
Distributing Python Modules

Greg Ward

October 16, 2000

E-mail: gward@python.net

Abstract

This document describes the Python Distribution Utilities (“Distutils”) from the module developer’s point-of-view,
describing how to use the Distutils to make Python modules and extensions easily available to a wider audience with
very little overhead for build/release/install mechanics.

Contents

1 Introduction 2

2 Concepts & Terminology 2
2.1 A simple example. 3
2.2 General Python terminology. 4
2.3 Distutils-specific terminology. 5

3 Writing the Setup Script 5
3.1 Listing whole packages. 6
3.2 Listing individual modules. 6
3.3 Describing extension modules. 7

Extension names and packages. 7
Extension source files. 8
Preprocessor options. 8
Library options . 9

4 Writing the Setup Configuration File 9

5 Creating a Source Distribution 11
5.1 Specifying the files to distribute. 12
5.2 Manifest-related options. 13

6 Creating Built Distributions 14
6.1 Creating dumb built distributions. 15
6.2 Creating RPM packages. 15
6.3 Creating Windows installers. 17

7 Examples 17
7.1 Pure Python distribution (by module). 17
7.2 Pure Python distribution (by package). 17
7.3 Single extension module. 17
7.4 Multiple extension modules. 17
7.5 Putting it all together. 17

8 Extending the Distutils 17
8.1 Extending existing commands. 17
8.2 Writing new commands. 17

9 Reference 17
9.1 Building modules: thebuild command family. 17

build . 17
build py . 17
build ext . 17
build clib . 17

9.2 Installing modules: theinstall command family. 18
install lib . 18
install data . 18
install scripts . 18

9.3 Cleaning up: theclean command. 18
9.4 Creating a source distribution: thesdist command . 18
9.5 Creating a “built” distribution: thebdist command family . 18

blib . 18
blib dumb . 18
blib rpm . 18
blib wise . 18

1 Introduction

In the past, Python module developers have not had much infrastructure support for distributing modules, nor have
Python users had much support for installing and maintaining third-party modules. With the introduction of the Python
Distribution Utilities (Distutils for short) in Python 1.6, this situation should start to improve.

This document only covers using the Distutils to distribute your Python modules. Using the Distutils does not tie you
to Python 1.6, though: the Distutils work just fine with Python 1.5.2, and it is reasonable (and expected to become
commonplace) to expect users of Python 1.5.2 to download and install the Distutils separately before they can install
your modules. Python 1.6 (or later) users, of course, won’t have to add anything to their Python installation in order
to use the Distutils to install third-party modules.

This document concentrates on the role of developer/distributor: if you’re looking for information on installing Python
modules, you should refer to theInstalling Python Modulesmanual.

2 Concepts & Terminology

Using the Distutils is quite simple, both for module developers and for users/administrators installing third-party
modules. As a developer, your responsibilites (apart from writing solid, well-documented and well-tested code, of
course!) are:

• write a setup script (‘setup.py’ by convention)

• (optional) write a setup configuration file

• create a source distribution

• (optional) create one or more built (binary) distributions

2 2 Concepts & Terminology

Each of these tasks is covered in this document.

Not all module developers have access to a multitude of platforms, so it’s not always feasible to expect them to create
a multitude of built distributions. It is hoped that a class of intermediaries, calledpackagers, will arise to address this
need. Packagers will take source distributions released by module developers, build them on one or more platforms,
and release the resulting built distributions. Thus, users on the most popular platforms will be able to install most
popular Python module distributions in the most natural way for their platform, without having to run a single setup
script or compile a line of code.

2.1 A simple example

The setup script is usually quite simple, although since it’s written in Python, there are no arbitrary limits to what you
can do with it.1 If all you want to do is distribute a module calledfoo , contained in a file ‘foo.py’, then your setup
script can be as little as this:

from distutils.core import setup
setup (name = "foo",

version = "1.0",
py_modules = ["foo"])

Some observations:

• most information that you supply to the Distutils is supplied as keyword arguments to thesetup() function

• those keyword arguments fall into two categories: package meta-data (name, version number) and information
about what’s in the package (a list of pure Python modules, in this case)

• modules are specified by module name, not filename (the same will hold true for packages and extensions)

• it’s recommended that you supply a little more meta-data, in particular your name, email address and a URL for
the project (see section 3 for an example)

To create a source distribution for this module, you would create a setup script, ‘setup.py’, containing the above code,
and run:

python setup.py sdist

which will create an archive file (e.g., tarball on Unix, zip file on Windows) containing your setup script, ‘setup.py’,
and your module, ‘foo.py’. The archive file will be named ‘Foo-1.0.tar.gz’ (or ‘ .zip’), and will unpack into a directory
‘Foo-1.0’.

If an end-user wishes to install yourfoo module, all she has to do is download ‘Foo-1.0.tar.gz’ (or ‘ .zip’), unpack it,
and—from the ‘Foo-1.0’ directory—run

python setup.py install

which will ultimately copy ‘foo.py’ to the appropriate directory for third-party modules in their Python installation.

This simple example demonstrates some fundamental concepts of the Distutils: first, both developers and installers
have the same basic user interface, i.e. the setup script. The difference is which Distutilscommandsthey use: the
sdist command is almost exclusively for module developers, whileinstall is more often for installers (although
most developers will want to install their own code occasionally).

