
A Users Guide for the
Doubly Linked List API

Version 1.1.0

Carl J. Nobile
carl.nobile@gmail.com

Created: March 28, 1999
Updated: June 24, 2007

Preface
Writing an API for a link list came about after many years of struggling with data stor-
age problems. I would often write link list code embedded in my application, exposing
all of its innards to the application. This was a nightmare to weed through as the ap-
plication grew in functionality and complexity. Often much of the functionality that I
would have liked in my application would be too difficult to implement or would be
kludged in. If more than one link list was needed my beard would thin.

This manual documents the implementation and use of the Doubly Linked List API.
A brief overview of the design philosophy and how the data is abstracted will be dis-
cussed followed by a thorough explanation of the calling and return mechanism of each
function.

I hope it is as useful for you as it has been for me.

Carl J. Nobile
April 1999

i

Contents
Preface i

1 Distribution 1

2 License 2
2.1 Artistic License . 2
2.2 Eclipse License . 4

3 Introduction 9

4 Overview 10

5 Structures 11

6 Enumerations 14

7 Functions 16
7.1 Initialization . 16
7.2 Status and State . 18
7.3 Pointer Manipulation . 20
7.4 List Update . 22
7.5 Search . 25
7.6 Input/Output . 27

ii

1 Distribution
This Doubly Linked List can be downloaded from the following sites. The first site
below has a web page dedicated to the API. All current releases will become available
here first.

http://tetrasys.homelinux.org

You will also find the API at the following site and its mirrors.

ftp://ibiblio.org/pub/linux/lib

Bug reports should go to me at carl.nobile@gmail.com.

1

2 License
The Doubly Link List API can now be used with either of the two following licenses. I
have added the Eclipse License because it is somewhat more business friendly and have
kept the Artistic License so as to not disappoint anybody that may already be satisfied
with it.

2.1 Artistic License

The“Artistic License”

Preamble

The intent of this document is to state the conditions under which a Package may be
copied, such that the Copyright Holder maintains some semblance of artistic control
over the development of the package, while giving the users of the package the right
to use and distribute the Package in a more-or-less customary fashion, plus the right to
make reasonable modifications.

Definitions:

“Package” refers to the collection of files distributed by the Copyright Holder,
and derivatives of that collection of files created through textual modification.

“Standard Version” refers to such a Package if it has not been modified, or has
been modified in accordance with the wishes of the Copyright Holder as specified
below.

“Copyright Holder” is whoever is named in the copyright or copyrights for the
package.

“You” is you, if you’re thinking about copying or distributing this Package.

“Reasonable copying fee” is whatever you can justify on the basis of media cost,
duplication charges, time of people involved, and so on. (You will not be required
to justify it to the Copyright Holder, but only to the computing community at
large as a market that must bear the fee.)

“Freely Available” means that no fee is charged for the item itself, though there
may be fees involved in handling the item. It also means that recipients of the
item may redistribute it under the same conditions they received it.

1. You may make and give away verbatim copies of the source form of the Standard
Version of this Package without restriction, provided that you duplicate all of the orig-
inal copyright notices and associated disclaimers.

2. You may apply bug fixes, portability fixes and other modifications derived from the
Public Domain or from the Copyright Holder. A Package modified in such a way shall
still be considered the Standard Version.

2

3. You may otherwise modify your copy of this Package in any way, provided that you
insert a prominent notice in each changed file stating how and when you changed that
file, and provided that you do at least ONE of the following:

(a) place your modifications in the Public Domain or otherwise make them Freely
Available, such as by posting said modifications to Usenet or an equivalent
medium, or placing the modifications on a major archive site such as uunet.uu.net,
or by allowing the Copyright Holder to include your modifications in the Stan-
dard Version of the Package.

(b) use the modified Package only within your corporation or organization.

(c) rename any non-standard executables so the names do not conflict with stan-
dard executables, which must also be provided, and provide a separate manual
page for each non-standard executable that clearly documents how it differs from
the Standard Version.

(d) make other distribution arrangements with the Copyright Holder.

4. You may distribute the programs of this Package in object code or executable form,
provided that you do at least ONE of the following:

(a) distribute a Standard Version of the executables and library files, together
with instructions (in the manual page or equivalent) on where to get the Standard
Version.

(b) accompany the distribution with the machine-readable source of the Package
with your modifications.

(c) give non-standard executables non-standard names, and clearly document the
differences in manual pages (or equivalent), together with instructions on where
to get the Standard Version.

(d) make other distribution arrangements with the Copyright Holder.

5. You may charge a reasonable copying fee for any distribution of this Package. You
may charge any fee you choose for support of this Package. You may not charge a
fee for this Package itself. However, you may distribute this Package in aggregate
with other (possibly commercial) programs as part of a larger (possibly commercial)
software distribution provided that you do not advertise this Package as a product of
your own. You may embed this Package’s interpreter within an executable of yours
(by linking); this shall be construed as a mere form of aggregation, provided that the
complete Standard Version of the interpreter is so embedded.

