
Macintosh Library Modules
Release 2.2.3

Guido van Rossum

Fred L. Drake, Jr., editor

30 May 2003

PythonLabs
Email: python-docs@python.org

Copyright c© 2001, 2002, 2003 Python Software Foundation. All rights reserved.

Copyright c© 2000 BeOpen.com. All rights reserved.

Copyright c© 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright c© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

This library reference manual documents Python’s extensions for the Macintosh. It should be used in
conjunction with the Python Library Reference, which documents the standard library and built-in types.

This manual assumes basic knowledge about the Python language. For an informal introduction to
Python, see the Python Tutorial; the Python Reference Manual remains the highest authority on syntactic
and semantic questions. Finally, the manual entitled Extending and Embedding the Python Interpreter
describes how to add new extensions to Python and how to embed it in other applications.

CONTENTS

1 Using Python on the Macintosh 1
1.1 Getting and Installing MacPython . 1
1.2 Entering the interactive Interpreter . 1
1.3 How to run a Python script . 1
1.4 Simulating command line arguments . 2
1.5 Creating a Python script . 2
1.6 The IDE . 3
1.7 Configuration . 4
1.8 Mac OS X . 5

2 MacPython Modules 7
2.1 mac — Implementations for the os module . 7
2.2 macpath — MacOS path manipulation functions . 7
2.3 ctb — Interface to the Communications Tool Box . 8
2.4 macfs — Various file system services . 9
2.5 ic — Access to Internet Config . 12
2.6 MacOS — Access to Mac OS interpreter features . 13
2.7 macostools — Convenience routines for file manipulation 14
2.8 findertools — The finder’s Apple Events interface . 14
2.9 macspeech — Interface to the Macintosh Speech Manager 15
2.10 EasyDialogs — Basic Macintosh dialogs . 16
2.11 FrameWork — Interactive application framework . 18
2.12 MiniAEFrame — Open Scripting Architecture server support 21
2.13 aepack — Conversion between Python variables and AppleEvent data containers 22
2.14 aetypes — AppleEvent objects . 22

3 MacOS Toolbox Modules 25
3.1 Carbon.AE — Apple Events . 26
3.2 Carbon.App — Appearance Manager . 26
3.3 Carbon.CF — Core Foundation . 26
3.4 Carbon.Cm — Component Manager . 26
3.5 Carbon.Ctl — Control Manager . 26
3.6 Carbon.Dlg — Dialog Manager . 26
3.7 Carbon.Evt — Event Manager . 26
3.8 Carbon.Fm — Font Manager . 26
3.9 Carbon.Help — Help Manager . 26
3.10 Carbon.List — List Manager . 26
3.11 Carbon.Menu — Menu Manager . 26
3.12 Carbon.Mlte — MultiLingual Text Editor . 26
3.13 Carbon.Qd — QuickDraw . 26
3.14 Carbon.Qdoffs — QuickDraw Offscreen . 26
3.15 Carbon.Qt — QuickTime . 26
3.16 Carbon.Res — Resource Manager and Handles . 26

i

3.17 Carbon.Scrap — Scrap Manager . 26
3.18 Carbon.Snd — Sound Manager . 27
3.19 Carbon.TE — TextEdit . 27
3.20 Carbon.Win — Window Manager . 27
3.21 ColorPicker — Color selection dialog . 27

4 Undocumented Modules 29
4.1 applesingle — AppleSingle decoder . 29
4.2 buildtools — Helper module for BuildApplet and Friends 29
4.3 py resource — Resources from Python code . 29
4.4 cfmfile — Code Fragment Resource module . 29
4.5 icopen — Internet Config replacement for open() . 30
4.6 macerrors — Mac OS Errors . 30
4.7 macfsn — NavServices calls . 30
4.8 macresource — Locate script resources . 30
4.9 Nav — NavServices calls . 30
4.10 mactty — Serial line connections . 30
4.11 mkcwproject — Create CodeWarrior projects . 30
4.12 nsremote — Wrapper around Netscape OSA modules . 30
4.13 PixMapWrapper — Wrapper for PixMap objects . 30
4.14 preferences — Application preferences manager . 31
4.15 pythonprefs — Preferences manager for Python . 31
4.16 quietconsole — non-visible stdout output . 31
4.17 videoreader — read QuickTime movies . 31
4.18 W — Widgets built on FrameWork . 31
4.19 waste — non-Apple TextEdit replacement . 31

A History and License 33
A.1 History of the software . 33
A.2 Terms and conditions for accessing or otherwise using Python 34

Module Index 37

Index 39

ii

CHAPTER

ONE

Using Python on the Macintosh

Using Python on the Macintosh can seem like something completely different than using it on a Unix-
like or Windows system. Most of the Python documentation, both the “official” documentation and
published books, describe only how Python is used on these systems, causing confusion for the new user
of MacPython. This chapter gives a brief introduction to the specifics of using Python on a Macintosh.

1.1 Getting and Installing MacPython

The most recent release version as well as possible newer experimental versions are best found at the
MacPython page maintained by Jack Jansen: http://www.cwi.nl/˜jack/macpython.html.

Please refer to the ‘README’ included with your distribution for the most up-to-date instructions.

1.2 Entering the interactive Interpreter

The interactive interpreter that you will see used in Python documentation is started by double-clicking
the PythonInterpreter icon, which looks like a 16-ton weight falling. You should see the version
information and the ‘>>> ’ prompt. Use it exactly as described in the standard documentation.

1.3 How to run a Python script

There are several ways to run an existing Python script; two common ways to run a Python script are
“drag and drop” and “double clicking”. Other ways include running it from within the IDE (see Section
1.6), or launching via AppleScript.

1.3.1 Drag and drop

One of the easiest ways to launch a Python script is via “Drag and Drop”. This is just like launching a
text file in the Finder by “dragging” it over your word processor’s icon and “dropping” it there. Make
sure that you use an icon referring to the PythonInterpreter, not the IDE or Idle icons which have
different behaviour which is described below.

Some things that might have gone wrong:

• A window flashes after dropping the script onto the PythonInterpreter, but then disappears.
Most likely this is a configuration issue; your PythonInterpreter is setup to exit immediately
upon completion, but your script assumes that if it prints something that text will stick around
for a while. To fix this, see section 1.7.3.

• After dropping the script onto the PythonInterpreter, a window appeared which said: “File
contains \r characters (incorrect line endings?)”. That script probably originated on a Unix or

1

Windows machine. You will need to change the line endings to the standard Mac usage. One way
to do this is to open the file in BBedit (http://www.barebones.com/products/bbedit lite.html) which
can easily change the line endings between Mac, DOS, and Unix styles.

• When you waved the script icon over the PythonInterpreter, the PythonInterpreter icon did
not hilight. Most likely the Creator code and document type is unset (or set incorrectly) – this
often happens when a file originates on a non-Mac computer. See section 1.3.2 for more details.

1.3.2 Set Creator and Double Click

If the script that you want to launch has the appropriate Creator Code and File Type you can simply
double-click on the script to launch it. To be “double-clickable” a file needs to be of type ‘TEXT’, with a
creator code of ‘Pyth’.

Setting the creator code and filetype can be done with the IDE (see sections 1.6.2 and 1.6.4), with an
editor with a Python mode (BBEdit) – see section 1.5.1, or with assorted other Mac utilities, but a
script (‘fixfiletypes.py’) has been included in the MacPython distribution, making it possible to set the
proper Type and Creator Codes with Python.

The ‘fixfiletypes.py’ script will change the file type and creator codes for the indicated directory. To use
‘fixfiletypes.py’:

1. Locate it in the ‘scripts’ folder of the ‘Mac’ folder of the MacPython distribution.

2. Put all of the scripts that you want to fix in a folder with nothing else in it.

3. Double-click on the ‘fixfiletypes.py’ icon.

4. Navigate into the folder of files you want to fix, and press the “Select current folder” button.

1.4 Simulating command line arguments

There are two ways to simulate command-line arguments with MacPython.

1. via Interpreter options

• Hold the option-key down when launching your script. This will bring up a dialog box of
Python Interpreter options.

• Click “Set Unix-style command line..” button.

• Type the arguments into the “Argument” field.

• Click “OK”

• Click “Run”.

2. via drag and drop If you save the script as an applet (see Section 1.6.4), you can also simulate
some command-line arguments via “Drag-and-Drop”. In this case, the names of the files that were
dropped onto the applet will be appended to sys.argv, so that it will appear to the script as
though they had been typed on a command line. As on Unix systems, the first item in sys.srgv
is the path to the applet, and the rest are the files dropped on the applet.

1.5 Creating a Python script

Since Python scripts are simply text files, they can be created in any way that text files can be created,
but some special tools also exist with extra features.

2 Chapter 1. Using Python on the Macintosh

1.5.1 In an editor

You can create a text file with any word processing program such as MSWord or AppleWorks but
you need to make sure that the file is saved as “ascii” or “plain text”.

Editors with Python modes

Several text editors have additional features that add functionality when you are creating a Python
script. These can include coloring Python keywords to make your code easier to read, module browsing,
or a built-in debugger. These include Alpha, Pepper, and BBedit, and the MacPython IDE (Section
1.6).

BBedit

If you use BBEdit to create your scripts you will want to tell it about the Python creator code so that
you can simply double click on the saved file to launch it.

• Launch BBEdit.

• Select “Preferences” from the “Edit” menu.

• Select “File Types” from the scrolling list.

• click on the “Add...” button and navigate to PythonInterpreter in the main directory of the
MacPython distribution; click “open”.

• Click on the “Save” button in the Preferences panel.

1.6 The IDE

The Python IDE (Integrated Development Environment) is a separate application that acts as a text
editor for your Python code, a class browser, a graphical debugger, and more.

1.6.1 Using the “Python Interactive” window

Use this window like you would the PythonInterpreter, except that you cannot use the “Drag and
drop” method above. Instead, dropping a script onto the Python IDE icon will open the file in a
separate script window (which you can then execute manually – see section 1.6.3).

1.6.2 Writing a Python Script

In addition to using the Python IDE interactively, you can also type out a complete Python program,
saving it incrementally, and execute it or smaller selections of it.

