
Oracle7
� Server SQL

Reference
Release 7.3
February 1996
Part No. A32538–1

Oracle7� Server SQL Reference, Release 7.3

Part No. A32538–1
Copyright � Oracle Corporation 1992, 1996
All rights reserved. Printed in the U.S.A.

Primary Author: Brian Linden
Contributing Authors: Martin Gruber, Brian Quigley
Contributors: Andrea Borr, Bill Bridge, Geroge Chang, Stephen Faris,
John Frazzini, Jyotin Gautam, Gary Hallmark, Michael Hartstein, Terry Hayes,
Merrill Holt, Ken Jacobs, Jonathan Klein, Bob Kooi, Andrew Mendelsohn,
Mark Moore, Maria Pratt, Hari Sankar, Phil Shaw, Marc Simon, Lynne Thieme,
Randall Whitman

This software was not developed for use in any nuclear, aviation, mass
transit, medical, or other inherently dangerous applications. It is the
customer’s responsibility to take all appropriate measures to ensure the safe
use of such applications if the programs are used for such purposes.

This software/documentation contains proprietary information of Oracle
Corporation; it is provided under a license agreement containing restrictions on
use and disclosure and is also protected by copyright law. Reverse engineering
of the software is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of
the Department of Defense, then it is delivered with Restricted Rights and the
following legend is applicable:

Restricted Rights Legend Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of DFARS
252.227–7013, Rights in Technical Data and Computer Software (October 1988).

Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

If this software/documentation is delivered to a U.S. Government Agency not
within the Department of Defense, then it is delivered with “Restricted Rights”,
as defined in FAR 52.227–14, Rights in Data – General, including Alternate III
(June 1987).

The information in this document is subject to change without notice. If you
find any problems in the documentation, please report them to us in writing.
Oracle Corporation does not warrant that this document is error free.

Oracle, CASE*Dictionary, Pro*Ada, Pro*COBOL, Pro*FORTRAN, Pro*Pascal,
Pro*PL/I, SQL*Connect, SQL*DBA, SQL*Forms, SQL*Loader, SQL*Net, and
SQL*Plus are registered trademarks of Oracle Corporation.
CASE*Designer, CASE*Method, Oracle7, Oracle Parallel Server, PL/SQL,
Pro*C/C++, SQL*Module, and Trusted Oracle7 are trademarks of Oracle
Corporation.
All other products or company names are used for identification purposes only,
and may be trademarks of their respective owners.

T

 iPreface

Preface

Preface

his manual contains a complete description of the Structured Query
Language (SQL) used to manage information in an Oracle7 database.

Oracle7 SQL is a superset of the American National Standards Institute
(ANSI) and the International Standards Organization (ISO) SQL92
standard at entry level conformance.

This manual notes any features that require the distributed option,
Parallel Server option, Parallel Query option, or PL/SQL to be
installed. Also noted are parts of Oracle7 SQL that are only used with
the Trusted Oracle7 Server. For information on PL/SQL, Oracle’s
procedural language extension to SQL, see PL/SQL User’s Guide and
Reference.

Brief descriptions of Oracle7 embedded SQL are included in this
manual. Detailed descriptions of Oracle7 embedded SQL can be found
in Programmer’s Guide to the Oracle Precompilers.

Conventions Used in
this Manual

 ii Oracle7 Server SQL Reference

Audience

This Manual is intended for all users of Oracle7 SQL.

How this Manual is Organized

This Manual is divided into the following parts:

Chapter 1: Introduction
This chapter defines SQL and describes its history as well as the
advantages of using it to access relational databases.

Chapter 2: Elements of Oracle7 SQL
This chapter describes the basic building blocks of an Oracle7 database
and the Oracle7 SQL.

Chapter 3: Operators, Functions, Expressions, Conditions
This chapter describes how to use SQL operators and functions to
combine data into expressions and conditions.

Chapter 4: Commands
This chapter lists and describes all of the SQL commands in
alphabetical order.

Appendix A: Differences From Previous Versions
This appendix lists differences in Release 7.2 and previous releases of
Oracle7 SQL.

Appendix B: Oracle7 and Standard SQL
This appendix describes Oracle7 compliance with ANSI and ISO
standards and lists Oracle7 extensions beyond the standards.

Appendix C: Operating System–Specific Dependencies
This appendix notes places in this manual referring to operating
system–specific documentation.

This section explains the conventions used in this Manual including:

• icons

• text

• syntax diagrams and notation

• examples

• example data

Icons

OSDoc

Text

Syntax Diagrams and
Notation

 iiiPreface

This manual uses the following icons:

Additional Information: This icon indicates information
that is contained within Oracle operating system–specific
documentation. Such references are noted in Appendix C.

Warning: This icon warns you of a possible danger when
using a feature.

The text in this manual adheres to the following conventions:

Uppercase text is used to call attention to names
of Oracle7 tools commands, keywords, filenames,
and initialization parameters.

Italicized text is used call to attention to definitions
of terms and parameters of SQL commands.

The syntax diagrams and notation in this manual show the complete
syntax for SQL commands, functions, and other elements. This section
describes syntax diagrams and gives examples of how to write SQL
statements. Syntax diagrams are made up of these items:

Keywords Keywords are words that have special meanings in the SQL
language. In the syntax diagrams in this manual, keywords appear in
uppercase. You must use keywords in your SQL statements exactly as
they appear in the syntax diagram, except that they can be either
uppercase or lowercase. For example, you must use the CREATE
keyword to begin your CREATE TABLE statements just as it appears in
the CREATE TABLE syntax diagram.

Parameters Parameters act as place holders in syntax diagrams. They
appear in lowercase. Parameters are usually names of database objects,
Oracle7 datatype names, or expressions. When you see a parameter in a
syntax diagram, substitute an object or expression of the appropriate
type in your SQL statement. For example, to write a CREATE TABLE
statement, use the name of the table you want to create, such as EMP,
in place of the table parameter in the syntax diagram. Note that
parameter names appear in italics in the text.

This lists shows parameters that appear in the syntax diagrams in this
manual and examples of the values you might substitute for them in
your statements:

UPPERCASE

italics

 iv Oracle7 Server SQL Reference

Parameter Description Examples

table The substitution value must
be the name of an object of
the type specified by the
parameter. For a list of all
types of objects, see the
section, “Schema Objects”
on page 2 – 2.

emp

c The substitution value must
be a single character from
your database character set.

T

s

’text’ The substitution value must
be a text string in single
quotes. See the syntax
description of ’text’ on
page 2 – 15.

’Employee records’

char The substitution value must
be an expression of datatype
CHAR or VARCHAR2 or a
character literal in single
quotes.

ename

’Smith’

condition The substitution value must
be a condition that evaluates
to TRUE or FALSE. See the
syntax description of condition
on page 3 – 78.

ename > ’A’

date
d

The substitution value must
be a date constant or an
expression of DATE datatype.

TO_DATE(
’01–Jan–1994’,
’DD–MON–YYYY’)

expr The substitution value can be
an expression of any datatype
as defined in the syntax
description of expr on
page 3 – 73.

sal + 1000

integer The substitution value must
be an integer as defined by
the syntax description of
integer on page 2 – 16.

72

label The substitution value must
be an expression of datatype
MLSLABEL. For information
on such expressions, see the
Trusted Oracle7 Server
Administration guide.

TO_LABEL(
’SENSITIVE:ALPHA’)

 vPreface

Parameter ExamplesDescription

number
m
n

The substitution value must
be an expression of NUMBER
datatype or a number
constant as defined in the
syntax description of number
on page 2 – 17.

AVG(sal)

15 * 7

raw The substitution value must
be an expression of datatype
RAW.

HEXTORAW(’7D’)

rowid The substitution value must
be an expression of datatype
ROWID.

00000462.0001.0001

subquery The substitution value must
be a SELECT statement,
which will be used in another
SQL statement. See the syntax
description of subquery on
page 4 – 431.

SELECT ename
 FROM emp

:host_variable The substitution value must
be the name of a variable
declared in an embedded SQL
program. This manual also
uses :host_integer and
:host_string to indicate specific
datatypes.

:employee_number

cursor The substitution value must
be the name of a cursor in an
embedded SQL program.

curs1

db_name The substitution value must
be the name of a non–default
database in an embedded SQL
program.

sales_db

db_string The substitution value must
be the database identification
string for a SQL*Net database
connection. For details, see
the user’s guide for your
specific SQL*Net protocol.

statement_name
block_name

The substitution value must
be an identifier for a SQL
statement or PL/SQL block.

s1
b1

 vi Oracle7 Server SQL Reference

Syntax Diagrams This manual uses syntax diagrams to show SQL
commands in Chapter 4, “Commands,” and to show other elements of
the SQL language in Chapter 2, “Elements of Oracle7 SQL,” and
Chapter 3, “Operators, Functions, Expressions, Conditions.” These
syntax diagrams use lines and arrows to show syntactic structure. The
following list shows the lines and arrows used and their syntactical
meaning.

The beginning of a diagram.
The diagram continues on the
next line.
The diagram continues from the
previous line.
The end of a diagram.

A required item (parameter or
keyword). You must use this item.

An optional item. You can use the
item or omit it.

You can optionally repeat the item
multiple times. Consecutive items
must be separated by a comma.
You must use one of the items.

You can optionally use only one of
the items. If there is a default
item, it is underlined.

A list of specific items. Each item
can only appear once, unless
otherwise specified. The items can
be listed in any order.

MeaningStructure

DELETE

PUBLIC

column
,

DISABLE

ENABLE

COMPILE

EXCLUSIVE

PARALLEL

INITIAL integer

NEXT integer

MINEXTENTS integer

MAXEXTENTS integer

PCTINCREASE integer

OPTIMAL integer

NULL

FREELIST GROUPS integer

FREELISTS integer

Examples

 viiPreface

This manual also contains many examples of SQL statements. These
examples show you how to use elements of SQL. The following
example shows a CREATE TABLE statement:

CREATE TABLE accounts

(accno NUMBER,

 owner VARCHAR2(10),

 balance NUMBER(7,2))

Note that examples appear in a different font than the text.

Examples follow these case conventions:

• Keywords, such as CREATE and NUMBER, appear in
uppercase.

• Names of database objects and their parts, such as ACCOUNTS
and ACCNO, appear in lowercase, although they appear in
uppercase in the text.

SQL is not case–sensitive (except for quoted identifiers), so you need
not follow these conventions when writing your own SQL statements,
although your statements may be easier for you to read if you do.

Some Oracle7 tools require you to terminate SQL statements with a
special character. For example, SQL statements issued through
SQL*Plus may be terminated with a semicolon (;). If you issue these
examples statements to Oracle7, you must terminate them with the
special character expected by the Oracle7 tool you are using.

Example Data

 viii Oracle7 Server SQL Reference

Many of the examples in this manual operate on sample tables. The
definitions of some of these tables appear in a SQL script available on
your distribution media. On most operating systems the name of this
script is UTLSAMPL.SQL, although its exact name and location may
vary depending on your operating system. This script creates sample
users and creates these sample tables in the schema of the user SCOTT:

CREATE TABLE dept

(deptno NUMBER(2) CONSTRAINT pk_dept PRIMARY KEY,

 dname VARCHAR2(14),

 loc VARCHAR2(13))

CREATE TABLE emp

(empno NUMBER(4) CONSTRAINT pk_emp PRIMARY KEY,

 ename VARCHAR2(10),

 job VARCHAR2(9),

 mgr NUMBER(4),

 hiredate DATE,

 sal NUMBER(7,2),

 comm NUMBER(7,2),

 deptno NUMBER(2) CONSTRAINT fk_deptno REFERENCES emp)

CREATE TABLE bonus

(ename VARCHAR2(10),

 job VARCHAR2(9),

 sal NUMBER,

 comm NUMBER)

CREATE TABLE salgrade

(grade NUMBER,

 losal NUMBER,

 hisal NUMBER)

 ixPreface

The script also fills the sample tables with this data:

SELECT * FROM dept

DEPTNO DNAME LOC

––––––– –––––––––– –––––––––

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO 40 OPERATIONS BOSTON

SELECT * FROM emp

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

––––– ––––––– ––––––––– –––––– ––––––––– –––––– –––––– –––––––

7369 SMITH CLERK 7902 17–DEC–80 800 20

7499 ALLEN SALESMAN 7698 20–FEB–81 1600 300 30

7521 WARD SALESMAN 7698 22–FEB–81 1250 500 30

7566 JONES MANAGER 7839 02–APR–81 2975 20

7654 MARTIN SALESMAN 7698 28–SEP–81 1250 1400 30

7698 BLAKE MANAGER 7839 01–MAY–81 2850 30

7782 CLARK MANAGER 7839 09–JUN–81 2450 10

7788 SCOTT ANALYST 7566 19–APR–87 3000 20

7839 KING PRESIDENT 17–NOV–81 5000 10

7844 TURNER SALESMAN 7698 08–SEP–81 1500 30

7876 ADAMS CLERK 7788 23–MAY–87 1100 20

7900 JAMES CLERK 7698 03–DEC–81 950 30

7902 FORD ANALYST 7566 03–DEC–81 3000 20

7934 MILLER CLERK 7782 23–JAN–82 1300 10

SELECT * FROM salgrade

GRADE LOSAL HISAL

––––– ––––– –––––

1 700 1200

2 1201 1400

3 1401 2000

4 2001 3000

5 3001 9999

To perform all the operations of the script, run it when you are logged
into Oracle7 as the user SYSTEM.

Your Comments Are
Welcome

 x Oracle7 Server SQL Reference

We value and appreciate your comments as an Oracle7 user and reader
of the manuals. As we write, revise, and evaluate, your opinions are the
most important input we receive. At the back of this manual is a
Reader’s Comment Form that we encourage you to use to tell us both
what you like and what you dislike about this (or other) Oracle7
manuals. If the form has been used, or you would like to contact us,
please use the following address or fax number:

Oracle7 Server Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood City, CA 94065
U.S.A.
FAX: 415–506–7200

 xiContents

Contents

Chapter 1 Introduction 1 – 1.
History of SQL 1 – 2.
SQL Standards 1 – 2.
How SQL Works 1 – 3.

Common Language for All Relational Databases 1 – 4.
Embedded SQL 1 – 4.

Embedded SQL Terms 1 – 5.
Lexical Conventions 1 – 6.
Tools Support 1 – 6.

Chapter 2 Elements of Oracle7 SQL 2 – 1.
Database Objects 2 – 2.

Schema Objects 2 – 2.
Non–Schema Objects 2 – 2.
Parts of Objects 2 – 3.

Object Names and Qualifiers 2 – 3.
Object Naming Rules 2 – 3.
Object Naming Guidelines 2 – 8.

Referring to Objects and Parts 2 – 9.
How Oracle7 Resolves Object References 2 – 10.
Referring to Objects in Other Schemas 2 – 11.
Referring to Objects in Remote Databases 2 – 11.

Creating Database Links 2 – 11.
Referring to Database Links 2 – 13.

 xii Oracle7 Server SQL Reference

Literals 2 – 14.
Text 2 – 15.

Purpose 2 – 15.
Syntax 2 – 15.
Keywords and Parameters 2 – 15.
Usage Notes 2 – 15.
Related Topics 2 – 15.

Integer 2 – 16.
Purpose 2 – 16.
Syntax 2 – 16.
Usage Notes 2 – 16.
Related Topics 2 – 16.

Number 2 – 17.
Purpose 2 – 17.
Syntax 2 – 17.
Usage Notes 2 – 17.
Related Topics 2 – 17.

Datatypes 2 – 18.
Character Datatypes 2 – 20.

CHAR Datatype 2 – 20.
VARCHAR2 Datatype 2 – 20.
VARCHAR Datatype 2 – 21.

NUMBER Datatype 2 – 21.
Scale and Precision 2 – 22.
Negative Scale 2 – 22.
Scale Greater than Precision 2 – 22.
Floating Point Numbers 2 – 23.

LONG Datatype 2 – 23.
DATE Datatype 2 – 25.

Date Arithmetic 2 – 25.
Using Julian Dates 2 – 26.

RAW and LONG RAW Datatypes 2 – 26.
ROWID Datatype 2 – 27.
MLSLABEL Datatype 2 – 27.
ANSI, DB2, and SQL/DS Datatypes 2 – 28.
Datatype Comparison Rules 2 – 29.

Number Values 2 – 29.
Date Values 2 – 29.
Character String Values 2 – 29.
Single Characters 2 – 30.

ASCII Character Set 2 – 32.
EBCDIC Character Set 2 – 33.

 xiiiContents

Data Conversion 2 – 34.
Implicit Data Conversion 2 – 34.
Explicit Data Conversion 2 – 35.
Implicit vs. Explicit Data Conversion 2 – 36.

Nulls 2 – 36.
Nulls in SQL Functions 2 – 36.
Nulls with Comparison Operators 2 – 37.
Nulls in Conditions 2 – 37.

Pseudocolumns 2 – 38.
CURRVAL and NEXTVAL 2 – 38.

Using Sequence Values 2 – 39.
LEVEL 2 – 41.
ROWID 2 – 41.
ROWNUM 2 – 42.

Comments 2 – 43.
Comments Within SQL Statements 2 – 43.
Comments on Schema Objects 2 – 44.

Chapter 3 Operators, Functions, Expressions, Conditions 3 – 1.
Operators 3 – 2.

Unary and Binary Operators 3 – 2.
Precedence 3 – 2.
Arithmetic Operators 3 – 3.
Character Operators 3 – 4.
Comparison Operators 3 – 5.

NOT IN Operator 3 – 7.
LIKE Operator 3 – 8.

Logical Operators 3 – 11.
NOT Operator 3 – 11.
AND Operator 3 – 12.
OR Operator 3 – 12.

Set Operators 3 – 12.
Other Operators 3 – 16.

SQL Functions 3 – 17.
Single Row Functions 3 – 18.
Number Functions 3 – 18.

ABS 3 – 18.
CEIL 3 – 20.
COS 3 – 20.
COSH 3 – 20.
EXP 3 – 20.
FLOOR 3 – 21.

 xiv Oracle7 Server SQL Reference

LN 3 – 21.
LOG 3 – 21.
MOD 3 – 22.
POWER 3 – 22.
ROUND 3 – 23.
SIGN 3 – 23.
SIN 3 – 23.
SINH 3 – 24.
SQRT 3 – 24.
TAN 3 – 24.
TANH 3 – 25.
TRUNC 3 – 25.

Character Functions 3 – 26.
Character Functions Returning Character Values 3 – 26.
CHR 3 – 26.
CONCAT 3 – 26.
INITCAP 3 – 27.
LOWER 3 – 27.
LPAD 3 – 27.
LTRIM 3 – 28.
NLS_INITCAP 3 – 28.
NLS_LOWER 3 – 29.
NLS_UPPER 3 – 29.
REPLACE 3 – 29.
RPAD 3 – 30.
RTRIM 3 – 30.
SOUNDEX 3 – 31.
SUBSTR 3 – 32.
SUBSTRB 3 – 33.
TRANSLATE 3 – 33.
UPPER 3 – 34.
Character Functions Returning Number Values 3 – 34.
ASCII 3 – 34.
INSTR 3 – 35.
INSTRB 3 – 35.
LENGTH 3 – 36.
LENGTHB 3 – 36.
NLSSORT 3 – 36.

 xvContents

Date Functions 3 – 37.
ADD_MONTHS 3 – 37.
LAST_DAY 3 – 37.
MONTHS_BETWEEN 3 – 38.
NEW_TIME 3 – 39.
NEXT_DAY 3 – 39.
ROUND 3 – 40.
SYSDATE 3 – 40.
TRUNC 3 – 40.

Conversion Functions 3 – 42.
CHARTOROWID 3 – 42.
CONVERT 3 – 42.
HEXTORAW 3 – 43.
RAWTOHEX 3 – 43.
ROWIDTOCHAR 3 – 44.
TO_CHAR, date conversion 3 – 44.
TO_CHAR, label conversion 3 – 44.
TO_CHAR, number conversion 3 – 45.
TO_DATE 3 – 46.
TO_LABEL 3 – 46.
TO_MULTI_BYTE 3 – 47.
TO_NUMBER 3 – 47.
TO_SINGLE_BYTE 3 – 47.

Other Functions 3 – 48.
DUMP 3 – 48.
GREATEST 3 – 49.
GREATEST_LB 3 – 49.
LEAST 3 – 50.
LEAST_UB 3 – 50.
NVL 3 – 50.
UID 3 – 51.
USERENV 3 – 51.
VSIZE 3 – 53.

Group Functions 3 – 53.
AVG 3 – 53.
COUNT 3 – 54.
GLB 3 – 54.
MAX 3 – 55.
MIN 3 – 55.
STDDEV 3 – 55.
SUM 3 – 56.
VARIANCE 3 – 56.

 xvi Oracle7 Server SQL Reference

User Functions 3 – 57.
Prequisites 3 – 57.
Privileges Required 3 – 57.
Restrictions on User Functions 3 – 58.
Name Precedence 3 – 58.

Naming Conventions 3 – 59.
Format Models 3 – 59.

Changing the Return Format 3 – 60.
Supplying the Correct Format 3 – 61.
Number Format Models 3 – 61.

Number Format Elements 3 – 61.
Date Format Models 3 – 64.

Default Date Format 3 – 64.
Maximum Length 3 – 64.
Date Format Elements 3 – 64.
Date Format Elements and National
Language Support 3 – 66.
ISO Standard Date Format Elements 3 – 67.
The RR Date Format Element 3 – 67.
Date Format Element Suffixes 3 – 69.
Capitalization of Date Format Elements 3 – 69.
Punctuation and Character Literals in Date
Format Models 3 – 69.

Format Model Modifiers 3 – 69.
Expr 3 – 73.

A column, pseudocolumn, constant,
sequence number, or NULL. 3 – 73.
Form II 3 – 74.
Form III 3 – 74.
Form IV 3 – 74.
Form V 3 – 75.
Decoded Expression 3 – 75.
List of Expressions 3 – 76.

Condition 3 – 78.
Form I 3 – 78.
Form II 3 – 79.
Form III 3 – 79.
Form IV 3 – 79.
Form V 3 – 79.
Form VI 3 – 80.
Form VII 3 – 80.
Form VIII 3 – 80.

 xviiContents

Chapter 4 Commands 4 – 1.
Summary of SQL Commands 4 – 2.

Data Definition Language Commands 4 – 2.
Data Manipulation Language Commands 4 – 8.
Transaction Control Commands 4 – 8.
Session Control Commands 4 – 9.
System Control Command 4 – 9.
Embedded SQL Commands 4 – 10.

ALLOCATE (Embedded SQL) 4 – 11.
Purpose 4 – 11.
Prerequisites 4 – 11.
Syntax 4 – 11.
Keywords and Parameters 4 – 11.
Usage Notes 4 – 11.
Related Topics 4 – 11.

ALTER CLUSTER 4 – 12.
Purpose 4 – 12.
Prerequisites 4 – 12.
Syntax 4 – 12.
Keywords and Parameters 4 – 13.
Usage Notes 4 – 15.
Related Topics 4 – 15.

ALTER DATABASE 4 – 16.
Purpose 4 – 16.
Prerequisites 4 – 16.
Syntax 4 – 17.
Keywords and Parameters 4 – 19.
Usage Notes 4 – 29.
Related Topics 4 – 30.

ALTER FUNCTION 4 – 31.
Purpose 4 – 31.
Prerequisites 4 – 31.
Syntax 4 – 31.
Keywords and Parameters 4 – 31.
Usage Notes 4 – 32.
Related Topics 4 – 32.

ALTER INDEX 4 – 33.
Purpose 4 – 33.
Prerequisites 4 – 33.
Syntax 4 – 34.
Syntax 4 – 35.
Keywords and Parameters 4 – 35.
Usage Notes 4 – 38.
Related Topics 4 – 38.

 xviii Oracle7 Server SQL Reference

ALTER PACKAGE 4 – 39.
Purpose 4 – 39.
Prerequisites 4 – 39.
Syntax 4 – 39.
Keywords and Parameters 4 – 39.
Usage Notes 4 – 40.
Related Topics 4 – 41.

ALTER PROCEDURE 4 – 42.
Purpose 4 – 42.
Prerequisites 4 – 42.
Syntax 4 – 42.
Keywords and Parameters 4 – 42.
Usage Notes 4 – 42.
Related Topics 4 – 43.

ALTER PROFILE 4 – 44.
Purpose 4 – 44.
Prerequisites 4 – 44.
Syntax 4 – 44.
Keywords and Parameters 4 – 44.
Usage Notes 4 – 45.
Related Topics 4 – 45.

ALTER RESOURCE COST 4 – 46.
Purpose 4 – 46.
Prerequisites 4 – 46.
Syntax 4 – 46.
Keywords and Parameters 4 – 46.
Usage Notes 4 – 46.
Related Topics 4 – 48.

ALTER ROLE 4 – 49.
Purpose 4 – 49.
Prerequisites 4 – 49.
Syntax 4 – 49.
Keywords and Parameters 4 – 49.
Related Topics 4 – 49.

ALTER ROLLBACK SEGMENT 4 – 50.
Purpose 4 – 50.
Prerequisites 4 – 50.
Syntax 4 – 50.
Keywords and Parameters 4 – 50.
Usage Notes 4 – 51.
Related Topics 4 – 52.

 xixContents

ALTER SEQUENCE 4 – 53.
Purpose 4 – 53.
Prerequisites 4 – 53.
Syntax 4 – 53.
Keywords and Parameters 4 – 54.
Usage Notes 4 – 54.
Related Topics 4 – 54.

ALTER SESSION 4 – 55.
Purpose 4 – 55.
Prerequisites 4 – 55.
Syntax 4 – 56.
Keywords and Parameters 4 – 57.
Enabling and Disabling the SQL Trace Facility 4 – 62.
Using NLS Parameters 4 – 63.
Changing the Optimization Approach and Goal 4 – 66.
FIPS Flagging 4 – 67.
Caching Session Cursors 4 – 67.
Accessing the Database as if Connected to Another
Instance in a Parallel Server 4 – 68.
Closing Database Links 4 – 68.
Offering Advice for Forcing In–doubt
Distributed Transactions 4 – 69.
Enabling and Disabling Transaction Control in
Procedures and Stored Functions 4 – 70.
Related Topics 4 – 70.

ALTER SNAPSHOT 4 – 71.
Purpose 4 – 71.
Prerequisites 4 – 71.
Syntax 4 – 71.
Keywords and Parameters 4 – 71.
Usage Notes 4 – 73.
Related Topics 4 – 74.

ALTER SNAPSHOT LOG 4 – 75.
Purpose 4 – 75.
Prerequisites 4 – 75.
Syntax 4 – 75.
Keywords and Parameters 4 – 75.
Usage Notes 4 – 75.
Related Topics 4 – 75.

ALTER SYSTEM 4 – 76.
Purpose 4 – 76.
Prerequisites 4 – 76.
Syntax 4 – 77.

 xx Oracle7 Server SQL Reference

Keywords and Parameters 4 – 77.
Restricting Logons 4 – 80.
Clearing the Shared Pool 4 – 81.
Performing a Checkpoint 4 – 81.
Checking Data Files 4 – 82.
Using Resource Limits 4 – 82.
Enabling and Disabling Global Name Resolution 4 – 82.
Managing Processes for the Multi–Threaded Server 4 – 83.
Using Licensing Limits 4 – 85.
Switching Redo Log File Groups 4 – 86.
Enabling Distributed Recovery 4 – 87.
Disabling Distributed Recovery 4 – 87.
Terminating a Session 4 – 87.
Related Topics 4 – 88.