6. The scripts and library files supplied as input to or produced as output from the
programs of this Package do not automatically fall under the copyright of this Package,
but belong to whomever generated them, and may be sold commercially, and may
be aggregated with this Package. If such scripts or library files are aggregated with
this Package via the so-called “undump” or “unexec” methods of producing a binary
executable image, then distribution of such an image shall neither be construed as a
distribution of this Package nor shall it fall under the restrictions of Paragraphs 3 and

3

4, provided that you do not represent such an executable image as a Standard Version
of this Package.

7. C subroutines (or comparably compiled subroutines in other languages) supplied by
you and linked into this Package in order to emulate subroutines and variables of the
language defined by this Package shall not be considered part of this Package, but are
the equivalent of input as in Paragraph 6, provided these subroutines do not change the
language in any way that would cause it to fail the regression tests for the language.

8. Aggregation of this Package with a commercial distribution is always permitted
provided that the use of this Package is embedded; that is, when no overt attempt
is made to make this Package’s interfaces visible to the end user of the commercial
distribution. Such use shall not be construed as a distribution of this Package.

9. The name of the Copyright Holder may not be used to endorse or promote products
derived from this software without specific prior written permission.
10. THIS PACKAGE IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

The End

2.2 Eclipse License
Eclipse Public License - v 1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF
THIS ECLIPSE PUBLIC LICENSE (”AGREEMENT”). ANY USE, REPRODUC-
TION OR DISTRIBUTION OF THE PROGRAM CONSTITUTES RECIPIENT’S
ACCEPTANCE OF THIS AGREEMENT.

1. DEFINITIONS
”Contribution” means:
a) in the case of the initial Contributor, the initial code and documentation dis-

tributed under this Agreement, and b) in the case of each subsequent Contributor:
i) changes to the Program, and
ii) additions to the Program;
where such changes and/or additions to the Program originate from and are dis-

tributed by that particular Contributor. A Contribution ’originates’ from a Contributor
if it was added to the Program by such Contributor itself or anyone acting on such Con-
tributor’s behalf. Contributions do not include additions to the Program which: (i) are
separate modules of software distributed in conjunction with the Program under their
own license agreement, and (ii) are not derivative works of the Program.

”Contributor” means any person or entity that distributes the Program.
”Licensed Patents ” mean patent claims licensable by a Contributor which are nec-

essarily infringed by the use or sale of its Contribution alone or when combined with
the Program.

”Program” means the Contributions distributed in accordance with this Agreement.

4

”Recipient” means anyone who receives the Program under this Agreement, in-
cluding all Contributors.

2. GRANT OF RIGHTS
a) Subject to the terms of this Agreement, each Contributor hereby grants Recip-

ient a non-exclusive, worldwide, royalty-free copyright license to reproduce, prepare
derivative works of, publicly display, publicly perform, distribute and sublicense the
Contribution of such Contributor, if any, and such derivative works, in source code and
object code form.

b) Subject to the terms of this Agreement, each Contributor hereby grants Recip-
ient a non-exclusive, worldwide, royalty-free patent license under Licensed Patents
to make, use, sell, offer to sell, import and otherwise transfer the Contribution of such
Contributor, if any, in source code and object code form. This patent license shall apply
to the combination of the Contribution and the Program if, at the time the Contribution
is added by the Contributor, such addition of the Contribution causes such combina-
tion to be covered by the Licensed Patents. The patent license shall not apply to any
other combinations which include the Contribution. No hardware per se is licensed
hereunder.

c) Recipient understands that although each Contributor grants the licenses to its
Contributions set forth herein, no assurances are provided by any Contributor that the
Program does not infringe the patent or other intellectual property rights of any other
entity. Each Contributor disclaims any liability to Recipient for claims brought by
any other entity based on infringement of intellectual property rights or otherwise.
As a condition to exercising the rights and licenses granted hereunder, each Recipi-
ent hereby assumes sole responsibility to secure any other intellectual property rights
needed, if any. For example, if a third party patent license is required to allow Recipient
to distribute the Program, it is Recipient’s responsibility to acquire that license before
distributing the Program.

d) Each Contributor represents that to its knowledge it has sufficient copyright
rights in its Contribution, if any, to grant the copyright license set forth in this Agree-
ment.