You can create a new script, open a previously saved script, and save your currently open script by
selecting the appropriate item in the “File” menu. Dropping a Python script onto the Python IDE will
open it for editting.

If you try to open a script with the Python IDE but either can’t locate it from the “Open” dialog box,
or you get an error message like “Can’t open file of type ...” see section 1.3.2.

When the Python IDE saves a script, it uses the creator code settings which are available by clicking
on the small black triangle on the top right of the document window, and selecting “save options”. The
default is to save the file with the Python IDE as the creator, this means that you can open the file for
editing by simply double-clicking on its icon. You might want to change this behaviour so that it will be
opened by the PythonInterpreter, and run. To do this simply choose “Python Interpreter” from the
“save options”. Note that these options are associated with the file not the application.

1.6. The IDE 3

1.6.3 Executing a script from within the IDE

You can run the script in the frontmost window of the Python IDE by hitting the run all button. You
should be aware, however that if you use the Python convention ‘if name == " main ":’ the
script will not be “ main ” by default. To get that behaviour you must select the “Run as main ”
option from the small black triangle on the top right of the document window. Note that this option is
associated with the file not the application. It will stay active after a save, however; to shut this feature
off simply select it again.

1.6.4 “Save as” versus “Save as Applet”

When you are done writing your Python script you have the option of saving it as an “applet” (by
selecting “Save as applet” from the “File” menu). This has a significant advantage in that you can drop
files or folders onto it, to pass them to the applet the way command-line users would type them onto
the command-line to pass them as arguments to the script. However, you should make sure to save the
applet as a separate file, do not overwrite the script you are writing, because you will not be able to edit
it again.

Accessing the items passed to the applet via “drag-and-drop” is done using the standard sys.argv
mechanism. See the general documentation for more

Note that saving a script as an applet will not make it runnable on a system without a Python installation.

1.7 Configuration

The MacPython distribution comes with EditPythonPrefs, an applet which will help you to customize
the MacPython environment for your working habits.

1.7.1 EditPythonPrefs

EditPythonPrefs gives you the capability to configure Python to behave the way you want it to. There
are two ways to use EditPythonPrefs, you can use it to set the preferences in general, or you can drop a
particular Python engine onto it to customize only that version. The latter can be handy if, for example,
you want to have a second copy of the PythonInterpreter that keeps the output window open on a
normal exit even though you prefer to normally not work that way.

To change the default preferences, simply double-click on EditPythonPrefs. To change the preferences
only for one copy of the Interpreter, drop the icon for that copy onto EditPythonPrefs. You can also
use EditPythonPrefs in this fashion to set the preferences of the Python IDE and any applets you
create – see section 1.6.4.

1.7.2 Adding modules to the Module Search Path

When executing an import statement, Python looks for modules in places defined by the sys.path To
edit the sys.path on a Mac, launch EditPythonPrefs, and enter them into the largish field at the top
(one per line).

Since MacPython defines a main Python directory, the easiest thing is to add folders to search within
the main Python directory. To add a folder of scripts that you created called “My Folder” located in the
main Python Folder, enter ‘$(PYTHON):My Folder’ onto a new line.

To add the Desktop under OS 9 or below, add ‘StartupDriveName:Desktop Folder’ on a new line.

4 Chapter 1. Using Python on the Macintosh

1.7.3 Default startup options

The “Default startup options...” button in the EditPythonPrefs dialog box gives you many options
including the ability to keep the “Output” window open after the script terminates, and the ability to
enter interactive mode after the termination of the run script. The latter can be very helpful if you want
to examine the objects that were created during your script.

1.8 Mac OS X

At the time of this writing Mac OS X had just been released as a Public Beta. Efforts are under
way to bring MacPython to Mac OS X. The MacPython release 2.2.31.5.2c1 runs quite well within the
“Classic” environment. A “Carbon” port of the MacPython code is being prepared for release, and
several people have made a command line version available to the “Darwin” layer (which is accessible
via Terminal.app).

1.8. Mac OS X 5

6

CHAPTER

TWO

MacPython Modules

The following modules are only available on the Macintosh, and are documented here:

mac Implementations for the os module.
macpath MacOS path manipulation functions.
ctb Interfaces to the Communications Tool Box. Only the Connection Manager is supported.
macfs Support for FSSpec, the Alias Manager, finder aliases, and the Standard File package.
ic Access to Internet Config.
MacOS Access to Mac OS-specific interpreter features.
macostools Convenience routines for file manipulation.
findertools Wrappers around the finder’s Apple Events interface.
macspeech Interface to the Macintosh Speech Manager.
EasyDialogs Basic Macintosh dialogs.
FrameWork Interactive application framework.
MiniAEFrame Support to act as an Open Scripting Architecture (OSA) server (“Apple Events”).
aepack Conversion between Python variables and AppleEvent data containers.
aetypes Python representation of the Apple Event Object Model.

2.1 mac — Implementations for the os module

This module implements the operating system dependent functionality provided by the standard module
os. It is best accessed through the os module.

The following functions are available in this module: chdir(), close(), dup(), fdopen(), getcwd(),
lseek(), listdir(), mkdir(), open(), read(), rename(), rmdir(), stat(), sync(), unlink(),
write(), as well as the exception error. Note that the times returned by stat() are floating-point
values, like all time values in MacPython.

One additional function is available, but only under Classic MacPython, not under Carbon MacPython:

xstat(path)
This function returns the same information as stat(), but with three additional values appended:
the size of the resource fork of the file and its 4-character creator and type. Availability: Classic
MacPython only. Deprecated since release 2.3. Use the macfs.FSSpec() function to get an
FSSpec object for the file, then use the GetCreatorType() method to get the creator and type
information. It will no longer be possible to get the size of the resource fork.

2.2 macpath — MacOS path manipulation functions

This module is the Macintosh implementation of the os.path module. It is most portably accessed as
os.path. Refer to the Python Library Reference for documentation of os.path.

The following functions are available in this module: normcase(), normpath(), isabs(), join(),
split(), isdir(), isfile(), walk(), exists(). For other functions available in os.path dummy
counterparts are available.

7

2.3 ctb — Interface to the Communications Tool Box

This module provides a partial interface to the Macintosh Communications Toolbox. Currently, only
Connection Manager tools are supported.

This module is only available under MacOS9 or earlier, in classic PPC MacPython.

error
The exception raised on errors.

cmData
cmCntl
cmAttn

Flags for the channel argument of the Read() and Write() methods.

cmFlagsEOM
End-of-message flag for Read() and Write().

choose*
Values returned by Choose().

cmStatus*
Bits in the status as returned by Status().

available()
Return 1 if the Communication Toolbox is available, zero otherwise.

CMNew(name, sizes)
Create a connection object using the connection tool named name. sizes is a 6-tuple given buffer
sizes for data in, data out, control in, control out, attention in and attention out. Alternatively,
passing None for sizes will result in default buffer sizes.

2.3.1 Connection Objects

For all connection methods that take a timeout argument, a value of -1 is indefinite, meaning that the
command runs to completion.

callback
If this member is set to a value other than None it should point to a function accepting a single argu-
ment (the connection object). This will make all connection object methods work asynchronously,
with the callback routine being called upon completion.

Note: For reasons beyond my understanding, the callback routine is currently never called. You
are advised against using asynchronous calls for the time being.

Open(timeout)
Open an outgoing connection, waiting at most timeout seconds for the connection to be established.

Listen(timeout)
Wait for an incoming connection. Stop waiting after timeout seconds. This call is only meaningful
to some tools.

accept(yesno)
Accept (when yesno is non-zero) or reject an incoming call after Listen() returned.

Close(timeout, now)
Close a connection. When now is zero, the close is orderly (outstanding output is flushed, etc.) with
a timeout of timeout seconds. When now is non-zero the close is immediate, discarding output.

Read(len, chan, timeout)
Read len bytes, or until timeout seconds have passed, from the channel chan (which is one
of cmData, cmCntl or cmAttn). Return a 2-tuple: the data read and the end-of-message flag,
cmFlagsEOM.

Write(buf, chan, timeout, eom)
Write buf to channel chan, aborting after timeout seconds. When eom has the value cmFlagsEOM,

8 Chapter 2. MacPython Modules

an end-of-message indicator will be written after the data (if this concept has a meaning for this
communication tool). The method returns the number of bytes written.

Status()
Return connection status as the 2-tuple (sizes, flags). sizes is a 6-tuple giving the actual buffer
sizes used (see CMNew()), flags is a set of bits describing the state of the connection.

GetConfig()
Return the configuration string of the communication tool. These configuration strings are tool-
dependent, but usually easily parsed and modified.

SetConfig(str)
Set the configuration string for the tool. The strings are parsed left-to-right, with later values
taking precedence. This means individual configuration parameters can be modified by simply
appending something like ’baud 4800’ to the end of the string returned by GetConfig() and
passing that to this method. The method returns the number of characters actually parsed by the
tool before it encountered an error (or completed successfully).

Choose()
Present the user with a dialog to choose a communication tool and configure it. If there is an
outstanding connection some choices (like selecting a different tool) may cause the connection to
be aborted. The return value (one of the choose* constants) will indicate this.

Idle()
Give the tool a chance to use the processor. You should call this method regularly.

Abort()
Abort an outstanding asynchronous Open() or Listen().

Reset()
Reset a connection. Exact meaning depends on the tool.

Break(length)
Send a break. Whether this means anything, what it means and interpretation of the length
parameter depends on the tool in use.

2.4 macfs — Various file system services

This module provides access to Macintosh FSSpec handling, the Alias Manager, finder aliases and the
Standard File package.

Whenever a function or method expects a file argument, this argument can be one of three things: (1) a
full or partial Macintosh pathname, (2) an FSSpec object or (3) a 3-tuple (wdRefNum, parID, name)
as described in Inside Macintosh: Files. A description of aliases and the Standard File package can also
be found there.

Note: A module, macfsn, is auto-imported to replace StandardFile calls in macfs with NavServices
calls.

FSSpec(file)
Create an FSSpec object for the specified file.