1But be careful about putting arbitrarily expensive operations in your setup script; unlike, say, Autoconf-style configure scripts, the setup script
may be run multiple times in the course of building and installing your module distribution. If you need to insert potentially expensive processing
steps into the Distutils chain, see section 8 on extending the Distutils.

2.1 A simple example 3

If you want to make things really easy for your users, you can create one or more built distributions for them. For in-
stance, if you are running on a Windows machine, and want to make things easy for other Windows users, you can cre-
ate an executable installer (the most appropriate type of built distribution for this platform) with thebdist wininst
command. For example:

python setup.py bdist_wininst

will create an executable installer, ‘Foo-1.0.win32.exe’, in the current directory.

not implemented yet (Another way to create executable installers for Windows is with thebdist wise com-
mand, which uses Wise—the commercial installer-generator used to create Python’s own installer—to create the in-
staller. Wise-based installers are more appropriate for large, industrial-strength applications that need the full capabil-
ities of a “real” installer.bdist wininst creates a self-extracting zip file with a minimal user interface, which is
enough for small- to medium-sized module collections. You’ll need to have version XXX of Wise installed on your
system for thebdist wise command to work; it’s available fromhttp://foo/bar/baz.)

Currently (Distutils 0.9.2), the are only other useful built distribution format is RPM, implemented by thebdist rpm
command. For example, the following command will create an RPM file called ‘Foo-1.0.noarch.rpm’:

python setup.py bdist_rpm

(This uses therpm command, so has to be run on an RPM-based system such as Red Hat Linux, SuSE Linux, or
Mandrake Linux.)

You can find out what distribution formats are available at any time by running

python setup.py bdist --help-formats

2.2 General Python terminology

If you’re reading this document, you probably have a good idea of what modules, extensions, and so forth are. Nev-
ertheless, just to be sure that everyone is operating from a common starting point, we offer the following glossary of
common Python terms:

module the basic unit of code reusability in Python: a block of code imported by some other code. Three types of
modules concern us here: pure Python modules, extension modules, and packages.

pure Python module a module written in Python and contained in a single ‘.py’ file (and possibly associated ‘.pyc’
and/or ‘.pyo’ files). Sometimes referred to as a “pure module.”

extension modulea module written in the low-level language of the Python implemention: C/C++ for CPython, Java
for JPython. Typically contained in a single dynamically loadable pre-compiled file, e.g. a shared object (‘.so’)
file for CPython extensions on Unix, a DLL (given the ‘.pyd’ extension) for CPython extensions on Windows,
or a Java class file for JPython extensions. (Note that currently, the Distutils only handles C/C++ extensions for
CPython.)

package a module that contains other modules; typically contained in a directory in the filesystem and distinguished
from other directories by the presence of a file ‘init .py’.

root package the root of the hierarchy of packages. (This isn’t really a package, since it doesn’t have an ‘init .py’
file. But we have to call it something.) The vast majority of the standard library is in the root package, as
are many small, standalone third-party modules that don’t belong to a larger module collection. Unlike regular

4 2 Concepts & Terminology

packages, modules in the root package can be found in many directories: in fact, every directory listed in
sys.path can contribute modules to the root package.

2.3 Distutils-specific terminology

The following terms apply more specifically to the domain of distributing Python modules using the Distutils:

module distribution a collection of Python modules distributed together as a single downloadable resource and meant
to be installeden masse. Examples of some well-known module distributions are Numeric Python, PyXML,
PIL (the Python Imaging Library), or mxDateTime. (This would be called apackage, except that term is already
taken in the Python context: a single module distribution may contain zero, one, or many Python packages.)

pure module distribution a module distribution that contains only pure Python modules and packages. Sometimes
referred to as a “pure distribution.”

non-pure module distribution a module distribution that contains at least one extension module. Sometimes referred
to as a “non-pure distribution.”

distribution root the top-level directory of your source tree (or source distribution); the directory where ‘setup.py’
exists and is run from

3 Writing the Setup Script

The setup script is the centre of all activity in building, distributing, and installing modules using the Distutils. The
main purpose of the setup script is to describe your module distribution to the Distutils, so that the various commands
that operate on your modules do the right thing. As we saw in section 2.1 above, the setup script consists mainly of
a call tosetup() , and most information supplied to the Distutils by the module developer is supplied as keyword
arguments tosetup() .

Here’s a slightly more involved example, which we’ll follow for the next couple of sections: the Distutils’ own setup
script. (Keep in mind that although the Distutils are included with Python 1.6 and later, they also have an independent
existence so that Python 1.5.2 users can use them to install other module distributions. The Distutils’ own setup script,
shown here, is used to install the package into Python 1.5.2.)

#!/usr/bin/env python

from distutils.core import setup

setup (name = "Distutils",
version = "1.0",
description = "Python Distribution Utilities",
author = "Greg Ward",
author_email = "gward@python.net",
url = "http://www.python.org/sigs/distutils-sig/",

packages = [’distutils’, ’distutils.command’],
)

There are only two differences between this and the trivial one-file distribution presented in section 2.1: more meta-
data, and the specification of pure Python modules by package, rather than by module. This is important since the
Distutils consist of a couple of dozen modules split into (so far) two packages; an explicit list of every module would
be tedious to generate and difficult to maintain.