ALTER TABLE 4 – 89.
Purpose 4 – 89.
Prerequisites 4 – 89.
Syntax 4 – 90.
Keywords and Parameters 4 – 91.
Adding Columns 4 – 94.
Modifying Column Definitions 4 – 95.
Related Topics 4 – 97.

ALTER TABLESPACE 4 – 98.
Purpose 4 – 98.
Prerequisites 4 – 98.
Syntax 4 – 99.
Keywords and Parameters 4 – 100.
Usage Notes 4 – 103.
Related Topics 4 – 104.

ALTER TRIGGER 4 – 105.
Purpose 4 – 105.
Prerequisites 4 – 105.
Syntax 4 – 105.
Keywords and Parameters 4 – 105.
Usage Notes 4 – 105.
Enabling and Disabling Triggers 4 – 106.
Related Topics 4 – 107.

ALTER USER 4 – 108.
Purpose 4 – 108.
Prerequisites 4 – 108.
Syntax 4 – 109.
Keywords and Parameters 4 – 109.
Establishing Default Roles 4 – 111.
Related Topics 4 – 111.

 xxiContents

ALTER VIEW 4 – 112.
Purpose 4 – 112.
Prerequisites 4 – 112.
Syntax 4 – 112.
Keywords and Parameters 4 – 112.
Usage Notes 4 – 113.
Related Topics 4 – 113.

ANALYZE 4 – 114.
Purpose 4 – 114.
Prerequisites 4 – 114.
Syntax 4 – 115.
Keywords and Parameters 4 – 115.
Collecting Statistics 4 – 118.
Deleting Statistics 4 – 121.
Validating Structures 4 – 121.
Listing Chained Rows 4 – 122.
Related Topics 4 – 123.

ARCHIVE LOG clause 4 – 124.
Purpose 4 – 124.
Prerequisites 4 – 124.
Syntax 4 – 124.
Keywords and Parameters 4 – 124.
Usage Notes 4 – 126.
Related Topics 4 – 126.

AUDIT (SQL Statements) 4 – 127.
Purpose 4 – 127.
Prerequisites 4 – 127.
Syntax 4 – 127.
Keywords and Parameters 4 – 127.
Auditing 4 – 128.
How to Audit 4 – 128.
Statement Options 4 – 129.
Short Cuts for System Privileges and Statement Options 4 – 131. . .
Additional Statement Options 4 – 132.
Related Topics 4 – 133.

AUDIT (Schema Objects) 4 – 134.
Purpose 4 – 134.
Prerequisites 4 – 134.
Syntax 4 – 134.
Keywords and Parameters 4 – 134.
Auditing 4 – 135.
Object Options 4 – 136.
Default Auditing 4 – 136.

 xxii Oracle7 Server SQL Reference

Related Topics 4 – 138.
CLOSE (Embedded SQL) 4 – 139.

Purpose 4 – 139.
Prerequisites 4 – 139.
Syntax 4 – 139.
Keywords and Parameters 4 – 139.
Usage Notes 4 – 139.
Related Topics 4 – 139.

COMMENT 4 – 140.
Purpose 4 – 140.
Prerequisites 4 – 140.
Syntax 4 – 140.
Keywords and Parameters 4 – 140.
Usage Notes 4 – 140.
Related Topics 4 – 140.

COMMIT 4 – 141.
Purpose 4 – 141.
Prerequisites 4 – 141.
Syntax 4 – 141.
Keywords and Parameters 4 – 141.
Usage Notes 4 – 142.
Transactions 4 – 142.
Related Topics 4 – 143.

COMMIT (Embedded SQL) 4 – 144.
Purpose 4 – 144.
Prerequisites 4 – 144.
Syntax 4 – 144.
Keyword and Parameters 4 – 145.
Usage Notes 4 – 146.
Related Topics 4 – 146.

CONNECT (Embedded SQL) 4 – 147.
Purpose 4 – 147.
Prerequisites 4 – 147.
Syntax 4 – 147.
Keyword and Parameters 4 – 147.
Usage Notes 4 – 148.
Related Topics 4 – 148.

CONSTRAINT clause 4 – 149.
Purpose 4 – 149.
Prerequisites 4 – 149.
Syntax 4 – 149.
Syntax 4 – 150.
Keywords and Parameters 4 – 150.

 xxiiiContents

Defining Integrity Constraints 4 – 152.
NOT NULL Constraints 4 – 152.
UNIQUE Constraints 4 – 153.
PRIMARY KEY Constraints 4 – 154.
Referential Integrity Constraints 4 – 156.
CHECK Constraints 4 – 160.
Related Topics 4 – 163.

CREATE CLUSTER 4 – 164.
Purpose 4 – 164.
Prerequisites 4 – 164.
Syntax 4 – 164.
Keywords and Parameters 4 – 165.
Usage Notes 4 – 167.
Cluster Keys 4 – 168.
Types of Clusters 4 – 168.
Cluster Size 4 – 170.
Adding Tables to a Cluster 4 – 170.
Related Topics 4 – 172.

CREATE CONTROLFILE 4 – 173.
Purpose 4 – 173.
Prerequisites 4 – 173.
Syntax 4 – 173.
Keywords and Parameters 4 – 174.
Usage Notes 4 – 176.
Related Topics 4 – 177.

CREATE DATABASE 4 – 178.
Purpose 4 – 178.
Prerequisites 4 – 178.
Syntax 4 – 178.
Keyword and Parameters 4 – 179.
Usage Notes 4 – 183.
Related Topics 4 – 184.

CREATE DATABASE LINK 4 – 185.
Purpose 4 – 185.
Prerequisites 4 – 185.
Syntax 4 – 185.
Keyword and Parameters 4 – 185.
Usage Notes 4 – 186.
Related Topics 4 – 187.

CREATE FUNCTION 4 – 188.
Purpose 4 – 188.
Prerequisites 4 – 188.
Syntax 4 – 188.

 xxiv Oracle7 Server SQL Reference

Keywords and Parameters 4 – 189.
Usage Notes 4 – 190.
Related Topics 4 – 191.

CREATE INDEX 4 – 192.
Purpose 4 – 192.
Prerequisites 4 – 192.
Syntax 4 – 193.
Keywords and Parameters 4 – 193.
Usage Notes 4 – 195.
Index Columns 4 – 195.
Multiple Indexes Per Table 4 – 196.
The NOSORT Option 4 – 196.
UNRECOVERABLE 4 – 197.
Nulls 4 – 197.
Creating Cluster Indexes 4 – 197.
Related Topics 4 – 197.

CREATE PACKAGE 4 – 198.
Purpose 4 – 198.
Prerequisites 4 – 198.
Syntax 4 – 198.
Keywords and Parameters 4 – 198.
Packages 4 – 199.
How to Create Packages 4 – 200.
Related Topics 4 – 201.

CREATE PACKAGE BODY 4 – 202.
Purpose 4 – 202.
Prerequisites 4 – 202.
Syntax 4 – 202.
Keywords and Parameters 4 – 202.
Packages 4 – 203.
Related Topics 4 – 205.

CREATE PROCEDURE 4 – 206.
Purpose 4 – 206.
Prerequisites 4 – 206.
Syntax 4 – 206.
Keywords and Parameters 4 – 206.
Usage Notes 4 – 208.
Related Topics 4 – 209.

CREATE PROFILE 4 – 210.
Purpose 4 – 210.
Prerequisites 4 – 210.
Syntax 4 – 210.
Keywords and Parameters 4 – 211.

 xxvContents

Usage Notes 4 – 212.
Related Topics 4 – 214.

CREATE ROLE 4 – 215.
Purpose 4 – 215.
Prerequisites 4 – 215.
Syntax 4 – 215.
Usage Notes 4 – 216.
Related Topics 4 – 217.

CREATE ROLLBACK SEGMENT 4 – 218.
Purpose 4 – 218.
Prerequisites 4 – 218.
Syntax 4 – 218.
Keyword and Parameters 4 – 218.
Usage Notes 4 – 219.
Related Topics 4 – 220.

CREATE SCHEMA 4 – 221.
Purpose 4 – 221.
Prerequisites 4 – 221.
Syntax 4 – 221.
Keyword and Parameters 4 – 221.
Usage Notes 4 – 222.
Related Topics 4 – 223.

CREATE SEQUENCE 4 – 224.
Purpose 4 – 224.
Prerequisites 4 – 224.
Syntax 4 – 224.
Keywords and Parameters 4 – 224.
Usage Notes 4 – 227.
Related Topics 4 – 229.

CREATE SNAPSHOT 4 – 230.
Purpose 4 – 230.
Prerequisites 4 – 230.
Syntax 4 – 231.
Keywords and Parameters 4 – 231.
Usage Notes 4 – 233.
Types of Snapshots 4 – 234.
Refreshing Snapshots 4 – 234.
Related Topics 4 – 237.

CREATE SNAPSHOT LOG 4 – 238.
Purpose 4 – 238.
Prerequisites 4 – 238.
Syntax 4 – 239.
Keywords and Parameters 4 – 239.

 xxvi Oracle7 Server SQL Reference

Usage Notes 4 – 240.
Related Topics 4 – 240.

CREATE SYNONYM 4 – 241.
Purpose 4 – 241.
Prerequisites 4 – 241.
Syntax 4 – 241.
Keywords and Parameters 4 – 241.
Usage Notes 4 – 243.
Scope of Synonyms 4 – 244.
Related Topics 4 – 244.

CREATE TABLE 4 – 245.
Purpose 4 – 245.
Prerequisites 4 – 245.
Syntax 4 – 246.
Keywords and Parameters 4 – 246.
Usage Notes 4 – 251.
UNRECOVERABLE 4 – 251.
Related Topics 4 – 253.

CREATE TABLESPACE 4 – 254.
Purpose 4 – 254.
Prerequisites 4 – 254.
Syntax 4 – 254.
Keywords and Parameters 4 – 254.
Usage Notes 4 – 255.
Related Topics 4 – 256.

CREATE TRIGGER 4 – 257.
Purpose 4 – 257.
Prerequisites 4 – 257.
Syntax 4 – 258.
Keywords and Parameters 4 – 258.
Usage Notes 4 – 260.
Triggers 4 – 260.
Parts of a Trigger 4 – 261.
Types of Triggers 4 – 261.
Enabling and Disabling Triggers 4 – 263.
Snapshot Log Triggers 4 – 263.
Related Topics 4 – 266.

CREATE USER 4 – 267.
Purpose 4 – 267.
Prerequisites 4 – 267.
Syntax 4 – 267.
Usage Notes 4 – 269.
Related Topics 4 – 270.

 xxviiContents

CREATE VIEW 4 – 271.
Purpose 4 – 271.
Prerequisites 4 – 271.
Syntax 4 – 271.
Keywords and Parameters 4 – 271.
Usage Notes 4 – 273.
The View Query 4 – 273.
Join Views 4 – 274.
Partition Views 4 – 275.
Related Topics 4 – 277.

DEALLOCATE clause 4 – 278.
Purpose 4 – 278.
Prerequisites 4 – 278.
Syntax 4 – 278.
Keywords and Parameters 4 – 278.
Usage Notes 4 – 278.
Related Topics 4 – 279.

DECLARE CURSOR (Embedded SQL) 4 – 280.
Purpose 4 – 280.
Prerequisites 4 – 280.
Syntax 4 – 280.
Keywords and Parameters 4 – 280.
Usage Notes 4 – 281.
Related Topics 4 – 281.

DECLARE DATABASE (Embedded SQL) 4 – 282.
Purpose 4 – 282.
Prerequisites 4 – 282.
Syntax 4 – 282.
Keywords and Parameters 4 – 282.
Usage Notes 4 – 282.
Related Topics 4 – 282.

DECLARE STATEMENT (Embedded SQL) 4 – 283.
Purpose 4 – 283.
Prerequisites 4 – 283.
Syntax 4 – 283.
Keywords and Parameters 4 – 283.
Usage Notes 4 – 283.
Related Topics 4 – 284.

DECLARE TABLE (Embedded SQL) 4 – 285.
Purpose 4 – 285.
Prerequisites 4 – 285.
Syntax 4 – 285.
Keywords and Parameters 4 – 285.

 xxviii Oracle7 Server SQL Reference

Usage Notes 4 – 285.
Related Topics 4 – 285.

DELETE 4 – 286.
Purpose 4 – 286.
Prerequisites 4 – 286.
Syntax 4 – 286.
Keywords and Parameters 4 – 287.
Usage Notes 4 – 288.
Related Topics 4 – 288.

DELETE (Embedded SQL) 4 – 289.
Purpose 4 – 289.
Prerequisites 4 – 289.
Syntax 4 – 290.
Usage Notes 4 – 291.
Related Topics 4 – 292.

DESCRIBE (Embedded SQL) 4 – 293.
Purpose 4 – 293.
Prerequisites 4 – 293.
Syntax 4 – 293.
Keywords and Parameters 4 – 293.
Usage Notes 4 – 293.
Related Topics 4 – 294.

DISABLE clause 4 – 295.
Purpose 4 – 295.
Prerequisites 4 – 295.
Syntax 4 – 295.
Usage Notes 4 – 296.
Related Topics 4 – 298.

DROP clause 4 – 299.
Purpose 4 – 299.
Prerequisites 4 – 299.
Syntax 4 – 299.
Keywords and Parameters 4 – 299.
Usage Notes 4 – 299.
Related Topics 4 – 300.

DROP CLUSTER 4 – 301.
Purpose 4 – 301.
Prerequisites 4 – 301.
Syntax 4 – 301.
Keywords and Parameters 4 – 301.
Usage Notes 4 – 302.
Related Topic 4 – 302.

 xxixContents

DROP DATABASE LINK 4 – 303.
Purpose 4 – 303.
Prerequisites 4 – 303.
Syntax 4 – 303.
Keywords and Parameters 4 – 303.
Usage Notes 4 – 303.
Related Topics 4 – 303.

DROP FUNCTION 4 – 304.
Purpose 4 – 304.
Prerequisites 4 – 304.
Syntax 4 – 304.
Keywords and Parameters 4 – 304.
Usage Notes 4 – 305.
Related Topics 4 – 305.

DROP INDEX 4 – 306.
Purpose 4 – 306.
Prerequisites 4 – 306.
Syntax 4 – 306.
Keywords and Parameters 4 – 306.
Usage Notes 4 – 306.
Related Topics 4 – 306.

DROP PACKAGE 4 – 307.
Purpose 4 – 307.
Prerequisites 4 – 307.
Syntax 4 – 307.
Keywords and Parameters 4 – 307.
Usage Notes 4 – 308.
Related Topics 4 – 308.

DROP PROCEDURE 4 – 309.
Purpose 4 – 309.
Prerequisites 4 – 309.
Syntax 4 – 309.
Keywords and Parameters 4 – 309.
Usage Notes 4 – 310.
Related Topics 4 – 310.

DROP PROFILE 4 – 311.
Purpose 4 – 311.
Prerequisites 4 – 311.
Syntax 4 – 311.
Keywords and Parameters 4 – 311.
Usage Notes 4 – 311.
Related Topics 4 – 311.

 xxx Oracle7 Server SQL Reference

DROP ROLE 4 – 312.
Purpose 4 – 312.
Prerequisites 4 – 312.
Syntax 4 – 312.
Keywords and Parameters 4 – 312.
Usage Notes 4 – 312.
Related Topics 4 – 312.

DROP ROLLBACK SEGMENT 4 – 313.
Purpose 4 – 313.
Prerequisites 4 – 313.
Syntax 4 – 313.
Keywords and Parameters 4 – 313.
Usage Notes 4 – 313.
Related Topics 4 – 313.

DROP SEQUENCE 4 – 314.
Purpose 4 – 314.
Prerequisites 4 – 314.
Syntax 4 – 314.
Keywords and Parameters 4 – 314.
Usage Notes 4 – 314.
Related Topics 4 – 314.

DROP SNAPSHOT 4 – 315.
Purpose 4 – 315.
Prerequisites 4 – 315.
Syntax 4 – 315.
Keywords and Parameters 4 – 315.
Usage Notes 4 – 315.
Related Topics 4 – 315.

DROP SNAPSHOT LOG 4 – 316.
Purpose 4 – 316.
Prerequisites 4 – 316.
Syntax 4 – 316.
Keywords and Parameters 4 – 316.
Usage Notes 4 – 316.
Related Topics 4 – 316.

DROP SYNONYM 4 – 317.
Purpose 4 – 317.
Prerequisites 4 – 317.
Syntax 4 – 317.
Keywords and Parameters 4 – 317.
Usage Notes 4 – 317.
Related Topic 4 – 317.

 xxxiContents

DROP TABLE 4 – 318.
Purpose 4 – 318.
Prerequisites 4 – 318.
Syntax 4 – 318.
Keywords and Parameters 4 – 318.
Usage Notes 4 – 319.
Related Topics 4 – 319.

DROP TABLESPACE 4 – 320.
Purpose 4 – 320.
Prerequisites 4 – 320.
Syntax 4 – 320.
Usage Notes 4 – 321.
Related Topics 4 – 321.

DROP TRIGGER 4 – 322.
Purpose 4 – 322.
Prerequisites 4 – 322.
Syntax 4 – 322.
Keywords and Parameters 4 – 322.
Usage Notes 4 – 322.
Related Topics 4 – 322.

DROP USER 4 – 323.
Purpose 4 – 323.
Prerequisites 4 – 323.
Syntax 4 – 323.
Keywords and Parameters 4 – 323.
Usage Notes 4 – 324.
Related Topics 4 – 324.

DROP VIEW 4 – 325.
Purpose 4 – 325.
Prerequisites 4 – 325.
Syntax 4 – 325.
Keywords and Parameters 4 – 325.
Usage Notes 4 – 325.
Related Topics 4 – 325.

ENABLE clause 4 – 326.
Purpose 4 – 326.
Prerequisites 4 – 326.
Syntax 4 – 327.
Keywords and Parameters 4 – 327.
Usage Notes 4 – 328.
Related Topics 4 – 331.

 xxxii Oracle7 Server SQL Reference

EXECUTE (Prepared SQL Statements and PL/SQL Blocks)
(Embedded SQL) 4 – 332.

Purpose 4 – 332.
Prerequisites 4 – 332.
Syntax 4 – 332.
Keywords and Parameters 4 – 332.
Usage Notes 4 – 333.
Related Topics 4 – 333.

EXECUTE (Anonymous PL/SQL Blocks) (Embedded SQL) 4 – 334. . . .
Purpose 4 – 334.
Prerequisites 4 – 334.
Syntax 4 – 334.
Keywords and Parameters 4 – 334.
Usage Notes 4 – 335.
Related Topics 4 – 335.

EXECUTE IMMEDIATE (Embedded SQL) 4 – 336.
Purpose 4 – 336.
Prerequisites 4 – 336.
Syntax 4 – 336.
Keywords and Parameters 4 – 336.
Usage Notes 4 – 337.
Related Topics 4 – 337.

EXPLAIN PLAN 4 – 338.
Purpose 4 – 338.
Prerequisites 4 – 338.
Syntax 4 – 338.
Keywords and Parameters 4 – 339.
Usage Notes 4 – 339.
Related Topics 4 – 340.

FETCH (Embedded SQL) 4 – 341.
Purpose 4 – 341.
Prerequisites 4 – 341.
Syntax 4 – 341.
Keywords and Parameters 4 – 341.
Usage Notes 4 – 341.
Related Topics 4 – 342.

Filespec 4 – 343.
Purpose 4 – 343.
Prerequisites 4 – 343.
Syntax 4 – 343.
Keywords and Parameters 4 – 343.
Related Topics 4 – 345.

 xxxiiiContents

GRANT (System Privileges and Roles) 4 – 346.
Purpose 4 – 346.
Prerequisites 4 – 346.
Syntax 4 – 346.
Keywords and Parameters 4 – 346.
Usage Notes 4 – 347.
System Privileges 4 – 348.
Roles Defined by Oracle7 4 – 352.
ADMIN OPTION 4 – 353.
Granting Roles Through Your Operating System 4 – 353.
Related Topics 4 – 354.

GRANT (Object Privileges) 4 – 355.
Purpose 4 – 355.
Prerequisites 4 – 355.
Syntax 4 – 355.
Keywords and Parameters 4 – 355.
Usage Notes 4 – 357.
Object Privileges 4 – 357.
Related Topics 4 – 360.

INSERT 4 – 361.
Purpose 4 – 361.
Prerequisites 4 – 361.
Syntax 4 – 361.
Keywords and Parameters 4 – 362.
Usage Notes 4 – 363.
Inserting Into Views 4 – 363.
Related Topics 4 – 364.

INSERT (Embedded SQL) 4 – 365.
Purpose 4 – 365.
Prerequisites 4 – 365.
Syntax 4 – 365.
Keywords and Parameters 4 – 366.
Usage Notes 4 – 367.
Related Topics 4 – 368.

LOCK TABLE 4 – 369.
Purpose 4 – 369.
Prerequisites 4 – 369.
Syntax 4 – 369.
Keywords and Parameters 4 – 369.
Usage Notes 4 – 370.
Related Topics 4 – 371.

 xxxiv Oracle7 Server SQL Reference

NOAUDIT (SQL Statements) 4 – 372.
Purpose 4 – 372.
Prerequisites 4 – 372.
Syntax 4 – 372.
Keywords and Parameters 4 – 372.
Usage Notes 4 – 373.
Related Topics 4 – 373.

NOAUDIT (Schema Objects)r 4 – 374.
Purpose 4 – 374.
Prerequisites 4 – 374.
Syntax 4 – 374.
Keywords and Parameters 4 – 375.
Usage Notes 4 – 375.
Related Topics 4 – 375.

OPEN (Embedded SQL) 4 – 376.
Purpose 4 – 376.
Prerequisites 4 – 376.
Syntax 4 – 376.
Syntax 4 – 376.
Keywords and Parameters 4 – 376.
Usage Notes 4 – 377.
Related Topics 4 – 377.

PARALLEL clause 4 – 378.
Prerequisites 4 – 378.
Syntax 4 – 378.
Keywords and Parameters 4 – 378.
Usage Notes 4 – 379.
Related Topics 4 – 380.

PREPARE (Embedded SQL) 4 – 381.
Purpose 4 – 381.
Prerequisites 4 – 381.
Syntax 4 – 381.
Keywords and Parameters 4 – 381.
Usage Notes 4 – 381.
Related Topics 4 – 381.

RECOVER clause 4 – 382.
Purpose 4 – 382.
Prerequisites 4 – 382.
Syntax 4 – 382.
Keywords and Parameters 4 – 383.
Usage Notes 4 – 384.
Related Topics 4 – 385.

 xxxvContents

RENAME 4 – 386.
Purpose 4 – 386.
Prerequisites 4 – 386.
Syntax 4 – 386.
Keywords and Parameters 4 – 386.
Usage Notes 4 – 387.
Related Topics 4 – 387.

REVOKE (System Privileges and Roles) 4 – 388.
Purpose 4 – 388.
Prerequisites 4 – 388.
Syntax 4 – 388.
Keywords and Parameters 4 – 388.
Usage Notes 4 – 389.
Related Topics 4 – 390.

REVOKE (Object Privileges) 4 – 391.
Purpose 4 – 391.
Prerequisites 4 – 391.
Syntax 4 – 391.
Keywords and Parameters 4 – 392.
Usage Notes 4 – 393.
Object Privileges 4 – 393.
Revoking Multiple Identical Grants 4 – 394.
Cascading Revokes 4 – 394.
Related Topics 4 – 396.

ROLLBACK 4 – 397.
Purpose 4 – 397.
Prerequisites 4 – 397.
Syntax 4 – 397.
Keywords and Parameters 4 – 397.
Usage Notes 4 – 398.
Related Topics 4 – 399.

ROLLBACK (Embedded SQL) 4 – 400.
Purpose 4 – 400.
Prerequisites 4 – 400.
Syntax 4 – 400.
Keywords and Parameters 4 – 401.
Usage Notes 4 – 401.
Related Topics 4 – 401.

SAVEPOINT 4 – 402.
Purpose 4 – 402.
Prerequisites 4 – 402.
Syntax 4 – 402.
Keywords and Parameters 4 – 402.

 xxxvi Oracle7 Server SQL Reference

Usage Notes 4 – 402.
Related Topics 4 – 403.

SAVEPOINT (Embedded SQL) 4 – 404.
Purpose 4 – 404.
Prerequisites 4 – 404.
Syntax 4 – 404.
Keywords and Parameters 4 – 404.
Usage Notes 4 – 404.
Related Topics 4 – 404.

SELECT 4 – 405.
Purpose 4 – 405.
Prerequisites 4 – 405.
Syntax 4 – 406.
Keywords and Parameters 4 – 407.
Usage Notes 4 – 409.
Hierarchical Queries 4 – 411.
GROUP BY Clause 4 – 416.
HAVING Clause 4 – 417.
Set Operators 4 – 418.
ORDER BY Clause 4 – 418.
FOR UPDATE Clause 4 – 420.
Joins 4 – 421.
Subqueries 4 – 431.
Keywords and Parameters 4 – 432.
Usage Notes 4 – 432.
Correlated Subqueries 4 – 434.
Selecting from the DUAL Table 4 – 435.
Using Sequences 4 – 436.
Distributed Queries 4 – 436.
Related Topics 4 – 437.

SELECT (Embedded SQL) 4 – 438.
Purpose 4 – 438.
Prerequisites 4 – 438.
Syntax 4 – 439.
Keywords and Parameters 4 – 440.
Usage Notes 4 – 441.
Related Topics 4 – 441.

SET ROLE 4 – 442.
Purpose 4 – 442.
Prerequisites 4 – 442.
Syntax 4 – 442.
Keywords and Parameters 4 – 442.
Default Privilege Domain 4 – 443.

 xxxviiContents

Changing Your Privilege Domain 4 – 443.
Related Topics 4 – 444.

SET TRANSACTION 4 – 445.
Purpose 4 – 445.
Prerequisites 4 – 445.
Syntax 4 – 445.
Keywords and Parameters 4 – 445.
Usage Notes 4 – 446.
Establishing Read–only Transactions 4 – 447.
Assigning Transactions to Rollback Segments 4 – 448.
Related Topics 4 – 448.

STORAGE clause 4 – 449.
Purpose 4 – 449.
Prerequisites 4 – 449.
Syntax 4 – 449.
Keywords and Parameters 4 – 450.
Usage Notes 4 – 452.
Related Topics 4 – 454.

TRUNCATE 4 – 455.
Purpose 4 – 455.
Prerequisites 4 – 455.
Syntax 4 – 455.
Keywords and Parameters 4 – 455.
Usage Notes 4 – 456.
Related Topics 4 – 457.

TYPE (Embedded SQL) 4 – 458.
Purpose 4 – 458.
Prerequisites 4 – 458.
Syntax 4 – 458.
Keywords and Parameters 4 – 458.
Usage Notes 4 – 458.
Related Topics 4 – 459.

UPDATE 4 – 460.
Purpose 4 – 460.
Prerequisites 4 – 460.
Syntax 4 – 460.
Keywords and Parameters 4 – 461.
Usage Notes 4 – 462.
Updating Views 4 – 462.
Subqueries 4 – 462.
Correlated Update 4 – 463.
Related Topics 4 – 464.

 xxxviii Oracle7 Server SQL Reference

UPDATE (Embedded SQL) 4 – 465.
Purpose 4 – 465.
Prerequisites 4 – 465.
Syntax 4 – 465.
Keywords and Parameters 4 – 466.
Usage Notes 4 – 468.
Related Topics 4 – 468.