RawFSSpec(data)
Create an FSSpec object given the raw data for the C structure for the FSSpec as a string. This
is mainly useful if you have obtained an FSSpec structure over a network.

RawAlias(data)
Create an Alias object given the raw data for the C structure for the alias as a string. This is
mainly useful if you have obtained an FSSpec structure over a network.

FInfo()
Create a zero-filled FInfo object.

ResolveAliasFile(file)

2.4. macfs — Various file system services 9

Resolve an alias file. Returns a 3-tuple (fsspec, isfolder, aliased) where fsspec is the resulting
FSSpec object, isfolder is true if fsspec points to a folder and aliased is true if the file was an alias
in the first place (otherwise the FSSpec object for the file itself is returned).

StandardGetFile([type, ...])
Present the user with a standard “open input file” dialog. Optionally, you can pass up to four
4-character file types to limit the files the user can choose from. The function returns an FSSpec
object and a flag indicating that the user completed the dialog without cancelling.

PromptGetFile(prompt[, type, ...])
Similar to StandardGetFile() but allows you to specify a prompt which will be displayed at the
top of the dialog.

StandardPutFile(prompt[, default])
Present the user with a standard “open output file” dialog. prompt is the prompt string, and the
optional default argument initializes the output file name. The function returns an FSSpec object
and a flag indicating that the user completed the dialog without cancelling.

GetDirectory([prompt])
Present the user with a non-standard “select a directory” dialog. You have to first open the
directory before clicking on the “select current directory” button. prompt is the prompt string
which will be displayed at the top of the dialog. Return an FSSpec object and a success-indicator.

SetFolder([fsspec])
Set the folder that is initially presented to the user when one of the file selection dialogs is presented.
fsspec should point to a file in the folder, not the folder itself (the file need not exist, though). If no
argument is passed the folder will be set to the current directory, i.e. what os.getcwd() returns.

Note that starting with system 7.5 the user can change Standard File behaviour with the “general
controls” control panel, thereby making this call inoperative.

FindFolder(where, which, create)
Locates one of the “special” folders that MacOS knows about, such as the trash or the Preferences
folder. where is the disk to search, which is the 4-character string specifying which folder to locate.
Setting create causes the folder to be created if it does not exist. Returns a (vrefnum, dirid)
tuple.

NewAliasMinimalFromFullPath(pathname)
Return a minimal alias object that points to the given file, which must be specified as a full
pathname. This is the only way to create an Alias pointing to a non-existing file.

The constants for where and which can be obtained from the standard module MACFS .

FindApplication(creator)
Locate the application with 4-character creator code creator . The function returns an FSSpec
object pointing to the application.

2.4.1 FSSpec objects

data
The raw data from the FSSpec object, suitable for passing to other applications, for instance.

as pathname()
Return the full pathname of the file described by the FSSpec object.

as tuple()
Return the (wdRefNum, parID, name) tuple of the file described by the FSSpec object.

NewAlias([file])
Create an Alias object pointing to the file described by this FSSpec. If the optional file parameter
is present the alias will be relative to that file, otherwise it will be absolute.

NewAliasMinimal()
Create a minimal alias pointing to this file.

10 Chapter 2. MacPython Modules

GetCreatorType()
Return the 4-character creator and type of the file.

SetCreatorType(creator, type)
Set the 4-character creator and type of the file.

GetFInfo()
Return a FInfo object describing the finder info for the file.

SetFInfo(finfo)
Set the finder info for the file to the values given as finfo (an FInfo object).

GetDates()
Return a tuple with three floating point values representing the creation date, modification date
and backup date of the file.

SetDates(crdate, moddate, backupdate)
Set the creation, modification and backup date of the file. The values are in the standard floating
point format used for times throughout Python.

2.4.2 Alias Objects

data
The raw data for the Alias record, suitable for storing in a resource or transmitting to other
programs.

Resolve([file])
Resolve the alias. If the alias was created as a relative alias you should pass the file relative to
which it is. Return the FSSpec for the file pointed to and a flag indicating whether the Alias object
itself was modified during the search process. If the file does not exist but the path leading up to
it does exist a valid fsspec is returned.

GetInfo(num)
An interface to the C routine GetAliasInfo().

Update(file[, file2])
Update the alias to point to the file given. If file2 is present a relative alias will be created.

Note that it is currently not possible to directly manipulate a resource as an Alias object. Hence,
after calling Update() or after Resolve() indicates that the alias has changed the Python program is
responsible for getting the data value from the Alias object and modifying the resource.

2.4.3 FInfo Objects

See Inside Macintosh: Files for a complete description of what the various fields mean.

Creator
The 4-character creator code of the file.

Type
The 4-character type code of the file.

Flags
The finder flags for the file as 16-bit integer. The bit values in Flags are defined in standard module
MACFS.

Location
A Point giving the position of the file’s icon in its folder.

Fldr
The folder the file is in (as an integer).

2.4. macfs — Various file system services 11

2.5 ic — Access to Internet Config

This module provides access to Macintosh Internet Config package, which stores preferences for Internet
programs such as mail address, default homepage, etc. Also, Internet Config contains an elaborate set
of mappings from Macintosh creator/type codes to foreign filename extensions plus information on how
to transfer files (binary, ascii, etc.). Since MacOS 9, this module is a control panel named Internet.

There is a low-level companion module icglue which provides the basic Internet Config access func-
tionality. This low-level module is not documented, but the docstrings of the routines document the
parameters and the routine names are the same as for the Pascal or C API to Internet Config, so the
standard IC programmers’ documentation can be used if this module is needed.

The ic module defines the error exception and symbolic names for all error codes Internet Config can
produce; see the source for details.

exception error
Exception raised on errors in the ic module.

The ic module defines the following class and function:

class IC([signature[, ic]])
Create an Internet Config object. The signature is a 4-character creator code of the current appli-
cation (default ’Pyth’) which may influence some of ICs settings. The optional ic argument is a
low-level icglue.icinstance created beforehand, this may be useful if you want to get preferences
from a different config file, etc.

launchurl(url[, hint])
parseurl(data[, start[, end[, hint]]])
mapfile(file)
maptypecreator(type, creator[, filename])
settypecreator(file)

These functions are “shortcuts” to the methods of the same name, described below.

2.5.1 IC Objects

IC objects have a mapping interface, hence to obtain the mail address you simply get ic[’MailAddress’].
Assignment also works, and changes the option in the configuration file.

The module knows about various datatypes, and converts the internal IC representation to a “logical”
Python data structure. Running the ic module standalone will run a test program that lists all keys
and values in your IC database, this will have to serve as documentation.

If the module does not know how to represent the data it returns an instance of the ICOpaqueData type,
with the raw data in its data attribute. Objects of this type are also acceptable values for assignment.

Besides the dictionary interface, IC objects have the following methods:

launchurl(url[, hint])
Parse the given URL, lauch the correct application and pass it the URL. The optional hint can
be a scheme name such as ’mailto:’, in which case incomplete URLs are completed with this
scheme. If hint is not provided, incomplete URLs are invalid.

parseurl(data[, start[, end[, hint]]])
Find an URL somewhere in data and return start position, end position and the URL. The optional
start and end can be used to limit the search, so for instance if a user clicks in a long text field you
can pass the whole text field and the click-position in start and this routine will return the whole
URL in which the user clicked. As above, hint is an optional scheme used to complete incomplete
URLs.

mapfile(file)
Return the mapping entry for the given file, which can be passed as either a filename or an
macfs.FSSpec() result, and which need not exist.

12 Chapter 2. MacPython Modules

The mapping entry is returned as a tuple (version, type, creator, postcreator, flags, exten-
sion, appname, postappname, mimetype, entryname), where version is the entry version num-
ber, type is the 4-character filetype, creator is the 4-character creator type, postcreator is the
4-character creator code of an optional application to post-process the file after downloading, flags
are various bits specifying whether to transfer in binary or ascii and such, extension is the filename
extension for this file type, appname is the printable name of the application to which this file
belongs, postappname is the name of the postprocessing application, mimetype is the MIME type
of this file and entryname is the name of this entry.

maptypecreator(type, creator[, filename])
Return the mapping entry for files with given 4-character type and creator codes. The optional
filename may be specified to further help finding the correct entry (if the creator code is ’????’,
for instance).

The mapping entry is returned in the same format as for mapfile.

settypecreator(file)
Given an existing file, specified either as a filename or as an macfs.FSSpec() result, set its creator
and type correctly based on its extension. The finder is told about the change, so the finder icon
will be updated quickly.

2.6 MacOS — Access to Mac OS interpreter features

This module provides access to MacOS specific functionality in the Python interpreter, such as how the
interpreter eventloop functions and the like. Use with care.

Note the capitalization of the module name; this is a historical artifact.

runtimemodel
Either ’ppc’, ’carbon’ or ’macho’. This signifies whether this Python uses the classic (Inter-
faceLib style) runtime model, the Mac OS X compatible CarbonLib style or the Mac OS X-only
Mach-O style.

exception Error
This exception is raised on MacOS generated errors, either from functions in this module or from
other mac-specific modules like the toolbox interfaces. The arguments are the integer error code
(the OSErr value) and a textual description of the error code. Symbolic names for all known error
codes are defined in the standard module macerrors.

SetEventHandler(handler)
In the inner interpreter loop Python will occasionally check for events, unless disabled with
ScheduleParams(). With this function you can pass a Python event-handler function that will be
called if an event is available. The event is passed as parameter and the function should return
non-zero if the event has been fully processed, otherwise event processing continues (by passing the
event to the console window package, for instance).

Call SetEventHandler() without a parameter to clear the event handler. Setting an event handler
while one is already set is an error.

SchedParams([doint[, evtmask[, besocial[, interval[, bgyield]]]]])
Influence the interpreter inner loop event handling. Interval specifies how often (in seconds, floating
point) the interpreter should enter the event processing code. When true, doint causes interrupt
(command-dot) checking to be done. evtmask tells the interpreter to do event processing for events
in the mask (redraws, mouseclicks to switch to other applications, etc). The besocial flag gives other
processes a chance to run. They are granted minimal runtime when Python is in the foreground
and bgyield seconds per interval when Python runs in the background.