3. REQUIREMENTS
A Contributor may choose to distribute the Program in object code form under its

own license agreement, provided that:
a) it complies with the terms and conditions of this Agreement; and
b) its license agreement:
i) effectively disclaims on behalf of all Contributors all warranties and conditions,

express and implied, including warranties or conditions of title and non-infringement,
and implied warranties or conditions of merchantability and fitness for a particular
purpose;

ii) effectively excludes on behalf of all Contributors all liability for damages, in-
cluding direct, indirect, special, incidental and consequential damages, such as lost
profits;

iii) states that any provisions which differ from this Agreement are offered by that
Contributor alone and not by any other party; and

iv) states that source code for the Program is available from such Contributor, and
informs licensees how to obtain it in a reasonable manner on or through a medium

5

customarily used for software exchange.
When the Program is made available in source code form:
a) it must be made available under this Agreement; and
b) a copy of this Agreement must be included with each copy of the Program.
Contributors may not remove or alter any copyright notices contained within the

Program.
Each Contributor must identify itself as the originator of its Contribution, if any, in

a manner that reasonably allows subsequent Recipients to identify the originator of the
Contribution.

4. COMMERCIAL DISTRIBUTION
Commercial distributors of software may accept certain responsibilities with re-

spect to end users, business partners and the like. While this license is intended to
facilitate the commercial use of the Program, the Contributor who includes the Pro-
gram in a commercial product offering should do so in a manner which does not create
potential liability for other Contributors. Therefore, if a Contributor includes the Pro-
gram in a commercial product offering, such Contributor (”Commercial Contributor”)
hereby agrees to defend and indemnify every other Contributor (”Indemnified Con-
tributor”) against any losses, damages and costs (collectively ”Losses”) arising from
claims, lawsuits and other legal actions brought by a third party against the Indem-
nified Contributor to the extent caused by the acts or omissions of such Commercial
Contributor in connection with its distribution of the Program in a commercial product
offering. The obligations in this section do not apply to any claims or Losses relating
to any actual or alleged intellectual property infringement. In order to qualify, an In-
demnified Contributor must: a) promptly notify the Commercial Contributor in writing
of such claim, and b) allow the Commercial Contributor to control, and cooperate with
the Commercial Contributor in, the defense and any related settlement negotiations.
The Indemnified Contributor may participate in any such claim at its own expense.

For example, a Contributor might include the Program in a commercial product
offering, Product X. That Contributor is then a Commercial Contributor. If that Com-
mercial Contributor then makes performance claims, or offers warranties related to
Product X, those performance claims and warranties are such Commercial Contribu-
tor’s responsibility alone. Under this section, the Commercial Contributor would have
to defend claims against the other Contributors related to those performance claims and
warranties, and if a court requires any other Contributor to pay any damages as a result,
the Commercial Contributor must pay those damages.

5. NO WARRANTY
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PRO-

GRAM IS PROVIDED ON AN ”AS IS” BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING,
WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PUR-
POSE. Each Recipient is solely responsible for determining the appropriateness of us-
ing and distributing the Program and assumes all risks associated with its exercise of
rights under this Agreement , including but not limited to the risks and costs of pro-
gram errors, compliance with applicable laws, damage to or loss of data, programs or
equipment, and unavailability or interruption of operations.

6

6. DISCLAIMER OF LIABILITY
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RE-

CIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF
THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED HEREUN-
DER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. GENERAL
If any provision of this Agreement is invalid or unenforceable under applicable

law, it shall not affect the validity or enforceability of the remainder of the terms of this
Agreement, and without further action by the parties hereto, such provision shall be
reformed to the minimum extent necessary to make such provision valid and enforce-
able.

If Recipient institutes patent litigation against any entity (including a cross-claim
or counterclaim in a lawsuit) alleging that the Program itself (excluding combinations
of the Program with other software or hardware) infringes such Recipient’s patent(s),
then such Recipient’s rights granted under Section 2(b) shall terminate as of the date
such litigation is filed.

All Recipient’s rights under this Agreement shall terminate if it fails to comply with
any of the material terms or conditions of this Agreement and does not cure such failure
in a reasonable period of time after becoming aware of such noncompliance. If all
Recipient’s rights under this Agreement terminate, Recipient agrees to cease use and
distribution of the Program as soon as reasonably practicable. However, Recipient’s
obligations under this Agreement and any licenses granted by Recipient relating to the
Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order
to avoid inconsistency the Agreement is copyrighted and may only be modified in the
following manner. The Agreement Steward reserves the right to publish new versions
(including revisions) of this Agreement from time to time. No one other than the
Agreement Steward has the right to modify this Agreement. The Eclipse Foundation is
the initial Agreement Steward. The Eclipse Foundation may assign the responsibility
to serve as the Agreement Steward to a suitable separate entity. Each new version of
the Agreement will be given a distinguishing version number. The Program (including
Contributions) may always be distributed subject to the version of the Agreement under
which it was received. In addition, after a new version of the Agreement is published,
Contributor may elect to distribute the Program (including its Contributions) under the
new version. Except as expressly stated in Sections 2(a) and 2(b) above, Recipient
receives no rights or licenses to the intellectual property of any Contributor under this
Agreement, whether expressly, by implication, estoppel or otherwise. All rights in the
Program not expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellec-
tual property laws of the United States of America. No party to this Agreement will
bring a legal action under this Agreement more than one year after the cause of action

7

arose. Each party waives its rights to a jury trial in any resulting litigation.