VAR (Embedded SQL) 4 – 469.
Purpose 4 – 469.
Prerequisites 4 – 469.
Syntax 4 – 469.
Usage Notes 4 – 469.
Related Topics 4 – 470.

WHENEVER (Embedded SQL) 4 – 471.
Purpose 4 – 471.
Prerequisites 4 – 471.
Syntax 4 – 471.
Keywords and Parameters 4 – 471.
Usage Notes 4 – 472.
Related Topics 4 – 472.

Appendix A Differences From Previous Versions A – 1.

Appendix B Oracle and Standard SQL B – 1.

Appendix C Operating System–Specific Dependencies C – 1.

Index

C H A P T E R

1
S

1 – 1Introduction

Introduction

tructured Query Language (SQL), pronounced “sequel,” is the set
of commands that all programs and users must use to access data
within the Oracle7 database. Application programs and Oracle7 tools
often allow users to access the database without directly using SQL,
but these applications in turn must use SQL when executing the user’s
request. This chapter provides background information on SQL used
by most relational database systems. Topics include:

• history of SQL

• SQL standards

• benefits of SQL

• embedded SQL

• lexical conventions

• tools support

1 – 2 Oracle7 Server SQL Reference

History of SQL

The paper, “A Relational Model of Data for large Shared Data Banks,”
by Dr. E. F. Codd, was published in June 1970 in the Association of
Computer Machinery (ACM) journal, Communications of the ACM.
Codd’s model is now accepted as the definitive model for relational
database management systems (RDBMS). The language, Structured
English Query Language(SEQUEL) was developed by IBM
Corporation, Inc. to use Codd’s model. SEQUEL later became SQL. In
1979, Relational Software, Inc. (now Oracle Corporation) introduced
the first commercially available implementation of SQL. Today, SQL is
accepted as the standard RDBMS language.

SQL Standards

Oracle7 SQL complies with industry accepted standards. Oracle
Corporation ensures future compliance with evolving SQL standards
by actively involving key personnel in SQL standards committees.
Industry accepted committees are the American National Standards
Institute (ANSI) and the International Standards Organization (ISO),
which is affiliated with the International Electrotechnical Commission
(IEC), both of which have accepted SQL as the standard language for
relational databases. When a new SQL standard is simultaneously
published by these organizations, the names of the standards conform
to conventions used by the organization, but the technical details are
exactly the same.

The latest SQL standard published by ANSI and ISO is often called
SQL–92 (and sometimes SQL2). The formal names of the new standard
are:

• ANSI X3.135–1992, “Database Language SQL”

• ISO/IEC 9075:1992, “Database Language SQL”

SQL–92 defines three levels of compliance, Entry, Intermediate, and
Full. Oracle7, Release 7.2 conforms to Entry level compliance, and has
many features that conform to Intermediate or Full level compliance.

Release 7.2 conformance to Entry Level SQL–92 was tested by the
National Institute for Standards and Technology (NIST) using the
Federal Information Processing Standard (FIPS), FIPS PUB 127–2.

1 – 3Introduction

How SQL Works

This section describes many of the reasons for SQL’s widespread
acceptance by relational database vendors as well as end users. The
strengths of SQL benefit all ranges of users including application
programmers, database administrators, management, and end users.

Technically speaking, SQL is a data sublanguage. That is to say, the
purpose of SQL is to interface to a relational database such as Oracle7,
and all SQL statements are instructions to the database. In this it differs
from general purposes programming languages like C and Basic.
Among the features of SQL are the following:

• it processes sets of data as groups rather than as individual units

• it provides automatic navigation to the data

• it uses statements that are complex and powerful individually,
and that therefore stand alone. The flow–control statements of
most programming languages are absent in SQL, although they
are provided in Oracle’s extension to standard SQL called
PL/SQL.

Essentially, SQL lets you work with data at the logical level, only being
concerned with the implementation details when you want to
manipulate them. For example, to retrieve a set of rows from a table,
you define a condition used to filter the rows. All rows satisfying the
condition are retrieved in a single step and can be passed as a unit to
the user , to another SQL statement, or to an application. You need not
deal with the rows one by one, nor do you have to worry about how
they are physically stored or retrieved. All SQL statements use the
optimizer, a part of Oracle7 that determines the fastest means of
accessing the specified data. Oracle7 also provides techniques you can
use to make the optimizer perform its job better.

SQL provides commands for a variety of tasks including:

• querying data

• inserting, updating, and deleting rows in a table

• creating, replacing, altering, and dropping objects

• controlling access to the database and its objects

• guaranteeing database consistency and integrity

SQL unifies all of the above tasks in one consistent language.

Common Language for
All Relational
Databases

1 – 4 Oracle7 Server SQL Reference

Because all major relational database management systems support
SQL, you can transfer all skills you have gained with SQL from one
database to another. In addition, since all programs written in SQL are
portable, they can often be moved from one database to another with
very little modification.

Embedded SQL

Embedded SQL refers to the use of standard SQL commands
embedded within a procedural programming language. Embedded
SQL is a collection of these commands:

• all SQL commands, such as SELECT and INSERT, available with
SQL with interactive tools

• flow control commands, such as PREPARE and OPEN, which
integrate the standard SQL commands with a procedural
programming language

Embedded SQL also includes extensions to some standard SQL
commands. Chapter 4, “Commands,” presents these commands in both
standard form and embedded SQL form.

Embedded SQL is supported by the Oracle precompilers. The Oracle
precompilers interpret embedded SQL statements and translate them
into statements that can be understood by procedural language
compilers.

Each of these Oracle precompilers translates embedded SQL programs
into a different procedural language:

• the Pro*Ada precompiler

• the Pro*C/C++ precompiler

• the Pro*COBOL precompiler

• the Pro*FORTRAN precompiler

• the Pro*Pascal precompiler

• the Pro*PL/I precompiler

For a definition of the Oracle precompilers, see Programmer’s Guide to
the Oracle Precompilers.

Embedded SQL Terms

1 – 5Introduction

The following embedded SQL terms are used throughout this manual:

is a language variable declared according to the
rules of the procedural language and used in a SQL
statement. A host variable can be a predefined type
or a user–defined array and can include an
associated indicator variable.

You can only use host variables in place of numeric
or character expressions. You must precede each
host variable by a colon (:) to distinguish it from a
schema object name. You cannot use host variables
in place of SQL keywords or schema object names.

This manual also uses terms for host variables with
specific datatypes, such as :host_integer and
:host_string.

is an identifier for a cursor.

is an identifier for a non–default database.

is the database identification string for a SQL*Net
connection. For more information about connect
strings, see the SQL*Net documentation for your
operating system.

designates an identifier for a SQL statement or
PL/SQL block.

:host_variable

cursor

db_name

db_string

statement_name
block_name

1 – 6 Oracle7 Server SQL Reference

Lexical Conventions

The following lexical conventions for issuing SQL statements apply
specifically to Oracle’s implementation of SQL, but are generally
acceptable in all other SQL implementations.

When you issue a SQL statement, you can include one or more tabs,
carriage returns, spaces, or comments anywhere a space occurs within
the definition of the command. Thus, Oracle7 evaluates the following
two statements in the same manner:

SELECT ENAME,SAL*12,MONTHS_BETWEEN(HIREDATE,SYSDATE) FROM EMP

SELECT ENAME,

SAL * 12,

MONTHS_BETWEEN(HIREDATE, SYSDATE)

FROM

EMP

Case is insignificant in reserved words, keywords, identifiers and
parameters. However, case is significant in text literals and quoted
names. See the syntax description of ’text’ on page 2 – 15.

Tools Support

Most Oracle7 tools support all features of Oracle’s SQL. However, not
all tools support all features. This manual describes the complete
functionality of SQL. If the Oracle7 tool that you are using does not
support this complete functionality, you can find a discussion of the
restrictions in the manual describing the tool, such as PL/SQL User’s
Guide and Reference.

C H A P T E R

2
T

2 – 1Elements of Oracle7 SQL

Elements of
Oracle7 SQL

his chapter contains reference information on the basic elements of
Oracle7 SQL. Before using any of the commands described in
Chapter 4, “Commands,” you should familiarize yourself with the
concepts covered in this chapter:

• database objects

• object names and qualifiers

• referring to objects and parts

• literals

• text

• integer

• number

• datatypes

• nulls

• pseudocolumns

• comments

Schema Objects

Non–Schema Objects

2 – 2 Oracle7 Server SQL Reference

Database Objects

A schema is a collection of logical structures of data, or schema objects.
A schema is owned by a database user and has the same name as that
user. Each user owns a single schema. Schema objects can be created
and manipulated with SQL and include the following types of objects.

• clusters

• database links

• database triggers*

• indexes

• packages*

• sequences

• snapshots*+

• snapshot logs*

• stored functions*

• stored procedures*

• synonyms

• tables

• views
* These objects are available only if PL/SQL is installed.
+ These objects are available only if the distributed option is installed.

Other types of objects are also stored in the database and can be created
and manipulated with SQL, but are not contained in a schema:

• profiles

• roles

• rollback segments

• tablespaces

• users

Most of these objects occupy space in the database. In this manual,
each type of object is briefly defined in Chapter 4, “Commands” in the
section describing the command that creates the database object. These
commands begin with the keyword CREATE. For example, for the
definition of a cluster, see the CREATE CLUSTER command on
page 4 – 164. For an overview of database objects, see Oracle7 Server
Concepts.

Parts of Objects

Object Naming Rules

2 – 3Elements of Oracle7 SQL

You must provide names for most types of objects when you create
them. These names must follow the rules listed in the following
sections.

Some objects are made up of parts that you must also name, such as:

• columns in a table or view

• integrity constraints on a table

• packaged procedures, packaged stored functions, and other
objects stored within a package

Object Names and Qualifiers

This section tells provides:

• rules for naming objects and object location qualifiers

• guidelines for naming objects and qualifiers

The following rules apply when naming objects:

1. Names must be from 1 to 30 characters long with these exceptions:

• Names of databases are limited to 8 characters.

• Names of database links can be as long as 128 characters.

2. Names cannot contain quotation marks.

3. Names are not case–sensitive

4. A name must begin with an alphabetic character from your
database character set unless surrounded by double quotation
marks.

5. Names can only contain alphanumeric characters from your
database character set and the characters _, $, and #. You are
strongly discourage from using $ and #.

If your database character set contains multi–byte characters, It is
recommended that each name for a user or a role contain at least
one single–byte character.

Names of database links can also contain periods (.) and
ampersands (@).

6. A name cannot be an Oracle7 reserved word. The following list
contains these reserved words. Words followed by an asterisk (*)
are also ANSI reserved words.

2 – 4 Oracle7 Server SQL Reference

Note: You cannot use special characters from European or
Asian character sets in a database name, global database name,
or database link names. For example, the umlaut is not
allowed.

Reserved words

ACCESS
ADD
ALL*
ALTER
AND*
ANY*
AS*
ASC*
AUDIT

BETWEEN*
BY*

CHAR*
CHECK*
CLUSTER
COLUMN
COMMENT
COMPRESS
CONNECT
CREATE*
CURRENT*

DATE
DECIMAL
DEFAULT*
DELETE*
DESC*
DISTINCT*
DROP

ELSE
EXCLUSIVE
EXISTS*

FILE
FLOAT*
FOR*
FROM*

GRANT*
GROUP*

HAVING*

IDENTIFIED
IMMEDIATE
IN*
INCREMENT
INDEX
INITIAL
INSERT*
INTEGER*
INTERSECT
INTO*
IS*

LEVEL
LIKE*
LOCK
LONG

MAXEXTENTS
MINUS
MODE
MODIFY

NOAUDIT
NOCOMPRESS
NOT*
NOWAIT
NULL*
NUMBER

OF*
OFFLINE
ON*
ONLINE
OPTION*
OR*
ORDER*

PCTFREE
PRIOR
PRIVILEGES*
PUBLIC*

RAW
RENAME
RESOURCE
REVOKE
ROW
ROWID
ROWLABEL
ROWNUM
ROWS

SELECT*
SESSION
SET*
SHARE
SIZE
SMALLINT*
START
SUCCESSFUL
SYNONYM
SYSDATE

TABLE*
THEN
TO*
TRIGGER

UID
UNION*
UNIQUE*
UPDATE*
USER*

VALIDATE
VALUES*
VARCHAR
VARCHAR2
VIEW*

WHENEVER
WHERE*
WITH*

Depending on the Oracle product you plan to use to access a
database object, names might be further restricted by other
product–specific reserved words. For a list of a product’s reserved
words, see the manual for the specific product, such as PL/SQL
User’s Guide and Reference.

7. The word DUAL should not be used as a name for an object or
part. DUAL is the name of a dummy table frequently accessed by
Oracle7 tools such as SQL*Plus and SQL*Forms.

8. The Oracle7 SQL language contains other keywords that have
special meanings. Because these keywords are not reserved, you
can also use them as names for objects and object parts. However,
using them as names may make your SQL statements more difficult
for you to read.

2 – 5Elements of Oracle7 SQL

The following list contains keywords. Keywords marked with
asterisks (*) are also ANSI reserved words. For maximum
portability to other implementations of SQL, do not use the
following words as object names.

Keywords

ADMIN
AFTER
ALLOCATE
ANALYZE
ARCHIVE
ARCHIVELOG
AUTHORIZATION*
AVG*

BACKUP
BEGIN*
BECOME
BEFORE
BLOCK
BODY

CACHE
CANCEL
CASCADE
CHANGE
CHARACTER*
CHECKPOINT
CLOSE*
COBOL*
COMMIT*
COMPILE
CONSTRAINT
CONSTRAINTS
CONTENTS
CONTINUE*
CONTROLFILE
COUNT*
CURSOR*
CYCLE

DATABASE
DATAFILE
DBA
DEC*
DECLARE*
DISABLE
DISMOUNT
DOUBLE*
DUMP
EACH
ENABLE
END*
ESCAPE*
EVENTS
EXCEPT
EXCEPTIONS
EXEC*
EXPLAIN
EXECUTE
EXTENT
EXTERNALLY

FETCH*
FLUSH
FREELIST
FREELISTS
FORCE
FOREIGN*
FORTRAN*
FOUND*
FUNCTION

GO*
GOTO*
GROUPS

INCLUDING
INDICATOR*
INITRANS
INSTANCE
INT*

KEY*

LANGUAGE*
LAYER
LINK
LISTS
LOGFILE

MANAGE
MANUAL
MAX*
MAXDATAFILES
MAXINISTANCES
MAXLOGFILES
MAXLOGHISTORY
MAXLOGMEMBERS
MAXTRANS
MAXVALUE
MIN*
MINEXTENTS
MINVALUE
MODULE*
MOUNT

NEXT
NEW
NOARCHIVELOG
NOCACHE
NOCYCLE
NOMAXVALUE
NOMINVALUE
NONE
NOORDER
NORESETLOGS
NORMAL
NOSORT
NUMERIC*

OFF
OLD
ONLY
OPTIMAL
OPEN*
OWN

PACKAGE
PARALLEL
PASCAL*
PCTINCREASE
PCTUSED
PLAN
PLI*
PRECISION*
PRIMARY*
PRIVATE
PROCEDURE*
PROFILE

QUOTA

READ
REAL*
RECOVER
REFERENCES*
REFERENCING
RESETLOGS
RESTRICTED
REUSE
ROLE
ROLES
ROLLBACK*

SAVEPOINT
SCHEMA*
SCN
SECTION*
SEGMENT
SEQUENCE
SHARED
SNAPSHOT
SOME*
SORT
SQLCODE*
SQLERROR*
STATEMENT_ID
STATISTICS
STOP
STORAGE
SUM*
SWITCH
SYSTEM

TABLES
TABLESPACE
TEMPORARY
THREAD
TIME
TRACING
TRANSACTION
TRIGGERS
TRUNCATE

UNDER
UNLIMITED
UNTIL
USE
USING

WHEN
WRITE
WORK*

2 – 6 Oracle7 Server SQL Reference

9. A name must be unique across its namespace. Objects in the same
namespace must have different names.

Figure 2 – 1 shows the namespaces for schema objects. Objects in
the same namespace are grouped by solid lines. Because tables and
views are in the same namespace, a table and a view in the same
schema cannot have the same name. However, because tables and
indexes are in different namespaces, a table and an index in the
same schema can have the same name.

Each schema in the database has its own namespaces for the objects
it contains. This means, for example, that two tables in different
schemas are in different namespaces and can have the same name.

INDEXES

CONSTRAINTS

CLUSTERS

DATABASE TRIGGERS

PRIVATE DATABASE LINKS

TABLES

VIEWS

SEQUENCES

PRIVATE SYNONYMS
 STORED PROCEDURES
 STORED FUNCTIONS

 PACKAGES

 SNAPSHOTS

Figure 2 – 1 Namespaces For Schema Objects

Figure 2 – 2 shows the namespaces for other objects. Because the
objects in these namespaces are not contained in schemas, these
namespaces span the entire database.

USER

PUBLIC SYNONYMS

PUBLIC DATABASE LINKS

TABLESPACES

ROLLBACK SEGMENTS

PROFILES

ROLES

Figure 2 – 2 Namespaces For Other Objects

Columns in the same table or view cannot have the same name.
However, columns in different tables or views can have the same
name.

2 – 7Elements of Oracle7 SQL

Procedures or functions contained in the same package can have
the same name, provided that their arguments are not of the same
number and datatypes. Creating multiple procedures or functions
with the same name in the same package with different arguments
is called overloading the procedure or function.

10. A name can be enclosed in double quotation marks. Such names
can contain any combination of characters including spaces,
ignoring rules 3 through 7 in this list. This exception is allowed for
portability, but it is recommended that you do not break rules 3
through 7.

Once you have given an object a name enclosed in double
quotation marks, you must use double quotation marks whenever
you refer to the object.

You may want to enclose a name in double quotation marks for any
of these reasons:

• if you want it to contain spaces

• if you want it to be case–sensitive

• if you want it to begin with a character other than an alphabetic
character, such as a numeric character

• if you want it to contain characters other than alphanumeric
characters and _, $, and #

• if you want to use a reserved word as a name

By enclosing names in double quotation marks, you can give the
following names to different objects in the same namespace:

emp

”emp”

”Emp”

”EMP ”

Note that Oracle7 interprets the following names the same, so they
cannot be used for different objects in the same namespace:

emp

EMP

”EMP”

If you give a user or password a quoted name, the name cannot
contain lowercase letters.

Database link names cannot be quoted.

Examples

Object Naming
Guidelines

2 – 8 Oracle7 Server SQL Reference

The following are valid examples of names:

ename

horse

scott.hiredate

”EVEN THIS & THAT!”

a_very_long_and_valid_name

Although column aliases, table aliases, usernames, or passwords are
not objects or parts of objects, they must also follow these naming rules
with these exceptions

• Column aliases and table aliases only exist for the execution of a
single SQL statement and are not stored in the database, so rule 9
does not apply to them.

• Passwords do not have namespaces, so rule 9 does not apply to
apply to them.

• Do not use quotation marks to make usernames and passwords
case–sensitive. For additional rules for naming users and
passwords, see the CREATE USER command on page 4 – 267.

There are several helpful guidelines for naming objects and their parts:

• Use full, descriptive, pronounceable names (or well–known
abbreviations).

• Use consistent naming rules.

• Use the same name to describe the same entity or attribute
across tables.

When naming objects, balance the objective of keeping names short and
easy to use with the objective of making name as long and descriptive
as possible. When in doubt, choose the more descriptive name because
the objects in the database may be used by many people over a period
of time. Your counterpart ten years from now may have difficulty
understanding a database with names like PMDD instead of
PAYMENT_DUE_DATE.

Using consistent naming rules helps users understand the part that
each table plays in your application. One such rule might be to begin
the names of all tables belonging to the FINANCE application with
FIN_.

Use the same names to describe the same things across tables. For
example, the department number columns of the EMP and DEPT tables
are both named DEPTNO.

2 – 9Elements of Oracle7 SQL

Referring to Objects and Parts

This section tells you how to refer to objects and their parts in the
context of a SQL statement. This section shows you:

• the general syntax for referring to an object

• how Oracle7 resolves a reference to an object

• how to refer to objects in schemas other than your own

• how to refer to objects in remote databases

This syntax diagram shows the general syntax for referring to an object
or a part:

where:

is the name of the object.

is the schema containing the object. The schema
qualifier allows you to refer to an object in a
schema other than your own. Note that you must
be granted privileges to refer to objects in other
schemas. If you omit this qualifier, Oracle7
assumes that you are referring to an object in your
own schema.

Only schema objects can be qualified with schema.
Schema objects are shown in Figure 2 – 1 on
page 2 – 6. Other objects, shown in Figure 2 – 2 on
page 2 – 6, cannot be qualified with schema
because they are not schema objects, except for
public synonyms which can optionally be qualified
with ”PUBLIC” (quotation marks required).

is a part of the object. This identifier allows you to
refer to a part of a schema object, such as a column
of a table. Note that not all types of objects have
parts.

object

schema. .part @dblink

object

schema

part

How Oracle7 Resolves
Object References

2 – 10 Oracle7 Server SQL Reference

applies only to those using Oracle7 with the
distributed option. This is the name of the database
containing the object. The dblink qualifier allows
you to refer to an object in a database other than
your local database. If you omit this qualifier,
Oracle7 assumes that you are referring to an object
in your local database. Note that not all SQL
statements allow you to access objects on remote
databases.

You can include spaces around the periods separating the components
of the reference to the object, but it is conventional to omit them.

When you refer to an object in a SQL statement, Oracle7 considers the
context of the SQL statement and locates the object in the appropriate
namespace. If the named object cannot be found in the appropriate
namespace, Oracle7 returns an error message. After locating the object,
Oracle7 performs the statement’s operation on the object.

The following example illustrates how Oracle7 resolves references to
objects within SQL statements. Consider this statement that adds a row
of data to a table identified by the name DEPT:

INSERT INTO dept

VALUES (50, ’SUPPORT’, ’PARIS’)

Based on the context of the statement, Oracle7 determines that DEPT
can be:

• a table in your own schema

• a view in your own schema

• a private synonym for a table or view

• a public synonym

Oracle7 always attempts to resolve an object reference within the
namespaces in your own schema before considering namespaces
outside your schema. In this example, Oracle7 attempts to resolve the
name DEPT in these ways:

1. Oracle7 first attempts to locate the object in the namespace in your
own schema containing tables, views, and private synonyms (see
Figure 2 – 1 on page 2 – 6). If the object is a private synonym,
Oracle7 locates the object for which the synonym stands. This
object could be in your own schema, another schema, or on another
database. The object could also be another synonym, in which case
Oracle7 locates the object for which this synonym stands.

dblink

Referring to Objects in
Other Schemas

Referring to Objects in
Remote Databases

Creating Database Links

2 – 11Elements of Oracle7 SQL

If the object is in the namespace, Oracle7 attempts to perform the
statement on the object. In this example, Oracle7 attempts to add
the row of data to DEPT. If the object is not of the correct type for
the statement, Oracle7 returns an error message. In this example,
DEPT must be a table, view, or a private synonym resolving to a
table or view. If DEPT is a sequence, Oracle7 returns an error
message.

2. If the object is not in the namespace searched in Step 1, Oracle7
searches the namespace containing public synonyms (see
Figure 2 – 2 on page 2 – 6). If the object is in the namespace,
Oracle7 attempts to perform the statement on it. If the object is not
of the correct type for the statement, Oracle7 returns an error
message. In this example, if DEPT is a public synonym for a
sequence, Oracle7 returns an error message.

To refer to objects in schemas other than your own, prefix the object
name with the schema name:

schema.object

For example, this statement drops the EMP table in the schema SCOTT:

DROP TABLE scott.emp

To refer to objects in databases other than your local database, follow
the object name with the name of the database link to that database. A
database link is a schema object that causes Oracle7 to connect to a
remote database to access an object there. This section tells you:

• how to create database links

• how to use database links in your SQL statements

You can create a database link with the CREATE DATABASE LINK
command described in Chapter 4, “Commands,” of this manual. The
command allows you to specify this information about the database
link:

• the name of the database link

• the connect string to access the remote database

• the username and password to connect to the remote database

Oracle7 stores this information in the data dictionary.

Names When you create a database link, you must specify its name.
The name of a database link can be as long as 128 bytes and can contain
periods (.) and the special character @. In these ways, database link
names are different from names of other types of objects.

2 – 12 Oracle7 Server SQL Reference

The name that you give to a database link must correspond to the name
of the database to which the database link refers and the location of
that database in the hierarchy of database names. The following syntax
diagram shows the form of the name of a database link:

database

@connection_qualifier

.domain

dblink :=

where:

specifies the name of the remote database to
which the database link connects. The name of
the remote database is specified by its
initialization parameter DB_NAME.

specifies the domain of the remote database to
which the database link connects. If you omit
the domains from the name of a database link,
Oracle7 expands the name by qualifying
database with the domain of your local database
before storing it in the data dictionary. The
domain of a database is specified by the value
of its initialization parameter DB_DOMAIN.

allows you to further qualify a database link.
Using connection qualifiers, you can create
multiple database links to the same database.
For example, you can use connection qualifiers
to create multiple database links to different
instances of the Oracle7 Parallel Server that
access the same database.

Username and Password The username and password are used by
Oracle7 to connect to the remote database. The username and
password for a database link are optional.

Database String The database string is the specification used by
SQL*Net to access the remote database. For information on writing
database connect strings, see the SQL*Net documentation for your
specific network protocol. The database string for a database link is
optional.

database

domain

connection_qualifier

Referring to Database
Links

2 – 13Elements of Oracle7 SQL

Database links are available only to those using Oracle7 with the
distributed option. When you issue a SQL statement that contains a
database link, you can specify the database link name in one of these
forms:

is the complete database link name as stored in the
data dictionary including the database, domain, and
optional connection_qualifier components.

contains the database and optional
connection_qualifier components, but not the domain
component.

Oracle7 performs these tasks before connecting to the remote database:

1. If the database link name specified in the statement is partial,
Oracle7 expands the name to contain the domain of the local
database (specified by the initialization parameter DB_DOMAIN).

2. Oracle7 first searches for a private database link in your own
schema with the same name as the database link in the statement,
and then, if necessary, searches for a public database link with the
same name.

2.1 Oracle7 always determines the username and password from
the first matching database link (either private or public). If the
first matching database link has an associated username and
password, Oracle7 uses it. If it does not have an associated
username and password, Oracle7 uses your current username
and password.

2.2 If the first matching database link has an associated database
string, Oracle7 uses it. If not, Oracle7 searches for the next
matching (public) database link. If there is no matching
database link, or if no matching link has an associated database
string, Oracle7 returns an error message.

3. Oracle7 uses the database string to access the remote database.
After accessing the remote database, Oracle7 verifies that both of
these conditions are true:

• The name of the remote database (specified by its initialization
parameter DB_NAME) must match the database component of
the database link name.

• The domain (specified by the initialization parameter
DB_DOMAIN) of the remote database must match the domain
component of the database link name.

complete

partial

2 – 14 Oracle7 Server SQL Reference

If both of these conditions are true, Oracle7 proceeds with the
connection, using the username and password chosen in step 2a. If
not, Oracle7 returns an error message.

4. If the connection using the database string, username, and
password is successful, Oracle7 attempts to access the specified
object on the remote database using the rules for resolving object
references and referring to objects in other schemas presented
earlier in this section.

You can enable and disable Oracle7 resolution of names for remote
objects using the initialization parameter GLOBAL_NAMES and the
GLOBAL_NAMES parameter of the ALTER SYSTEM and ALTER
SESSION commands.