All parameters are optional, and default to the current value. The return value of this function
is a tuple with the old values of these options. Initial defaults are that all processing is enabled,
checking is done every quarter second and the processor is given up for a quarter second when in
the background.

HandleEvent(ev)

2.6. MacOS — Access to Mac OS interpreter features 13

Pass the event record ev back to the Python event loop, or possibly to the handler for the
sys.stdout window (based on the compiler used to build Python). This allows Python pro-
grams that do their own event handling to still have some command-period and window-switching
capability.
If you attempt to call this function from an event handler set through SetEventHandler() you
will get an exception.

GetErrorString(errno)
Return the textual description of MacOS error code errno.

splash(resid)
This function will put a splash window on-screen, with the contents of the DLOG resource specified
by resid . Calling with a zero argument will remove the splash screen. This function is useful if you
want an applet to post a splash screen early in initialization without first having to load numerous
extension modules.

DebugStr(message [, object])
Drop to the low-level debugger with message message. The optional object argument is not used,
but can easily be inspected from the debugger.
Note that you should use this function with extreme care: if no low-level debugger like MacsBug is
installed this call will crash your system. It is intended mainly for developers of Python extension
modules.

openrf(name [, mode])
Open the resource fork of a file. Arguments are the same as for the built-in function open(). The
object returned has file-like semantics, but it is not a Python file object, so there may be subtle
differences.

2.7 macostools — Convenience routines for file manipulation

This module contains some convenience routines for file-manipulation on the Macintosh.

The macostools module defines the following functions:

copy(src, dst[, createpath[, copytimes]])
Copy file src to dst . The files can be specified as pathnames or FSSpec objects. If createpath is
non-zero dst must be a pathname and the folders leading to the destination are created if necessary.
The method copies data and resource fork and some finder information (creator, type, flags) and
optionally the creation, modification and backup times (default is to copy them). Custom icons,
comments and icon position are not copied.

copytree(src, dst)
Recursively copy a file tree from src to dst , creating folders as needed. src and dst should be
specified as pathnames.

mkalias(src, dst)
Create a finder alias dst pointing to src. Both may be specified as pathnames or FSSpec objects.

touched(dst)
Tell the finder that some bits of finder-information such as creator or type for file dst has changed.
The file can be specified by pathname or fsspec. This call should tell the finder to redraw the files
icon.

BUFSIZ
The buffer size for copy, default 1 megabyte.

Note that the process of creating finder aliases is not specified in the Apple documentation. Hence,
aliases created with mkalias() could conceivably have incompatible behaviour in some cases.

2.8 findertools — The finder’s Apple Events interface

14 Chapter 2. MacPython Modules

This module contains routines that give Python programs access to some functionality provided by the
finder. They are implemented as wrappers around the AppleEvent interface to the finder.

All file and folder parameters can be specified either as full pathnames or as FSSpec objects.

The findertools module defines the following functions:

launch(file)
Tell the finder to launch file. What launching means depends on the file: applications are started,
folders are opened and documents are opened in the correct application.

Print(file)
Tell the finder to print a file (again specified by full pathname or FSSpec). The behaviour is
identical to selecting the file and using the print command in the finder’s file menu.

copy(file, destdir)
Tell the finder to copy a file or folder file to folder destdir . The function returns an Alias object
pointing to the new file.

move(file, destdir)
Tell the finder to move a file or folder file to folder destdir . The function returns an Alias object
pointing to the new file.

sleep()
Tell the finder to put the Macintosh to sleep, if your machine supports it.

restart()
Tell the finder to perform an orderly restart of the machine.

shutdown()
Tell the finder to perform an orderly shutdown of the machine.

2.9 macspeech — Interface to the Macintosh Speech Manager

This module provides an interface to the Macintosh Speech Manager, allowing you to let the Macintosh
utter phrases. You need a version of the Speech Manager extension (version 1 and 2 have been tested)
in your ‘Extensions’ folder for this to work. The module does not provide full access to all features of the
Speech Manager.

This module is only available on MacOS9 and earlier in classic PPC MacPython.

Available()
Test availability of the Speech Manager extension (and, on the PowerPC, the Speech Manager
shared library). Return 0 or 1.

Version()
Return the (integer) version number of the Speech Manager.

SpeakString(str)
Utter the string str using the default voice, asynchronously. This aborts any speech that may still
be active from prior SpeakString() invocations.

Busy()
Return the number of speech channels busy, system-wide.

CountVoices()
Return the number of different voices available.

GetIndVoice(num)
Return a Voice object for voice number num.

2.9.1 Voice Objects

2.9. macspeech — Interface to the Macintosh Speech Manager 15

Voice objects contain the description of a voice. It is currently not yet possible to access the parameters
of a voice.

GetGender()
Return the gender of the voice: 0 for male, 1 for female and -1 for neuter.

NewChannel()
Return a new Speech Channel object using this voice.

2.9.2 Speech Channel Objects

A Speech Channel object allows you to speak strings with slightly more control than SpeakString(),
and allows you to use multiple speakers at the same time. Please note that channel pitch and rate are
interrelated in some way, so that to make your Macintosh sing you will have to adjust both.

SpeakText(str)
Start uttering the given string.

Stop()
Stop babbling.

GetPitch()
Return the current pitch of the channel, as a floating-point number.

SetPitch(pitch)
Set the pitch of the channel.

GetRate()
Get the speech rate (utterances per minute) of the channel as a floating point number.

SetRate(rate)
Set the speech rate of the channel.

2.10 EasyDialogs — Basic Macintosh dialogs

The EasyDialogs module contains some simple dialogs for the Macintosh. All routines take an optional
resource ID parameter id with which one can override the DLOG resource used for the dialog, provided
that the dialog items correspond (both type and item number) to those in the default DLOG resource.
See source code for details.

The EasyDialogs module defines the following functions:

Message(str[, id[, ok=None]])
Displays a modal dialog with the message text str , which should be at most 255 characters long.
The button text defaults to “OK”, but is set to the string argument ok if the latter is supplied.
Control is returned when the user clicks the “OK” button.

AskString(prompt[, default[, id[, ok[, cancel]]]])
Asks the user to input a string value via a modal dialog. prompt is the prompt message, and the
optional default supplies the initial value for the string (otherwise "" is used). The text of the
“OK” and “Cancel” buttons can be changed with the ok and cancel arguments. All strings can be
at most 255 bytes long. AskString() returns the string entered or None in case the user cancelled.

AskPassword(prompt[, default[, id[, ok[, cancel]]]])
Asks the user to input a string value via a modal dialog. Like AskString(), but with the text
shown as bullets. The arguments have the same meaning as for AskString().

AskYesNoCancel(question[, default[, yes[, no[, cancel[, id]]]]])
Presents a dialog with prompt question and three buttons labelled “Yes”, “No”, and “Cancel”.
Returns 1 for “Yes”, 0 for “No” and -1 for “Cancel”. The value of default (or 0 if default is not
supplied) is returned when the RETURN key is pressed. The text of the buttons can be changed
with the yes, no, and cancel arguments; to prevent a button from appearing, supply "" for the

16 Chapter 2. MacPython Modules

corresponding argument.

ProgressBar([title[, maxval[, label[, id]]]])
Displays a modeless progress-bar dialog. This is the constructor for the ProgressBar class described
below. title is the text string displayed (default “Working...”), maxval is the value at which progress
is complete (default 0, indicating that an indeterminate amount of work remains to be done), and
label is the text that is displayed above the progress bar itself.

GetArgv([optionlist[commandlist[, addoldfile[, addnewfile[, addfolder[, id]]]]]])
Displays a dialog which aids the user in constructing a command-line argument list. Returns the
list in sys.argv format, suitable for passing as an argument to getopt.getopt(). addoldfile,
addnewfile, and addfolder are boolean arguments. When nonzero, they enable the user to insert
into the command line paths to an existing file, a (possibly) not-yet-existent file, and a folder,
respectively. (Note: Option arguments must appear in the command line before file and folder
arguments in order to be recognized by getopt.getopt().) Arguments containing spaces can be
specified by enclosing them within single or double quotes. A SystemExit exception is raised if
the user presses the “Cancel” button.

optionlist is a list that determines a popup menu from which the allowed options are selected.
Its items can take one of two forms: optstr or (optstr, descr). When present, descr is a short
descriptive string that is displayed in the dialog while this option is selected in the popup menu.
The correspondence between optstrs and command-line arguments is:

optstr format Command-line format
x -x (short option)
x: or x= -x (short option with value)
xyz --xyz (long option)
xyz: or xyz= --xyz (long option with value)

commandlist is a list of items of the form cmdstr or (cmdstr, descr), where descr is as above.
The cmdstrs will appear in a popup menu. When chosen, the text of cmdstr will be appended to
the command line as is, except that a trailing ‘:’ or ‘=’ (if present) will be trimmed off.

New in version 2.0.

2.10.1 ProgressBar Objects

ProgressBar objects provide support for modeless progress-bar dialogs. Both determinate (thermometer
style) and indeterminate (barber-pole style) progress bars are supported. The bar will be determinate
if its maximum value is greater than zero; otherwise it will be indeterminate. Changed in version 2.2:
Support for indeterminate-style progress bars was added.

The dialog is displayed immediately after creation. If the dialog’s “Cancel” button is pressed, or if
Cmd-. or ESC is typed, the dialog window is hidden and KeyboardInterrupt is raised (but note that
this response does not occur until the progress bar is next updated, typically via a call to inc() or
set()). Otherwise, the bar remains visible until the ProgressBar object is discarded.

ProgressBar objects possess the following attributes and methods:

curval
The current value (of type integer or long integer) of the progress bar. The normal access methods
coerce curval between 0 and maxval. This attribute should not be altered directly.

maxval
The maximum value (of type integer or long integer) of the progress bar; the progress bar (ther-
mometer style) is full when curval equals maxval. If maxval is 0, the bar will be indeterminate
(barber-pole). This attribute should not be altered directly.

title([newstr])
Sets the text in the title bar of the progress dialog to newstr .

label([newstr])
Sets the text in the progress box of the progress dialog to newstr .

