/* $NetBSD: zynq_machdep.c,v 1.11 2019/07/16 14:41:48 skrll Exp $ */ /*- * Copyright (c) 2012 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Matt Thomas of 3am Software Foundry. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: zynq_machdep.c,v 1.11 2019/07/16 14:41:48 skrll Exp $"); #include "opt_evbarm_boardtype.h" #include "opt_arm_debug.h" #include "opt_console.h" #include "opt_kgdb.h" #include "com.h" #include "opt_zynq.h" #include "opt_machdep.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef VERBOSE_INIT_ARM #define VPRINTF(...) printf(__VA_ARGS__) #else #define VPRINTF(...) __nothing #endif extern int _end[]; extern int KERNEL_BASE_phys[]; extern int KERNEL_BASE_virt[]; BootConfig bootconfig; static char bootargs[MAX_BOOT_STRING]; char *boot_args = NULL; /* filled in before cleaning bss. keep in .data */ u_int uboot_args[4] __attribute__((__section__(".data"))); /* * Macros to translate between physical and virtual for a subset of the * kernel address space. *Not* for general use. */ #ifndef CONADDR #define CONADDR (UART1_BASE) #endif #ifndef CONSPEED #define CONSPEED B115200 #endif #ifndef CONMODE #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ #endif static const bus_addr_t comcnaddr = (bus_addr_t)CONADDR; static const int comcnspeed = CONSPEED; static const int comcnmode = CONMODE | CLOCAL; void zynq_platform_early_putchar(char); #ifdef KGDB #include #endif static void earlyconsputc(dev_t dev, int c) { uartputc(c); } static int earlyconsgetc(dev_t dev) { return 0; } static struct consdev earlycons = { .cn_putc = earlyconsputc, .cn_getc = earlyconsgetc, .cn_pollc = nullcnpollc, }; /* * Static device mappings. These peripheral registers are mapped at * fixed virtual addresses very early in initarm() so that we can use * them while booting the kernel, and stay at the same address * throughout whole kernel's life time. * * We use this table twice; once with bootstrap page table, and once * with kernel's page table which we build up in initarm(). * * Since we map these registers into the bootstrap page table using * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map * registers segment-aligned and segment-rounded in order to avoid * using the 2nd page tables. */ static const struct pmap_devmap devmap[] = { { KERNEL_IO_IOREG_VBASE, ZYNQ7000_IOREG_PBASE, /* 0xe0000000 */ ZYNQ7000_IOREG_SIZE, /* 2MB */ VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { KERNEL_IO_ARMCORE_VBASE, ZYNQ7000_ARMCORE_PBASE, /* 0xf8f00000 */ ZYNQ7000_ARMCORE_SIZE, /* 1MB */ VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { KERNEL_IO_OCM_VBASE, ZYNQ7000_OCM_PBASE, /* 0xfff00000 */ ZYNQ7000_OCM_SIZE, /* 1MB */ VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { 0, 0, 0, 0, 0 } }; void zynq_platform_early_putchar(char c) { #define CONADDR_VA (CONADDR - ZYNQ7000_IOREG_PBASE + KERNEL_IO_IOREG_VBASE) volatile uint32_t *uartaddr = cpu_earlydevice_va_p() ? (volatile uint32_t *)CONADDR_VA : (volatile uint32_t *)CONADDR; int timo = 150000; while ((uartaddr[UART_CHANNEL_STS / 4] & STS_TEMPTY) == 0) { if (--timo == 0) break; } uartaddr[UART_TX_RX_FIFO / 4] = c; timo = 150000; while ((uartaddr[UART_CHANNEL_STS / 4] & STS_TEMPTY) == 0) { if (--timo == 0) break; } } static int zynq_mpstart(void) { int ret = 0; #ifdef MULTIPROCESSOR /* * Invalidate all SCU cache tags. That is, for all cores (0-3) */ bus_space_write_4(zynq7000_armcore_bst, zynq7000_armcore_bsh, ARMCORE_SCU_BASE + SCU_INV_ALL_REG, 0xffff); uint32_t scu_ctl = bus_space_read_4(zynq7000_armcore_bst, zynq7000_armcore_bsh, ARMCORE_SCU_BASE + SCU_CTL); scu_ctl |= SCU_CTL_SCU_ENA; bus_space_write_4(zynq7000_armcore_bst, zynq7000_armcore_bsh, ARMCORE_SCU_BASE + SCU_CTL, scu_ctl); armv7_dcache_wbinv_all(); bus_space_tag_t bst = &zynq_bs_tag; bus_space_handle_t bsh; int error = bus_space_map(bst, ZYNQ7000_CPU1_ENTRY, ZYNQ7000_CPU1_ENTRY_SZ, 0, &bsh); if (error) panic("%s: Couldn't map OCM", __func__); /* Write start address for CPU1. */ bus_space_write_4(bst, bsh, 0, KERN_VTOPHYS((vaddr_t)cpu_mpstart)); bus_space_unmap(bst, bsh, ZYNQ7000_CPU1_ENTRY_SZ); arm_dsb(); __asm __volatile("sev" ::: "memory"); for (int loop = 0; loop < 16; loop++) { VPRINTF("%u hatched %#x\n", loop, arm_cpu_hatched); if (arm_cpu_hatched == __BITS(arm_cpu_max - 1, 1)) break; int timo = 1500000; while (arm_cpu_hatched != __BITS(arm_cpu_max - 1, 1)) if (--timo == 0) break; } for (size_t i = 1; i < arm_cpu_max; i++) { if ((arm_cpu_hatched & __BIT(i)) == 0) { ret++; printf("%s: warning: cpu%zu failed to hatch\n", __func__, i); } } VPRINTF(" (%u cpu%s, hatched %#x)", arm_cpu_max, arm_cpu_max ? "s" : "", arm_cpu_hatched); #endif /* MULTIPROCESSOR */ return ret; } /* * vaddr_t initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel */ vaddr_t initarm(void *arg) { /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) // starts PMC counter panic("cpu not recognized!"); cn_tab = &earlycons; extern char ARM_BOOTSTRAP_LxPT[]; pmap_devmap_bootstrap((vaddr_t)ARM_BOOTSTRAP_LxPT, devmap); zynq7000_bootstrap(KERNEL_IO_IOREG_VBASE); #ifdef MULTIPROCESSOR uint32_t scu_cfg = bus_space_read_4(zynq7000_armcore_bst, zynq7000_armcore_bsh, ARMCORE_SCU_BASE + SCU_CFG); arm_cpu_max = (scu_cfg & SCU_CFG_CPUMAX) + 1; membar_producer(); #endif /* MULTIPROCESSOR */ consinit(); cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); #ifdef NO_POWERSAVE cpu_do_powersave = 0; #endif cortex_pmc_ccnt_init(); printf("\nuboot arg = %#x, %#x, %#x, %#x\n", uboot_args[0], uboot_args[1], uboot_args[2], uboot_args[3]); /* Talk to the user */ printf("\nNetBSD/evbarm (" ___STRING(EVBARM_BOARDTYPE) ") booting ...\n"); #ifdef BOOT_ARGS char mi_bootargs[] = BOOT_ARGS; parse_mi_bootargs(mi_bootargs); #endif /* BOOT_ARGS */ bootargs[0] = '\0'; VPRINTF("initarm: Configuring system"); VPRINTF(", CLIDR=%010o CTR=%#x", armreg_clidr_read(), armreg_ctr_read()); VPRINTF("\n"); psize_t memsize = zynq7000_memprobe(); #ifdef MEMSIZE if ((memsize >> 20) > MEMSIZE) memsize = MEMSIZE*1024*1024; #endif bootconfig.dramblocks = 1; bootconfig.dram[0].address = ZYNQ7000_DDR_PBASE; bootconfig.dram[0].pages = memsize / PAGE_SIZE; arm32_bootmem_init(bootconfig.dram[0].address, bootconfig.dram[0].pages * PAGE_SIZE, (paddr_t)KERNEL_BASE_phys); /* * This is going to do all the hard work of setting up the first and * and second level page tables. Pages of memory will be allocated * and mapped for other structures that are required for system * operation. When it returns, physical_freestart and free_pages will * have been updated to reflect the allocations that were made. In * addition, kernel_l1pt, kernel_pt_table[], systempage, irqstack, * abtstack, undstack, kernelstack, msgbufphys will be set to point to * the memory that was allocated for them. */ arm32_kernel_vm_init(KERNEL_VM_BASE, ARM_VECTORS_HIGH, 0, devmap, false); /* we've a specific device_register routine */ evbarm_device_register = zynq7000_device_register; vaddr_t sp = initarm_common(KERNEL_VM_BASE, KERNEL_VM_SIZE, NULL, 0); /* * initarm_common flushes cache if required before AP start */ VPRINTF("mpstart\n"); zynq_mpstart(); return sp; } void consinit(void) { static bool consinit_called = false; if (consinit_called) return; consinit_called = true; zynquart_cons_attach(&zynq_bs_tag, comcnaddr, comcnspeed, comcnmode); }