You cannot use the USERENV(’TERMINAL’) variable in the WHERE
clauses of INSERT, UPDATE, or DELETE statements that access remote
objects, although you can do so in SELECT statements.

For more information on remote name resolution, see the “Database
Administration” chapter of Oracle7 Server Distributed Systems, Volume I.

Literals

The terms literal and constant value are synonymous in this manual
and refer to a fixed data value. For example, ’JACK’, ’BLUE ISLAND’,
and ’101’ are all character literals. 5001 is a numeric literal. Note that
character literals are enclosed in single quotation marks. The quotation
marks allow Oracle7 to distinguish them from schema object names.

Many SQL statements and functions require you to specify character
and numeric literal values. You can also specify literals as part of
expressions and conditions. You can specify character literals with the
’text’ notation and numeric literals with the integer or number notation,
depending on the context of the literal. The syntactic forms of these
notations appear in the following sections.

Purpose

Syntax

Keywords and
Parameters

Usage Notes

Examples

Related Topics

2 – 15Elements of Oracle7 SQL

Text

To specify a text or character literal. You must use this notation to
specify values whenever ’text’ or char appear in expressions, conditions,
SQL functions, and SQL commands in other parts of this manual.

’

c

’’

’

is any member of the user’s character set, except a
single quotation mark (’).

are two single quotation marks. Because a single
quotation mark is used to begin and end text
literals, you must use two single quotation marks
to represent one single quotation mark within a
literal.

A text literal must be enclosed in single quotation marks. This manual
uses the terms text literal and character literal interchangeably.

Text literals have properties of both the CHAR and VARCHAR2
datatypes:

• Within expressions and conditions, Oracle7 treats text literals as
though they have the datatype CHAR by comparing them using
blank–padded comparison semantics.

• A text literal can have a maximum length of 2000 bytes.

’Hello’
’ORACLE.dbs’

’Jackie’’s raincoat’

’09–MAR–92’

The syntax description of expr on page 3 – 73.

c

’’

Purpose

Syntax

Keywords and
Parameters

Usage Notes

Examples

Related Topics

2 – 16 Oracle7 Server SQL Reference

Integer

To specify a positive integer. You must use this notation to specify
values whenever integer appears in expressions, conditions, SQL
functions, and SQL commands described in other parts of this manual.

digit

digit is one of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

 An integer can store a maximum of 38 digits of precision.

7
255

The syntax description of expr on page 3 – 73.

Purpose

Syntax

Keywords and
Parameters

Usage Notes

Examples

Related Topics

2 – 17Elements of Oracle7 SQL

Number

To specify an integer or a real number. You must use this notation to
specify values whenever number appears in expressions, conditions,
SQL functions, and SQL commands in other parts of this manual.

digit

+

– digit

.

+

–

digit

digit

E

e

.

+, – indicates a positive or negative value. If you omit
the sign, a positive value is the default.

is one of 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9.

indicates that the number is specified in scientific
notation. The digits after the E specify the
exponent. The exponent can range between –130
and 125.

A number can store a maximum of 38 digits of precision.

If you have established a decimal character other than a period (.) with
the initialization parameter NLS_NUMERIC_CHARACTERS, you
must specify numeric literals with ’text’ notation. In such cases, Oracle7
automatically converts the text literal to a numeric value.

For more information on this parameter, see Oracle7 Server Reference.

25
+6.34

0.5

25e–03

–1

The syntax description of expr on page 3 – 73.

digit

e, E

2 – 18 Oracle7 Server SQL Reference

Datatypes

Each literal or column value manipulated by Oracle7 has a datatype. A
value’s datatype associates a fixed set of properties with the value.
These properties cause Oracle7 to treat values of one datatype
differently from values of another. For example, you can add values of
NUMBER datatype, but not values of RAW datatype.

When you create a table or cluster, you must specify an internal
datatype for each of its columns. When you create a procedure or
stored function, you must specify an internal datatype for each of its
arguments. These datatypes define the domain of values that each
column can contain or each argument can have. For example, DATE
columns cannot accept the value February 29 (except for a leap year) or
the values 2 or ’SHOE’. Each value subsequently placed in a column
assumes the column’s datatype. For example, if you insert ’01–JAN–92’
into a DATE column, Oracle7 treats the ’01–JAN–92’ character string as
a DATE value after verifying that it translates to a valid date.

Table 2 – 1 summarizes Oracle7 internal datatypes. The rest of this
section describes these datatypes in detail.

Note: The Oracle precompilers recognize other datatypes in
embedded SQL programs. These datatypes are called external
datatypes and are associated with host variables. Do not
confuse the internal datatypes with external datatypes. For
information on external datatypes, including how Oracle7
converts between internal and external datatypes, see
Programmer’s Guide to the Oracle Precompilers.

2 – 19Elements of Oracle7 SQL

Code Internal Datatype Description

1 VARCHAR2(size) Variable length character string having
maximum length size bytes. Maximum
size is 2000, and minimum is 1. You must
specify size for a VARCHAR2

2 NUMBER(p,s) Number having precision p and scale s.
The precision p can range from 1 to 38.
The scale s can range from –84 to 127.

8 LONG Character data of variable length up to 2
gigabytes, or 231 –1 bytes.

12 DATE Valid date range from January 1, 4712 BC
to December 31, 4712 AD.

23 RAW(size) Raw binary data of length size bytes.
Maximum size is 255 bytes. You must
specify size for a RAW value.

24 LONG RAW Raw binary data of variable length up to
2 gigabytes.

69 ROWID

(see note below)

Hexadecimal string representing the
unique address of a row in its table. This
datatype is primarily for values returned
by the ROWID pseudocolumn.

96 CHAR(size) Fixed length character data of length size
bytes. Maximum size is 255. Default and
minimum size is 1 byte.

106 MLSLABEL Binary format of an operating system
label. This datatype is used with Trusted
Oracle7.

Table 2 – 1 Internal Datatype Summary

The codes listed for the datatypes are used internally by Oracle7. The
datatype code of a column is returned when you use the DUMP
function.

Note: The DESCRIBE embedded SQL command and the
ODESCR call of the Oracle Call Interfaces (OCIs) returns a code
of 11 for the ROWID datatype.

Character Datatypes

CHAR Datatype

VARCHAR2 Datatype

2 – 20 Oracle7 Server SQL Reference

Character datatypes are used to manipulate words and free–form text.
These datatypes are used to store character (alphanumeric) data in the
database character set. They are less restrictive than other datatypes
and consequently have fewer properties. For example, character
columns can store all alphanumeric values, but NUMBER columns can
only store numeric values.

Character data is stored in strings with byte values corresponding to
the character set, such as 7–bit ASCII or EBCDIC Code Page 500,
specified when the database was created. Oracle7 supports both
single–byte and multi–byte character sets.

These datatypes are used for character data:

• CHAR

• VARCHAR2

The character datatypes in Oracle7 are different from those in Oracle
Version 6. For a summary of the differences and compatibility issues,
see Appendix C “Operating System –Specific Dependendies” of this
manual.

The CHAR datatype specifies a fixed length character string. When you
create a table with a CHAR column, you can supply the column length
in bytes. Oracle7 subsequently ensures that all values stored in that
column have this length. If you insert a value that is shorter than the
column length, Oracle7 blank–pads the value to column length. If you
try to insert a value that is too long for the column, Oracle7 returns an
error.

The default for a CHAR column is 1 character and the maximum
allowed is 255 characters. A zero–length string can be inserted into a
CHAR column, but the column is blank–padded to 1 character when
used in comparisons. For information on comparison semantics, see the
section “Datatype Comparison Rules” on page 2 – 29.

The VARCHAR2 datatype specifies a variable length character string.
When you create a VARCHAR2 column, you can supply the maximum
number of bytes of data that it can hold. Oracle7 subsequently stores
each value in the column exactly as you specify it, provided it does not
exceed the column’s maximum length. This maximum must be at least
1 byte, although the actual length of the string stored is permitted to be
zero. If you try to insert a value that exceeds the specified length,
Oracle7 returns an error.

VARCHAR Datatype

NUMBER Datatype

2 – 21Elements of Oracle7 SQL

You must specify a maximum length for a VARCHAR2 column. The
maximum length of VARCHAR2 data is 2000 bytes. Oracle7 compares
VARCHAR2 values using non–padded comparison semantics. For
information on comparison semantics, see the section “Datatype
Comparison Rules” on page 2 – 29.

The VARCHAR datatype is currently synonymous with the
VARCHAR2 datatype. It is recommended that you use VARCHAR2
rather than VARCHAR. In a future version of Oracle7, VARCHAR
might be a separate datatype used for variable length character strings
compared with different comparison semantics.

The NUMBER datatype is used to store zero, positive and negative
fixed and floating point numbers with magnitudes between 1.0 x 10–130

and 9.9...9 x 10125 (38 9s followed by 88 0s) with 38 digits of precision.
If you specify an arithmetic expression whose value has a magnitude
greater than or equal to 1.0 x 10126, Oracle7 returns an error.

You can specify a fixed point number using the following form:

NUMBER(p,s)

where:

is the precision, or the total number of digits.
Oracle7 guarantees the portability of numbers with
precision ranging from 1 to 38.

is the scale, or the number of digits to the right of
the decimal point. The scale can range from –84
to 127.

You specify an integer using the following form:

is a fixed point number with precision p and
scale 0. (Equivalent to NUMBER(p,0).)

You specify a floating point number using the following form:

is a floating point number with precision 38. Note
that a scale value is not applicable for floating
point numbers.

p

s

NUMBER(p)

NUMBER

Scale and Precision

Negative Scale

Scale Greater than
Precision

2 – 22 Oracle7 Server SQL Reference

Specify the scale and precision of a fixed point number column for
extra integrity checking on input. Specifying scale and precision does
not force all values to a fixed length. If a value exceeds the precision,
Oracle7 returns an error. If a value exceeds the scale, Oracle7 rounds it.

The following examples show how Oracle7 stores data using different
precisions and scales.

Actual Data Specified As Stored As

7456123.89 NUMBER 7456123.89

7456123.89 NUMBER(9) 7456124

7456123.89 NUMBER(9,2) 7456123.89

7456123.89 NUMBER(9,1) 7456123.9

7456123.8 NUMBER(6) exceeds precision

7456123.8 NUMBER(15,1) 7456123.8

7456123.89 NUMBER(7,–2) 7456100

7456123.89 NUMBER(–7,2) exceeds precision

If the scale is negative, the actual data is rounded to the specified
number of places to the left of the decimal point. For example, a
specification of (10,–2) means to round to hundreds.

You can specify a scale that is greater than precision, although it is
uncommon. In this case, the precision specifies the maximum number
of digits to the right of the decimal point. As with all number
datatypes, if the value exceeds the precision, Oracle7 returns an error
message. If the value exceeds the scale, Oracle7 rounds the value. For
example, a column defined as NUMBER(4,5) requires a zero for the
first digit after the decimal point and rounds all values past the fifth
digit after the decimal point. The following examples show the effects
of a scale greater than precision:

Actual Data Specified As Stored As

.01234 NUMBER(4,5) .01234

.00012 NUMBER(4,5) .00012

.000127 NUMBER(4,5) .00013

.0000012 NUMBER(2,7) .0000012

.00000123 NUMBER(2,7) .0000012

Floating Point Numbers

LONG Datatype

2 – 23Elements of Oracle7 SQL

Oracle7 also allows you to specify floating point numbers. A floating
point value either can have a decimal point anywhere from the first to
the last digit or can omit the decimal point altogether. A scale value is
not applicable to floating point numbers because there is no restriction
on the number of digits that can appear after the decimal point.

You can specify floating point numbers with the appropriate forms of
the NUMBER datatype discussed in the section “NUMBER Datatype”
on page 2 – 21. Oracle7 also supports the ANSI datatype FLOAT. You
can specify this datatype using one of these syntactic forms:

specifies a floating point number with decimal
precision 38, or a binary precision of 126.

specifies a floating point number with binary
precision b. The precision b can range from 1 to 126.

To convert from binary to decimal precision,
multiply b by 0.30103. To convert from decimal to
binary precision, multiply the decimal precision by
3.32193. The maximum of 126 digits of binary
precision is roughly equivalent to 38 digits of
decimal precision.

LONG columns store variable length character strings containing up to
2 gigabytes, or 231–1 bytes. LONG columns have many of the
characteristics of VARCHAR2 columns. You can use LONG columns to
store long text strings. Oracle7 uses LONG columns in the data
dictionary to store the text of view definitions. The length of LONG
values may also be limited by the memory available on your computer.

You can reference LONG columns in SQL statements in these places:

• SELECT lists

• SET clauses of UPDATE statements

• VALUES clauses of INSERT statements

The use of LONG values are subject to some restrictions:

• A table cannot contain more than one LONG column.

• LONG columns cannot appear in integrity constraints (except for
NULL and NOT NULL constraints).

• LONG columns cannot be indexed.

• A stored function cannot return a LONG value.

• Within a single SQL statement, all LONG columns, updated
tables, and locked tables must be located on the same database.

FLOAT

FLOAT(b)

2 – 24 Oracle7 Server SQL Reference

Also, LONG columns cannot appear in certain SQL statements:

• CREATE SNAPSHOT

Also, LONG columns cannot appear in certain parts of SQL statements:

• WHERE, GROUP BY, ORDER BY, or CONNECT BY clauses or
with the DISTINCT operator in SELECT statements

• UNIQUE clause of a SELECT statement

• the column datatype clause of a CREATE CLUSTER statement

• SQL functions (such as SUBSTR or INSTR)

• expressions or conditions

• select lists of queries containing GROUP BY clauses

• select lists of subqueries or queries combined by set operators

• select lists of CREATE TABLE AS SELECT statements

• select lists in subqueries in INSERT statements

Triggers can use the LONG datatype in the following manner:

• A SQL statement within a trigger can insert data into a LONG
column.

• If data from a LONG column can be converted to a constrained
datatype (such as CHAR and VARCHAR2), a LONG column can
be referenced in a SQL statement within a trigger. Note that the
maximum length for these datatypes is 32 Kbytes.

• Variables in triggers cannot be declared using the LONG
datatype.

• :NEW and :OLD cannot be used with LONG columns.

You can use the Oracle Call Interfaces to retrieve a portion of a LONG
value from the database. See Programmer’s Guide to the Oracle Call
Interface.

DATE Datatype

Date Arithmetic

2 – 25Elements of Oracle7 SQL

The DATE datatype is used to store date and time information.
Although date and time information can be represented in both CHAR
and NUMBER datatypes, the DATE datatype has special associated
properties.

For each DATE value the following information is stored:

• century

• year

• month

• day

• hour

• minute

• second

To specify a date value, you must convert a character or numeric value
to a data value with the TO_DATE function. Oracle7 automatically
converts character values that are in the default date format into date
values when they are used in date expressions. The default date format
is specified by the initialization parameter NLS_DATE_FORMAT and is
a string such as ’DD–MON–YY’. This example date format includes a
two–digit number for the day of the month, an abbreviation of the
month name, and the last two digits of the year.

If you specify a date value without a time component, the default time
is 12:00:00a.m. (midnight). If you specify a date value without a date,
the default date is the first day of the current month.

The date function SYSDATE returns the current date and time. For
information on the SYSDATE and TO_DATE functions and the default
date format, see Chapter 3 “Operators, Functions, Expressions,
Conditions” of this manual.

You can add and subtract number constants as well as other dates from
dates. Oracle7 interprets number constants in arithmetic date
expressions as numbers of days. For example, SYSDATE + 1 is
tomorrow. SYSDATE – 7 is one week ago. SYSDATE + (10/1440) is ten
minutes from now. Subtracting the HIREDATE column of the EMP
table from SYSDATE returns the number of days since each employee
was hired. You cannot multiply or divide DATE values.

Using Julian Dates

Example

RAW and LONG RAW
Datatypes

2 – 26 Oracle7 Server SQL Reference

Oracle7 provides functions for many of the common date operations.
For example, the ADD_MONTHS function allows you to add or
subtract months from a date. The MONTHS_BETWEEN function
returns the number of months between two dates. The fractional
portion of the result represents that portion of a 31–day month. For
more information on date functions, see the section “Date Functions”
on page 3 – 37.

Because each date contains a time component, most results of date
operations include a fraction. This fraction means a portion of one day.
For example, 1.5 days is 36 hours.

A Julian date is the number of days since Jan 1, 4712 BC. Julian dates
allow continuous dating from a common reference. You can use the
date format model “J” with date functions TO_DATE and TO_CHAR
to convert between Oracle7 DATE values and their Julian equivalents.

This statement returns the Julian equivalent of January 1, 1992:

SELECT TO_CHAR(TO_DATE(’01–01–1992’, ’MM–DD–YYYY’),’J’)

 FROM DUAL

TO_CHAR(TO_DATE(’01–01–1992’,’MM–DD–YYYY),’J’)

––

2448623

The RAW and LONG RAW datatypes are used for data that is not to be
interpreted (not converted when moving data between different
systems) by Oracle. These datatypes are intended for binary data or
byte strings. For example, LONG RAW can be used to store graphics,
sound, documents, or arrays of binary data; the interpretation is
dependent on the use.

RAW is a variable–length datatype like the VARCHAR2 character
datatype, except that SQL*Net (which connects user sessions to the
instance) and the Import and Export utilities do not perform character
conversion when transmitting RAW or LONG RAW data. In contrast,
SQL*Net and Import/Export automatically convert CHAR,
VARCHAR2, and LONG data between the database character set to the
user session character set (set by the NLS_LANGUAGE parameter of
the ALTER SESSION command), if the two character sets are different.

When Oracle automatically converts RAW or LONG RAW data to and
from CHAR data, the binary data is represented in hexadecimal form
with one hexadecimal character representing every four bits of RAW
data. For example, one byte of RAW data with bits 11001011 is
displayed and entered as ’CB’.

LONG RAW data cannot be indexed, but RAW data can be indexed.

ROWID Datatype

Example

MLSLABEL Datatype

2 – 27Elements of Oracle7 SQL

Each row in the database has an address. You can examine a row’s
address by querying the pseudocolumn ROWID. Values of this
pseudocolumn are hexadecimal strings representing the address of
each row. These string have the datatype ROWID. For more
information on the ROWID pseudocolumn, see the section
“Pseudocolumns” on page 2 – 38. You can also create tables and
clusters that contain actual columns having the ROWID datatype.
Oracle7 does not guarantee that the values of such columns are valid
ROWIDs.

Character values representing ROWIDs:

block.row.file

where:

is a hexadecimal string identifying the data block
of the data file containing the row. The length of
this string may vary depending on your operating
system.

is a four–digit hexadecimal string identifying the
row in the data block. The first row in the block has
the number 0.

is a hexadecimal string identifying the database file
containing the row. The first data file has the
number 1. The length of this string may vary
depending on your operating system.

Consider this ROWID value:

0000000F.0000.0002

The row corresponding to this ROWID is the first row (0000) in the
fifteenth data block (0000000F) of the second data file (0002).

The MLSLABEL datatype is used to store the binary format a label
used on a secure operating system. Labels are used by Trusted Oracle7
to mediate access to information. You can also define columns with this
datatype if you are using the standard Oracle7 Server. For more
information on Trusted Oracle7, including this datatype and labels, see
Trusted Oracle7 Server Administrator’s Guide.

block

row

file

ANSI, DB2, and
SQL/DS Datatypes

2 – 28 Oracle7 Server SQL Reference

SQL commands that create tables and clusters can also both ANSI
datatypes and datatypes from IBM’s products SQL/DS and DB2.
Oracle7 creates columns with Oracle7 datatypes based on the
conversions defined in Table 2 – 2 and Table 2 – 3.

ANSI SQL Datatype Oracle7 Datatype

CHARACTER(n)
CHAR(n)

CHAR(n)

CHARACTER VARYING(n)
CHAR VARYING(n)

VARCHAR(n)

NUMERIC(p, s)
DECIMAL(p, s)

NUMBER(p, s)

INTEGER
INT
SMALLINT

NUMBER(38)

FLOAT(b) 2

DOUBLE PRECISION 3

REAL 4

NUMBER

Table 2 – 2 ANSI Datatypes Converted to Oracle7 Datatypes

SQL/DS or DB2 Datatype Oracle7 Datatype

CHARACTER(n) CHAR(n)

VARCHAR(n) VARCHAR(n)

LONG VARCHAR(n) LONG

DECIMAL(p,s) 1 NUMBER(p,s)

INTEGER
SMALLINT

NUMBER(38)

FLOAT(b) 2 NUMBER

Table 2 – 3 SQL/DS and DB2 Datatypes Converted to
Oracle7 Datatypes

1 The NUMERIC, DECIMAL, and DEC datatypes can specify only fixed point numbers. For
these datatypes, s defaults to 0.
2 The FLOAT datatype is a floating point number with a binary precision b. This default
precision for this datatype is 126 binary, or 38 decimal.
3 The DOUBLE PRECISION datatype is a floating point number with binary precision 126.
4 The REAL datatype is a floating point number with a binary precision of 63, or 18
decimal.

Datatype Comparison
Rules

Number Values

Date Values

Character String Values

2 – 29Elements of Oracle7 SQL

Do not define columns with these SQL/DS and DB2 datatypes because
they have no corresponding Oracle7 datatype:

• GRAPHIC

• LONG VARGRAPHIC

• VARGRAPHIC

• TIME

• TIMESTAMP

Note that data of type TIME and TIMESTAMP can also be expressed as
Oracle7 DATE data.

This section describes how Oracle7 compares values of each datatype.

A larger value is considered greater than a smaller one. All negative
numbers are less than zero and all positive numbers. Thus, –1 is less
than 100; –100 is less than –1.

A later date is considered greater than an earlier one. For example, the
date equivalent of ’29–MAR–1991’ is less than that of ’05–JAN–1992’
and ’05–JAN–1992 1:35pm’ is greater than ’05–JAN–1992 10:09am’.

Character values are compared using one of these comparison rules:

• blank–padded comparison semantics

• non–padded comparison semantics

The following sections explain these comparison semantics. The results
of comparing two character values using different comparison
semantics may be different. Table 2 – 4 shows the results of comparing
five pairs of character values using each comparison semantic. The last
comparison in the table illustrates the differences between the
blank–padded and non–padded comparison semantics.

Single Characters

2 – 30 Oracle7 Server SQL Reference

The results of blank–padded and non–padded comparisons is shown in
Table 2 – 4. Usually, the results of blank–padded and non–padded
comparisons are the same. However, note the exception highlighted in
bold in Table 2 – 4 where blanks are considered less than any character,
which is true in most character sets.

Blank–Padded Non–Padded

 ’ab’ > ’aa ’ ’ab’ > ’aa’

 ’ab’ > ’a �’ ’ab’ > ’a �’

 ’ab’ > ’a’ ’ab’ > ’a’

’ab’ = ’ab’ ’ab’ = ’ab’

’a �’ = ’a’ ’a �’ > ’a’

Table 2 – 4 Results of Comparisons with Blank–Padded and
Non–Padded Comparison Semantics

Blank–Padded Comparison Semantics If the two values have different
lengths, Oracle7 first adds blanks to the end of the shorter one so their
lengths are equal. Oracle7 then compares the values character by
character up to the first character that differs. The value with the
greater character in the first differing position is considered greater. If
two values have no differing characters, then they are considered
equal. This rule means that two values are equal if they differ only in
the number of trailing blanks. Oracle7 uses blank–padded comparison
semantics only when both values in the comparison are either
expressions of datatype CHAR, text literals, or values returned by the
USER function.

Non–Padded Comparison Semantics Oracle7 compares two values
character by character up to the first character that differs. The value
with the greater character in that position is considered greater. If two
values of different length are identical up to the end of the shorter one,
the longer value is considered greater. If two values of equal length
have no differing characters, then the values are considered equal.
Oracle7 uses non–padded comparison semantics whenever one or both
values in the comparison have the datatype VARCHAR2.

Oracle7 compares single characters according to their numeric values
in the database character set. One character is greater than another if it
has a greater numeric value than the other in the character set. In
Table 2 – 4, blanks are considered less than any character, which is true
in most character sets.

2 – 31Elements of Oracle7 SQL

These are some common character sets:

• 7–bit ASCII (American Standard Code for Information
Interchange)

• EBCDIC (Extended Binary Coded Decimal Interchange Code)
Code Page 500

• ISO 8859/1 (International Standards Organization)

• JEUC Japan Extended UNIX

Portions of the ASCII and EBCDIC character sets appear in Table 2 – 5
and Table 2 – 6. Note that uppercase and lowercase letters are not
equivalent. Also, note that the numeric values for the characters of a
character set may not match the linguistic sequence for a particular
language.

ASCII Character Set

2 – 32 Oracle7 Server SQL Reference

Table 2 – 5 lists the 7–bit ASCII character set.

Decimal value Symbol Decimal value Symbol

32 blank 59 ;

33 ! 60 <

34 ” 61 =

35 # 62 >

36 $ 63 ?

37 % 64 @

38 & 65–90 A–Z

39 ’ 91 [

40 (92 \

41) 93]

42 * 94 ^^

43 + 95 _

44 , 96 ‘

45 – 97–122 a–z

46 . 123 {

47 / 124 |

48–57 0–9 125 }

58 : 126 ~

Table 2 – 5 ASCII Character Set

EBCDIC Character Set

2 – 33Elements of Oracle7 SQL

Table 2 – 6 lists a common portion of the EBCDIC character set.

Decimal value Symbol Decimal value Symbol

64 blank 108 %

74 ¢ 109 _

75 . 110 >

76 < 111 ?

77 (122 :

78 + 123 #

79 | 124 @

80 & 125 ’

90 ! 126 =

91 $ 127 ”

92 * 129–137 a–i

93) 145–153 j–r

94 ; 162–169 s–z

95 ¬ 193–201 A–I

96 – 209–217 J–R

97 / 226–233 S–Z

Table 2 – 6 EBCDIC Character Set

Data Conversion

Implicit Data Conversion

Example I

Example II

Example III

Example IV

2 – 34 Oracle7 Server SQL Reference

Generally an expression cannot contain values of different datatypes.
For example, an expression cannot multiply 5 by 10 and then add
’JAMES’. However, Oracle7 supports both implicit and explicit
conversion of values from one datatype to another.

Oracle7 automatically converts a value from one datatype to another
when such a conversion makes sense. Oracle7 performs datatype
conversions in these cases:

• When an INSERT or UPDATE statement assigns a value of one
datatype to a column of another, Oracle7 converts the value to
the datatype of the column.

• When you use a SQL function or operator with an argument
with a datatype other than the one it accepts, Oracle7 converts
the argument to the accepted datatype.

• When you use a comparison operator on values of different
datatypes, Oracle7 converts one of the expressions to the
datatype of the other.

The text literal ’10’ has datatype CHAR. Oracle7 implicitly converts it
to the NUMBER datatype if it appears in a numeric expression as in the
following statement:

SELECT sal + ’10’

 FROM emp

When a condition compares a character value and a NUMBER value,
Oracle7 implicitly converts the character value to a NUMBER value,
rather than converting the NUMBER value to a character value. in the
following statement, Oracle7 implicitly converts ’7936’ to 7936:

SELECT ename

 FROM emp

WHERE empno = ’7936’

If the character value is too short to fit the entire number value, the
number value is rounded.