2.10. EasyDialogs — Basic Macintosh dialogs 17

set(value[, max])
Sets the progress bar’s curval to value, and also maxval to max if the latter is provided. value
is first coerced between 0 and maxval. The thermometer bar is updated to reflect the changes,
including a change from indeterminate to determinate or vice versa.

inc([n])
Increments the progress bar’s curval by n, or by 1 if n is not provided. (Note that n may
be negative, in which case the effect is a decrement.) The progress bar is updated to reflect the
change. If the bar is indeterminate, this causes one “spin” of the barber pole. The resulting curval
is coerced between 0 and maxval if incrementing causes it to fall outside this range.

2.11 FrameWork — Interactive application framework

The FrameWork module contains classes that together provide a framework for an interactive Macintosh
application. The programmer builds an application by creating subclasses that override various methods
of the bases classes, thereby implementing the functionality wanted. Overriding functionality can often
be done on various different levels, i.e. to handle clicks in a single dialog window in a non-standard way
it is not necessary to override the complete event handling.

The FrameWork is still very much work-in-progress, and the documentation describes only the most
important functionality, and not in the most logical manner at that. Examine the source or the examples
for more details. The following are some comments posted on the MacPython newsgroup about the
strengths and limitations of FrameWork:

The strong point of FrameWork is that it allows you to break into the control-flow at many
different places. W, for instance, uses a different way to enable/disable menus and that plugs
right in leaving the rest intact. The weak points of FrameWork are that it has no abstract
command interface (but that shouldn’t be difficult), that it’s dialog support is minimal and
that it’s control/toolbar support is non-existent.

The FrameWork module defines the following functions:

Application()
An object representing the complete application. See below for a description of the methods. The
default init () routine creates an empty window dictionary and a menu bar with an apple
menu.

MenuBar()
An object representing the menubar. This object is usually not created by the user.

Menu(bar, title[, after])
An object representing a menu. Upon creation you pass the MenuBar the menu appears in, the
title string and a position (1-based) after where the menu should appear (default: at the end).

MenuItem(menu, title[, shortcut, callback])
Create a menu item object. The arguments are the menu to create, the item item title string and
optionally the keyboard shortcut and a callback routine. The callback is called with the arguments
menu-id, item number within menu (1-based), current front window and the event record.

Instead of a callable object the callback can also be a string. In this case menu selection causes the
lookup of a method in the topmost window and the application. The method name is the callback
string with ’domenu ’ prepended.

Calling the MenuBar fixmenudimstate() method sets the correct dimming for all menu items
based on the current front window.

Separator(menu)
Add a separator to the end of a menu.

SubMenu(menu, label)
Create a submenu named label under menu menu. The menu object is returned.

18 Chapter 2. MacPython Modules

Window(parent)
Creates a (modeless) window. Parent is the application object to which the window belongs. The
window is not displayed until later.

DialogWindow(parent)
Creates a modeless dialog window.

windowbounds(width, height)
Return a (left, top, right, bottom) tuple suitable for creation of a window of given width and
height. The window will be staggered with respect to previous windows, and an attempt is made
to keep the whole window on-screen. However, the window will however always be the exact size
given, so parts may be offscreen.

setwatchcursor()
Set the mouse cursor to a watch.

setarrowcursor()
Set the mouse cursor to an arrow.

2.11.1 Application Objects

Application objects have the following methods, among others:

makeusermenus()
Override this method if you need menus in your application. Append the menus to the attribute
menubar.

getabouttext()
Override this method to return a text string describing your application. Alternatively, override
the do about() method for more elaborate “about” messages.

mainloop([mask[, wait]])
This routine is the main event loop, call it to set your application rolling. Mask is the mask of
events you want to handle, wait is the number of ticks you want to leave to other concurrent
application (default 0, which is probably not a good idea). While raising self to exit the mainloop
is still supported it is not recommended: call self. quit() instead.

The event loop is split into many small parts, each of which can be overridden. The default methods
take care of dispatching events to windows and dialogs, handling drags and resizes, Apple Events,
events for non-FrameWork windows, etc.

In general, all event handlers should return 1 if the event is fully handled and 0 otherwise (be-
cause the front window was not a FrameWork window, for instance). This is needed so that
update events and such can be passed on to other windows like the Sioux console window. Calling
MacOS.HandleEvent() is not allowed within our dispatch or its callees, since this may result in an
infinite loop if the code is called through the Python inner-loop event handler.

asyncevents(onoff)
Call this method with a nonzero parameter to enable asynchronous event handling. This will tell
the inner interpreter loop to call the application event handler async dispatch whenever events are
available. This will cause FrameWork window updates and the user interface to remain working
during long computations, but will slow the interpreter down and may cause surprising results in
non-reentrant code (such as FrameWork itself). By default async dispatch will immedeately call
our dispatch but you may override this to handle only certain events asynchronously. Events you
do not handle will be passed to Sioux and such.

The old on/off value is returned.

quit()
Terminate the running mainloop() call at the next convenient moment.

do char(c, event)
The user typed character c. The complete details of the event can be found in the event structure.
This method can also be provided in a Window object, which overrides the application-wide handler
if the window is frontmost.

2.11. FrameWork — Interactive application framework 19

do dialogevent(event)
Called early in the event loop to handle modeless dialog events. The default method simply
dispatches the event to the relevant dialog (not through the the DialogWindow object involved).
Override if you need special handling of dialog events (keyboard shortcuts, etc).

idle(event)
Called by the main event loop when no events are available. The null-event is passed (so you can
look at mouse position, etc).

2.11.2 Window Objects

Window objects have the following methods, among others:

open()
Override this method to open a window. Store the MacOS window-id in self.wid and call the
do postopen() method to register the window with the parent application.

close()
Override this method to do any special processing on window close. Call the do postclose()
method to cleanup the parent state.

do postresize(width, height, macoswindowid)
Called after the window is resized. Override if more needs to be done than calling InvalRect.

do contentclick(local, modifiers, event)
The user clicked in the content part of a window. The arguments are the coordinates (window-
relative), the key modifiers and the raw event.

do update(macoswindowid, event)
An update event for the window was received. Redraw the window.

do activate(activate, event)
The window was activated (activate == 1) or deactivated (activate == 0). Handle things like focus
highlighting, etc.

2.11.3 ControlsWindow Object

ControlsWindow objects have the following methods besides those of Window objects:

do controlhit(window, control, pcode, event)
Part pcode of control control was hit by the user. Tracking and such has already been taken care
of.

2.11.4 ScrolledWindow Object

ScrolledWindow objects are ControlsWindow objects with the following extra methods:

scrollbars([wantx [, wanty]])
Create (or destroy) horizontal and vertical scrollbars. The arguments specify which you want
(default: both). The scrollbars always have minimum 0 and maximum 32767.

getscrollbarvalues()
You must supply this method. It should return a tuple (x, y) giving the current position of the
scrollbars (between 0 and 32767). You can return None for either to indicate the whole document
is visible in that direction.

updatescrollbars()
Call this method when the document has changed. It will call getscrollbarvalues() and update
the scrollbars.

scrollbar callback(which, what, value)
Supplied by you and called after user interaction. which will be ’x’ or ’y’, what will be ’-’, ’--’,

20 Chapter 2. MacPython Modules

’set’, ’++’ or ’+’. For ’set’, value will contain the new scrollbar position.

scalebarvalues(absmin, absmax, curmin, curmax)
Auxiliary method to help you calculate values to return from getscrollbarvalues(). You pass
document minimum and maximum value and topmost (leftmost) and bottommost (rightmost)
visible values and it returns the correct number or None.

do activate(onoff, event)
Takes care of dimming/highlighting scrollbars when a window becomes frontmost. If you override
this method, call this one at the end of your method.

do postresize(width, height, window)
Moves scrollbars to the correct position. Call this method initially if you override it.

do controlhit(window, control, pcode, event)
Handles scrollbar interaction. If you override it call this method first, a nonzero return value
indicates the hit was in the scrollbars and has been handled.

2.11.5 DialogWindow Objects

DialogWindow objects have the following methods besides those of Window objects:

open(resid)
Create the dialog window, from the DLOG resource with id resid . The dialog object is stored in
self.wid.

do itemhit(item, event)
Item number item was hit. You are responsible for redrawing toggle buttons, etc.

2.12 MiniAEFrame — Open Scripting Architecture server support

The module MiniAEFrame provides a framework for an application that can function as an Open Scripting
Architecture (OSA) server, i.e. receive and process AppleEvents. It can be used in conjunction with
FrameWork or standalone. As an example, it is used in PythonCGISlave.

The MiniAEFrame module defines the following classes:

class AEServer()
A class that handles AppleEvent dispatch. Your application should subclass this class together
with either MiniApplication or FrameWork.Application. Your init () method should call
the init () method for both classes.

class MiniApplication()
A class that is more or less compatible with FrameWork.Application but with less functionality.
Its event loop supports the apple menu, command-dot and AppleEvents; other events are passed
on to the Python interpreter and/or Sioux. Useful if your application wants to use AEServer but
does not provide its own windows, etc.

2.12.1 AEServer Objects

installaehandler(classe, type, callback)
Installs an AppleEvent handler. classe and type are the four-character OSA Class and Type des-
ignators, ’****’ wildcards are allowed. When a matching AppleEvent is received the parameters
are decoded and your callback is invoked.

callback(object, **kwargs)
Your callback is called with the OSA Direct Object as first positional parameter. The other
parameters are passed as keyword arguments, with the 4-character designator as name. Three
extra keyword parameters are passed: class and type are the Class and Type designators and
attributes is a dictionary with the AppleEvent attributes.

2.12. MiniAEFrame — Open Scripting Architecture server support 21

The return value of your method is packed with aetools.packevent() and sent as reply.

Note that there are some serious problems with the current design. AppleEvents which have non-identifier
4-character designators for arguments are not implementable, and it is not possible to return an error to
the originator. This will be addressed in a future release.