Note that any pathnames (files or directories) supplied in the setup script should be written using the Unix convention,
i.e. slash-separated. The Distutils will take care of converting this platform-neutral representation into whatever is

2.3 Distutils-specific terminology 5

appropriate on your current platform before actually using the pathname. This makes your setup script portable across
operating systems, which of course is one of the major goals of the Distutils. In this spirit, all pathnames in this
document are slash-separated (Mac OS programmers should keep in mind that theabsenceof a leading slash indicates
a relative path, the opposite of the Mac OS convention with colons).

3.1 Listing whole packages

The packages option tells the Distutils to process (build, distribute, install, etc.) all pure Python modules found in
each package mentioned in thepackages list. In order to do this, of course, there has to be a correspondence between
package names and directories in the filesystem. The default correspondence is the most obvious one, i.e. package
distutils is found in the directory ‘distutils’ relative to the distribution root. Thus, when you saypackages =
[’foo’] in your setup script, you are promising that the Distutils will find a file ‘foo/ init .py’ (which might be
spelled differently on your system, but you get the idea) relative to the directory where your setup script lives. (If you
break this promise, the Distutils will issue a warning but process the broken package anyways.)

If you use a different convention to lay out your source directory, that’s no problem: you just have to supply the
package dir option to tell the Distutils about your convention. For example, say you keep all Python source under
‘ lib’, so that modules in the “root package” (i.e., not in any package at all) are right in ‘lib’, modules in thefoo package
are in ‘lib/foo’, and so forth. Then you would put

package_dir = {’’: ’lib’}

in your setup script. (The keys to this dictionary are package names, and an empty package name stands for the root
package. The values are directory names relative to your distribution root.) In this case, when you saypackages =
[’foo’] , you are promising that the file ‘lib/foo/ init .py’ exists.

Another possible convention is to put thefoo package right in ‘lib’, the foo.bar package in ‘lib/bar’, etc. This
would be written in the setup script as

package_dir = {’foo’: ’lib’}

A package: dir entry in thepackage dir dictionary implicitly applies to all packages belowpackage, so the
foo.bar case is automatically handled here. In this example, havingpackages = [’foo’, ’foo.bar’]
tells the Distutils to look for ‘lib/ init .py’ and ‘lib/bar/ init .py’. (Keep in mind that althoughpackage dir ap-
plies recursively, you must explicitly list all packages inpackages: the Distutils will not recursively scan your source
tree looking for any directory with an ‘ init .py’ file.)

3.2 Listing individual modules

For a small module distribution, you might prefer to list all modules rather than listing packages—especially the case
of a single module that goes in the “root package” (i.e., no package at all). This simplest case was shown in section 2.1;
here is a slightly more involved example:

py_modules = [’mod1’, ’pkg.mod2’]

This describes two modules, one of them in the “root” package, the other in thepkg package. Again, the default
package/directory layout implies that these two modules can be found in ‘mod1.py’ and ‘pkg/mod2.py’, and that
‘pkg/ init .py’ exists as well. And again, you can override the package/directory correspondence using thepack-
age dir option.

6 3 Writing the Setup Script

3.3 Describing extension modules

Just as writing Python extension modules is a bit more complicated than writing pure Python modules, describing
them to the Distutils is a bit more complicated. Unlike pure modules, it’s not enough just to list modules or packages
and expect the Distutils to go out and find the right files; you have to specify the extension name, source file(s), and
any compile/link requirements (include directories, libraries to link with, etc.).

All of this is done through another keyword argument tosetup() , theextensions option. extensions is just a list
of Extension instances, each of which describes a single extension module. Suppose your distribution includes
a single extension, calledfoo and implemented by ‘foo.c’. If no additional instructions to the compiler/linker are
needed, describing this extension is quite simple:

Extension("foo", ["foo.c"])

TheExtension class can be imported fromdistutils.core , along withsetup() . Thus, the setup script for
a module distribution that contains only this one extension and nothing else might be:

from distutils.core import setup, Extension
setup(name = "foo", version = "1.0",

ext_modules = [Extension("foo", ["foo.c"])])

The Extension class (actually, the underlying extension-building machinery implemented by thebuilt ext
command) supports a great deal of flexibility in describing Python extensions, which is explained in the following
sections.

Extension names and packages

The first argument to theExtension constructor is always the name of the extension, including any package names.
For example,

Extension("foo", ["src/foo1.c", "src/foo2.c"])

describes an extension that lives in the root package, while

Extension("pkg.foo", ["src/foo1.c", "src/foo2.c"])

describes the same extension in thepkg package. The source files and resulting object code are identical in both cases;
the only difference is where in the filesystem (and therefore where in Python’s namespace hierarchy) the resulting
extension lives.

If you have a number of extensions all in the same package (or all under the same base package), use theext package
keyword argument tosetup() . For example,

setup(...
ext_package = "pkg",
ext_modules = [Extension("foo", ["foo.c"]),

Extension("subpkg.bar", ["bar.c"])]
)

will compile ‘foo.c’ to the extensionpkg.foo , and ‘bar.c’ to pkg.subpkg.bar .