In the following statement, Oracle7 implicitly converts ’12–MAR–1993’
to a DATE value using the default date format ’DD–MON–YYYY’:

SELECT ename

 FROM emp

WHERE hiredate = ’12–MAR–1993’

In the following statement, Oracle7 implicitly converts the text literal
’00002514.0001.0001’ to a ROWID value:

Explicit Data Conversion

2 – 35Elements of Oracle7 SQL

SELECT ename

 FROM emp

WHERE ROWID = ’00002514.0001.0001’

You can also explicitly specify datatype conversions using SQL
conversion functions. Table 2 – 7 shows SQL functions that explicitly
convert a value from one datatype to another.

 TO
FROM

CHAR NUMBER DATE RAW ROWID

CHAR unnecessary TO_NUMBER TO_DATE HEXTORAW CHARTOROWID

������ TO_CHAR unnecessary TO_DATE
(number,’J’)

DATE TO_CHAR TO_CHAR
(date,’J’)

unnecessary

RAW RAWTOHEX unnecessary

ROWID ROWIDTOCHAR unnecessary

Table 2 – 7 SQL Functions for Datatype Conversion

For information on these functions, see the section “Conversion
Functions” on page 3 – 42.

Note: Note that Table 2 – 7 does not show conversions from
LONG and LONG RAW values because it is impossible to
specify LONG and LONG RAW values in cases in which
Oracle7 can perform implicit datatype conversion. For
example, LONG and LONG RAW values cannot appear in
expressions with functions or operators. For information on the
limitations on LONG and LONG RAW datatypes, see the
section “LONG Datatype” on page 2 – 23.

Implicit vs. Explicit Data
Conversion

Nulls in SQL Functions

2 – 36 Oracle7 Server SQL Reference

It is recommended that you specify explicit conversions rather than
rely on implicit or automatic conversions for these reasons:

• SQL statements are easier to understand when you use explicit
datatype conversions functions.

• Automatic datatype conversion can have a negative impact on
performance, especially if the datatype of a column value is
converted to that of a constant rather than the other way around.

• Implicit conversion depends on the context in which it occurs
and may not work the same way in every case.

• Algorithms for implicit conversion are subject to change across
software releases and among Oracle products. Behavior of
explicit conversions is more predictable.

Nulls

If a column in a row has no value, then column is said to be null, or to
contain a null. Nulls can appear in columns of any datatype that are
not restricted by NOT NULL or PRIMARY KEY integrity constraints.
Use a null when the actual value is not known or when a value would
not be meaningful.

Oracle7 currently treats a character value with a length of zero as null.
However, this may not continue to be true in future versions of
Oracle7.

Do not use null to represent a value of zero, because they are not
equivalent. Any arithmetic expression containing a null always
evaluates to null. For example, null added to 10 is null. In fact, all
operators (except concatenation) return null when given a null
operand.

All scalar functions (except NVL and TRANSLATE) return null when
given a null argument. The NVL function can be used to return a value
when a null occurs. For example, the expression NVL(COMM,0)
returns 0 if COMM is null or the value of COMM if it is not null.

Most group functions ignore nulls. For example, consider a query that
averages the five values 1000, null, null, null, and 2000. Such a query
ignores the nulls and calculates the average to be (1000+2000)/2 = 1500.

Nulls with Comparison
Operators

Nulls in Conditions

2 – 37Elements of Oracle7 SQL

To test for nulls, only use the comparison operators IS NULL and IS
NOT NULL. If you use any other operator with nulls and the result
depends on the value of the null, the result is UNKNOWN. Because
null represents a lack of data, a null cannot be equal or unequal to any
value or to another null. However, note that Oracle7 considers two
nulls to be equal when evaluating a DECODE expression. For
information on the DECODE syntax, see the section “Expr” on
page 3 – 73.

A condition that evaluates to UNKNOWN acts almost like FALSE. For
example, a SELECT statement with a condition in the WHERE clause
that evaluates to UNKNOWN will return no rows. However, a
condition evaluating to UNKNOWN differs from FALSE in that
further operations on an UNKNOWN condition evaluation will
evaluate to UNKNOWN. Thus, NOT FALSE evaluates to TRUE, but
NOT UNKNOWN evaluates to UNKNOWN.

Table 2 – 8 shows examples of various evaluations involving nulls in
conditions. If the conditions evaluating to UNKNOWN were used in a
WHERE clause of a SELECT statement, then no rows would be
returned for that query.

If A is: Condition Evaluates to:

10 a IS NULL FALSE

10 a IS NOT NULL TRUE

NULL a IS NULL TRUE

NULL a IS NOT NULL FALSE

10 a = NULL UNKNOWN

10 a != NULL UNKNOWN

NULL a = NULL UNKNOWN

NULL a != NULL UNKNOWN

NULL a = 10 UNKNOWN

NULL a != 10 UNKNOWN

Table 2 – 8 Conditions Containing Nulls

For the truth tables showing the results of logical expressions
containing nulls, see Table 3 – 6, Table 3 – 7, and Table 3 – 8 beginning
on page 3 – 11.

CURRVAL and
NEXTVAL

2 – 38 Oracle7 Server SQL Reference

Pseudocolumns

A pseudocolumn behaves like a table column, but is not actually stored
in the table. You can select from pseudocolumns, but you cannot insert,
update, or delete their values. This section describes these
pseudocolumns:

• CURRVAL

• NEXTVAL

• LEVEL

• ROWID

• ROWNUM

A sequence is a schema object that can generate unique sequential
values. These values are often used for primary and unique keys. You
can refer to sequence values in SQL statements with these
pseudocolumns:

returns the current value of a sequence.

increments the sequence and returns the next
value.

You must qualify CURRVAL and NEXTVAL with the name of the
sequence:

sequence.CURRVAL

sequence.NEXTVAL

To refer to the current or next value of a sequence in the schema of
another user, you must have been granted either SELECT object
privilege on the sequence or SELECT ANY SEQUENCE system
privilege and you must qualify the sequence with the schema
containing it:

schema.sequence.CURRVAL

schema.sequence.NEXTVAL

To refer to the value of a sequence on a remote database, you must
qualify the sequence with a complete or partial name of a database link:

schema.sequence.CURRVAL@dblink

schema.sequence.NEXTVAL@dblink

For more information on referring to database links, see the section
“Referring to Objects in Remote Databases” on page 2 – 11.

CURRVAL

NEXTVAL

Using Sequence Values

2 – 39Elements of Oracle7 SQL

If you are using Trusted Oracle7 in DBMS MAC mode, you can only
refer to a sequence if your DBMS label dominates the sequence’s
creation label or if one of these criteria is satisfied:

• If the sequence’s creation label is higher than your DBMS label,
you must have READUP and WRITEUP system privileges

• If the sequence’s creation label is lower than your DBMS label,
you must have WRITEDOWN system privilege.

• If the sequence’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

If you are using Trusted Oracle7 in OS MAC mode, you cannot refer to
a sequence with a lower creation label than your DBMS label.

You can use CURRVAL and NEXTVAL in these places:

• the SELECT list of a SELECT statement that is not contained in a
subquery, snapshot or view

• the SELECT list of a subquery in an INSERT statement

• the VALUES clause of an INSERT statement

• the SET clause of an UPDATE statement

You cannot use CURRVAL and NEXTVAL in these places:

• a subquery in a DELETE, SELECT, or UPDATE statement

• a view’s query or snapshot’s query

• a SELECT statement with the DISTINCT operator

• a SELECT statement with a GROUP BY or ORDER BY clause

• a SELECT statement that is combined with another SELECT
statement with the UNION, INTERSECT, or MINUS set operator

• the WHERE clause of a SELECT statement

• DEFAULT value of a column in a CREATE TABLE or ALTER
TABLE statement

• the condition of a CHECK constraint

Also, within a single SQL statement, all referenced LONG columns,
updated tables, and locked tables must be located on the same
database.

Example I

Example II

Example III

2 – 40 Oracle7 Server SQL Reference

When you create a sequence, you can define its initial value and the
increment between its values. The first reference to NEXTVAL returns
the sequence’s initial value. Subsequent references to NEXTVAL
increment the sequence value by the defined increment and return the
new value. Any reference to CURRVAL always returns the sequence’s
current value, which is the value returned by the last reference to
NEXTVAL. Note that before you use CURRVAL for a sequence in your
session, you must first initialize the sequence with NEXTVAL.

If a statement contains more than one reference to NEXTVAL for a
sequence, Oracle7 increments the sequence once and returns the same
value for all occurrences of NEXTVAL. If a statement contains
references to both CURRVAL and NEXTVAL, Oracle7 increments the
sequence and returns the same value for both CURRVAL and
NEXTVAL regardless of their order within the statement.

A sequence can be accessed by many users concurrently with no
waiting or locking. For information on sequences, see the CREATE
SEQUENCE command on page 4 – 224.

This example selects the current value of the employee sequence:

SELECT empseq.currval

 FROM DUAL

This example increments the employee sequence and uses its value for
a new employee inserted into the employee table:

INSERT INTO emp

 VALUES (empseq.nextval, ’LEWIS’, ’CLERK’,

 7902, SYSDATE, 1200, NULL, 20)

This example adds a new order with the next order number to the
master order table and then adds sub–orders with this number to the
detail order table:

INSERT INTO master_order(orderno, customer, orderdate)

 VALUES (orderseq.nextval, ’Al’’s Auto Shop’, SYSDATE)

INSERT INTO detail_order (orderno, part, quantity)

 VALUES (orderseq.currval, ’SPARKPLUG’, 4)

INSERT INTO detail_order (orderno, part, quantity)

 VALUES (orderseq.currval, ’FUEL PUMP’, 1)

INSERT INTO detail_order (orderno, part, quantity)

 VALUES (orderseq.currval, ’TAILPIPE’, 2)

LEVEL

ROWID

2 – 41Elements of Oracle7 SQL

For each row returned by a hierarchical query, the LEVEL
pseudocolumn returns 1 for a root node, 2 for a child of a root, and so
on. A root node is the highest node within an inverted tree. A child node
is any non–root node. A parent node is any node that has children. A leaf
node is any node without children. Figure 2 – 3 shows the nodes of an
inverted tree with their LEVEL values.

Level 1

Level 2

Level 3

Level 4 child/
leaf

parent/
child

root/
parent

child/
leaf

child/
leaf

child/
leaf

child/
leaf

child/
leaf

parent/
child

parent/
child

Figure 2 – 3 Hierarchical Tree

To define a hierarchical relationship in a query, you must use the
START WITH and CONNECT BY clauses. For more information on
using the LEVEL pseudocolumn, see the SELECT command on
page 4 – 405.

For each row in the database, the ROWID pseudocolumn returns a
row’s address. ROWID values contain information necessary to locate a
row:

• which data block in the data file

• which row in the data block (first row is 0)

• which data file (first file is 1)

Usually, a ROWID value uniquely identifies a row in the database.
However, rows in different tables that are stored together in the same
cluster can have the same ROWID.

Values of the ROWID pseudocolumn have the datatype ROWID. For
information on the ROWID datatype, see the section “ROWID
Datatype” on page 2 – 27.

Example

ROWNUM

2 – 42 Oracle7 Server SQL Reference

ROWID values have several important uses:

• They are the fastest way to access a single row.

• They can show you how a table’s rows are stored.

• They are unique identifiers for rows in a table.

A ROWID does not change during the lifetime of its row. However, you
should not use ROWID as a table’s primary key. If you delete and
reinsert a row with the Import and Export utilities, for example, its
ROWID may change. If you delete a row, Oracle7 may reassign its
ROWID to a new row inserted later.

Although you can use the ROWID pseudocolumn in the SELECT and
WHERE clauses of a query, these pseudocolumn values are not actually
stored in the database. You cannot insert, update, or delete a value of
the ROWID pseudocolumn.

This statement selects the address of all rows that contain data for
employees in department 20:

SELECT ROWID, ename

 FROM emp

 WHERE deptno = 20

ROWID ENAME

–––––––––––––––––– ––––––––––

0000000F.0000.0002 SMITH

0000000F.0003.0002 JONES

0000000F.0007.0002 SCOTT

0000000F.000A.0002 ADAMS

0000000F.000C.0002 FORD

For each row returned by a query, the ROWNUM pseudocolumn
returns a number indicating the order in which Oracle7 selects the row
from a table or set of joined rows. The first row selected has a
ROWNUM of 1, the second has 2, and so on.

You can use ROWNUM to limit the number of rows returned by a
query, as in this example:

SELECT *

 FROM emp

 WHERE ROWNUM < 10

You can also use ROWNUM to assign unique values to each row of a
table, as in this example:

UPDATE tabx

 SET col1 = ROWNUM

Comments Within SQL
Statements

2 – 43Elements of Oracle7 SQL

Oracle7 assigns a ROWNUM value to each row as it is retrieved, before
rows are sorted for an ORDER BY clause, so an ORDER BY clause
normally does not affect the ROWNUM of each row. However, if an
ORDER BY clause causes Oracle7 to use an index to access the data,
Oracle7 may retrieve the rows in a different order than without the
index, so the ROWNUMs may differ than without the ORDER BY
clause.

Note that conditions testing for ROWNUM values greater than a
positive integer are always false. For example, this query returns no
rows:

SELECT * FROM emp

 WHERE ROWNUM > 1

The first row fetched is assigned a ROWNUM of 1 and makes the
condition false. The second row to be fetched is now the first row and
is also assigned a ROWNUM of 1 and makes the condition false. All
rows subsequently fail to satisfy the condition, so no rows are returned.

Comments

You can associate comments with SQL statements and schema objects.

Comments within SQL statements do not affect the statement
execution, but they may make your application easier for you to read
and maintain. You may want to include a comment in a statement that
describes the statement’s purpose within your application.

A comment can appear between any keywords, parameters or
punctuation marks in a statement. You can include a comment in a
statement using either of these means:

• Begin the comment with /*. Proceed with the text of the
comment. This text can span multiple lines. End the comment
with */. The opening and terminating characters need not be
separated from the text by a space or a line break.

• Begin the comment with –– (two hyphens). Proceed with the text
of the comment. This text cannot extend to a new line. End the
comment with a line break.

A SQL statement can contain multiple comments of both styles. The
text of a comment can contain any printable characters in your
database character set.

Example

Comments on Schema
Objects

2 – 44 Oracle7 Server SQL Reference

You can use comments in a SQL statement to pass instructions, or hints,
to the Oracle7 optimizer. The optimizer uses these hints to choose an
execution plan for the statement. For more information on hints, see the
“Tuning SQL Statements” chapter of Oracle7 Server Tuning.

Note that you cannot use these styles of comments between SQL
statements in a SQL script. You can use the Server Manager or
SQL*Plus REMARK command for this purpose. For information on
these commands, see Oracle Server Manager User’s Guide or SQL*Plus
User’s Guide and Reference.

These statements contain many comments:

SELECT ename, sal + NVL(comm, 0), job, loc

/* Select all employees whose compensation is

greater than that of Jones.*/

FROM emp, dept

 /*The DEPT table is used to get the department name.*/

WHERE emp.deptno = dept.deptno

 AND sal + NVL(comm,0) > /* Subquery: */

 (SELECT sal + NLV(comm,0)

 /* total compensation is sal + comm */

FROM emp

WHERE ename = ’JONES’)

SELECT ename, –– select the name

sal + NVL(comm, 0) –– total compensation

job –– job

loc –– and city containing the office

FROM emp, –– of all employees

 dept

WHERE emp.deptno = dept.deptno

 AND sal + NVL(comm, 0) >–– whose compensation

–– is greater than

 (SELECT sal + NVL(comm,0) –– the compensation

FROM emp

WHERE ename = ’JONES’) –– of Jones.

You can associate a comment with a table, view, snapshot, or column
using the COMMENT command described in Chapter 4, “Commands”
of this manual. Comments associated with schema objects are stored in
the data dictionary.

C H A P T E R

3
T

3 – 1Operators, Functions, Expressions, Conditions

Operators, Functions,
Expressions, Conditions

his chapter describes methods of manipulating individual data
items. For example, standard arithmetic operators such as addition
and subtraction are discussed as well as less common functions such as
absolute value or string length. Topics include:

• operators

• SQL functions

• user functions

• format models

• expressions

• conditions

Unary and Binary
Operators

Precedence

3 – 2 Oracle7 Server SQL Reference

Operators

An operator is used to manipulate individual data items and return a
result. These items are called operands or arguments. Operators are
represented by special characters or by keywords. For example, the
multiplication operator is represented by an asterisk (*) and the
operator that tests for nulls is represented by the keywords IS NULL.
The tables in the following sections of this chapter list SQL operators.

There are two general classes of operators:

A unary operator operates on only one operand. A unary
operator typically appears with its operand in this format:

operator operand

A binary operator operates on two operands. A binary
operator appears with its operands in this format:

operand1 operator operand2

Other operators with special formats accept more than two operands. If
an operator is given a null operator, the result is always null. The only
operator that does not follow this rule is concatenation (||).

An important property of an operator is its precedence. Precedence is
the order in which Oracle7 evaluates different operators in the same
expression. When evaluating an expression containing multiple
operators, Oracle7 evaluates operators with higher precedence before
evaluating those with lower precedence. Oracle7 evaluates operators
with equal precedence from left to right within an expression.

Table 3 – 1 lists the levels of precedence among SQL operators from
high to low. Operators listed on the same line have the same
precedence.

unary

binary

Example

Arithmetic Operators

3 – 3Operators, Functions, Expressions, Conditions

Highest Precedence

Unary + – arithmetic operators PRIOR Operator

* / arithmetic operators

Binary = – arithmetic operators || character operators

All comparison operators

NOT logical operator

AND logical operator

OR logical operator

Lowest Precedence

Table 3 – 1 SQL Operator Precedence

You can use parentheses in an expression to override operator
precedence. Oracle7 evaluates expressions inside parentheses before
evaluating those outside.

SQL also supports set operators (UNION, UNION ALL, INTERSECT,
and MINUS) which combine sets of rows returned by queries, rather
than individual data items. All set operators have equal precedence.

In the following expression multiplication has a higher precedence than
addition, so Oracle7 first multiplies 2 by 3 and then adds the result to 1.

1+2*3

You can use an arithmetic operator in an expression to negate, add,
subtract, multiply, and divide numeric values. The result of the
operation is also a numeric value. Some of these operators are also
used in date arithmetic. Table 3 – 2 lists arithmetic operators.

Operator Purpose Example

+ – Denotes a positive or
negative expression.
These are unary
operators.

SELECT * FROM orders
WHERE qtysold = –1

SELECT * FROM emp
WHERE –sal < 0

* / Multiplies, divides.
These are binary
operators.

UPDATE emp
SET sal = sal * 1.1

+ – Adds, subtracts.
These are binary
operators.

SELECT sal + comm FROM emp
WHERE SYSDATE – hiredate > 365

Table 3 – 2 Arithmetic Operators

Character Operators

3 – 4 Oracle7 Server SQL Reference

Do not use consecutive minus signs with no separation (– –) in
arithmetic expressions to indicate double negation or the subtraction of
a negative value. The characters – – are used to begin comments within
SQL statements. You should separate consecutive minus signs with a
space or a parenthesis. For more information on comments within SQL
statements, see the section “Comments” on page 2 – 43.

Character operators are used in expressions to manipulate character
strings. Table 3 – 3 lists the single character operator.

Operator Purpose Example

|| Concatenates character
strings.

SELECT ’Name is ’ || ename
FROM emp

Table 3 – 3 Character Operators

The result of concatenating two character strings is another character
string. If both character strings are of datatype CHAR, the result has
datatype CHAR and is limited to 255 characters. If either string is of
datatype VARCHAR2, the result has datatype VARCHAR2 and is
limited to 2000 characters. Trailing blanks in character strings are
preserved by concatenation, regardless of the strings’ datatypes. For
more information on the differences between the CHAR and
VARCHAR2 datatypes, see the section “Character Datatypes” on
page 2 – 20.

On most platforms, the concatenation operator is two solid vertical
bars, as shown in Table 3 – 3. However, some IBM platforms use broken
vertical bars for this operator. When moving SQL script files between
systems having different character sets, such as between ASCII and
EBCDIC, vertical bars might not be translated into the vertical bar
required by the target Oracle7 environment. Because it may be difficult
or impossible to control translation performed by operating system or
network utilities, the CONCAT character function is provided as an
alternative to the vertical bar operator. Its use is recommended in
applications that will be moved to environments with differing
character sets.

Although Oracle7 treats zero–length character strings as nulls,
concatenating a zero–length character string with another operand
always results in the other operand, so null can only result from the
concatenation of two null strings. However, this may not continue to be
true in future versions of Oracle7. To concatenate an expression that
might be null, use the NVL function to explicitly convert the expression
to a zero–length string.

Example

Comparison Operators

3 – 5Operators, Functions, Expressions, Conditions

This example creates a table with both CHAR and VARCHAR2
columns, inserts values both with and without trailing blanks, and then
selects these values, concatenating them. Note that for both CHAR and
VARCHAR2 columns, the trailing blanks are preserved.

CREATE TABLE tab1 (col1 VARCHAR2(6), col2 CHAR(6),

 col3 VARCHAR2(6), col4 CHAR(6));

Table created.

INSERT INTO tab1 (col1, col2, col3, col4)

 VALUES (’abc’, ’def ’, ’ghi ’, ’jkl’);

1 row created.

SELECT col1||col2||col3||col4 ”Concatenation”

 FROM tab1;

Concatenation

––––––––––––––––––––––––

abcdef ghi jkl

Comparison operators are used in conditions that compare one
expression to another. The result of comparing one expression to
another can be TRUE, FALSE, or UNKNOWN. For information on
conditions, see the section “Condition” on page 3 – 78. Table 3 – 4 lists
comparison operators.

Operator Purpose Example

� Equality test. SELECT *
FROM emp
WHERE sal = 1500

! �
��

��

< >

Inequality test. All forms of the inequality
operator may not be available on all
platforms.

SELECT *

FROM emp

WHERE sal != 1500

>

<

“Greater than” and “less than” tests. SELECT *

FROM emp

WHERE sal > 1500

SELECT *

FROM emp

WHERE sal < 1500

Table 3 – 4 Comparison Operators

3 – 6 Oracle7 Server SQL Reference

Operator ExamplePurpose

>�

<�

“Greater than or equal to” and “less than or
equal to” tests.

SELECT *

FROM emp

WHERE sal >= 1500

SELECT *

FROM emp

WHERE sal >= 1500

IN “Equal to any member of” test.
Equivalent to “= ANY”.

SELECT *

FROM emp

WHERE job IN

(’CLERK’,’ANALYST’)

SELECT *

FROM emp

WHERE sal IN

(SELECT sal

 FROM emp

 WHERE deptno = 30)

NOT IN Equivalent to “!=ALL”. Evaluates to FALSE
if any member of the set is NULL.

SELECT *

FROM emp

WHERE sal NOT IN

(SELECT sal

FROM emp

WHERE deptno = 30)

SELECT *

FROM emp

WHERE job NOT IN

(’CLERK’, ANALYST’)

ANY
SOME

Compares a value to each value in a list or
returned by a query. Must be preceded by
=, !=, >, <, <=, >=.
Evaluates to FALSE if the query returns no
rows.

SELECT *

FROM emp

WHERE sal = ANY

(SELECT sal FROM emp

WHERE deptno = 30)

ALL Compares a value to every value in a list or
returned by a query. Must be preceded by
=, !=, >, <, <=, >=.
Evaluates to TRUE if the query returns no
rows.

SELECT *

FROM emp

WHERE sal >=

ALL (1400, 3000)

Table 3 – 4 Comparison Operators

NOT IN Operator

3 – 7Operators, Functions, Expressions, Conditions

Operator ExamplePurpose

[NOT] BETWEEN x AND y [Not] greater than or equal to x and less
than or equal to y.

SELECT *

FROM emp

WHERE sal

BETWEEN 2000

 AND 3000

EXISTS TRUE if a subquery returns at least one
row.

SELECT dname, deptno
FROM dept
WHERE EXISTS
(SELECT *

FROM emp
WHERE
 dept.deptno
= emp.deptno)

x [NOT] LIKE y
[ESCAPE ’z’]

TRUE if x does [not] match the pattern y.
Within y, the character “%” matches any
string of zero or more characters except
null. The character “_” matches any single
character. Any character, excepting percent
(%) and underbar (_) may follow ESCAPE;
a wilcard character will be treated as a
literal if preceded by the escape character.

See the section “LIKE
Operator” beginning on
page 3 – 8.

SELECT *

FROM tab1

WHERE col1 LIKE

’A_C/%E%’ ESCAPE ’/’

IS [NOT] NULL Tests for nulls. This is the only operator that
should be used to test for nulls. See the
section “Nulls” on page 2 – 36.

SELECT dname, deptno

FROM emp

WHERE comm IS NULL

Table 3 – 4 Comparison Operators

All rows evaluate to UNKNOWN (and no rows are returned) if any
item in the list following a NOT IN operation is null. For example, the
following statement returns the string ’TRUE’:

SELECT ’TRUE’

FROM emp

WHERE deptno NOT IN (5,15)

However, the following statement returns no rows:

SELECT ’TRUE’

FROM emp

WHERE deptno NOT IN (5,15,null)

The above example returns no rows because the WHERE clause
condition evaluates to:

deptno != 5 AND deptno != 15 AND deptno != null

Because all conditions that compare a null result in null, the entire
expression results in a null. This behavior can easily be overlooked,
especially when the NOT IN operator references a subquery.

LIKE Operator

3 – 8 Oracle7 Server SQL Reference

The LIKE operator is used in character string comparisons with pattern
matching. The syntax for a condition using the LIKE operator is shown
in this diagram:

char1

NOT ESCAPE ’c’

LIKE char2

LIKE condition (Form VII) ::=

where:

is a value to be compared with a pattern. This
value can have datatype CHAR or VARCHAR2.

logically inverts the result of the condition,
returning FALSE if the condition evaluates to
TRUE and TRUE if it evaluates to FALSE.

is the pattern to which char1 is compared. The
pattern is a value of datatype CHAR or
VARCHAR2 and can contain the special pattern
matching characters % and _.

identifies a single character as the escape character.
The escape character can be used to cause Oracle7
to interpret % or _ literally, rather than as a special
character, in the pattern.

If you wish to search for strings containing an
escape character, you must specify this character
twice. For example, if the escape character is ’/’, to
search for the string ’client/server’, you must
specify, ’client//server’.

While the equal (=) operator exactly matches one character value to
another, the LIKE operator matches a portion of one character value to
another by searching the first value for the pattern specified by the
second. Note that blank padding is not used for LIKE comparisons.

With the LIKE operator, you can compare a value to a pattern rather
than to a constant. The pattern can only appear after the LIKE
keyword. For example, you can issue the following query to find the
salaries of all employees with names beginning with ’SM’:

SELECT sal

FROM emp

WHERE ename LIKE ’SM%’

char1

NOT

char2

ESCAPE

3 – 9Operators, Functions, Expressions, Conditions

The following query uses the = operator, rather than the LIKE operator,
to find the salaries of all employees with the name ’SM%’:

SELECT sal

FROM emp

WHERE ename = ’SM%’

The following query finds the salaries of all employees with the name
’SM%’. Oracle7 interprets ’SM%’ as a text literal, rather than as a
pattern, because it precedes the LIKE operator:

SELECT sal

FROM emp

WHERE ’SM%’ LIKE ename

Patterns usually use special characters that Oracle7 matches with
different characters in the value:

• An underscore (_) in the pattern matches exactly one character
(as opposed to one byte in a multi–byte character set) in the
value.

• A percent sign (%) in the pattern can match zero or more
characters (as opposed to bytes in a multi–byte character set) in
the value. Note that the pattern ’%’ cannot match a null.