2.13 aepack — Conversion between Python variables and AppleEvent data
containers

The aepack module defines functions for converting (packing) Python variables to AppleEvent descriptors
and back (unpacking). Within Python the AppleEvent descriptor is handled by Python objects of built-in
type AEDesc, defined in module AE.

The aepack module defines the following functions:

pack(x [, forcetype])
Returns an AEDesc object containing a conversion of Python value x. If forcetype is provided it
specifies the descriptor type of the result. Otherwise, a default mapping of Python types to Apple
Event descriptor types is used, as follows:

Python type descriptor type
FSSpec typeFSS
Alias typeAlias
integer typeLong (32 bit integer)
float typeFloat (64 bit floating point)
string typeText
list typeAEList
dictionary typeAERecord
instance see below

FSSpec and Alias are built-in object types defined in the module macfs.

If x is a Python instance then this function attempts to call an aepack () method. This
method should return an AE.AEDesc object.

If the conversion x is not defined above, this function returns the Python string representation of
a value (the repr() function) encoded as a text descriptor.

unpack(x)
x must be an object of type AEDesc. This function returns a Python object representation of the
data in the Apple Event descriptor x . Simple AppleEvent data types (integer, text, float) are
returned as their obvious Python counterparts. Apple Event lists are returned as Python lists, and
the list elements are recursively unpacked. Object references (ex. line 3 of document 1) are
returned as instances of aetypes.ObjectSpecifier. AppleEvent descriptors with descriptor type
typeFSS are returned as FSSpec objects. AppleEvent record descriptors are returned as Python
dictionaries, with keys of type ? and elements recursively unpacked.

See Also:

Module AE (section ??):
Built-in access to Apple Event Manager routines.

Module aetypes (section 2.14):
Python definitions of codes for Apple Event descriptor types.

Inside Macintosh: Interapplication Communication
(http://developer.apple.com/techpubs/mac/IAC/IAC-2.html)

Information about inter-process communications on the Macintosh.

2.14 aetypes — AppleEvent objects

22 Chapter 2. MacPython Modules

The aetypes defines classes used to represent Apple Event object specifiers. An object specifier is
essentially an address of an object implemented in a Apple Event server. An Apple Event specifier is
used as the direct object for an Apple Event or as the argument of an optional parameter. In AppleScript
an object specifier is represented by a phrase such as: character 23 of document "Semprini". The
classes defined in this module allow this specifier to be represented by a Python object which is initialized
as follows: res = Document(1).Character(23)

The AEObjects module defines the following class:

class ObjectSpecifier(want, form, seld, from)
This is the base class for representing object specifiers and is generally not constructed directly by
the user. Its important functionality is to define an aepack () function, which returns the
Apple Event descriptor containing the object specifier. Its data members, set directly from the
constructor arguments, are:

want
A four character string representing the class code of the object. These class codes are specified in
Apple Event Suites; for example the standard code for a character object is the 4 bytes ‘char’.

2.14. aetypes — AppleEvent objects 23

24

CHAPTER

THREE

MacOS Toolbox Modules

There are a set of modules that provide interfaces to various MacOS toolboxes. If applicable the module
will define a number of Python objects for the various structures declared by the toolbox, and operations
will be implemented as methods of the object. Other operations will be implemented as functions in
the module. Not all operations possible in C will also be possible in Python (callbacks are often a
problem), and parameters will occasionally be different in Python (input and output buffers, especially).
All methods and functions have a doc string describing their arguments and return values, and for
additional description you are referred to Inside Macintosh or similar works.

These modules all live in a package called Carbon. Despite the name Carbon they are also available
under classic PPC MacPython. The normal use pattern is

from Carbon import AE

Warning! These modules are not yet documented. If you wish to contribute documentation of any of
these modules, please get in touch with python-docs@python.org.

Carbon.AE Interface to the Apple Events toolbox
Carbon.App Interface to the Appearance Manager
Carbon.CF Interface to the Core Foundation
Carbon.Cm Interface to the Component Manager
Carbon.Ctl Interface to the Control Manager
Carbon.Dlg Interface to the Dialog Manager
Carbon.Evt Interface to the Event Manager
Carbon.Fm Interface to the Font Manager
Carbon.Help Interface to the Balloon Help Manager
Carbon.List Interface to the List Manager
Carbon.Menu Interface to the Menu Manager
Carbon.Mlte Interface to the MultiLingual Text Editor
Carbon.Qd Interface to the QuickDraw toolbox
Carbon.Qdoffs Interface to the QuickDraw Offscreen APIs
Carbon.Qt Interface to the QuickTime toolbox
Carbon.Res Interface to the Resource Manager and Handles
Carbon.Scrap The Scrap Manager provides basic services for implementing cut & paste and clipboard operations.
Carbon.Snd Interface to the Sound Manager
Carbon.TE Interface to TextEdit
Carbon.Win Interface to the Window Manager
ColorPicker Interface to the standard color selection dialog.

25

3.1 Carbon.AE — Apple Events

3.2 Carbon.App — Appearance Manager

3.3 Carbon.CF — Core Foundation

This module is only available under Carbon MacPython. The CFBase, CFArray, CFData, CFDictionary,
CFString and CFURL objects are supported, some only partially.

3.4 Carbon.Cm — Component Manager

3.5 Carbon.Ctl — Control Manager

3.6 Carbon.Dlg — Dialog Manager

3.7 Carbon.Evt — Event Manager

3.8 Carbon.Fm — Font Manager

3.9 Carbon.Help — Help Manager

This module is only available under MacOS9 and earlier in classic PPC MacPython.

3.10 Carbon.List — List Manager

3.11 Carbon.Menu — Menu Manager

3.12 Carbon.Mlte — MultiLingual Text Editor

3.13 Carbon.Qd — QuickDraw

3.14 Carbon.Qdoffs — QuickDraw Offscreen

3.15 Carbon.Qt — QuickTime

3.16 Carbon.Res — Resource Manager and Handles

3.17 Carbon.Scrap — Scrap Manager

This module is only fully available on MacOS9 and earlier under classic PPC MacPython. Very limited
functionality is available under Carbon MacPython.

See Also:

Scrap Manager

26 Chapter 3. MacOS Toolbox Modules

(http://developer.apple.com/techpubs/mac/MoreToolbox/MoreToolbox-109.html)

Apple’s documentation for the Scrap Manager gives a lot of useful information about using the
Scrap Manager in applications.

3.18 Carbon.Snd — Sound Manager

3.19 Carbon.TE — TextEdit

3.20 Carbon.Win — Window Manager

3.21 ColorPicker — Color selection dialog

The ColorPicker module provides access to the standard color picker dialog.

GetColor(prompt, rgb)
Show a standard color selection dialog and allow the user to select a color. The user is given
instruction by the prompt string, and the default color is set to rgb. rgb must be a tuple giving
the red, green, and blue components of the color. GetColor() returns a tuple giving the user’s
selected color and a flag indicating whether they accepted the selection of cancelled.

3.18. Carbon.Snd — Sound Manager 27

28

CHAPTER

FOUR

Undocumented Modules

The modules in this chapter are poorly documented (if at all). If you wish to contribute documentation
of any of these modules, please get in touch with python-docs@python.org.

applesingle Rudimentary decoder for AppleSingle format files
buildtools Helper module for BuildApplet, BuildApplication and macfreeze
py resource Helper to create ’PYC ’ resources for compiled applications
cfmfile Code Fragment Resource module
icopen Internet Config replacement for open()
macerrors Constant definitions for many Mac OS error codes
macfsn NavServices versions of StandardFile calls
macresource Locate script resources
Nac Interface to Navigation Services
mactty Easy access serial to line connections
mkcwproject Create CodeWarrior projects
nsremote Wrapper around Netscape OSA modules
PixMapWrapper Wrapper for PixMap objects
preferences Nice application preferences manager with support for defaults
pythonprefs Specialized preferences manager for the Python interpreter
quietconsole buffered, non-visible stdout output
videoreader read QuickTime movies frame by frame for further processing
W Widgets for the Mac, built on top of FrameWork
waste Interface to the “WorldScript-Aware Styled Text Engine.”

4.1 applesingle — AppleSingle decoder

4.2 buildtools — Helper module for BuildApplet and Friends

4.3 py resource — Resources from Python code

This module is primarily used as a help module for BuildApplet and BuildApplication. It is able to
store compiled Python code as ’PYC ’ resources in a file.

4.4 cfmfile — Code Fragment Resource module

cfmfile is a module that understands Code Fragments and the accompanying “cfrg” resources. It can
parse them and merge them, and is used by BuildApplication to combine all plugin modules to a single
executable.

29

4.5 icopen — Internet Config replacement for open()

Importing icopen will replace the builtin open() with a version that uses Internet Config to set file type
and creator for new files.

4.6 macerrors — Mac OS Errors

macerrors cotains constant definitions for many Mac OS error codes.

4.7 macfsn — NavServices calls

macfsn contains wrapper functions that have the same API as the macfs StandardFile calls, but are
implemented with Navigation Services through the Nav module. Importing it will replace the methods
in macfs with these, if Navigation Services is available on your machine.

4.8 macresource — Locate script resources

macresource helps scripts finding their resources, such as dialogs and menus, without requiring special
case code for when the script is run under MacPython, as a MacPython applet or under OSX Python.

4.9 Nav — NavServices calls

A low-level interface to Navigation Services.

4.10 mactty — Serial line connections

This module is only available under Mac OS 9 or earlier in classic PPC MacPython.

4.11 mkcwproject — Create CodeWarrior projects

mkcwproject creates project files for the Metrowerks CodeWarrior development environment. It is a
helper module for distutils but can be used separately for more control.

4.12 nsremote — Wrapper around Netscape OSA modules

nsremote is a wrapper around the Netscape OSA modules that allows you to easily send your browser
to a given URL. A related module that may be of interest is the webbrowser module, documented in
the Python Library Reference.

4.13 PixMapWrapper — Wrapper for PixMap objects

PixMapWrapper wraps a PixMap object with a Python object that allows access to the fields by name.
It also has methods to convert to and from PIL images.