3.3 Describing extension modules 7

Extension source files

The second argument to theExtension constructor is a list of source files. Since the Distutils currently only support
C/C++ extensions, these are normally C/C++ source files. (Be sure to use appropriate extensions to distinguish C++
source files: ‘.cc’ and ‘.cpp’ seem to be recognized by both Unix and Windows compilers.)

However, you can also include SWIG interface (‘.i’) files in the list; thebuild ext command knows how to deal
with SWIG extensions: it will run SWIG on the interface file and compile the resulting C/C++ file into your extension.

**SWIG support is rough around the edges and largely untested; especially SWIG support of C++ extensions!
Explain in more detail here when the interface firms up.**

On some platforms, you can include non-source files that are processed by the compiler and included in your extension.
Currently, this just means Windows resource files for Visual C++.**get more detail on this feature from Thomas
Heller!**

Preprocessor options

Three optional arguments toExtension will help if you need to specify include directories to search or preprocessor
macros to define/undefine:include dirs , define macros , andundef macros .

For example, if your extension requires header files in the ‘include’ directory under your distribution root, use the
include dirs option:

Extension("foo", ["foo.c"], include_dirs=["include"])

You can specify absolute directories there; if you know that your extension will only be built on Unix systems with
X11R6 installed to ‘/usr’, you can get away with

Extension("foo", ["foo.c"], include_dirs=["/usr/include/X11"])

You should avoid this sort of non-portable usage if you plan to distribute your code: it’s probably better to write your
code to include (e.g.)<X11/Xlib.h> .

If you need to include header files from some other Python extension, you can take advantage of the fact that the
Distutils install extension header files in a consistent way. For example, the Numerical Python header files are installed
(on a standard Unix installation) to ‘/usr/local/include/python1.5/Numerical’. (The exact location will differ according
to your platform and Python installation.) Since the Python include directory—‘/usr/local/include/python1.5’ in this
case—is always included in the search path when building Python extensions, the best approach is to include (e.g.)
<Numerical/arrayobject.h> . If you insist on putting the ‘Numerical’ include directory right into your header
search path, though, you can find that directory using the Distutilssysconfig module:

from distutils.sysconfig import get_python_inc
incdir = os.path.join(get_python_inc(plat_specific=1), "Numerical")
setup(...,

Extension(..., include_dirs=[incdir]))

Even though this is quite portable—it will work on any Python installation, regardless of platform—it’s probably
easier to just write your C code in the sensible way.

You can define and undefine pre-processor macros with thedefine macros andundef macros options.de-
fine macros takes a list of(name, value) tuples, wherename is the name of the macro to define (a string)
andvalue is its value: either a string orNone. (Defining a macroFOOto None is the equivalent of a bare#define
FOOin your C source: with most compilers, this setsFOOto the string1.) undef macros is just a list of macros to

8 3 Writing the Setup Script

undefine.

For example:

Extension(...,
define_macros=[(’NDEBUG’, ’1’)],

(’HAVE_STRFTIME’, None),
undef_macros=[’HAVE_FOO’, ’HAVE_BAR’])

is the equivalent of having this at the top of every C source file:

#define NDEBUG 1
#define HAVE_STRFTIME
#undef HAVE_FOO
#undef HAVE_BAR

Library options

You can also specify the libraries to link against when building your extension, and the directories to search for those
libraries. Thelibraries option is a list of libraries to link against,library dirs is a list of directories to search
for libraries at link-time, andruntime library dirs is a list of directories to search for shared (dynamically
loaded) libraries at run-time.

For example, if you need to link against libraries known to be in the standard library search path on target systems

Extension(...,
libraries=["gdbm", "readline"])

If you need to link with libraries in a non-standard location, you’ll have to include the location inlibrary dirs :

Extension(...,
library_dirs=["/usr/X11R6/lib"],
libraries=["X11", "Xt"])

(Again, this sort of non-portable construct should be avoided if you intend to distribute your code.)

**still undocumented: extra objects, extra compile args, extra link args, export symbols—none of which
are frequently needed, some of which might be completely unnecessary!**

4 Writing the Setup Configuration File

Often, it’s not possible to write down everything needed to build a distributiona priori: you may need to get some
information from the user, or from the user’s system, in order to proceed. As long as that information is fairly
simple—a list of directories to search for C header files or libraries, for example—then providing a configuration file,
‘setup.cfg’, for users to edit is a cheap and easy way to solicit it. Configuration files also let you provide default values
for any command option, which the installer can then override either on the command-line or by editing the config
file.

(If you have more advanced needs, such as determining which extensions to build based on what capabilities are present
on the target system, then you need the Distutils “auto-configuration” facility. This started to appear in Distutils 0.9

9

but, as of this writing, isn’t mature or stable enough yet for real-world use.)

should reference description of distutils config files in “Installing” manual here

The setup configuration file is a useful middle-ground between the setup script—which, ideally, would be opaque to
installers2—and the command-line to the setup script, which is outside of your control and entirely up to the installer.
In fact, ‘setup.cfg’ (and any other Distutils configuration files present on the target system) are processed after the
contents of the setup script, but before the command-line. This has several useful consequences:

• installers can override some of what you put in ‘setup.py’ by editing ‘setup.cfg’

• you can provide non-standard defaults for options that are not easily set in ‘setup.py’

• installers can override anything in ‘setup.cfg’ using the command-line options to ‘setup.py’

The basic syntax of the configuration file is simple:

[command]
option=value
...

wherecommandis one of the Distutils commands (e.g.build py , install), andoption is one of the options that
command supports. Any number of options can be supplied for each command, and any number of command sections
can be included in the file. Blank lines are ignored, as are comments (from a# character to end-of-line). Long option
values can be split across multiple lines simply by indenting the continuation lines.