Case Sensitivity and Pattern Matching Case is significant in all
conditions comparing character expressions including the LIKE and
equality (=) operators. You can use the UPPER() function to perform a
case insensitive match, as in this condition:

UPPER(ename) LIKE ’SM%’

Pattern Matching on Indexed Columns When LIKE is used to search an
indexed column for a pattern, Oracle7 can use the index to improve the
statement’s performance if the leading character in the pattern is not
“%” or “_”. In this case, Oracle7 can scan the index by this leading
character. If the first character in the pattern is “%” or “_”, the index
cannot improve the query’s performance because Oracle7 cannot scan
the index.

Example I

Example II

Example III

Example IV

3 – 10 Oracle7 Server SQL Reference

This condition is true for all ENAME values beginning with “MA”:

ename LIKE ’MA%’

All of these ENAME values make the condition TRUE:

MARTIN, MA, MARK, MARY

Since case is significant, ENAME values beginning with “Ma,” “ma,”
and “mA” make the condition FALSE.

Consider this condition:

ename LIKE ’SMITH_’

This condition is true for these ENAME values:

SMITHE, SMITHY, SMITHS

This condition is false for ’SMITH’, since the special character “_” must
match exactly one character of the ENAME value.

ESCAPE Option You can include the actual characters “%” or “_” in
the pattern by using the ESCAPE option. The ESCAPE option identifies
the escape character. If the escape character appears in the pattern
before the character “%” or “_” then Oracle7 interprets this character
literally in the pattern, rather than as a special pattern matching
character.

To search for any employees with the pattern ’A_B’ in their name:

SELECT ename

FROM emp

WHERE ename LIKE ’%A_B%’ ESCAPE ’\’

The ESCAPE option identifies the backslash (\) as the escape character.
In the pattern, the escape character precedes the underscore (_). This
causes Oracle7 to interpret the underscore literally, rather than as a
special pattern matching character.

Patterns Without % If a pattern does not contain the “%” character,
the condition can only be TRUE if both operands have the same length.

Consider the definition of this table and the values inserted into it:

CREATE TABLE freds (f CHAR(6), v VARCHAR2(6))

INSERT INTO freds VALUES (’FRED’, ’FRED’)

Because Oracle7 blank–pads CHAR values, the value of F is
blank–padded to 6 bytes. V is not blank–padded and has length 4.
Table 3 – 5 shows conditions that evaluate to TRUE and FALSE.

Logical Operators

NOT Operator

3 – 11Operators, Functions, Expressions, Conditions

A logical operator combines the results of two component conditions to
produce a single result based on them or to invert the result of a single
condition. Table 3 – 5 lists logical operators.

Operator Function Example

NOT Returns TRUE if the
following condition is
FALSE. Returns
FALSE if it is TRUE. If
it is UNKNOWN, it
remains UNKNOWN

SELECT *

FROM emp

WHERE NOT (job IS NULL)

SELECT *

FROM emp

WHERE NOT

(sal BETWEEN 1000 AND 2000)

AND Returns TRUE if both
component conditions
are TRUE. Returns
FALSE if either is
FALSE. Otherwise
returns UNKNOWN.

SELECT *

FROM emp

WHERE job = ’CLERK’

AND deptno = 10

OR Returns TRUE if ei-
ther component
condition is TRUE.
Returns FALSE if both
are FALSE. Otherwise
returns UNKNOWN.

SELECT *

FROM emp

WHERE job = ’CLERK’

OR deptno = 10

Table 3 – 5 Logical Operators

For example, in the WHERE clause of the following SELECT statement,
the AND logical operator is used to ensure that only those hired before
1984 and earning more than $1000 a month are returned:

SELECT *

FROM emp

WHERE hiredate < TO_DATE(’01–JAN–1984’, ’DD–MON–YYYY’)

 AND sal > 1000

Table 3 – 6 shows the result of applying the NOT operator to a
condition.

NOT TRUE FALSE UNKNOWN

FALSE TRUE UNKNOWN

Table 3 – 6 NOT Truth Table

AND Operator

OR Operator

Set Operators

3 – 12 Oracle7 Server SQL Reference

Table 3 – 7 shows the results of combining two expressions with AND.

AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

Table 3 – 7 AND Truth Table

Table 3 – 8 shows the results of combining two expressions with OR.

OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

Table 3 – 8 OR Truth Table

Set operators combine the results of two component queries into a
single result. Queries containing set operators are called compound
queries. Table 3 – 9 lists SQL set operators.

Operator Returns

UNION All rows selected by either query.

UNION ALL All rows selected by either query,
including all duplicates.

INTERSECT All distinct rows selected by both
queries.

MINUS All distinct rows selected by the
first query but not the second.

Table 3 – 9 Set Operators

All set operators have equal precedence. If a SQL statement contains
multiple set operators, Oracle7 evaluates them from the left to right if
no parentheses explicitly specify another order. To comply with
emerging SQL standards, a future version of Oracle7 will give the
INTERSECT operator greater precedence than the other set operators,
so you should use parentheses to explicitly specify order of evaluation
in queries that use the INTERSECT operator with other set operators.

Examples

3 – 13Operators, Functions, Expressions, Conditions

The corresponding expressions in the select lists of the component
queries of a compound query must match in number and datatype. If
component queries select character data, the datatype of the return
values are determined as follows:

• If both queries select values of datatype CHAR, the returned
values have datatype CHAR.

• If either or both of the queries select values of datatype
VARCHAR2, the returned values have datatype VARCHAR2.

Consider these two queries and their results:

SELECT part

FROM orders_list1

PART

––––––––––

SPARKPLUG

FUEL PUMP

FUEL PUMP TAILPIPE

SELECT part

FROM orders_list2

PART

––––––––––

CRANKSHAFT

TAILPIPE

TAILPIPE

UNION
Example

3 – 14 Oracle7 Server SQL Reference

The following examples combine the two query results with each of the
set operators.

The following statement combines the results with the UNION
operator, which eliminates duplicate selected rows:

The following statement shows how datatype must match when
columns do not exist in one or the other table:

SELECT part, partnum, to_date(null) date_in

FROM orders_list1

UNION

SELECT part, to_null(null), date_in

FROM orders_list2

PART PARTNUM DATE_IN

–––––––––– ––––––– ––––––––

SPARKPLUS 3323165

SPARKPLUG 10/24/98

FUEL PUMP 3323162

FUEL PUMP 12/24/99

TAILPIPE 1332999

TAILPIPE 01/01/01

CRANKSHAFT 9394991

CRANKSHAFT 09/12/02

SELECT part

FROM orders_list1

UNION

SELECT part

FROM orders_list2

PART

––––––––––

SPARKPLUG

FUEL PUMP

TAILPIPE

CRANKSHAFT

UNION ALL
Example

INTERSECT
Example

3 – 15Operators, Functions, Expressions, Conditions

The following statement combines the results with the UNION ALL
operator which does not eliminate duplicate selected rows:

SELECT part

FROM orders_list1

UNION ALL

SELECT part

FROM orders_list2

PART

––––––––––

SPARKPLUG

FUEL PUMP

FUEL PUMP

TAILPIPE

CRANKSHAFT

TAILPIPE

TAILPIPE

Note that the UNION operator returns only distinct rows that appear
in either result, while the UNION ALL operator returns all rows. A
PART value that appears multiple times in either or both queries (such
as ’FUEL PUMP’) is returned only once by the UNION operator, but
multiple times by the UNION ALL operator.

The following statement combines the results with the INTERSECT
operator which returns only those rows returned by both queries:

SELECT part

FROM orders_list1

INTERSECT

SELECT part

FROM orders_list2

PART

––––––––––

TAILPIPE

MINUS
Example

Other Operators

3 – 16 Oracle7 Server SQL Reference

The following statement combines the results with the MINUS operator
which returns only those rows returned by the first query but not in the
second:

SELECT part

FROM orders_list1

MINUS

SELECT part

FROM orders_list2

PART

––––––––––

SPARKPLUG

FUEL PUMP

Table 3 – 10 lists other SQL operators.

Operator Purpose Example

(+) Indicates that the
preceding column is the
outer join column in a
join. See the section
“Outer Joins” on
page 4 – 425.

SELECT ename, dname

FROM emp, dept

WHERE dept.deptno

 = emp.deptno(+)

PRIOR Evaluates the following
expression for the parent
row of the current row in
a hierarchical, or
tree–structured, query. In
such a query, you must
use this operator in the
CONNECT BY clause to
define the relationship
between parent and child
rows. You can also use
this operator in other
parts of a SELECT
statement that performs a
hierarchical query. The
PRIOR operator is a unary
operator and has the same
precedence as the unary +
and – arithmetic
operators. See the section
“Hierarchical Queries” on
page 4 – 411.

SELECT empno, ename, mgr
FROM emp
CONNECT BY

PRIOR empno = mgr

Table 3 – 10 Other SQL Operators

3 – 17Operators, Functions, Expressions, Conditions

SQL Functions

A SQL function is similar to an operator in that it manipulates data
items and returns a result. SQL functions differ from operators in the
format in which they appear with their arguments. This format allows
them to operate on zero, one, two, or more arguments:

function(argument, argument, ...)

If you call a SQL function with an argument of a datatype other than
the datatype expected by the SQL function, Oracle7 implicitly converts
the argument to the expected datatype before performing the SQL
function. See the section “Data Conversion” on page 2 – 34.

If you call a SQL function with a null argument, the SQL function
automatically returns null. The only SQL functions that do not follow
this rule are CONCAT, DECODE, DUMP, NVL, and REPLACE.

SQL functions should not be confused with user functions written in
PL/SQL. User functions are described on page 3 – 57.

In the syntax diagrams for SQL functions, arguments are indicated
with their datatypes following the conventions described in the Preface
of this manual.

SQL functions are of these general types:

• single row (or scalar) functions

• group (or aggregate) functions

The two types of SQL functions differ in the number of rows upon
which they act. A single row function returns a single result row for
every row of a queried table or view, while a group function returns a
single result row for a group of queried rows.

Single row functions can appear in select lists (provided the SELECT
statement does not contain a GROUP BY clause), WHERE clauses,
START WITH clauses, and CONNECT BY clauses.

Group functions can appear in select lists and HAVING clauses. If you
use the GROUP BY clause in a SELECT statement, Oracle7 divides the
rows of a queried table or view into groups. In a query containing a
GROUP BY clause, all elements of the select list must be either
expressions from the GROUP BY clause, expressions containing group
functions, or constants. Oracle7 applies the group functions in the select
list to each group of rows and returns a single result row for each group.

Single Row Functions

Number Functions

ABS

ACOS

3 – 18 Oracle7 Server SQL Reference

If you omit the GROUP BY clause, Oracle7 applies group functions in
the select list to all the rows in the queried table or view. You use group
functions in the HAVING clause to eliminate groups from the output
based on the results of the group functions, rather than on the values
of the individual rows of the queried table or view. For more
information on the GROUP BY and HAVING clauses, see the section
“GROUP BY Clause” on page 4 – 416 and the section “HAVING
Clause” on page 4 – 417.

The following functions are single row functions grouped together by
the datatypes of their arguments and return values.

Number functions accept numeric input and return numeric values.
This section lists the SQL number functions. Most of these functions
return values that are accurate to 38 decimal digits. The transcendental
functions COS, COSH, EXP, LN, LOG, SIN, SINH, SQRT, TAN, and
TANH are accurate to 36 decimal digits. The transcendental functions
ACOS, ASIN, ATAN, and ATAN2 are accurate to 30 decimal digits.

Syntax ABS(n)

Returns the absolute value of n

SELECT ABS(–15) ”Absolute”

FROM DUAL

 Absolute

––––––––––

 15

Syntax ACOS(n)

Returns the arc cosine of n. Inputs are in the range of –1 to
1, and outputs are in the range of 0 to pi and are expressed
in radians.

SELECT ACOS(.3) ”Arc_Cosine”

FROM DUAL

Arc_Cosine

––––––––––

1.26610367

Purpose

Example

Purpose

Example

ASIN

ATAN

ATAN2

3 – 19Operators, Functions, Expressions, Conditions

Syntax ASIN(n)

Returns the arc sine of n. Inputs are in the range of –1 to 1,
and outputs are in the range of –pi/2 to pi/2 and are
expressed in radians.

SELECT ASIN(.3) ”Arc_Sine”

FROM DUAL

 Arc_Sine

––––––––––

.304692654

Syntax ATAN(n)

Returns the arc tangent of n. Inputs are in an unbounded
range, and outputs are in the range of –pi/2 to pi/2 and are
expressed in radians.

SELECT ATAN(.3) ”Arc_Tangent”

FROM DUAL

Arc_Tangent

_––––––––––

 .291456794

Syntax ATAN2(n, m)

Returns the arc tangent of n and m. Inputs are in an
unbounded range, and outputs are in the range of –pi to pi,
depending on the signs of x and y, and are expressed in
radians. Atan2(x,y) is the same as atan2(x/y)

SELECT ATAN2(.3, .2) ”Arc_Tangent2”

FROM DUAL

Arc_Tangent2

––––––––––––

 .982793723

Purpose

Example

Purpose

Example

Purpose

Example

CEIL

COS

COSH

EXP

3 – 20 Oracle7 Server SQL Reference

Syntax CEIL(n)

Returns smallest integer greater than or equal to n.

SELECT CEIL(15.7) ”Ceiling”

FROM DUAL

 Ceiling

––––––––––

 16

Syntax COS(n)

Returns the cosine of n (an angle expressed in radians).

SELECT COS(180 * 3.14159265359/180)

”Cosine of 180 degrees”

FROM DUAL

Cosine of 180 degrees

–––––––––––––––––––––

 –1

Syntax COSH(n)

Returns the hyperbolic cosine of n.

SELECT COSH(0) ”Hyperbolic cosine of 0”

 FROM DUAL

Hyperbolic cosine of 0

––––––––––––––––––––––

 1

Syntax EXP(n)

Returns e raised to the nth power; e = 2.71828183 ...

SELECT EXP(4) ”e to the 4th power”

FROM DUAL

e to the 4th power

––––––––––––––––––

 54.59815

Purpose

Example

Purpose

Example

Purpose

Example

Purpose

Example

FLOOR

LN

LOG

3 – 21Operators, Functions, Expressions, Conditions

Syntax FLOOR(n)

Returns largest integer equal to or less than n.

SELECT FLOOR(15.7) ”Floor”

FROM DUAL

 Floor

––––––––––

 15

Syntax LN(n)

Returns the natural logarithm of n, where n is greater
than 0.

SELECT LN(95) ”Natural log of 95”

FROM DUAL

Natural log of 95

–––––––––––––––––

 4.55387689

Syntax LOG(m,n)

Returns the logarithm, base m, of n. The base m can be
any positive number other than 0 or 1 and n can be any
positive number.

SELECT LOG(10,100) ”Log base 10 of 100”

FROM DUAL

Log base 10 of 100

––––––––––––––––––

 2

Purpose

Example

Purpose

Example

Purpose

Example

MOD

POWER

3 – 22 Oracle7 Server SQL Reference

Syntax MOD(m,n)

Returns remainder of m divided by n. Returns m if n is 0.

SELECT MOD(11,4) ”Modulus”

FROM DUAL

 Modulus

––––––––––

 3

This function behaves differently from the classical
mathematical modulus function when m is negative. The
classical modulus can be expressed using the MOD
function with this formula:

m – n * FLOOR(m/n)

The following statement illustrates the difference between
the MOD function and the classical modulus:

SELECT m, n, MOD(m, n),

m – n * FLOOR(m/n) ”Classical Modulus”

FROM test_mod_table

 M N MOD (M,N) Classical Modulus

––– –––– –––––––– ––––––––– –––––––

 11 4 3

–11 4 –3 1

 11 –4 3 –1

–11 –4 –3 –3

Syntax POWER(m, n)

Returns m raised to the nth power. The base m and the
exponent n can be any numbers, but if m is negative, n
must be an integer.

SELECT POWER(3,2) ”Raised”

FROM DUAL

 Raised

––––––––––

 9

Purpose

Example

Note

Example

Purpose

Example

ROUND

SIGN

SIN

3 – 23Operators, Functions, Expressions, Conditions

Syntax ROUND(n[,m])

Returns n rounded to m places right of the decimal point; if
m is omitted, to 0 places. m can be negative to round off
digits left of the decimal point. m must be an integer.

SELECT ROUND(15.193,1) ”Round”

FROM DUAL

 Round

––––––––––

 15.2

SELECT ROUND(15.193,–1) ”Round”

FROM DUAL

 Round

––––––––––

 20

Syntax SIGN(n)

If n<0, the function returns –1; if n=0, the function returns
0; if n>0, the function returns 1.

SELECT SIGN(–15) ”Sign”

FROM DUAL

 Sign

––––––––––

 –1

Syntax SIN(n)

Returns the sine of n (an angle expressed in radians).

SELECT SIN(30 * 3.14159265359/180)

 ”Sine of 30 degrees”

FROM DUAL

Sine of 30 degrees

––––––––––––––––––

 .5

Purpose

Example

Example

Purpose

Example

Purpose

Example

SINH

SQRT

TAN

3 – 24 Oracle7 Server SQL Reference

Syntax SINH(n)

Returns the hyperbolic sine of n.

SELECT SINH(1) ”Hyperbolic sine of 1”

FROM DUAL

Hyperbolic sine of 1

––––––––––––––––––––

 1.17520119

Syntax SQRT(n)

Returns square root of n. The value n cannot be negative.
SQRT returns a “real” result.

SELECT SQRT(26) ”Square root”

FROM DUAL

Square root

–––––––––––

 5.09901951

Syntax TAN(n)

Returns the tangent of n (an angle expressed in radians).

SELECT TAN(135 * 3.14159265359/180)

”Tangent of 135 degrees”

FROM DUAL

Tangent of 135 degrees

––––––––––––––––––––––

 –1

Purpose

Example

Purpose

Example

Purpose

Example

TANH

TRUNC

3 – 25Operators, Functions, Expressions, Conditions

Syntax TANH(n)

Returns the hyperbolic tangent of n.

SELECT TANH(.5) ”Hyperbolic tangent of .5”

FROM DUAL

Hyperbolic tangent of .5

––––––––––––––––––––––––

 .462117157

Syntax TRUNC(n[,m])

Returns n truncated to m decimal places; if m is omitted, to
0 places. m can be negative to truncate (make zero) m digits
left of the decimal point.

SELECT TRUNC(15.79,1) ”Truncate”

FROM DUAL

 Truncate

––––––––––

 15.7

SELECT TRUNC(15.79,–1) ”Truncate”

 FROM DUAL

 Truncate

––––––––––

 10

Purpose

Example

Purpose

Examples

Character Functions

Character Functions
Returning Character
Values

CHR

CONCAT

3 – 26 Oracle7 Server SQL Reference

Single row character functions accept character input and can return
both character and number values.

This section lists character functions that return character values.
Unless otherwise noted, these functions all return values with the
datatype VARCHAR2 and are limited in length to 2000 bytes. Functions
that return values of datatype CHAR are limited in length to 255 bytes.
If the length of the return value exceeds the limit, Oracle7 truncates it
and returns the result without an error message.

Syntax CHR(n)

Returns the character having the binary equivalent to n in
the database character set.

SELECT CHR(67)||CHR(65)||CHR(84) ”Dog”

 FROM DUAL

Dog

–––

CAT

Syntax CONCAT(char1, char2)

Returns char1 concatenated with char2. This function is
equivalent to the concatenation operator (||). For
information on this operator, see the section “Character” on
page 3 – 4.

This example uses nesting to concatenate three character
strings:

SELECT CONCAT(CONCAT(ename, ’ is a ’), job) ”Job”

FROM emp

WHERE empno = 7900

Job

–––––––––––––––––––––––––

JAMES is a CLERK

Purpose

Example

Purpose

Example

INITCAP

LOWER

LPAD

3 – 27Operators, Functions, Expressions, Conditions

Syntax INITCAP(char)

Returns char, with the first letter of each word in uppercase,
all other letters in lowercase. Words are delimited by white
space or characters that are not alphanumeric.

SELECT INITCAP(’the soap’) ”Capitals”

FROM DUAL

Capitals

––––––––

The Soap

Syntax LOWER(char)

Returns char, with all letters lowercase. The return value
has the same datatype as the argument char (CHAR or
VARCHAR2).

SELECT LOWER(’MR. SAMUEL HILLHOUSE’) ”Lowercase”

FROM DUAL

Lowercase

––––––––––––––––––––

mr. samuel hillhouse

Syntax LPAD(char1,n [,char2])

Returns char1, left–padded to length n with the sequence
of characters in char2; char2 defaults to a single blank. If
char1 is longer than n, this function returns the portion of
char1 that fits in n.

The argument n is the total length of the return value as it
is displayed on your terminal screen. In most character
sets, this is also the number of characters in the return
value. However, in some multi–byte character sets, the
display length of a character string can differ from the
number of characters in the string.

SELECT LPAD(’Page 1’,15,’*.’) ”LPAD example”

FROM DUAL

LPAD example

–––––––––––––––

..*.*.*Page 1

Purpose

Example

Purpose

Example

Purpose

Example

LTRIM

NLS_INITCAP

3 – 28 Oracle7 Server SQL Reference

Syntax LTRIM(char1,n [,set])

Removes characters from the left of char, with all the
leftmost characters that appear in set removed; set defaults
to a single blank. Oracle7 begins scanning char from its first
character and removes all characters that appear in set
until reaching a character not in set and then returns the
result.

SELECT LTRIM(’xyxXxyLAST WORD’,’xy’) ”LTRIM example”

 FROM DUAL

LTRIM example

–––––––––––––

Xxy LAST WORD

Syntax NLS_INITCAP(char [, ’nlsparams’])

Returns char, with the first letter of each word in uppercase,
all other letters in lowercase. Words are delimited by white
space or characters that are not alphanumeric. The value
of ’nlsparams’ can have this form:

’NLS_SORT = sort’

where sort is either a linguistic sort sequence or BINARY.
The linguistic sort sequence handles special linguistic
requirements for case conversions. Note that these
requirements can result in a return value of a different
length than the char. If you omit ’nlsparams’, this function
uses the default sort sequence for your session. For
information on sort sequences, see Oracle7 Server Reference.

SELECT NLS_INITCAP(’ijsland’, ’NLS_SORT = XDutch’) ”Capitalized”

FROM DUAL

Capital

–––––––

IJsland

Purpose

Example

Purpose

Example

NLS_LOWER

NLS_UPPER

REPLACE

3 – 29Operators, Functions, Expressions, Conditions

Syntax NLS_LOWER(char [, ’nlsparams’])

Returns char, with all letters lowercase. The ’nlsparams’ can
have the same form and serve the same purpose as in the
NLS_INITCAP function.

SELECT NLS_LOWER(’CITTA’’’, ’NLS_SORT = XGerman’)

”Lowercase”

FROM DUAL

Lower

–––––

città

Syntax NLS_UPPER(char [, ’nlsparams’])

Returns char, with all letters uppercase. The ’nlsparams’ can
have the same form and serve the same purpose as in the
NLS_INITCAP function.

SELECT NLS_UPPER(’gro βe’, ’NLS_SORT = XGerman’) ”Uppercase”

FROM DUAL

Upper

–––––

GROSS

Syntax REPLACE(char, search_string[,replacement_string])

Returns char with every occurrence of search_string
replaced with replacement_string. If replacement_string is
omitted or null, all occurrences of search_string are
removed. If search_string is null, char is returned. This
function provides a superset of the functionality provided
by the TRANSLATE function. TRANSLATE provides
single character, one to one, substitution. REPLACE allows
you to substitute one string for another as well as to
remove character strings.

SELECT REPLACE(’JACK and JUE’,’J’,’BL’) ”Changes”

FROM DUAL

Changes

––––––––––––––

BLACK and BLUE

Purpose

Example

Purpose

Example

Purpose

Example

RPAD

RTRIM

3 – 30 Oracle7 Server SQL Reference

Syntax RPAD(char1, n [,char2])

Returns char1, right–padded to length n with char2,
replicated as many times as necessary; char2 defaults to a
single blank. If char1 is longer than n, this function returns
the portion of char1 that fits in n.

The argument n is the total length of the return value as it
is displayed on your terminal screen. In most character
sets, this is also the number of characters in the return
value. However, in some multi–byte character sets, the
display length of a character string can differ from the
number of characters in the string.

SELECT RPAD(ename,12,’ab’) ”RPAD example”

FROM emp

WHERE ename = ’TURNER’

RPAD example

––––––––––––

TURNERababab

Syntax RTRIM(char [,set]

Returns char, with all the rightmost characters that appear
in set removed; set defaults to a single blank. RTRIM works
similarly to LTRIM.

SELECT RTRIM(’TURNERyxXxy’,’xy’) ”RTRIM e.g.”

FROM DUAL

RTRIM e.g

–––––––––

TURNERyxX

Purpose

Example

Purpose

Example

SOUNDEX

3 – 31Operators, Functions, Expressions, Conditions

Syntax SOUNDEX(char)

Returns a character string containing the phonetic
representation of char. This function allows you to compare
words that are spelled differently, but sound alike in
English.

The phonetic representation is defined in The Art of
Computer Programming, Volume 3: Sorting and Searching,
by Donald E. Knuth, as follows:

• retain the first letter of the string and remove the
following letters: a, e, h, i, o, w, y

• assign the numbers to the remaining letters as
follows:
0 = a, e, h, i, o, w, y

1 = b, f, p, v

2 = c, e, g, j, k, q, s, x, z

3 = d, t = 3

4 = l

5 = m, n

r = 6

• if two or more of the numbers are in sequences,
remove all but the first

• return the first four bytes padded with 0

SELECT ename

FROM emp

WHERE SOUNDEX(ename)

 = SOUNDEX(’SMYTHE’)

ENAME

––––––––––

SMITH

Purpose

Example

SUBSTR

3 – 32 Oracle7 Server SQL Reference

Syntax SUBSTR(char, m [,n])

Returns a portion of char, beginning at character m, n
characters long. If m is 0, it is treated as 1. If m is positive,
Oracle7 counts from the beginning of char to find the first
character. If m is negative, Oracle7 counts backwards from
the end of char. If n is omitted, Oracle7 returns all
characters to the end of char. If n is less than 1, a null is
returned.

Floating point numbers passed as arguments to substr are
automatically converted to integers.

SELECT SUBSTR(’ABCDEFG’,3.1,4) ”Subs”

FROM DUAL

Subs

––––

CDEF

SELECT SUBSTR(’ABCDEFG’,–5,4) ”Subs”

FROM DUAL

Subs

––––

CDEF

Purpose

Example

SUBSTRB

TRANSLATE

3 – 33Operators, Functions, Expressions, Conditions

Syntax SUBSTRB(char, m [,n])

The same as SUBSTR, except that the arguments m and n
are expressed in bytes, rather than in characters. For a
single–byte database character set, SUBSTRB is equivalent
to SUBSTR.

Floating point numbers passed as arguments to substrb are
automatically converted to integers.

Assume a double–byte database character set:

SELECT SUBSTRB(’ABCDEFG’,5,4.2) ”Substring with bytes”

FROM DUAL

Sub

–––

CD

Syntax TRANSLATE(char, from, to)

Returns char with all occurrences of each character in from
replaced by its corresponding character in to. Characters in
char that are not in from are not replaced. The argument
from can contain more characters than to. In this case, the
extra characters at the end of from have no corresponding
characters in to. If these extra characters appear in char,
they are removed from the return value. You cannot use an
empty string for to to remove all characters in from from the
return value. Oracle7 interprets the empty string as null,
and if this function has a null argument, it returns null.