30 Chapter 4. Undocumented Modules

4.14 preferences — Application preferences manager

The preferences module allows storage of user preferences in the system-wide preferences folder, with
defaults coming from the application itself and the possibility to override preferences for specific situa-
tions.

4.15 pythonprefs — Preferences manager for Python

This module is a specialization of the preferences module that allows reading and writing of the
preferences for the Python interpreter.

4.16 quietconsole — non-visible stdout output

quietconsole allows you to keep stdio output in a buffer without displaying it (or without displaying the
stdout window altogether, if set with EditPythonPrefs) until you try to read from stdin or disable the
buffering, at which point all the saved output is sent to the window. Good for programs with graphical
user interfaces that do want to display their output at a crash.

4.17 videoreader — read QuickTime movies

videoreader reads and decodes QuickTime movies and passes a stream of images to your program. It
also provides some support for audio tracks.

4.18 W — Widgets built on FrameWork

The W widgets are used extensively in the IDE.

4.19 waste — non-Apple TextEdit replacement

See Also:

About WASTE
(http://www.merzwaren.com/waste/)

Information about the WASTE widget and library, including documentation and downloads.

4.14. preferences — Application preferences manager 31

32

APPENDIX

A

History and License

A.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI,
see http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains
Python’s principal author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI,
see http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen
PythonLabs team. In October of the same year, the PythonLabs team moved to Zope Corporation
(then Digital Creations; see http://www.zope.com/). In 2001, the Python Software Foundation (PSF,
see http://www.python.org/psf/) was formed, a non-profit organization created specifically to own Python-
related Intellectual Property. Zope Corporation is a sponsoring member of the PSF.

All Python releases are Open Source (see http://www.opensource.org/ for the Open Source Definition). His-
torically, most, but not all, Python releases have also been GPL-compatible; the table below summarizes
the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes

1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no

1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no

2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes

2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-2003 PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses,
unlike the GPL, let you distribute a modified version without making your changes open source. The
GPL-compatible licenses make it possible to combine Python with other software that is released under
the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases
possible.

33

A.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.2

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the
Individual or Organization (“Licensee”) accessing and otherwise using Python 2.2.3 software in
source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a
nonexclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use Python 2.2.3 alone or in any
derivative version, provided, however, that PSF’s License Agreement and PSF’s notice of copyright,
i.e., “Copyright c© 2001, 2002 Python Software Foundation; All Rights Reserved” are retained in
Python 2.2.3 alone or in any derivative version prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.2.3 or
any part thereof, and wants to make the derivative work available to others as provided herein,
then Licensee hereby agrees to include in any such work a brief summary of the changes made to
Python 2.2.3.

4. PSF is making Python 2.2.3 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT
NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WAR-
RANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR
THAT THE USE OF PYTHON 2.2.3 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.2.3
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RE-
SULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.2.3, OR ANY
DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and
conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership,
or joint venture between PSF and Licensee. This License Agreement does not grant permission
to use PSF trademarks or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

8. By copying, installing or otherwise using Python 2.2.3, Licensee agrees to be bound by the terms
and conditions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160
Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) access-
ing and otherwise using this software in source or binary form and its associated documentation
(“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby
grants Licensee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform
and/or display publicly, prepare derivative works, distribute, and otherwise use the Software alone
or in any derivative version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAM-
PLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESEN-
TATION OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD
PARTY RIGHTS.

34 Appendix A. History and License

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFT-
WARE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS
AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY
DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and
conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of
the State of California, excluding conflict of law provisions. Nothing in this License Agree-
ment shall be deemed to create any relationship of agency, partnership, or joint venture be-
tween BeOpen and Licensee. This License Agreement does not grant permission to use BeOpen
trademarks or trade names in a trademark sense to endorse or promote products or services
of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that
web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms
and conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, hav-
ing an office at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 1.6.1 software in source or binary
form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee
a nonexclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or dis-
play publicly, prepare derivative works, distribute, and otherwise use Python 1.6.1 alone or in
any derivative version, provided, however, that CNRI’s License Agreement and CNRI’s notice of
copyright, i.e., “Copyright c© 1995-2001 Corporation for National Research Initiatives; All Rights
Reserved” are retained in Python 1.6.1 alone or in any derivative version prepared by Licensee.
Alternately, in lieu of CNRI’s License Agreement, Licensee may substitute the following text (omit-
ting the quotes): “Python 1.6.1 is made available subject to the terms and conditions in CNRI’s
License Agreement. This Agreement together with Python 1.6.1 may be located on the Inter-
net using the following unique, persistent identifier (known as a handle): 1895.22/1013. This
Agreement may also be obtained from a proxy server on the Internet using the following URL:
http://hdl.handle.net/1895.22/1013.”

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or
any part thereof, and wants to make the derivative work available to others as provided herein,
then Licensee hereby agrees to include in any such work a brief summary of the changes made to
Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE
OR THAT THE USE OF PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RE-
SULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY
DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and
conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United
States, including without limitation the federal copyright law, and, to the extent such U.S. federal

A.2. Terms and conditions for accessing or otherwise using Python 35

law does not apply, by the law of the Commonwealth of Virginia, excluding Virginia’s conflict of
law provisions. Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed under the GNU
General Public License (GPL), the law of the Commonwealth of Virginia shall govern this License
Agreement only as to issues arising under or with respect to Paragraphs 4, 5, and 7 of this License
Agreement. Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between CNRI and Licensee. This License Agreement does
not grant permission to use CNRI trademarks or trade name in a trademark sense to endorse or
promote products or services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using
Python 1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright c© 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights
reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in supporting documentation, and that the
name of Stichting Mathematisch Centrum or CWI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSO-
EVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CON-
NECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

36 Appendix A. History and License

MODULE INDEX

A
aepack, 22
aetypes, 22
applesingle, 29

B
buildtools, 29

C
Carbon.AE, 26
Carbon.App, 26
Carbon.CF, 26
Carbon.Cm, 26
Carbon.Ctl, 26
Carbon.Dlg, 26
Carbon.Evt, 26
Carbon.Fm, 26
Carbon.Help, 26
Carbon.List, 26
Carbon.Menu, 26
Carbon.Mlte, 26
Carbon.Qd, 26
Carbon.Qdoffs, 26
Carbon.Qt, 26
Carbon.Res, 26
Carbon.Scrap, 26
Carbon.Snd, 27
Carbon.TE, 27
Carbon.Win, 27
cfmfile, 29
ColorPicker, 27
ctb, 8

E
EasyDialogs, 16

F
findertools, 14
FrameWork, 18

I
ic, 12
icopen, 30

M
mac, 7

macerrors, 30
macfs, 9
macfsn, 30
MacOS, 13
macostools, 14
macpath, 7
macresource, 30
macspeech, 15
mactty, 30
MiniAEFrame, 21
mkcwproject, 30

N
Nac, 30
nsremote, 30

P
PixMapWrapper, 30
preferences, 31
py resource, 29
pythonprefs, 31

Q
quietconsole, 31

V
videoreader, 31

W
W, 31
waste, 31

37

38

INDEX

Symbols
quit() (Application method), 19

A
Abort() (connection method), 9
accept() (connection method), 8
aepack (standard module), 22
AEServer (class in MiniAEFrame), 21
aetypes (standard module), 22
Alias Manager, Macintosh, 9
AppleEvents, 15, 21
applesingle (standard module), 29
Application() (in module FrameWork), 18
as pathname() (FSSpec method), 10
as tuple() (FSSpec method), 10
AskPassword() (in module EasyDialogs), 16
AskString() (in module EasyDialogs), 16
AskYesNoCancel() (in module EasyDialogs), 16
asyncevents() (Application method), 19
Available() (in module macspeech), 15
available() (in module ctb), 8

B
Break() (connection method), 9
BUFSIZ (data in macostools), 14
buildtools (standard module), 29
Busy() (in module macspeech), 15

C
callback() (AEServer method), 21
callback (connection attribute), 8
Carbon.AE (standard module), 26
Carbon.App (standard module), 26
Carbon.CF (standard module), 26
Carbon.Cm (standard module), 26
Carbon.Ctl (standard module), 26
Carbon.Dlg (standard module), 26
Carbon.Evt (standard module), 26
Carbon.Fm (standard module), 26
Carbon.Help (standard module), 26
Carbon.List (standard module), 26
Carbon.Menu (standard module), 26
Carbon.Mlte (standard module), 26
Carbon.Qd (built-in module), 26
Carbon.Qdoffs (built-in module), 26

Carbon.Qt (standard module), 26
Carbon.Res (standard module), 26
Carbon.Scrap (standard module), 26
Carbon.Snd (standard module), 27
Carbon.TE (standard module), 27
Carbon.Win (standard module), 27
cfmfile (standard module), 29
Choose() (connection method), 9
choose* (data in ctb), 8
Close() (connection method), 8
close() (Window method), 20
cmAttn (data in ctb), 8
cmCntl (data in ctb), 8
cmData (data in ctb), 8
cmFlagsEOM (data in ctb), 8
CMNew() (in module ctb), 8
cmStatus* (data in ctb), 8
ColorPicker (extension module), 27
Communications Toolbox, Macintosh, 8
Connection Manager, 8
copy()

in module findertools, 15
in module macostools, 14

copytree() (in module macostools), 14
CountVoices() (in module macspeech), 15
Creator (FInfo attribute), 11
ctb (built-in module), 8
curval (ProgressBar attribute), 17

D
data

Alias attribute, 11
FSSpec attribute, 10

DebugStr() (in module MacOS), 14
DialogWindow() (in module FrameWork), 19
distutils (built-in module), 30
do activate()

method, 20
ScrolledWindow method, 21

do char() (Application method), 19
do contentclick() (Window method), 20
do controlhit()

ControlsWindow method, 20
ScrolledWindow method, 21

do dialogevent() (Application method), 20
do itemhit() (DialogWindow method), 21

39

do postresize()
ScrolledWindow method, 21
Window method, 20

do update() (Window method), 20

E
EasyDialogs (standard module), 16
Error (exception in MacOS), 13
error

data in ctb, 8
exception in ic, 12

F
FindApplication() (in module macfs), 10
findertools (standard module), 14
FindFolder() (in module macfs), 10
FInfo() (in module macfs), 9
Flags (FInfo attribute), 11
Fldr (FInfo attribute), 11
FrameWork (standard module), 18, 21
FSSpec() (in module macfs), 9