8

3 Introduction
There are many goals to achieve when deciding to write an API. The functions in the
library should be reenterable, easy to include in an application, platform independent,
and reasonably flexible with enough functionality to be usable. These goals can often
be contradictory; however, they are achievable with enough forethought and planning.

This package is sufficiently abstracted so that the programmer will neither need to
know or care how it is implemented; at least that is the goal I have striven to achieve
while writing it.

Within this package is found the: source files written in C; make files for various
platforms and compilers; a text script which sets the environment correctly when it runs
the demo program created by the make utility; README, INSTALL, and HISTORY
text files; Artistic License; and the documentation in LATEX 2ε form.

A short overview will follow, discussing the philosophy of how the package works
including a rationale of the structure and type definition used in the package.

Then the library itself is broken into six groups: initialization, status and state,
pointer manipulation, list update, search, and input/output.

(a) The initialization group handles the creation, initializing, and destruction of
the link list.

(b) The status and state group returns various kinds of information about the
status of the link list during its operation.

(c) The pointer manipulation group allows the positioning of the current pointer
to the head, the tail, or an arbitrary node within the list.

(d) The list update group adds and deletes nodes.

(e) The search group returns the record information based on key data or on the
absolute record position.

(f) The input/output group saves or retrieves record data to or from a disk file.

At this writing there are 29 functions in the library, each one of which is thoroughly
explained and examples given when needed.

9

4 Overview
When writing tools such as this, one needs to be concerned with how it affects the entire
programming environment. One of the most important aspects of this environment is
the problem concerning namespace pollution. To minimize this problem I have used
DLL as a prefix to all function names and enumerated typedef s.

It is often the case that search criteria will remain the same between queries. As such,
a state table is implemented that passes the current state to the search functions. There
are two functions: one to set and the other to read the state table.

10

5 Structures
Most implementations of link lists allocate a single node per record and these nodes
are what are linked to each other. This type of algorithm works well when the link list
is embedded in the application code, but not when implementing a link list within an
API, because it cannot be made reenterant.

A well written Application Programming Interface (API) requires that the functions
contained within it be reenterant and also creates an environment in which the code
can be abstracted. In order to take advantage of these two ideas the Doubly Linked List
(hereafter referred to as the DLL) has a three level hierarchy as pictured in the figure.

The first level we will refer to as the “Top Level Struct”. All the global data is held by
one of these structures and it is allocated once for each incident of the link list.

typedef struct list
{
Node *head; /* pointer to head record */
Node *tail; /* pointer to tail record */
Node *current; /* pointer to current record */
Node *saved; /* pointer to stored record */
size_t infosize; /* size of record incident */
unsigned long listsize; /* number of records in list */
unsigned long current_index; /* index value of current record */
unsigned long save_index; /* index value of stored record */
DLL_Boolean modified; /* modified flag (TRUE or FALSE) */
DLL_SrchOrigin search_origin; /* location a search originates from */
DLL_SrchDir search_dir; /* direction the search proceeds from */
} List;

At the next level is the “Node Struct”. This structure holds the pointer to the actual
record data plus the pointers to the next and prior nodes. It is allocated once for each
record structure.

typedef struct node
{
Info *info; /* pointer to record data */
struct node *next; /* pointer to next node */
struct node *prior; /* pointer to prior node */
} Node;

11

Hierarchical Structure of the Doubly Linked List

12

The third and final level is the “Info Struct”, which holds the actual data inserted by the
application. The Info Struct is defined by the developer and is only restricted by the
environment in which the application runs or is compiled in.

typedef struct your_info
{
type your_data; /* Your data goes here */
} YourInfo;

There is one more structure which is not part of this hierarchy. It is only used to return
the current state of the search criteria.

typedef struct search_modes
{
DLL_SrchOrigin search_origin; /* Search from head, tail, or current */
DLL_SrchDir search_dir; /* Search up or down */
} DLL_SearchModes;

13

6 Enumerations
I’m a firm believer that the return values of functions should be predefined typedef
enumerations. There are two reasons for this. The first is that many compilers will
complain when a switch statement is used to test the return values of functions with
one or more of the enumerated values missing, thus alerting the developer to use the
default statement. The second reason is that the typedef name can be used as the
return type of the function, disallowing anything other than the enumerated values to
be returned. These are good things and should be taken advantage of.