The following statement translates a license number. All
letters ’ABC...Z’ are translated to ’X’ and all digits ’012...9’
are translated to ’9’:

SELECT TRANSLATE(’2KRW229’,

’0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ’,

’9999999999XXXXXXXXXXXXXXXXXXXXXXXXXX’) ”Licence”

FROM DUAL

Translate example

–––––––––––––––––

9XXX999

The following statement returns a license number with the
characters removed and the digits remaining:

SELECT TRANSLATE(’2KRW229’,

’0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ’, ’0123456789’)

”Translate example”

Purpose

Example

Purpose

Examples

UPPER

Character Functions
Returning Number Values
ASCII

3 – 34 Oracle7 Server SQL Reference

 FROM DUAL

Translate example

–––––––––––––––––

2229

Syntax UPPER(char)

Returns char, with all letters uppercase. The return value
has the same datatype as the argument char.

SELECT UPPER(’Large’) ”Uppercase”

FROM DUAL

Uppercase

–––––––––

LARGE

This section lists character functions that return number values.

Syntax ASCII(char)

Returns the decimal representation in the database
character set of the first byte of char. If your database
character set is 7–bit ASCII, this function returns an ASCII
value. If your database character set is EBCDIC Code Page
500, this function returns an EBCDIC value. Note that there
is no similar EBCDIC character function.

SELECT ASCII(’Q’)

FROM DUAL

ASCII(’Q’)

––––––––––

 81

Purpose

Example

Purpose

Example

INSTR

INSTRB

3 – 35Operators, Functions, Expressions, Conditions

Syntax INSTR(char1,char2[,n[,m]])

Searches char1 beginning with its nth character for the mth
occurrence of char2 and returns the position of the
character in char1 that is the first character of this
occurrence. If n is negative, Oracle7 counts and searches
backward from the end of char1. The value of m must be
positive. The default values of both n and m are 1, meaning
Oracle7 begins searching at the first character of char1 for
the first occurrence of char2. The return value is relative to
the beginning of char1, regardless of the value of n, and is
expressed in characters. If the search is unsuccessful (if
char2 does not appear m times after the nth character of
char1) the return value is 0.

SELECT INSTR(’CORPORATE FLOOR’,’OR’, 3, 2) ”Instring”

FROM DUAL

Instring

 –––––––––

 14

SELECT INSTR(’CORPORATE FLOOR’,’OR’, –3, 2)

”Reversed Instring”

FROM DUAL

Reversed Instring

–––––––––––––––––

 2

Syntax INSTRB(char1,char2[,n[,m]])

The same as INSTR, except that n and the return value are
expressed in bytes, rather than in characters. For a
single–byte database character set, INSTRB is equivalent
to INSTR.

SELECT INSTRB(’CORPORATE FLOOR’,’OR’,5,2)

”Instring in bytes”

FROM DUAL

Instring in bytes

–––––––––––––––––

 27

Purpose

Examples

Purpose

Example

LENGTH

LENGTHB

NLSSORT

3 – 36 Oracle7 Server SQL Reference

Syntax LENGTH(char)

Returns the length of char in characters. If char has datatype
CHAR, the length includes all trailing blanks. If char is null,
this function returns null.

SELECT LENGTH(’CANDIDE’) ”Length in characters”

FROM DUAL

Length in characters

––––––––––––––––––––

 7

Syntax LENGTHB(char)

Returns the length of char in bytes. If char is null, this
function returns null. For a single–byte database character
set, LENGTHB is equivalent to LENGTH.

Assume a double–byte database character set:

SELECT LENGTH(’CANDIDE’) ”Length in bytes”

FROM DUAL

Length in bytes

–––––––––––––––

 14

Syntax NLSSORT(char [, ’nlsparams’])

Returns the string of bytes used to sort char. The value of
’nlsparams’ can have the form

’NLS_SORT = sort’

where sort is a linguistic sort sequence or BINARY. If you
omit ’nlsparams’, this function uses the default sort
sequence for your session. If you specify BINARY, this
function returns char. For information on sort sequences,
see the “National Language Support” chapter of Oracle7
Server Reference..

This function can be used to specify comparisons based on
a linguistic sort sequence rather on the binary value of a
string:

SELECT * FROM emp

WHERE NLSSORT(ename,’NLS_SORT = German’)

> NLSSORT(’B’,’NLS_SORT = German’)

Purpose

Example

Purpose

Example

Purpose

Example

Date Functions

ADD_MONTHS

LAST_DAY

3 – 37Operators, Functions, Expressions, Conditions

Date functions operate on values of the DATE datatype. All date
functions return a value of DATE datatype, except the
MONTHS_BETWEEN function, which returns a number.

Syntax ADD_MONTHS(d,n)

Returns the date d plus n months. The argument n can be
any integer. If d is the last day of the month or if the
resulting month has fewer days than the day component of
d, then the result is the last day of the resulting month.
Otherwise, the result has the same day component as d.

SELECT TO_CHAR(

ADD_MONTHS(hiredate,1),

’DD–MON–YYYY’) ”Next month”

FROM emp

WHERE ename = ’SMITH’

Next Month

–––––––––––

17–JAN–1981

Syntax LAST_DAY(d)

Returns the date of the last day of the month that contains
d. You might use this function to determine how many
days are left in the current month.

SELECT SYSDATE,

LAST_DAY(SYSDATE) ”Last”,

LAST_DAY(SYSDATE) – SYSDATE ”Days Left”

FROM DUAL

SYSDATE Last Days Left

––––––––– ––––––––– ––––––––––

10–APR–95 30–APR–95 20

SELECT TO_CHAR(

ADD_MONTHS(

LAST_DAY(hiredate),5),

’DD–MON–YYYY’) ”Five months”

FROM emp

WHERE ename = ’MARTIN’

Five months

–––––––––––

28–FEB–1982

Purpose

Example

Purpose

Example

MONTHS_BETWEEN

3 – 38 Oracle7 Server SQL Reference

SELECT TO_CHAR(ADD_MONTHS(hiredate,1),

’DD–MON–YYYY’) ”Next month”

FROM emp

WHERE ename = ’SMITH’

Next month

–––––––––––

17–JAN–1981

Syntax MONTHS_BETWEEN(d1, d2)

Returns number of months between dates d1 and d2. If d1
is later than d2, result is positive; if earlier, negative. If d1
and d2 are either the same days of the month or both last
days of months, the result is always an integer; otherwise
Oracle7 calculates the fractional portion of the result based
on a 31–day month and considers the difference in time
components of d1 and d2.

SELECT MONTHS_BETWEEN(

TO_DATE(’02–02–1995’,’MM–DD–YYYY’),

TO_DATE(’01–01–1995’,’MM–DD–YYYY’)) ”Months”

FROM DUAL

 Months

––––––––––

1.03225806

Purpose

Example

NEW_TIME

NEXT_DAY

3 – 39Operators, Functions, Expressions, Conditions

Syntax NEW_TIME(d, z1, z2)

Returns the date and time in time zone z2 when date and
time in time zone z1 are d. The arguments z1 and z2 can be
any of these text strings:

AST
ADT

Atlantic Standard or Daylight Time

BST
BDT

Bering Standard or Daylight Time

CST
CDT

Central Standard or Daylight Time

EST
EDT

Eastern Standard or Daylight Time

GMT Greenwich Mean Time

HST
HDT

Alaska–Hawaii Standard Time or Daylight Time.

MST
MDT

Mountain Standard or Daylight Time

NST Newfoundland Standard Time

PST
PDT

Pacific Standard or Daylight Time

YST
YDT

Yukon Standard or Daylight Time

Syntax NEXT_DAY(d, char)

Returns the date of the first weekday named by char that is
later than the date d. The argument char must be a day of
the week in your session’s date language. The return value
has the same hours, minutes, and seconds component as
the argument d.

This example returns the date of the next Tuesday after
March 15, 1992.

SELECT NEXT_DAY(’15–MAR–92’,’TUESDAY’) ”NEXT DAY”

FROM DUAL

NEXT DAY

–––––––––

17–MAR–92

Purpose

Purpose

Example

ROUND

SYSDATE

TRUNC

3 – 40 Oracle7 Server SQL Reference

Syntax ROUND(d[,fmt])

Returns d rounded to the unit specified by the format
model fmt. If you omit fmt, d is rounded to the nearest day.

For details on ROUND and TRUNC, see the section
“ROUND and TRUNC” on page 3 – 23.

SELECT ROUND(TO_DATE(’27–OCT–92’),’YEAR’)

”FIRST OF THE YEAR”

FROM DUAL

FIRST OF THE YEAR

–––––––––––––––––

01–JAN–93

Syntax SYSDATE

Returns the current date and time. Requires no arguments.
In distributed SQL statements, this function returns the
date and time on your local database. You cannot use this
function in the condition of a CHECK constraint.

SELECT TO_CHAR(SYSDATE, ’MM–DD–YYYY HH24:MI:SS’) NOW

FROM DUAL

NOW

–––––––––––––––––––

10–29–1993 20:27:11.

Syntax TRUNC(d,[fmt])

Returns d with the time portion of the day truncated to the
unit specified by the format model fmt. If you omit fmt, d is
truncated to the nearest day. See the next section “ROUND
and TRUNC.”

SELECT TRUNC(TO_DATE(’27–OCT–92’, ’DD–MON–YY’), ’YEAR’) ”First Of

The Year”

FROM DUAL

FIRST OF THE YEAR

–––––––––––––––––

01–JAN–92

Purpose

Example

Purpose

Example

Purpose

Example

ROUND and TRUNC

3 – 41Operators, Functions, Expressions, Conditions

Table 3 – 11 lists the format models to be used with the ROUND and
TRUNC date functions and the units to which they round and truncate
dates. The default model, ’DD’, returns the date rounded or truncated
to the day with a time of midnight.

Format Model Rounding or Truncating Unit

CC
SCC

Century

SYYYY
YYYY
YEAR
SYEAR
YYY
YY
Y

Year (rounds up on July 1)

IYYY
IY
IY
I

ISO Year

Q Quarter (rounds up on the sixteenth day of
the second month of the quarter)

MONTH
MON
MM
RM

Month (rounds up on the sixteenth day)

WW Same day of the week as the first day of the
year.

IW Same day of the week as the first day of the
ISO year.

W Same day of the week as the first day of the
month.

DDD
DD
J

Day

DAY
DY
D

Starting day of the week

HH
HH12
HH24

Hour

MI Minute

Table 3 – 11 Date Format Models for the ROUND and
TRUNC Date Functions

Conversion Functions

CHARTOROWID

CONVERT

3 – 42 Oracle7 Server SQL Reference

The starting day of the week used by the format models DAY, DY,
and D is specified implicitly by the initialization parameter
NLS_TERRITORY. For information on this parameter, see the
“National Language Support” chapter of Oracle7 Server Reference.

Conversion functions convert a value from one datatype to another.
Generally, the form of the function names follows the convention
datatype TO datatype. The first datatype is the input datatype; the last
datatype is the output datatype. This section lists the SQL conversion
functions.

Syntax CHARTOROWID(char)

Converts a value from CHAR or VARCHAR2 datatype to
ROWID datatype.

SELECT ename

FROM emp

WHERE ROWID = CHARTOROWID(’0000000F.0003.0002’)

ENAME

–––––

SMITH

Syntax CONVERT(char, dest_char_set [,source_char_set])

Converts a character string from one character set to
another.

The char argument is the value to be converted.

The dest_char_set argument is the name of the character set
to which char is converted.

The source_char_set argument is the name of the character
set in which char is stored in the database. The default
value is the database character set.

Both the destination and source character set arguments
can be either literals or columns containing the name of the
character set.

For complete correspondence in character conversion, it is
essential that the destination character set contains a
representation of all the characters defined in the source
character set. Where a character does not exist in the
destination character set, a replacement character appears.

Purpose

Example

Purpose

HEXTORAW

RAWTOHEX

3 – 43Operators, Functions, Expressions, Conditions

Replacement characters can be defined as part of a
character set definition.

Common character sets include:

US7ASCII US 7–bit ASCII character set
WE8DEC DEC West European 8–bit character set
WE8HP HP West European Laserjet 8–bit

character set
F7DEC DEC French 7–bit character set
WE8EBCDIC500 IBM West European EBCDIC Code

Page 500
WE8PC850 IBM PC Code Page 850
WE8ISO8859P1 ISO 8859–1 West European 8–bit

character set

SELECT CONVERT(’Groß’, ’WE8HP’, ’WE8DEC’)

”Conversion”

FROM DUAL

Conversion

––––––––––

Groß

Syntax HEXTORAW(char)

Converts char containing hexadecimal digits to a raw value.

INSERT INTO graphics (raw_column)

 SELECT HEXTORAW(’7D’)

FROM DUAL

Syntax RAWTOHEX(raw)

Converts raw to a character value containing its
hexadecimal equivalent.

SELECT RAWTOHEX(raw_column) ”Graphics”

FROM graphics

Graphics

––––––––

7D

Example

Purpose

Example

Purpose

Example

ROWIDTOCHAR

TO_CHAR,
date conversion

TO_CHAR,
label conversion

3 – 44 Oracle7 Server SQL Reference

Syntax ROWIDTOCHAR(rowid)

Converts a ROWID value to VARCHAR2 datatype. The
result of this conversion is always 18 characters long.

SELECT ROWID

FROM graphics

WHERE

ROWIDTOCHAR(ROWID) LIKE ’%F38%’

ROWID

––––––––––––––––––

00000F38.0001.0001

Syntax TO_CHAR(d [, fmt [, ’nlsparams’]])

Converts d of DATE datatype to a value of VARCHAR2
datatype in the format specified by the date format fmt. If
you omit fmt, d is converted to a VARCHAR2 value in the
default date format. For information on date formats, see
the section “Format Models” on page 3 – 59.

The ’nlsparams’ specifies the language in which month and
day names and abbreviations are returned. This argument
can have this form:

’NLS_DATE_LANGUAGE = language’

If you omit nlsparams, this function uses the default date
language for your session.

SELECT TO_CHAR(HIREDATE, ’Month DD, YYYY’)

”New date format”

FROM emp

WHERE ename = ’SMITH’

New date format

–––––––––––––––––––––––––––––––

December 17, 1980

Syntax TO_CHAR(label [, fmt])

Converts label of MLSLABEL datatype to a value of
VARCHAR2 datatype, using the optional label format fmt.
If you omit fmt, label is converted to a VARCHAR2 value in
the default label format.

Purpose

Example

Purpose

Example

Purpose

TO_CHAR,
number conversion

3 – 45Operators, Functions, Expressions, Conditions

For more information on this function, see Trusted Oracle7
Server Administrator’s Guide.

Syntax TO_CHAR(n [, fmt [, ’nlsparams’]])

Converts n of NUMBER datatype to a value of
VARCHAR2 datatype, using the optional number format
fmt. If you omit fmt, n is converted to a VARCHAR2 value
exactly long enough to hold its significant digits. For
information on number formats, see the section “Format
Models” on page 3 – 59.

The ’nlsparams’ specifies these characters that are returned
by number format elements:

• decimal character

• group separator

• local currency symbol

• international currency symbol

This argument can have this form:

’NLS_NUMERIC_CHARACTERS = ’’dg’’

 NLS_CURRENCY = ’’text’’

 NLS_ISO_CURRENCY = territory ’

The characters d and g represent the decimal character and
group separator, respectively. They must be different
single–byte characters. Note that within the quoted string,
you must use two single quotation marks around the
parameter values. Ten characters are available for the
currency symbol.

If you omit ’nlsparams’ or any one of the parameters, this
function uses the default parameter values for your
session.

SELECT TO_CHAR(–10000,’L99G999D99MI’) ”Amount”

FROM DUAL

Amount

––––––––––––––––––––

 $10,000.00–

Note how the output above is blank padded to the left of
the currency symbol.

Purpose

Example I

TO_DATE

TO_LABEL

3 – 46 Oracle7 Server SQL Reference

SELECT TO_CHAR(–10000,’L99G999D99MI’,

’NLS_NUMERIC_CHARACTERS = ’’,.’’

NLS_CURRENCY = ’’AusDollars’’ ’) ”Amount”

FROM DUAL

Amount

––––––––––––––––––––

AusDollars10.000,00–

Syntax TO_DATE(char [, fmt [, ’nlsparams’]])

Converts char of CHAR or VARCHAR2 datatype to a value
of DATE datatype. The fmt is a date format specifying the
format of char. If you omit fmt, char must be in the default
date format. If fmt is ’J’, for Julian, then char must be an
integer. For information on date formats, see the section
“Format Models” on page 3 – 64.

The ’nlsparams’ has the same purpose in this function as in
the TO_CHAR function for date conversion.

Do not use the TO_DATE function with a DATE value for
the char argument. The returned DATE value can have a
different century value than the original char, depending on
fmt or the default date format.

For information on date formats, see page 3 – 64.

INSERT INTO bonus (bonus_date)

SELECT TO_DATE(

’January 15, 1989, 11:00 A.M.’,

’Month dd, YYYY, HH:MI A.M.’,

’NLS_DATE_LANGUAGE = American’)

FROM DUAL

Syntax TO_LABEL(char [,fmt])

Converts char, a value of datatype CHAR or VARCHAR2
containing a label in the format specified by the optional
parameter fmt, to a value of MLSLABEL datatype. If you
omit fmt, char must be in the default label format. For more
information on this function, see Trusted Oracle7 Server
Administrator’s Guide.

Example II

Purpose

Example

Purpose

TO_MULTI_BYTE

TO_NUMBER

TO_SINGLE_BYTE

3 – 47Operators, Functions, Expressions, Conditions

Syntax TO_MULTI_BYTE(char)

Returns char with all of its single–byte characters converted
to their corresponding multi–byte characters. Any
single–byte characters in char that have no multi–byte
equivalents appear in the output string as single–byte
characters. This function is only useful if your database
character set contains both single–byte and multi–byte
characters.

Syntax TO_NUMBER(char [,fmt [, ’nlsparams’]])

Converts char, a value of CHAR or VARCHAR2 datatype
containing a number in the format specified by the optional
format model fmt, to a value of NUMBER datatype.

UPDATE emp

 SET sal = sal +

 TO_NUMBER(’100.00’, ’9G999D99’)

 WHERE ename = ’BLAKE’

The ’nlsparams’ has the same purpose in this function as in
the TO_CHAR function for number conversion.

SELECT TO_NUMBER(’–AusDollars100’,’L9G999D99’,

 ’ NLS_NUMERIC_CHARACTERS = ’’,.’’

 NLS_CURRENCY = ’’AusDollars’’

 ’) ”Amount”

FROM DUAL

 Amount

––––––––––

 –100

Syntax TO_SINGLE_BYTE(char)

Returns char with all of its multi–byte character converted
to their corresponding single–byte characters. Any
multi–byte characters in char that have no single–byte
equivalents appear in the output as multi–byte characters.
This function is only useful if your database character set
contains both single–byte and multi–byte characters.

Purpose

Purpose

Example

Example

Purpose

Other Functions

DUMP

3 – 48 Oracle7 Server SQL Reference

Syntax DUMP(expr[,return_format[,start_position[,length]]

])

Returns a VARCHAR2 value containing the datatype code,
length in bytes, and internal representation of expr. The
argument return_format specifies the format of the return
value and can have any of these values:

returns result in octal notation.

returns result in decimal notation.

returns result in hexadecimal notation.

returns result as single characters.

The arguments start_position and length combine to
determine which portion of the internal representation to
return. The default is to return the entire internal
representation in decimal notation.

If expr is null, this function returns ’NULL’.

For the datatype corresponding to each code, see
Table 2 – 1 on page 2 – 19.

SELECT DUMP(ename, 8, 3, 2) ”OCTAL”

FROM emp

WHERE ename = ’SCOTT’

OCTAL

–––––––––––––––––––––––––––––––––

Type=1 Len=5: 117,124

SELECT DUMP(ename, 10, 3, 2) ”ASCII”

FROM emp

WHERE ename = ’SCOTT’

ASCII

––––––––––––––––––––––––––––

Type=1 Len=5: 79,84

Purpose

8

10

16

17

Examples

GREATEST

GREATEST_LB

3 – 49Operators, Functions, Expressions, Conditions

SELECT DUMP(ename, 16, 3, 2) ”HEX”

FROM emp

WHERE ename = ’SCOTT’

HEX

––––––––––––––––––––––––––––

Type=1 Len=5: 4f,54

SELECT DUMP(ename, 17, 3, 2) ”CHAR”

FROM emp

WHERE ename = ’SCOTT’

CHAR

–––––––––––––––––––––––

Type=1 Len=5: O,T

Syntax GREATEST(expr [,expr] ...)

Returns the greatest of the list of exprs. All exprs after the
first are implicitly converted to the datatype of the first
exprs before the comparison. Oracle7 compares the exprs
using non–padded comparison semantics. Character
comparison is based on the value of the character in the
database character set. One character is greater than
another if it has a higher value. If the value returned by
this function is character data, its datatype is always
VARCHAR2.

SELECT GREATEST(’HARRY’,’HARRIOT’,’HAROLD’) ”GREATEST”

FROM DUAL

GREATEST

––––––––

HARRY

Syntax GREATEST_LB(label [,label] ...)

Returns the greatest lower bound of the list of labels. Each
label must either have datatype MLSLABEL or RAW
MLSLABEL or be a quoted literal in the default label
format. The return value has datatype RAW MLSLABEL.

For the definition of greatest lower bound and examples of
this function, see Trusted Oracle7 Server Administrator’s Guide.

Purpose

Example

Purpose

LEAST

LEAST_UB

NVL

3 – 50 Oracle7 Server SQL Reference

Syntax LEAST(expr [,expr] ...)

Returns the least of the list of exprs. All exprs after the first
are implicitly converted to the datatype of the first expr
before the comparison. Oracle7 compares the exprs using
non–padded comparison semantics. If the value returned
by this function is character data, its datatype is always
VARCHAR2.

SELECT LEAST(’HARRY’,’HARRIOT’,’HAROLD’) ”LEAST”

FROM DUAL

LEAST

––––––

HAROLD

Syntax LEAST_UB(label [,label] ...)

Returns the least upper bound of the list of labels. Each label
must have datatype MLSLABEL or be a quoted literal in
the default label format. The return value has datatype
RAW MLSLABEL. For the definition of least upper bound
and examples of this function, see Trusted Oracle7 Server
Administrator’s Guide.

Syntax NVL(expr1, expr2)

If expr1 is null, returns expr2; if expr1 is not null, returns
expr1. The arguments expr1 and expr2 can have any
datatype. If their datatypes are different, Oracle7 converts
expr2 to the datatype of expr1 before comparing them. The
datatype of the return value is always the same as the
datatype of expr1, unless expr1 is character data in which
case the return value’s datatype is VARCHAR2.

SELECT ename, NVL(TO_CHAR(COMM),’NOT APPLICABLE’) ”COMMISSION”

FROM emp

WHERE deptno = 30

ENAME COMMISSION

––––––––– –––––––––––

ALLEN 300

WARD 500

MARTIN 1400

BLAKE NOT APPLICABLE

Purpose

Example

Purpose

Purpose

Example

UID

USER

USERENV

3 – 51Operators, Functions, Expressions, Conditions

TURNER 0

JAMES NOT APPLICABLE

Syntax UID

Returns an integer that uniquely identifies the current user.

Syntax USER

Returns the current Oracle7 user with the datatype
VARCHAR2. Oracle7 compares values of this function with
blank–padded comparison semantics.

In a distributed SQL statement, the UID and USER
functions identify the user on your local database. You
cannot use these functions in the condition of a CHECK
constraint.

SELECT USER, UID

FROM DUAL

USER UID

–––––––––––––––––––––––––––––– ––––––––––

OPS$BQUIGLEY 46

Syntax USERENV(option)

Returns information of VARCHAR2 datatype about the
current session. This information can be useful for writing
an application–specific audit trail table or for determining
the language–specific characters currently used by your
session. You cannot use USERENV in the condition of a
CHECK constraint. The argument option can have any of
these values:

returns ’TRUE’ if you currently have the
OSDBA role enabled and ’FALSE’ if you do
not.

returns your current session label. This
option is only applicable for Trusted
Oracle7. For more information on this
option, see Trusted Oracle7 Server
Administrator’s Guide.

Purpose

Purpose

Example

Purpose

’OSDBA’

’LABEL’

3 – 52 Oracle7 Server SQL Reference

returns the language and territory
currently used by your session along with
the database character set in this form:
language_territory.characterset

returns the operating system identifier for
your current session’s terminal. In
distributed SQL statements, this option
returns the identifier for your local session.
In a distributed environment, this is
supported only for remote SELECTs, not
for remote INSERTs, UPDATEs, or
DELETEs.

returns your auditing session identifier.
You cannot use this option in distributed
SQL statements. To use this keyword in
USERENV, the initialization parameter
AUDIT_TRAIL must be set to TRUE.

returns available auditing entry identifier.
You cannot use this option in distributed
SQL statements. To use this keyword in
USERENV, the initialization parameter
AUDIT_TRAIL must be set to TRUE.

Returns the value of the client_info field of
the current session, as the last value set by
the dbms_application_info.set_client_info
procedure.

Returns the ISO abbreviation for the
language name, a shorter form than the
existing ’LANGUAGE’ parameter.

SELECT USERENV(’LANGUAGE’) ”Language”

FROM DUAL

Language

––

AMERICAN_AMERICA.WE8DEC

’LANGUAGE’

’TERMINAL’

’SESSIONID’

’ENTRYID’

’CLIENT_INFO’

’LANG’

Example

VSIZE

Group Functions

AVG

3 – 53Operators, Functions, Expressions, Conditions

Syntax VSIZE(expr)

Returns the number of bytes in the internal representation
of expr. If expr is null, this function returns null.

SELECT ename, VSIZE(ename) ”BYTES”

FROM emp

WHERE deptno = 10

ENAME BYTES

–––––––––– –––––––––

CLARK 5

KING 4

MILLER 6

Group functions return results based on groups of rows, rather than on
single rows. In this way, group functions are different from single row
functions. For a discussion of the differences between group functions
and single–row functions, see the section “Functions” on page 3 – 17.

Many group functions accept these options:

This option causes a group function to consider only
distinct values of the argument expression.

This option causes a group function to consider all values
including all duplicates.

For example, the DISTINCT average of 1, 1, 1, and 3 is 2; the ALL
average is 1.5. If neither option is specified, the default is ALL.

All group functions except COUNT(*) ignore nulls. You can use the NVL
in the argument to a group function to substitute a value for a null.

If a query with a group function returns no rows or only rows with
nulls for the argument to the group function, the group function
returns null.

Syntax AVG([DISTINCT|ALL] n)

Returns average value of n.

SELECT AVG(sal) ”Average”

FROM emp

 Average

––––––––––

2077.21429

Purpose

Example

DISTINCT

ALL

Purpose

Example

COUNT

GLB

LUB

3 – 54 Oracle7 Server SQL Reference

Syntax COUNT({* | [DISTINCT|ALL] expr})

Returns the number of rows in the query.

If you specify expr, this function returns rows where expr is
not null. You can count either all rows, or only distinct
values of expr.

If you specify the asterisk (*), this function returns all rows,
including duplicates and nulls.

SELECT COUNT(*) ”Total”

FROM emp

 Total

––––––––––

 18

SELECT COUNT(job) ”Count”

FROM emp

 Count

––––––––––

 14

SELECT COUNT(DISTINCT job) ”Jobs”

FROM emp

 Jobs

––––––––––

 5

Syntax GLB([DISTINCT|ALL] label)

Returns the greatest lower bound of label. For the
definitions of greatest lower bound and example usage,
see Trusted Oracle7 Server Administrator’s Guide.