You can find out the list of options supported by a particular command with the universal--help option, e.g.

> python setup.py --help build_ext
[...]
Options for ’build_ext’ command:

--build-lib (-b) directory for compiled extension modules
--build-temp (-t) directory for temporary files (build by-products)
--inplace (-i) ignore build-lib and put compiled extensions into the

source directory alongside your pure Python modules
--include-dirs (-I) list of directories to search for header files
--define (-D) C preprocessor macros to define
--undef (-U) C preprocessor macros to undefine

[...]

Or consult section 9 of this document (the command reference).

Note that an option spelled--foo-bar on the command-line is spelledfoo bar in configuration files.

For example, say you want your extensions to be built “in-place”—that is, you have an extensionpkg.ext , and you
want the compiled extension file (‘ext.so’ on Unix, say) to be put in the same source directory as your pure Python
modulespkg.mod1 andpkg.mod2 . You can always use the--inplaceoption on the command-line to ensure this:

python setup.py build_ext --inplace

But this requires that you always specify thebuild ext command explicitly, and remember to provide--inplace.
An easier way is to “set and forget” this option, by encoding it in ‘setup.cfg’, the configuration file for this distribution:

2This ideal probably won’t be achieved until auto-configuration is fully supported by the Distutils.

10 4 Writing the Setup Configuration File

[build_ext]
inplace=1

This will affect all builds of this module distribution, whether or not you explcitly specifybuild ext . If you
include ‘setup.cfg’ in your source distribution, it will also affect end-user builds—which is probably a bad idea for
this option, since always building extensions in-place would break installation of the module distribution. In certain
peculiar cases, though, modules are built right in their installation directory, so this is conceivably a useful ability.
(Distributing extensions that expect to be built in their installation directory is almost always a bad idea, though.)

Another example: certain commands take a lot of options that don’t change from run-to-run; for example,
bdist rpm needs to know everything required to generate a “spec” file for creating an RPM distribution. Some
of this information comes from the setup script, and some is automatically generated by the Distutils (such as the list
of files installed). But some of it has to be supplied as options tobdist rpm, which would be very tedious to do on
the command-line for every run. Hence, here is a snippet from the Distutils’ own ‘setup.cfg’:

[bdist_rpm]
release = 1
packager = Greg Ward <gward@python.net>
doc_files = CHANGES.txt

README.txt
USAGE.txt
doc/
examples/

Note that thedoc files option is simply a whitespace-separated string split across multiple lines for readability.

5 Creating a Source Distribution

As shown in section 2.1, you use thesdist command to create a source distribution. In the simplest case,

python setup.py sdist

(assuming you haven’t specified anysdist options in the setup script or config file),sdist creates the archive of
the default format for the current platform. The default format is gzip’ed tar file (‘.tar.gz’) on Unix, and ZIP file on
Windows.**no Mac OS support here**

You can specify as many formats as you like using the--formats option, for example:

python setup.py sdist --formats=gztar,zip

to create a gzipped tarball and a zip file. The available formats are:

Format Description Notes
zip zip file (‘.zip’) (1),(3)
gztar gzip’ed tar file (‘.tar.gz’) (2),(4)
bztar bzip2’ed tar file (‘.tar.gz’) (4)
ztar compressed tar file (‘.tar.Z’) (4)
tar tar file (‘.tar’) (4)

Notes:

(1) default on Windows

11

(2) default on Unix

(3) requires either externalzip utility or zipfile module (not part of the standard Python library)

(4) requires external utilities:tar and possibly one ofgzip, bzip2, or compress

5.1 Specifying the files to distribute

If you don’t supply an explicit list of files (or instructions on how to generate one), thesdist command puts a
minimal default set into the source distribution:

• all Python source files implied by thepy modules andpackages options

• all C source files mentioned in theext modules or libraries options (**getting C library sources currently
broken – no get source files() method in build clib.py!**)

• anything that looks like a test script: ‘test/test*.py’ (currently, the Distutils don’t do anything with test scripts
except include them in source distributions, but in the future there will be a standard for testing Python module
distributions)

• ‘README.txt’ (or ‘ README’), ‘ setup.py’ (or whatever you called your setup script), and ‘setup.cfg’

Sometimes this is enough, but usually you will want to specify additional files to distribute. The typical way to do this
is to write amanifest template, called ‘MANIFEST.in’ by default. The manifest template is just a list of instructions for
how to generate your manifest file, ‘MANIFEST’, which is the exact list of files to include in your source distribution.
Thesdist command processes this template and generates a manifest based on its instructions and what it finds in
the filesystem.

If you prefer to roll your own manifest file, the format is simple: one filename per line, regular files (or symlinks to
them) only. If you do supply your own ‘MANIFEST’, you must specify everything: the default set of files described
above does not apply in this case.