Since at the time of this writing Booleans are not part of the C specifications, I’ve
created my own.

typedef enum
{
DLL_FALSE,
DLL_TRUE
} DLL_Boolean;

Many functions return the typedef enumerated type DLL Return as shown below.

typedef enum
{
DLL_NORMAL, /* normal operation */
DLL_MEM_ERROR, /* malloc error */
DLL_ZERO_INFO, /* sizeof(Info) is zero */
DLL_NULL_LIST, /* List is NULL */
DLL_NOT_FOUND, /* Record not found */
DLL_OPEN_ERROR, /* Cannot open file */
DLL_WRITE_ERROR, /* File write error */
DLL_READ_ERROR, /* File read error */
DLL_NOT_MODIFIED, /* Unmodified list */
DLL_NULL_FUNCTION /* NULL function pointer */
} DLL_Return;

The next two enumerations are used to determine the state of search inquiries: one is
used to determine the origin and the other for the direction. These values are passed as
arguments to the DLL SetSearchModes function.

typedef enum
{
DLL_ORIGIN_DEFAULT, /* Use current origin setting */
DLL_HEAD, /* Set origin to head pointer */
DLL_CURRENT, /* Set origin to current pointer */
DLL_TAIL /* Set origin to tail pointer */
} DLL_SrchOrigin;

typedef enum

14

{
DLL_DIRECTION_DEFAULT, /* Use current direction setting */
DLL_DOWN, /* Set direction to down */
DLL_UP /* Set direction to up */
} DLL_SrchDir;

The last enumerated type is used to determine the direction of insertion or the swapping
of a record. This structure is passed as an argument to two functions, DLL InsertRecord
and DLL SwapRecord.

typedef enum
{
DLL_INSERT_DEFAULT, /* Use current insert setting */
DLL_ABOVE, /* Insert new record ABOVE current record */
DLL_BELOW /* Insert new record BELOW current record */
} DLL_InsertDir;

15

7 Functions
The following function calls are grouped by their general functionality, as described
above. They are written in manpage style so that I only have to document the API
once.

7.1 Initialization
NAME

DLL CreateList, DLL InitializeList, DLL DestroyList, — Initialization Func-
tions.

SYNOPSIS
#include <linklist.h>

List *DLL_CreateList(List **list);
DLL_Return DLL_InitializeList(List *list, size_t infosize);
void DLL_DestroyList(List **list);

DESCRIPTION
The initialization group of functions must be used in the allocation and freeing
of memory used by the link list.

DLL CreateList
This function is called first to create the environment of the link list pack-
age. It is passed list, a pointer to a pointer, of the Top Level Struct type List.
This pointer is returned both as the return value of the function and in the
argument list.

DLL InitializeList
After defining the Info structure this function is called to initialize the envi-
ronment. Its first argument, list, is the value returned from DLL CreateList
and the second argument, infosize, is the size in bytes of the Info structure.
The value DLL ZERO INFO is returned if infosize is zero; DLL NULL LIST
if the pointer list is NULL; and DLL NORMAL if the initialization was
successful.

DLL DestroyList
Upon exiting the application this function when called will free all memory
allocated during this instance of the list. It is passed list, the value returned
from DLL CreateList, and has no return value of its own; however, the
argument list is set to NULL.

EXAMPLE
#include <stdio.h>
#include <stdlib.h>
#include <linklist.h>

16

typedef struct name_addr /* Sample data structure */
{
char name[30];
char street[40];
char city[22];
char state[3];
char zip[11];
} NameAddr;

void main(void)
{
List *NAList = NULL;
DLL_Return DLL_Exit;

if(DLL_CreateList(&NAList) == NULL)
{
fputs("Fatal Memory error", stderr);
exit(EXIT_FAILURE);
}

if((DLL_Exit = DLL_InitializeList(NAList, sizeof(NameAddr)))
!= DLL_NORMAL)
{
(void)(DLL_Exit == DLL_ZERO_INFO
&& fputs("Size of address record is zero.\n\n", stderr));
(void)(DLL_Exit == DLL_NULL_LIST
&& fputs("NAList points to a NULL address.\n\n", stderr));
exit(EXIT_FAILURE);
}

DoYourThingHere(NAList);

DLL_DestroyList(&NAList);
exit(EXIT_SUCCESS);
}

17

7.2 Status and State
NAME

DLL Version, DLL IsListEmpty, DLL IsListFull,
DLL GetNumberOfRecords, DLL SetSearchModes,
DLL GetSearchModes, DLL GetCurrentIndex
— Status and State Functions.

SYNOPSIS
#include <linklist.h>

char *DLL_Version(void);
DLL_Boolean DLL_IsListEmpty(List *list);
DLL_Boolean DLL_IsListFull(List *list);
unsigned long DLL_GetNumberOfRecords(List *list);
DLL_Return DLL_SetSearchModes(List *list, DLL_SrchOrigin origin,

DLL_SrchDir dir);
DLL_SearchModes *DLL_GetSearchModes(List *list,

DLL_SearchModes *ssp);
unsigned long DLL_GetCurrentIndex(List *list);

DESCRIPTION
All the functions below except DLL Version take as their first argument list the
pointer returned by DLL CreateList. These functions either return or set the
status or state of some aspect of the link list.

