suggestions

	3 Building C and C++ Extensions with distutils
	3.1 Distributing your extension modules

	4 Building C and C++ Extensions on Windows
	4.1 A Cookbook Approach
	4.2 Differences Between Unix and Windows
	4.3 Using DLLs in Practice

	5 Embedding Python in Another Application
	5.1 Very High Level Embedding
	5.2 Beyond Very High Level Embedding: An overview
	5.3 Pure Embedding
	5.4 Extending Embedded Python
	5.5 Embedding Python in C++
	5.6 Linking Requirements

	A Reporting Bugs
	B History and License
	B.1 History of the software
	B.2 Terms and conditions for accessing or otherwise using Python