The manifest template has one command per line, where each command specifies a set of files to include or exclude
from the source distribution. For an example, again we turn to the Distutils’ own manifest template:

include *.txt
recursive-include examples *.txt *.py
prune examples/sample?/build

The meanings should be fairly clear: include all files in the distribution root matching*.txt , all files
anywhere under the ‘examples’ directory matching *.txt or *.py , and exclude all directories matching
examples/sample?/build . All of this is doneafter the standard include set, so you can exclude files from
the standard set with explicit instructions in the manifest template. (Or, you can use the--no-defaultsoption to dis-
able the standard set entirely.) There are several other commands available in the manifest template mini-language;
see section 9.4.

The order of commands in the manifest template matters: initially, we have the list of default files as described above,
and each command in the template adds to or removes from that list of files. Once we have fully processed the manifest
template, we remove files that should not be included in the source distribution:

• all files in the Distutils “build” tree (default ‘build/’)

• all files in directories named ‘RCS’ or ‘ CVS’

Now we have our complete list of files, which is written to the manifest for future reference, and then used to build the
source distribution archive(s).

12 5 Creating a Source Distribution

You can disable the default set of included files with the--no-defaultsoption, and you can disable the standard exclude
set with--no-prune.

Following the Distutils’ own manifest template, let’s trace how thesdist command builds the list of files to include
in the Distutils source distribution:

1. include all Python source files in the ‘distutils’ and ‘distutils/command’ subdirectories (because packages corre-
sponding to those two directories were mentioned in thepackages option in the setup script—see section 3)

2. include ‘README.txt’, ‘ setup.py’, and ‘setup.cfg’ (standard files)

3. include ‘test/test*.py’ (standard files)

4. include ‘*.txt’ in the distribution root (this will find ‘README.txt’ a second time, but such redundancies are
weeded out later)

5. include anything matching ‘*.txt’ or ‘ *.py’ in the sub-tree under ‘examples’,

6. exclude all files in the sub-trees starting at directories matching ‘examples/sample?/build’—this may exclude
files included by the previous two steps, so it’s important that theprune command in the manifest template
comes after therecursive-include command

7. exclude the entire ‘build’ tree, and any ‘RCS’ or ‘ CVS’ directories

Just like in the setup script, file and directory names in the manifest template should always be slash-separated; the
Distutils will take care of converting them to the standard representation on your platform. That way, the manifest
template is portable across operating systems.

5.2 Manifest-related options

The normal course of operations for thesdist command is as follows:

• if the manifest file, ‘MANIFEST’ doesn’t exist, read ‘MANIFEST.in’ and create the manifest

• if neither ‘MANIFEST’ nor ‘MANIFEST.in’ exist, create a manifest with just the default file set3

• if either ‘MANIFEST.in’ or the setup script (‘setup.py’) are more recent than ‘MANIFEST’, recreate ‘MANIFEST’
by reading ‘MANIFEST.in’

• use the list of files now in ‘MANIFEST’ (either just generated or read in) to create the source distribution
archive(s)

There are a couple of options that modify this behaviour. First, use the--no-defaultsand--no-prune to disable the
standard “include” and “exclude” sets.4

Second, you might want to force the manifest to be regenerated—for example, if you have added or removed files or
directories that match an existing pattern in the manifest template, you should regenerate the manifest:

python setup.py sdist --force-manifest

Or, you might just want to (re)generate the manifest, but not create a source distribution:
3In versions of the Distutils up to and including 0.9.2 (Python 2.0b1), this feature was broken; use the-f (--force-manifest) option to work

around the bug.
4Note that if you have no manifest template, no manifest, and use the--no-defaults, you will get an empty manifest. Another bug in Distutils

0.9.2 and earlier causes an uncaught exception in this case. The workaround is: Don’t Do That.

5.2 Manifest-related options 13

python setup.py sdist --manifest-only

--manifest-only implies--force-manifest. -o is a shortcut for--manifest-only, and-f for --force-manifest.

6 Creating Built Distributions

A “built distribution” is what you’re probably used to thinking of either as a “binary package” or an “installer” (de-
pending on your background). It’s not necessarily binary, though, because it might contain only Python source code
and/or byte-code; and we don’t call it a package, because that word is already spoken for in Python. (And “installer”
is a term specific to the Windows world.**do Mac people use it?**)

A built distribution is how you make life as easy as possible for installers of your module distribution: for users of
RPM-based Linux systems, it’s a binary RPM; for Windows users, it’s an executable installer; for Debian-based Linux
users, it’s a Debian package; and so forth. Obviously, no one person will be able to create built distributions for every
platform under the sun, so the Distutils are designed to enable module developers to concentrate on their specialty—
writing code and creating source distributions—while an intermediary species ofpackagersprings up to turn source
distributions into built distributions for as many platforms as there are packagers.

Of course, the module developer could be his own packager; or the packager could be a volunteer “out there” some-
where who has access to a platform which the original developer does not; or it could be software periodically grabbing
new source distributions and turning them into built distributions for as many platforms as the software has access to.
Regardless of the nature of the beast, a packager uses the setup script and thebdist command family to generate
built distributions.