DLL Version
This function has no arguments and returns a string in the following format:

Ver: 1.1.0 May 17 1999

Developed by: Carl J. Nobile
Contributions: Charlie Buckheit

Graham Inchley

DLL IsListEmpty
This function determines if the link list has any nodes defined by testing
if the head and tail pointers are NULL. It returns DLL TRUE if the list is
empty and DLL FALSE if the list has valid nodes.

DLL IsListFull
This function determines if there is enough memory to create new Node and
Info structures by creating and then deleting them. It returns DLL TRUE
if either of the two structures could not be allocated and DLL FALSE if
the memory allocations were successful.

DLL GetNumberOfRecords
This function returns the number of records currently in the link list by
retrieving a counter value. It returns the number of nodes allocated where
a return value of zero is an empty list.

18

DLL SetSearchModes
This function sets the search mode state table which is used by various
function in the API. Its second and third arguments are origin and dir. The
origin argument can take one of four values:
DLL HEAD The origin of the search starts from the node which is at

the head of the list. This is the default value if none have been set
beforehand.

DLL CURRENT The origin of the search starts from the currently se-
lected node.

DLL TAIL The origin of the search starts from the node which is at the
tail of the list.

DLL ORIGIN DEFAULT The origin of the search defaults to the last set
value.

The dir argument can take one of three values:
DLL DOWN The direction of the search is from the head to the tail nodes.

This is the default value if none have been set beforehand.
DLL UP The direction of the search is from the tail to the head nodes.
DLL DIRECTION DEFAULT The direction of the search defaults to

the last set value.
It returns DLL NOT MODIFIED if an invalid value was passed in either
origin or dir. DLL NORMAL is returned if the state table was set.

DLL GetSearchModes
This function gets the state of the search criteria, which can either be the
default values or those set by DLL SetSearchModes. Its second argument
is ssp, a pointer to the structure below. It returns a pointer to this same
instance of the structure.

typedef struct search_modes
{
DLL_SrchOrigin search_origin;
DLL_SrchDir search_dir;
} DLL_SearchModes;

NOTE: This function has a different argument list starting with release
linlkist-1.1.0. The original function allocated the structure internally to
the function, which was not thread safe. This WILL break old code that
used this function.

DLL GetCurrentIndex
This function returns the index of the current record by retrieving a counter
value. A return value of zero is an empty list.

EXAMPLE
Examples of most of these functions can be seen in the source file dll test.c used
in the testing of the link list API.

19

7.3 Pointer Manipulation
NAME

DLL CurrentPointerToHead, DLL CurrentPointerToTail,
DLL IncrementCurrentPointer, DLL DecrementCurrentPointer,
DLL StoreCurrentPointer, DLL RestoreCurrentPointer
— Pointer Manipulation Functions.

SYNOPSIS
#include <linklist.h>

DLL_Return DLL_CurrentPointerToHead(List *list);
DLL_Return DLL_CurrentPointerToTail(List *list);
DLL_Return DLL_IncrementCurrentPointer(List *list);
DLL_Return DLL_DecrementCurrentPointer(List *list);
DLL_Return DLL_StoreCurrentPointer(List *list);
DLL_Return DLL_RestoreCurrentPointer(List *list);

DESCRIPTION
The current pointer in the link list keeps track of the last used node. In order
for this to be of benefit there needs to be a way of controlling where this pointer
is located within the list. These functions allow the repositioning and storing of
this pointer during program execution.

All of these functions return the enumerated type DLL Return and take only one
argument list the pointer returned by DLL CreateList.

DLL CurrentPointerToHead
This function sets the current pointer to the head of the list and sets the
index counter to 1. A return value of DLL NULL LIST indicates that the
list has no nodes allocated and DLL NORMAL indicates that the function
succeeded in its task.

DLL CurrentPointerToTail
This function sets the current pointer to the tail of the list and sets the
index counter to the listsize counter. A return value of DLL NULL LIST
indicates that the list has no allocated nodes and DLL NORMAL indicates
that the function succeeded in its task.

DLL IncrementCurrentPointer
This function increments the current pointer and the index counter each
by 1. A return value of DLL NULL LIST indicates that the list has no
allocated nodes, DLL NOT FOUND indicates that the end of the list has
been reached, and DLL NORMAL indicates that the function succeeded
in its task.

DLL DecrementCurrentPointer
This function decrements the current pointer and the index counter each
by 1. A return value of DLL NULL LIST indicates that the list has no

20

allocated nodes, DLL NOT FOUND indicates that the beginning of the
list has been reached, and DLL NORMAL indicates that the function suc-
ceeded in its task.

DLL StoreCurrentPointer
This function stores the current pointer and the index counter in the Top
Level Struct for later retrieval. Only one value can be stored at a time so
calling this function again will destroy the first stored pointer and index
values. A return value of DLL NOT FOUND indicates that the list is
empty and DLL NORMAL indicates that the function succeeded in its
task.