G
getabouttext() (Application method), 19
GetArgv() (in module EasyDialogs), 17
GetColor() (in module ColorPicker), 27
GetConfig() (connection method), 9
GetCreatorType() (FSSpec method), 11
GetDates() (FSSpec method), 11
GetDirectory() (in module macfs), 10
GetErrorString() (in module MacOS), 14
GetFInfo() (FSSpec method), 11
GetGender() (Voice method), 16
GetIndVoice() (in module macspeech), 15
GetInfo() (Alias method), 11
GetPitch() (Speech Channel method), 16
GetRate() (Speech Channel method), 16
getscrollbarvalues() (ScrolledWindow

method), 20

H
HandleEvent() (in module MacOS), 13

I
IC (class in ic), 12
ic (built-in module), 12
icglue (built-in module), 12
icopen (standard module), 30
Idle() (connection method), 9
idle() (Application method), 20
inc() (ProgressBar method), 18
installaehandler() (AEServer method), 21
Internet Config, 12

L
label() (ProgressBar method), 17
launch() (in module findertools), 15

launchurl()
IC method, 12
in module ic, 12

Listen() (connection method), 8
Location (FInfo attribute), 11

M
mac (built-in module), 7
macerrors (standard module), 13, 30
macfs (built-in module), 9, 30
macfsn (standard module), 30
Macintosh Alias Manager, 9
Macintosh Communications Toolbox, 8
Macintosh Speech Manager, 15
MacOS (built-in module), 13
macostools (standard module), 14
macpath (standard module), 7
macresource (standard module), 30
macspeech (built-in module), 15
mactty (standard module), 30
mainloop() (Application method), 19
makeusermenus() (Application method), 19
mapfile()

IC method, 12
in module ic, 12

maptypecreator()
IC method, 13
in module ic, 12

maxval (ProgressBar attribute), 17
Menu() (in module FrameWork), 18
MenuBar() (in module FrameWork), 18
MenuItem() (in module FrameWork), 18
Message() (in module EasyDialogs), 16
MiniAEFrame (standard module), 21
MiniApplication (class in MiniAEFrame), 21
mkalias() (in module macostools), 14
mkcwproject (standard module), 30
move() (in module findertools), 15

N
Nac (standard module), 30
Nav (built-in module), 30
NewAlias() (FSSpec method), 10
NewAliasMinimal() (FSSpec method), 10
NewAliasMinimalFromFullPath() (in module

macfs), 10
NewChannel() (Voice method), 16
nsremote (standard module), 30

O
ObjectSpecifier (class in aetypes), 23
Open() (connection method), 8
open()

DialogWindow method, 21
Window method, 20

Open Scripting Architecture, 21
openrf() (in module MacOS), 14
os (standard module), 7

40 Index

os.path (standard module), 7

P
pack() (in module aepack), 22
parseurl()

IC method, 12
in module ic, 12

PixMapWrapper (standard module), 30
preferences (standard module), 31
Print() (in module findertools), 15
ProgressBar() (in module EasyDialogs), 17
PromptGetFile() (in module macfs), 10
py resource (standard module), 29
pythonprefs (standard module), 31

Q
quietconsole (standard module), 31

R
RawAlias() (in module macfs), 9
RawFSSpec() (in module macfs), 9
Read() (connection method), 8
Reset() (connection method), 9
Resolve() (Alias method), 11
ResolveAliasFile() (in module macfs), 9
restart() (in module findertools), 15
runtimemodel (data in MacOS), 13

S
scalebarvalues() (ScrolledWindow method),

21
SchedParams() (in module MacOS), 13
scrollbar callback() (ScrolledWindow

method), 20
scrollbars() (ScrolledWindow method), 20
Separator() (in module FrameWork), 18
set() (ProgressBar method), 18
setarrowcursor() (in module FrameWork), 19
SetConfig() (connection method), 9
SetCreatorType() (FSSpec method), 11
SetDates() (FSSpec method), 11
SetEventHandler() (in module MacOS), 13
SetFInfo() (FSSpec method), 11
SetFolder() (in module macfs), 10
SetPitch() (Speech Channel method), 16
SetRate() (Speech Channel method), 16
settypecreator()

IC method, 13
in module ic, 12

setwatchcursor() (in module FrameWork), 19
shutdown() (in module findertools), 15
sleep() (in module findertools), 15
SpeakString() (in module macspeech), 15
SpeakText() (Speech Channel method), 16
Speech Manager, Macintosh, 15
splash() (in module MacOS), 14
Standard File, 9
StandardGetFile() (in module macfs), 10

StandardPutFile() (in module macfs), 10
Status() (connection method), 9
Stop() (Speech Channel method), 16
SubMenu() (in module FrameWork), 18

T
title() (ProgressBar method), 17
touched() (in module macostools), 14
Type (FInfo attribute), 11

U
unpack() (in module aepack), 22
Update() (Alias method), 11
updatescrollbars() (ScrolledWindow

method), 20

V
Version() (in module macspeech), 15
videoreader (standard module), 31

W
W (standard module), 31
want (ObjectSpecifier attribute), 23
waste (standard module), 31
Window() (in module FrameWork), 19
windowbounds() (in module FrameWork), 19
Write() (connection method), 8

X
xstat() (in module mac), 7

Index 41

	1 Using Python on the Macintosh
	1.1 Getting and Installing MacPython
	1.2 Entering the interactive Interpreter
	1.3 How to run a Python script
	1.3.1 Drag and drop
	1.3.2 Set Creator and Double Click

	1.4 Simulating command line arguments
	1.5 Creating a Python script
	1.5.1 In an editor
	Editors with Python modes
	BBedit

	1.6 The IDE
	1.6.1 Using the ``Python Interactive'' window
	1.6.2 Writing a Python Script
	1.6.3 Executing a script from within the IDE
	1.6.4 ``Save as'' versus ``Save as Applet''

	1.7 Configuration
	1.7.1 EditPythonPrefs
	1.7.2 Adding modules to the Module Search Path
	1.7.3 Default startup options

	1.8 Mac OS X

	2 MacPython Modules
	2.1 mac --- Implementations for the os module
	2.2 macpath --- MacOS path manipulation functions
	2.3 ctb --- Interface to the Communications Tool Box
	2.3.1 Connection Objects

	2.4 macfs --- Various file system services
	2.4.1 FSSpec objects
	2.4.2 Alias Objects
	2.4.3 FInfo Objects

	2.5 ic --- Access to Internet Config
	2.5.1 IC Objects

	2.6 MacOS --- Access to Mac OS interpreter features
	2.7 macostools --- Convenience routines for file manipulation
	2.8 findertools --- The finder's Apple Events interface
	2.9 macspeech --- Interface to the Macintosh Speech Manager
	2.9.1 Voice Objects
	2.9.2 Speech Channel Objects

	2.10 EasyDialogs --- Basic Macintosh dialogs
	2.10.1 ProgressBar Objects

	2.11 FrameWork --- Interactive application framework
	2.11.1 Application Objects
	2.11.2 Window Objects
	2.11.3 ControlsWindow Object
	2.11.4 ScrolledWindow Object
	2.11.5 DialogWindow Objects

	2.12 MiniAEFrame --- Open Scripting Architecture server support
	2.12.1 AEServer Objects

	2.13 aepack --- Conversion between Python variables and AppleEvent data containers
	2.14 aetypes --- AppleEvent objects

	3 MacOS Toolbox Modules
	3.1 Carbon.AE --- Apple Events
	3.2 Carbon.App --- Appearance Manager
	3.3 Carbon.CF --- Core Foundation
	3.4 Carbon.Cm --- Component Manager
	3.5 Carbon.Ctl --- Control Manager
	3.6 Carbon.Dlg --- Dialog Manager
	3.7 Carbon.Evt --- Event Manager
	3.8 Carbon.Fm --- Font Manager
	3.9 Carbon.Help --- Help Manager
	3.10 Carbon.List --- List Manager
	3.11 Carbon.Menu --- Menu Manager
	3.12 Carbon.Mlte --- MultiLingual Text Editor
	3.13 Carbon.Qd --- QuickDraw
	3.14 Carbon.Qdoffs --- QuickDraw Offscreen
	3.15 Carbon.Qt --- QuickTime
	3.16 Carbon.Res --- Resource Manager and Handles
	3.17 Carbon.Scrap --- Scrap Manager
	3.18 Carbon.Snd --- Sound Manager
	3.19 Carbon.TE --- TextEdit
	3.20 Carbon.Win --- Window Manager
	3.21 ColorPicker --- Color selection dialog

	4 Undocumented Modules
	4.1 applesingle --- AppleSingle decoder
	4.2 buildtools --- Helper module for BuildApplet and Friends
	4.3 pyprotect unhbox voidb@x kern .06emvbox {hrule width.55em}resource --- Resources from Python code
	4.4 cfmfile --- Code Fragment Resource module
	4.5 icopen --- Internet Config replacement for open()
	4.6 macerrors --- Mac OS Errors
	4.7 macfsn --- NavServices calls
	4.8 macresource --- Locate script resources
	4.9 Nav --- NavServices calls
	4.10 mactty --- Serial line connections
	4.11 mkcwproject --- Create CodeWarrior projects
	4.12 nsremote --- Wrapper around Netscape OSA modules
	4.13 PixMapWrapper --- Wrapper for PixMap objects
	4.14 preferences --- Application preferences manager
	4.15 pythonprefs --- Preferences manager for Python
	4.16 quietconsole --- non-visible stdout output
	4.17 videoreader --- read QuickTime movies
	4.18 W --- Widgets built on FrameWork
	4.19 waste --- non-Apple TextEdit replacement

	A History and License
	A.1 History of the software
	A.2 Terms and conditions for accessing or otherwise using Python

	Module Index
	Index