As a simple example, if I run the following command in the Distutils source tree:

python setup.py bdist

then the Distutils builds my module distribution (the Distutils itself in this case), does a “fake” installation (also in
the ‘build’ directory), and creates the default type of built distribution for my platform. The default format for built
distributions is a “dumb” tar file on Unix, and an simple executable installer on Windows. (That tar file is considered
“dumb” because it has to be unpacked in a specific location to work.)

Thus, the above command on a Unix system creates ‘Distutils-0.9.1.plat .tar.gz’; unpacking this tarball from the right
place installs the Distutils just as though you had downloaded the source distribution and runpython setup.py
install . (The “right place” is either the root of the filesystem or Python’sprefix directory, depending on the options
given to thebdist dumb command; the default is to make dumb distributions relative toprefix .)

Obviously, for pure Python distributions, this isn’t a huge win—but for non-pure distributions, which include exten-
sions that would need to be compiled, it can mean the difference between someone being able to use your extensions
or not. And creating “smart” built distributions, such as an RPM package or an executable installer for Windows, is a
big win for users even if your distribution doesn’t include any extensions.

Thebdist command has a--formats option, similar to thesdist command, which you can use to select the types
of built distribution to generate: for example,

python setup.py bdist --format=zip

would, when run on a Unix system, create ‘Distutils-0.8.plat .zip’—again, this archive would be unpacked from the root
directory to install the Distutils.

The available formats for built distributions are:

14 6 Creating Built Distributions

Format Description Notes
gztar gzipped tar file (‘.tar.gz’) (1),(3)
ztar compressed tar file (‘.tar.Z’) (3)
tar tar file (‘.tar’) (3)
zip zip file (‘.zip’) (4)
rpm RPM (5)
srpm source RPM (5) **to do!**
wininst self-extracting ZIP file for Windows (2),(6)

Notes:

(1) default on Unix

(2) default on Windows**to-do!**

(3) requires external utilities:tar and possibly one ofgzip, bzip2, or compress

(4) requires either externalzip utility or zipfile module (not part of the standard Python library)

(5) requires externalrpm utility, version 3.0.4 or better (userpm --version to find out which version you have)

(6) **requirements for bdist wininst ?**

You don’t have to use thebdist command with the--formats option; you can also use the command that directly
implements the format you’re interested in. Some of thesebdist “sub-commands” actually generate several similar
formats; for instance, thebdist dumb command generates all the “dumb” archive formats (tar , ztar , gztar ,
andzip), andbdist rpm generates both binary and source RPMs. Thebdist sub-commands, and the formats
generated by each, are:

Command Formats
bdist dumb tar, ztar, gztar, zip
bdist rpm rpm, srpm
bdist wininst wininst

The following sections give details on the individualbdist * commands.

6.1 Creating dumb built distributions

Need to document absolute vs. prefix-relative packages here, but first I have to implement it!

6.2 Creating RPM packages

The RPM format is used by many of popular Linux distributions, including Red Hat, SuSE, and Mandrake. If one
of these (or any of the other RPM-based Linux distributions) is your usual environment, creating RPM packages for
other users of that same distribution is trivial. Depending on the complexity of your module distribution and differences
between Linux distributions, you may also be able to create RPMs that work on different RPM-based distributions.

The usual way to create an RPM of your module distribution is to run thebdist rpm command:

python setup.py bdist_rpm

or thebdist command with the--format option:

6.1 Creating dumb built distributions 15

python setup.py bdist --formats=rpm

The former allows you to specify RPM-specific options; the latter allows you to easily specify multiple formats in one
run. If you need to do both, you can explicitly specify multiplebdist * commands and their options:

python setup.py bdist_rpm --packager="John Doe <jdoe@python.net>" \
bdist_wininst --target_version="2.0"

Creating RPM packages is driven by a ‘.spec’ file, much as using the Distutils is driven by the setup script. To make
your life easier, thebdist rpm command normally creates a ‘.spec’ file based on the information you supply in the
setup script, on the command line, and in any Distutils configuration files. Various options and section in the ‘.spec’
file are derived from options in the setup script as follows:

RPM ‘ .spec ’ file option or section Distutils setup script option
Name name
Summary (in preamble) description
Version version
Vendor author andauthor email, or

maintainer andmaintainer email
Copyright licence
Url url
%description (section) long description

Additionally, there many options in ‘.spec’ files that don’t have corresponding options in the setup script. Most of
these are handled through options to thebdist rpm command as follows:

RPM ‘ .spec ’ file option or section bdist rpm option default value
Release release “1”
Group group “Development/Libraries”
Vendor vendor (see above)
Packager packager (none)
Provides provides (none)
Requires requires (none)
Conflicts conflicts (none)
Obsoletes obsoletes (none)
Distribution distribution name (none)
BuildRequires build requires (none)
Icon icon (none)

Obviously, supplying even a few of these options on the command-line would be tedious and error-prone, so it’s usually
best to put them in the setup configuration file, ‘setup.cfg’—see section 4. If you distribute or package many Python
module distributions, you might want to put options that apply to all of them in your personal Distutils configuration
file (‘ ˜/.pydistutils.cfg’).