DLL RestoreCurrentPointer
This function restores the current pointer and the index counter from the
Top Level Struct. Since only one value can be stored at a time, calling this
function again will return the last pointer and index values. A return value
of DLL NOT FOUND indicates that the list is empty and DLL NORMAL
indicates that the function succeeded in its task.

EXAMPLE
Examples of most of these functions can be seen in the source file dll test.c used
in the testing of the link list API.

21

7.4 List Update
NAME

DLL AddRecord, DLL InsertRecord, DLL SwapRecord,
DLL UpdateCurrentRecord, DLL DeleteCurrentRecord,
DLL DeleteEntireList — List Update Functions.

SYNOPSIS
#include <linklist.h>

DLL_Return DLL_AddRecord(List *list, Info *info,
int (*pFun)(Info *, Info *));

DLL_Return DLL_InsertRecord(List *list, Info *info,
DLL_InsertDir dir);

DLL_Return DLL_SwapRecord(List *list, DLL_InsertDir dir);
DLL_Return DLL_UpdateCurrentRecord(List *list,

Info *record);
DLL_Return DLL_DeleteCurrentRecord(List *list);
DLL_Return DLL_DeleteEntireList(List *list);

DESCRIPTION
These functions manipulate the data in the link list. They all return the enumer-
ated type DLL Return and take as their first argument, list, the pointer returned
by DLL CreateList.

DLL AddRecord
This function adds a new node and record to the link list. The second
argument is a pointer to the Info structure where the new data is stored.
The third argument is a pointer to a function used to sort the insertion of
the new data. The return value of this function is identical to the return
value of the strcmp function of the standard C library.

Where the return value is

less than zero: arg1 < arg2,

zero: arg1 == arg2, or

greater than zero: arg1 > arg2.

Below is an example of this function:

int sort_foo(Info *record, Info *compare)
{
return(strcmp(rcrd->info_element,

cmp->info_element));
}

22

If a NULL is passed instead of the function pointer no sorting will take
place causing the next new node and record to be added to the tail of the
list. A return value of DLL MEM ERROR indicates that memory could
not be allocated and DLL NORMAL indicates that the function succeeded
in its task.

DLL InsertRecord
This function adds a new node and record to the link list above or below
current record. The new record will be current after completion. The sec-
ond argument is a pointer to the Info structure where the new data is stored.
The third argument is passed an enumerated define of type DLL InsertDir.

typedef enum
{
DLL_INSERT_DEFAULT, /* Use current insert setting */
DLL_ABOVE, /* Insert new record ABOVE current record */
DLL_BELOW /* Insert new record BELOW current record */
} DLL_InsertDir;

In the current version the value DLL INSERT DEFAULT is not used;
it has been included for conformity to other like definitions and possible
future expansion.

The value DLL NOT MODIFIED, if returned, indicates that a wrong
value was passed in the argument dir; DLL MEM ERROR indicates that
memory could not be allocated; and DLL NORMAL indicates that the
function succeeded in its task.

DLL SwapRecord
This function swaps the current record up or down one place in the list.
The swapped record will remain current after completion. The second ar-
gument is passed the same enumerated define of type DLL InsertDir as the
function DLL InsertRecord above. The value DLL NOT MODIFIED,
if returned, indicates that a value other than the type DLL InsertDir was
passed in the argument dir; DLL NULL LIST indicates that the list is
empty and there are no nodes to swap; DLL NOT FOUND indicates that
the current node is either at the head and cannot be swapped above or is at
the tail and cannot be swapped below; and DLL NORMAL indicates that
the function succeeded in its task.

DLL UpdateCurrentRecord
This function replaces the current data in an Info structure with updated
data from the application. The entire structure gets overwritten so all el-
ements in the updating structure will need to be present whether or not
they have been changed. The second argument of this function is passed
a pointer to an Info structure which contains the updated information. The
value DLL NULL LIST, if returned, indicates that the list is empty and
DLL NORMAL indicates that the function succeeded in its task.

DLL DeleteCurrentRecord
This function deletes the current Node and its Info structures from the list.

23

The value DLL NULL LIST, if returned, indicates that the list is empty
and DLL NORMAL indicates that the function succeeded in its task.

DLL DeleteEntireList
This function deletes all the Node and Info structures from the list. It does
not delete the Top Level Struct allowing the application to add new records
without having to reinitialize the list again. The value DLL NULL LIST,
if returned, indicates that the list is empty and DLL NORMAL indicates
that the function succeeded in its task.

EXAMPLE
Examples of most of these functions can be seen in the source file dll test.c used
in the testing of the link list API.

24

7.5 Search
NAME

DLL FindRecord, DLL FindNthRecord, DLL GetCurrentRecord,
DLL GetPriorRecord, DLL GetNextRecord – Search Functions.