There are three steps to building a binary RPM package, all of which are handled automatically by the Distutils:

1. create a ‘.spec’ file, which describes the package (analogous to the Distutils setup script; in fact, much of the
information in the setup script winds up in the ‘.spec’ file)

2. create the source RPM

3. create the “binary” RPM (which may or may not contain binary code, depending on whether your module
distribution contains Python extensions)

16 6 Creating Built Distributions

Normally, RPM bundles the last two steps together; when you use the Distutils, all three steps are typically bundled
together.

If you wish, you can separate these three steps. You can use the--spec-onlyoption to makebdist rpm just create
the ‘.spec’ file and exit; in this case, the ‘.spec’ file will be written to the “distribution directory”—normally ‘dist/’, but
customizable with the--dist-dir option. (Normally, the ‘.spec’ file winds up deep in the “build tree,” in a temporary
directory created bybdist rpm.)

this isn’t implemented yet—is it needed?! You can also specify a custom ‘.spec’ file with the --spec-fileoption;
used in conjunctin with--spec-only, this gives you an opportunity to customize the ‘.spec’ file manually:

> python setup.py bdist_rpm --spec-only
...edit dist/FooBar-1.0.spec
> python setup.py bdist_rpm --spec-file=dist/FooBar-1.0.spec

(Although a better way to do this is probably to override the standardbdist rpm command with one that writes
whatever else you want to the ‘.spec’ file; see section 8 for information on extending the Distutils.)

6.3 Creating Windows installers

7 Examples

7.1 Pure Python distribution (by module)

7.2 Pure Python distribution (by package)

7.3 Single extension module

7.4 Multiple extension modules

7.5 Putting it all together

8 Extending the Distutils

8.1 Extending existing commands

8.2 Writing new commands

9 Reference

9.1 Building modules: the build command family

build

build py

build ext

build clib

6.3 Creating Windows installers 17

9.2 Installing modules: the install command family

The install command ensures that the build commands have been run and then runs the subcommandsinstall lib ,
install data andinstall scripts .

install lib

install data

This command installs all data files provided with the distribution.

install scripts

This command installs all (Python) scripts in the distribution.

9.3 Cleaning up: the clean command

9.4 Creating a source distribution: the sdist command

fragment moved down from above: needs context!

The manifest template commands are:

Command Description
include pat1 pat2 ... include all files matching any of the listed patterns
exclude pat1 pat2 ... exclude all files matching any of the listed patterns
recursive-include dir pat1 pat2 ... include all files underdir matching any of the listed patterns
recursive-exclude dir pat1 pat2 ... exclude all files underdir matching any of the listed patterns
global-include pat1 pat2 ... include all files anywhere in the source tree matching

any of the listed patterns
global-exclude pat1 pat2 ... exclude all files anywhere in the source tree matching

any of the listed patterns
prune dir exclude all files underdir
graft dir include all files underdir

The patterns here are Unix-style “glob” patterns:* matches any sequence of regular filename characters,? matches
any single regular filename character, and[range] matches any of the characters inrange (e.g., a-z , a-zA-Z ,
a-f0-9 .). The definition of “regular filename character” is platform-specific: on Unix it is anything except slash;
on Windows anything except backslash or colon; on Mac OS anything except colon.

Windows and Mac OS support not there yet

9.5 Creating a “built” distribution: the bdist command family

blib

blib dumb

blib rpm

blib wise

18 9 Reference

	1 Introduction
	2 Concepts & Terminology
	2.1 A simple example
	2.2 General Python terminology
	2.3 Distutils-specific terminology

	3 Writing the Setup Script
	3.1 Listing whole packages
	3.2 Listing individual modules
	3.3 Describing extension modules
	Extension names and packages
	Extension source files
	Preprocessor options
	Library options

	4 Writing the Setup Configuration File
	5 Creating a Source Distribution
	5.1 Specifying the files to distribute
	5.2 Manifest-related options

	6 Creating Built Distributions
	6.1 Creating dumb built distributions
	6.2 Creating RPM packages
	6.3 Creating Windows installers

	7 Examples
	7.1 Pure Python distribution (by module)
	7.2 Pure Python distribution (by package)
	7.3 Single extension module
	7.4 Multiple extension modules
	7.5 Putting it all together

	8 Extending the Distutils
	8.1 Extending existing commands
	8.2 Writing new commands

	9 Reference
	9.1 Building modules: the build command family
	build
	buildprotect unhbox voidb@x kern .06emvbox {hrule width.55em}py
	buildprotect unhbox voidb@x kern .06emvbox {hrule width.55em}ext
	buildprotect unhbox voidb@x kern .06emvbox {hrule width.55em}clib

	9.2 Installing modules: the install command family
	installprotect unhbox voidb@x kern .06emvbox {hrule width.55em}lib
	installprotect unhbox voidb@x kern .06emvbox {hrule width.55em}data
	installprotect unhbox voidb@x kern .06emvbox {hrule width.55em}scripts

	9.3 Cleaning up: the clean command
	9.4 Creating a source distribution: the sdist command
	9.5 Creating a ``built'' distribution: the bdist command family
	blib
	blibprotect unhbox voidb@x kern .06emvbox {hrule width.55em}dumb
	blibprotect unhbox voidb@x kern .06emvbox {hrule width.55em}rpm
	blibprotect unhbox voidb@x kern .06emvbox {hrule width.55em}wise