SYNOPSIS
#include <linklist.h>

DLL_Return DLL_FindRecord(List *list, Info *record,
Info *match, int (*pFun)(Info *, Info *));

DLL_Return DLL_FindNthRecord(List *list, Info *record,
unsigned long skip);

DLL_Return DLL_GetCurrentRecord(List *list, Info *record);
DLL_Return DLL_GetPriorRecord(List *list, Info *record);
DLL_Return DLL_GetNextRecord(List *list, Info *record);

DESCRIPTION
These functions retreive data from the list. They all return the enumerated
type DLL Return and take as their first argument list the pointer returned by
DLL CreateList.

DLL FindRecord
This function returns in its second argument a record found using the crite-
ria passed in its third argument based on the logic of a function passed as its
forth argument. See DLL SetSearchModes for setting the search direction
and origin. The form of the passed in function containing the search criteria
is the same as that used by the DLL AddRecord, but in this case a NULL
function pointer cannot be passed. It is shown below for convenience.

Where the return value is

less than zero: arg1 < arg2,

zero: arg1 == arg2, or

greater than zero: arg1 > arg2.

Below is an example of this function:

int sort_foo(Info *record, Info *compare)
{
return(strcmp(rcrd->info_element,

cmp->info_element));
}

25

The value DLL NULL FUNCTION, if returned, indicates that a NULL
was passed as the fourth argument; DLL NULL LIST indicates that the
list is empty; DLL NOT FOUND indicates that a record could not be
found; and DLL NORMAL indicates that the function succeeded in its
task.

DLL FindNthRecord
This function returns in its second argument the record found by adding
the skip value passed in the third argument to the index value of the current
record. The skip value is an unsigned long integer. See DLL SetSearchModes
for setting the search direction and origin. The value DLL NULL LIST,
if returned, indicates that the list is empty; DLL NOT FOUND indicates
that a record could not be found in the list or that the skip value was out
of range; and DLL NORMAL indicates that the function succeeded in its
task.

DLL GetCurrentRecord
This function returns in its second argument the current record. The value
DLL NULL LIST, if returned, indicates that the list is empty and DLL NORMAL
indicates that the function succeeded in its task.

DLL GetPriorRecord
This function returns in its second argument the record just prior to the
current record. The value DLL NULL LIST, if returned, indicates that
the list is empty; DLL NOT FOUND indicates that the current record is
at the head of the list and there is no prior record; and DLL NORMAL
indicates that the function succeeded in its task.

DLL GetNextRecord
This function returns in its second argument the record just after the current
record. The value DLL NULL LIST, if returned, indicates that the list is
empty; DLL NOT FOUND indicates that the current record is at the tail
of the list and there is no next record; and DLL NORMAL indicates that
the function succeeded in its task.

EXAMPLE
Examples of most of these functions can be seen in the source file dll test.c used
in the testing of the link list API.

26

7.6 Input/Output
NAME

DLL SaveList, DLL LoadList – Input/Output Functions.

SYNOPSIS
#include <linklist.h>

DLL_Return DLL_SaveList(List *list, const char *path);
DLL_Return DLL_LoadList(List *list, const char *path,

int (*pFun)(Info *, Info *))

DESCRIPTION
These functions are designed to easily write and read the link list data to a disk.
They take advantage of their ability to access the Top Level Struct for saving
and loading data quickly; however, this will only be useful in limited cases as
most implementations will need application specific file formats. Both return the
enumerated type DLL Return and take as their first argument, list, the pointer
returned by DLL CreateList, and as their second argument, path, a pointer to the
file name.

DLL SaveList
This function saves all the Info structures including any NULL characters
in the elements. The record size is equal to, infosize, the second argument
of the DLL InitializeList function.

The value DLL NULL LIST, if returned, indicates that the list is empty;
DLL OPEN ERROR indicates that the file could not be opened for writ-
ing; DLL WRITE ERROR indicates that there was an error while writing
to the file meaning that the data in the list should not be trusted; DLL NOT MODIFIED
indicates that the list has not been modified since the last save and no updat-
ing to the file was done; and DLL NORMAL indicates that the function
succeeded in its task.

DLL LoadList
This function retrieves from a file data based on the same criteria that it
was saved with. See DLL SaveList above. The third argument pFun is a
pointer to a sorting function the same as can be found in DLL AddRecord.
A NULL function pointer can be passes if no sorting is needed.

Where the return value is

less than zero: arg1 < arg2,

zero: arg1 == arg2, or

greater than zero: arg1 > arg2.

27

Below is an example of this function:

int sort_foo(Info *record, Info *compare)
{
return(strcmp(rcrd->info_element,

cmp->info_element));
}

EXAMPLE
Examples of most of these functions can be seen in the source file dll test.c used
in the testing of the link list API.

28

	Preface
	Distribution
	License
	Artistic License
	Eclipse License

	Introduction
	Overview
	Structures
	Enumerations
	Functions
	Initialization
	Status and State
	Pointer Manipulation
	List Update
	Search
	Input/Output