Syntax LUB([DISTINCT|ALL] label)

Returns the least upper bound of label.

The return values have datatype MLSLABEL. For the
definitions of greatest least upper bound and example
usage, see Trusted Oracle7 Server Administrator’s Guide.

Purpose

Examples

Purpose

Purpose

MAX

MIN

STDDEV

3 – 55Operators, Functions, Expressions, Conditions

Syntax MAX([DISTINCT|ALL] expr)

Returns maximum value of expr.

SELECT MAX(sal) ”Maximum”

FROM emp

 Maximum

––––––––––

 5004

Syntax MIN([DISTINCT|ALL] expr)

Returns minimum value of expr.

SELECT MIN(hiredate) ”Minimum Date”

FROM emp

Minimum Date

––––––––––––

17–DEC–80

The DISTINCT and ALL options have no effect on the
MAX and MIN functions.

Syntax STDDEV([DISTINCT|ALL] x)

Returns standard deviation of x, a number. Oracle7
calculates the standard deviation as the square root of the
variance defined for the VARIANCE group function.

SELECT STDDEV(sal) ”Deviation”

FROM emp

 Deviation

––––––––––

1182.50322

Purpose

Example

Purpose

Example

Note

Purpose

Example

SUM

VARIANCE

3 – 56 Oracle7 Server SQL Reference

Syntax SUM([DISTINCT|ALL] n)

Returns sum of values of n.

SELECT SUM(sal) ”Total”

FROM emp

 Total

––––––––––

 29081

Syntax VARIANCE([DISTINCT|ALL]x)

Returns variance of x, a number. Oracle7 calculates the
variance of x using this formula:

�
n

i� 1

xi
2 – 1

n��
n

i� 1

xi�
2

n –1

where:

is one of the elements of x.

is the number of elements in the set x. If n
is 1, the variance is defined to be 0.

SELECT VARIANCE(sal) ”Variance”

FROM emp

Variance
––––––––– –

1389313.87

Purpose

Example

Purpose

xi

n

Example

Prequisites

Privileges Required

3 – 57Operators, Functions, Expressions, Conditions

User Functions

You can write your own user functions in PL/SQL to provide
functionality that is not available in SQL or SQL functions. User
functions are used in a SQL statement anywhere SQL functions can be
used; that is, wherever expression can occur.

For example, user functions can be used in the following:

• the select list of a SELECT command

• the condition of a WHERE clause

• the CONNECT BY, START WITH, ORDER BY, and GROUP BY
clauses

• the VALUES clause of an INSERT command

• the SET clause of an UPDATE command

For a complete description on the creation and usage of user functions,
see Oracle7 Server Application Developer’s Guide.

User functions must be created as top–level PL/SQL functions or
declared with a package specification before they can be named within
a SQL statement. User functions are created as top–level PL/SQL
functions by using the CREATE FUNCTION statement described on
page 4 – 188. Packaged functions are specified with a package with the
CREATE PACKAGE statement described on page 4 – 198.

To call a packaged user function, you must declare the
RESTRICT_REFERENCES pragma in the package specification.

To use a user function in a SQL expression, you must own or have
EXECUTE privilege on the user function. To query a view defined with
a user function, you must have SELECT privileges on the view. No
separate EXECUTE privileges are needed to select from the view.

Restrictions on User
Functions

Name Precedence

Example I

3 – 58 Oracle7 Server SQL Reference

User functions cannot be used in situations that require an unchanging
definition. Thus, a user function:

• cannot be used in a CHECK constraint clause of a CREATE
TABLE or ALTER TABLE command

• cannot be used in a DEFAULT clause of a CREATE TABLE or
ALTER TABLE command

• cannot contain OUT or IN OUT parameters

• cannot update the database

• cannot read or write package state if the function is a remote
function

• cannot use the parallelism_clause in SQL commands in the
function if the function alters package state

• cannot update variables defined in the function unless the
function is a local function and is used in a SELECT list, VALUES
clause of an INSERT command, or SET clause of an UPDATE
command

With PL/SQL, the names of database columns take precedence over the
names of functions with no parameters. For example, if user SCOTT
creates the following two objects in his own schema:

CREATE TABLE emp(new_sal NUMBER, ...)

CREATE FUNCTION new_sal RETURN NUMBER IS ,,,;

then in the following two statements, the reference to NEW_SAL refers
to the column EMP.NEW_SAL:

SELECT new_sal FROM emp;

SELECT emp.new_sal FROM emp;

To access the function NEW_SAL, you would enter:

SELECT scott.new_sal FROM emp;

For example, to call the TAX_RATE user function from schema SCOTT,
execute it against the SS_NO and SAL columns in TAX_TABLE, and
place the results in the variable INCOME_TAX, specify the following:

SELECT scott.tax_rate (ss_no, sal)

INTO income_tax

FROM tax_table

WHERE ss_no = tax_id;

Example II

Naming Conventions

3 – 59Operators, Functions, Expressions, Conditions

Listed below are sample calls to user functions that are allowed in SQL
expressions.

circle_area (radius)

payroll.tax_rate (empno)

scott.payroll.tax_rate (dependent, empno)@ny

If only one of the optional schema or package names is given, the first
identifier can be either a schema name or a package name. For
example, to determine whether PAYROLL in the reference
PAYROLL.TAX_RATE is a schema or package name, Oracle proceeds
as follows:

• check for the PAYROLL package in the current schema

• if a PAYROLL package is not found, look for a schema name
PAYROLL that contains a top–level TAX_RATE function; if no
such function is found, an error message is returned

• if the PAYROLL package is found in the current schema, look for
a TAX_RATE function in the PAYROLL package; if no such
function is found, an error message is returned

You can also refer to a stored top–level function using any synonym
that you have defined for it.

Format Models

A format model is a character literal that describes the format of DATE
or NUMBER data stored in a character string. You can use a format
model as an argument of the TO_CHAR or TO_DATE function for
these purposes:

• to specify the format for Oracle7 to use to return a value from
the database to you

• to specify the format for a value you have specified for Oracle7
to store in the database

Note that a format model does not change the internal representation
of the value in the database.

This section describes how to use:

• number format models

• date format models

• format model modifiers

Changing the Return
Format

Example I

Example II

3 – 60 Oracle7 Server SQL Reference

You can use a format model to specify the format for Oracle7 to use to
return values from the database to you.

The following statement selects the commission values of the
employees in department 30 and uses the TO_CHAR function to
convert these commissions into character values with the format
specified by the number format model ’$9,990.99’:

SELECT ename employee, TO_CHAR(comm,’$9,990.99’) commission

FROM emp

WHERE deptno = 30

EMPLOYEE COMMISSION

–––––––––– ––––––––––

ALLEN $300.00

WARD $500.00

MARTIN $1,400.00

BLAKE

TURNER $0.00

JAMES

Because of this format model, Oracle7 returns the commissions with
leading dollar signs, commas every three digits, and two decimal
places. Note that the TO_CHAR function returns null for all employees
with null in the COMM column.

The following statement selects the dates that each employee from
department 20 was hired and uses the TO_CHAR function to convert
these dates to character strings with the format specified by the date
format model ’fmMonth DD, YYYY’:

SELECT ename, TO_CHAR(Hiredate,’fmMonth DD, YYYY’) hiredate

FROM emp

WHERE deptno = 20

ENAME HIREDATE

–––––––––– –––––––––––––––––

SMITH December 17, 1980

JONES April 2, 1981

SCOTT April 19, 1987

ADAMS May 23, 1987

FORD December 3, 1981

With this format model, Oracle7 returns the hire dates with the month
spelled out, two digits for the day, and the century included in the year.

Supplying the Correct
Format

Example III

Number Format
Models

Number Format Elements

3 – 61Operators, Functions, Expressions, Conditions

You can use format models to specify the format of a value that you are
converting from one datatype to another datatype required for a
column. When you insert or update a column value, the datatype of the
value that you specify must correspond to the column’s datatype. For
example, a value that you insert into a DATE column must be a value
of the DATE datatype or a character string in the default date format
(Oracle7 implicitly converts character strings in the default date format
to the DATE datatype). If the value is in another format, you must use
the TO_DATE function to convert the value to the DATE datatype. You
must also use a format model to specify the format of the character
string.

The following statement updates JONES’ hire date using the TO_DATE
function with the format mask ’YYYY MM DD’ to convert the character
string ’1992 05 20’ to a DATE value:

UPDATE emp

SET hiredate = TO_DATE(’1992 05 20’,’YYYY MM DD’)

WHERE ename = ’JONES’

You can use number format models in these places:

• in the TO_CHAR function to translate a value of NUMBER
datatype to VARCHAR2 datatype

• in the TO_NUMBER function to translate a value of CHAR or
VARCHAR2 datatype to NUMBER datatype

All number format models cause the number to be rounded to the
specified number of significant digits. If a value has more significant
digits to the left of the decimal place than are specified in the format,
pound signs (#) replace the value. If a positive value is extremely large
and cannot be represented in the specified format, then the infinity sign
(~) replaces the value. Likewise, if a negative value is extremely small
and cannot be represented by the specified format, then the negative
infinity sign replaces the value (–~).

A number format model is composed of one or more number format
elements. Examples are shown in Table 3 – 17 on page 3 – 71.
Table 3 – 12 lists the elements of a number format model.

If a number format model does not contain the MI, S, or PR format
elements, negative return values automatically contain a leading
negative sign and positive values automatically contain a leading
space.

3 – 62 Oracle7 Server SQL Reference

A number format model can contain only a single decimal character
(D) or period (.), but it can contain multiple group separators (G) or
commas (,). A number format model must not begin with a comma (,).
A group separator or comma cannot appear to the right of a decimal
character or period in a number format model.

Element Example Description

9 9999 Return value with the specified number of
digits with a leading space if positive.
Return value with the specified number of
digits with a leading minus if negative.
Leading zeros are blank, except for a zero
value, which returns a zero for the integer
part of the fixed point number.

0 0999
9990

Return leading zeros.
Return trailing zeros.

$ $9999 Return value with a leading dollar sign.

B B9999 Return blanks for the integer part of a fixed
point number when the integer part is zero
(regardless of “0”s in the format model).

MI 9999MI Return negative value with a trailing minus
sign ”–”.
Returns positive value with a trailing blank.

S S9999

9999S

Return negative value with a leading minus
sign “–”.
Return positive value with a leading plus
sign “+”.
Return negative value with a trailing minus
sign “–”.
Return positive value with a trailing plus
sign “+”.

PR 9999PR Return negative value in <angle brackets>.
Return positive value with a leading and
trailing blank.

D 99D99 Return a decimal point (that is, a period “.”) in
the specified position.

G 9G999 Return a group separator in the position
specified.

C C999 Return the ISO currency symbol in the
specified position.

Table 3 – 12 Number Format Elements

3 – 63Operators, Functions, Expressions, Conditions

Element DescriptionExample

L L999 Return the local currency symbol in the
specified position.

, (comma) 9,999 Return a comma in the specified position.

. (period) 99.99 Return a decimal point (that is, a period “.”)
int the specified position.

V 999V99 Return a value multiplied by 10n (and if
necessary, round it up), where n is the number
of “9”s after the “V”.

EEEE 9.9EEEE Return a value using in scientific notation.

RN

rn

RN Return a value as Roman numerals in
uppercase.
Rerturn a value as Roman numerals in
lowercase.
Value can be an integer between 1 and 3999.

FM FM90.9 Returns a value with no leading or trailing
blanks.

Table 3 – 12 (continued) Number Format Elements

The MI and PR format elements can only appear in the last position of
a number format model. The S format element can only appear in the
first of last position of a number format model.

The characters returned by some of these format elements are specified
by initialization parameters. Table 3 – 13 lists these elements and
parameters.

Element Description Initialization Parameter

D Decimal character NLS_NUMERIC_CHARACTER

G Group separator NLS_NUMERIC_CHARACTER

C ISO currency symbol NLS_ISO_CURRENCY

L Local currency symbol NLS_CURRENCY

Table 3 – 13 Number Format Element Values Determined by
Initialization Parameters

Date Format Models

Default Date Format

Maximum Length

Date Format Elements

3 – 64 Oracle7 Server SQL Reference

The characters returned by these format elements can also be implicitly
specified by the initialization parameter NLS_TERRITORY.

You can also change the characters returned by these format elements
for your session with the ALTER SESSION command. For information
on this command, see page 4 – 55.

For information on these parameters, see Oracle7 Server Reference. You
can also change the default date format for your session with the
ALTER SESSION command. For information on this command, see
page 4 – 55.

You can use date format models in the following places:

• in the TO_CHAR function to translate a DATE value that is in a
format other than the default date format

• in the TO_DATE function to translate a character value that is in
a format other than the default date format

The default date format is specified either explicitly with the
initialization parameter NLS_DATE_FORMAT or implicitly with the
initialization parameter NLS_TERRITORY.

For information on these parameters, see Oracle7 Server Reference.
You can also change the default date format for your session with the
ALTER SESSION command. For information on this command, see
page 4 – 55.

The total length of a date format model cannot exceed 22 characters.

A date format model is composed of one or more date format elements
as listed in Table 3 – 14. For input format models, format items cannot
appear twice and also format items that represent similar information
cannot be combined. For example, you cannot use ’SYYYY’ and ’BC’ in
the same format string.

3 – 65Operators, Functions, Expressions, Conditions

Element Meaning

–
/
,
.
;
:
”text”

Punctuation and quoted text is reproduced in the result.

AD
A.D.

AD indicator with or without periods.

AM
A.M.

Meridian indicator with or without periods.

BC
B.C.

BC indicator. with or without periods.

CC
SCC

Century; “S” prefixes BC dates with “–”.

D Day of week (1–7).

DAY Name of day, padded with blanks to length of 9 characters.

DD Day of month (1–31).

DDD Day of year (1–366).

DY Abbreviated name of day.

IW Week of year (1–52 or 1–53) based on the ISO standard.

IYY
IY
I

Last 3, 2, or 1 digit(s) of ISO year.

IYYY 4–digit year based on the ISO standard.

HH
HH12

Hour of day (1–12).

HH24 Hour of day (0–23).

J Julian day; the number of days since January 1, 4712 BC. Number
specified with ’J’ must be integers.

MI Minute (0–59).

MM Month (01–12; JAN = 01)

MONTH Name of month, padded with blanks to length of 9 characters.

MON Abbreviated name of month.

RM Roman numeral month (I–XII; JAN = I).

Table 3 – 14 Date Format Elements

Date Format Elements
and National Language
Support

3 – 66 Oracle7 Server SQL Reference

Element Meaning

Q Quarter of year (1, 2, 3, 4; JAN–MAR = 1)

RR Last 2 digits of year; for years in other countries.

WW Week of year (1–53) where week 1 starts on the first day of the
year and continues to the seventh day of the year.

W Week of month (1–5) where week 1 starts on the first day of the
month and ends on the seventh.

PM
P.M.

Meridian indicator with and without periods.

SS Second (0–59).

SSSSS Seconds past midnight (0–86399).

Y
YYY

Year with comma in this position.

YEAR
SYEAR

Year, spelled out; “S” prefixes BC dates with “–”.

YYYY
SYYYY

4–digit year; “S” prefixes BC dates with “–”.

YYY
YY
Y

Last 3, 2, or 1 digit(s) of year.

Table 3 – 14 (continued) Date Format Elements

The functionality of some date format elements depends on the country
and language in which you are using Oracle7. For example, these date
format elements return spelled values:

• MONTH

• MON

• DAY

• DY

• BC or AD or B.C. or A.D.

• AM or PM or A.M. or P.M.

ISO Standard Date
Format Elements

The RR Date Format
Element

3 – 67Operators, Functions, Expressions, Conditions

The language in which these values are returned is specified either
explicitly with the initialization parameter NLS_DATE_LANGUAGE
or implicitly with the initialization parameter NLS_LANGUAGE. The
values returned by the YEAR and SYEAR date format elements are
always in English.

The date format element D returns the number of the day of the week
(1–7). The day of the week that is numbered 1 is specified implicitly by
the initialization parameter NLS_TERRITORY.

For information on these initialization parameters, see Oracle7 Server
Reference.

Oracle7 calculates the values returned by the date format elements
IYYY, IYY, IY, I, and IW according to the ISO standard. For information
on the differences between these values and those returned by the date
format elements YYYY, YYY, YY, Y, and WW, see the “National
Language Support” chapter of Oracle7 Server Reference.

The RR date format element is similar to the YY date format element,
but it provides additional flexibility for storing date values in other
centuries. The RR date format element allows you to store twenty–first
century dates in the twentieth century by specifying only the last two
digits of the year. It will also allow you to store twentieth century dates
in the twenty–first century in the same way if necessary.

If you use the TO_DATE function with the YY date format element, the
date value returned is always in the current century. If you use the RR
date format element instead, the century of the return value varies
according to the specified two–digit year and the last two digits of the
current year. Table 3 – 15 summarizes the behavior of the RR date
format element.

If the specified two–digit year is

0 – 49 50 – 99

If the
last two
digits
of the

0–49 The return date is in the
current century.

The return date is in the
century before the
current one.

of the
current

year are:
50–99 The return date is in the

century after the current
one.

The return date is in the
current century.

Table 3 – 15 The RR Date Element Format

Example IV

3 – 68 Oracle7 Server SQL Reference

The following example demonstrates the behavior of the RR date
format element.

Assume these queries are issued before the year 2000:

SELECT TO_CHAR(TO_DATE(’27–OCT–95’, ’DD–MON–RR’) ,’YYYY’)

”4–digit year”

FROM DUAL

4–digit year

––––––––––––

1995

SELECT TO_CHAR(TO_DATE(’27–OCT–17’, ’DD–MON–RR’) ,’YYYY’)

”4–digit year”

FROM DUAL

4–digit year

––––––––––––

2017

Assume these queries are issued in the year 2000 or after:

SELECT TO_CHAR(TO_DATE(’27–OCT–95’, ’DD–MON–RR’) ,’YYYY’)

”4–digit year”

FROM DUAL

4–digit year

––––––––––––

1995

SELECT TO_CHAR(TO_DATE(’27–OCT–17’, ’DD–MON–RR’) ,’YYYY’)

”4–digit year”

FROM DUAL

4–digit year

––––––––––––

2017

Note that the queries return the same values regardless of whether they
are issued before or after the year 2000. The RR date format element
allows you to write SQL statements that will return the same values
after the turn of the century.

Date Format Element
Suffixes

Capitalization of
Date Format Elements

Punctuation and
Character Literals in
Date Format Models

Format Model
Modifiers

3 – 69Operators, Functions, Expressions, Conditions

Table 3 – 16 lists suffixes that can be added to date format elements:

Suffix Meaning Example
Element

Example
Value

TH Ordinal Number DDTH 4TH

SP Spelled Number DDSP FOUR

SPTH or THSP Spelled, ordinal number DDSPTH FOURTH

Table 3 – 16 Date Format Element Suffixes

When you add one of these suffixes to a date format element, the
return value is always in English.

Note: Date suffixes are only valid on output and cannot be
used to insert a date into the database.

Capitalization in a spelled–out word, abbreviation, or Roman numeral
follows capitalization in the corresponding format element. For
example, the date format model ’DAY’ produces capitalized words like
’MONDAY’; ’Day’ produces ’Monday’; and ’day’ produces ’monday’.

You can also include these characters in a date format model:

• punctuation such as hyphens, slashes, commas, periods, and
colons

• character literals

These characters appear in the return value in the same location as they
appear in the format model. Note that character literals must be
enclosed in double quotation marks.

You can use the FM and FX modifiers in format models for the
TO_CHAR function to control blank padding and exact format
checking.

A modifier can appear in a format model more than once. In such a
case, each subsequent occurrence toggles the effects of the modifier. Its
effects are enabled for the portion of the model following its first
occurrence, and then disabled for the portion following its second, and
then re–enabled for the portion following its third, and so on.

Example V

3 – 70 Oracle7 Server SQL Reference

FM “Fill mode”. This modifier suppresses blank padding in the return
value of the TO_CHAR function:

• In a date format element of a TO_CHAR function, this modifier
suppresses blanks in subsequent character elements (such as
MONTH) and suppresses leading and trailing zeroes for
subsequent number elements (such as MI) in a date format
model. Since there is no blank padding, the length of the return
value may vary. Without FM, the result of a character element is
always right padded with blanks to a fixed length and the
leading zero are always returned for a number element.

• In a number format element of a TO_CHAR function, this
modifier suppresses blanks added to the left of the number in the
result to right–justify it in the output buffer. Without FM, the
result is always right–justified in the buffer, resulting in
blank–padding to the left of the number.

FX “Format exact”. This modifier specifies exact matching for the
character argument and date format model of a TO_DATE function:

• Punctuation and quoted text in the character argument must
exactly match (except for case) the corresponding parts of the
format model. Without FX, punctuation and quoted text in the
character argument need only match the length and position of
the corresponding parts of the format model.

• The character argument cannot have extra blanks. Without FX,
Oracle7 ignores extra blanks.

• Numeric data in the character argument must have the same
number of digits as the corresponding element in the format
model. Without FX, numbers in the character argument can omit
leading zeroes.

When FX is enabled, you can disable this check for leading
zeroes by using the FM modifier as well.

If any portion of the character argument violates any of these
conditions, Oracle7 returns an error message.

Table 3 – 17 shows the results of the following query for different
values of number and ’fmt’:

SELECT TO_CHAR(number, ’fmt’)

FROM dual

Example VI

3 – 71Operators, Functions, Expressions, Conditions

number ’fmt’ Result

–1234567890 9999999999S ’1234567890–’

 0 99.99 ’ 0.00’

 +0.1 99.99 ’ .10’

 –0.2 99.99 ’ –.20’

 0 90.99 ’ 0.00’

 +0.1 90.99 ’ .10’

 –0.2 90.99 ’ –0.20’

 0 9999 ’ 0’

 1 9999 ’ 1’

 0 B9999 ’ ’

 1 B9999 ’ 1’

 0 B90.99 ’ ’

 +123.456 999.999 ’ 123.456’

 –123.456 999.999 ’–123.456’

 +123.456 FM999.009 ’123.456’

 +123.456 9.9EEEE ’ 1.2E+02’

 +1E+123 9.9EEEE ’ 1.0E+123’

 +123.456 FM9.9EEEE ’1.23E+02’

 +123.45 FM999.009 ’123.45’

 +123.0 FM999.009 ’123.00’

 +123.45 L999.99 ’ $123.45’

 +123.45 FML99.99 ’$123.45’

+1234567890 9999999999S ’1234567890+’

Table 3 – 17 Results of Example Number Conversions

The following statement uses a date format model to return a character
expression that contains the character literal “the” and a comma.

SELECT TO_CHAR(SYSDATE, ’fmDDTH ”of” Month, YYYY’) Ides

FROM DUAL

Ides

––––––––––––––––––

3RD of April, 1995

Example VII

Example VIII

3 – 72 Oracle7 Server SQL Reference

Note that the following statement also uses the FM modifier. If FM is
omitted, the month is blank–padded to nine characters:

SELECT TO_CHAR(SYSDATE, ’DDTH ”of” Month, YYYY’) Ides

FROM DUAL

Ides

–––––––––––––––––––––––

03RD of April , 1995

You can include a single quotation mark in the return value by placing
two consecutive single quotation marks in the format model.

The following statement places a single quotation mark in the return
value by using a date format model that includes two consecutive
single quotation marks:

SELECT TO_CHAR(SYSDATE, ’fmDay’’”s Special”’) Menu

FROM DUAL

Menu

–––––––––––––––––

Tuesday’s Special

Two consecutive single quotation marks can also be used for the same
purpose within a character literal in a format model.

Table 3 – 18 shows whether the following statement meets the matching
conditions for different values of char and ’fmt’ using FX:

UPDATE table

SET date_column = TO_DATE(char, ’fmt’)

char ’fmt’ Match or Error?

’15/ JAN /1993’ ’DD–MON–YYYY’ Match
’ 15! JAN % /1993’ ’DD–MON–YYYY’ Match
’15/JAN/1993’ ’FXDD–MON–YYYY’ Error
’15–JAN–1993’ ’FXDD–MON–YYYY’ Match
’1–JAN–1993’ ’FXDD–MON–YYYY’ Error
’01–JAN–1993’ ’FXDD–MON–YYYY’ Error
’1–JAN–1993’ ’FXFMDD–MON–YYYY’ Match

Table 3 – 18 Matching Character Data and Format Models with the FX
Format Model Modifier

Purpose

Syntax

Form I

3 – 73Operators, Functions, Expressions, Conditions

Expr

To specify an expression of any datatype. You must use this notation
whenever expr appears in conditions, SQL functions, or SQL
commands in other parts of this manual.

Expressions have several forms. Oracle7 does not accept all forms of
expressions in all parts of all SQL commands. The description of each
command in Chapter 4 “Commands” of this manual documents the
restrictions on the expressions in the command.

A column, pseudocolumn, constant, sequence number, or NULL.

pseudocolumn

ROWLABEL

column

view.

snapshot.

schema.

’text’

table.

CURRVAL

NEXTVAL

number

sequence.

NULL

expr (Form I) ::=

In addition to the schema of a user, schema can also be “PUBLIC”
(double quotation marks required), in which case it must qualify a
public synonym for a table, view, or snapshot. Qualifying a public
synonym with “PUBLIC” is only supported in Data Manipulation
Language commands, not Data Definition Language commands.

The pseudocolumn can be either LEVEL, ROWID, or ROWNUM. You
can only use a pseudocolumn with a table, rather than with a view or
snapshot. For more information on pseudocolumns, see the section
“Pseudocolumns” on page 2 – 38.

ROWLABEL is a column automatically created by Trusted Oracle7 in
every table in the database. If you are using Trusted Oracle7, the
expression ROWLABEL returns the row’s label. If you are not using
Trusted Oracle7, the expression ROWLABEL always returns NULL.
For information on using labels and ROWLABEL, see Trusted Oracle7
Server Administrator’s Guide.

Examples

Form II

Examples

Form III

Examples

Form IV

3 – 74 Oracle7 Server SQL Reference

emp.ename

’this is a text string’

10

A host variable with an optional indicator variable. Note that this form
of expression can only appear in embedded SQL statements or SQL
statements processed in an Oracle Call Interfaces program.

:host_variable

INDICATOR

:indicator_variable

expr (Form II) ::=

:employee_name INDICATOR :employee_name_indicator_var

:department_location

A call to a SQL function.

DISTINCT

ALL

expr(

,

function

)

expr (Form III) ::=

For information on SQL functions, see the section “SQL Functions” on
page 3 – 17.

LENGTH(’BLAKE’)

ROUND(1234.567*43)

SYSDATE

A call to a user function.

package.

function

expr (Form IV) ::=

schema. @dblink.

argument()

,

For information on user functions, see the section “User Functions” on
page 3 – 57.

Examples

Form V

Examples

Decoded Expression

3 – 75Operators, Functions, Expressions, Conditions

circle_area(radius)

payroll.tax_rate(empno)

scott.payrol.tax_rate(dependents, empno)@ny

A combination of other expressions.

(expr)

expr (Form V) ::=

+

–

PRIOR

expr

expr expr*

/

+

*
–

||

Note that some combinations of functions are inappropriate and are
rejected. For example, the LENGTH function is inappropriate within a
group function.

(’CLARK’ || ’SMITH’)

LENGTH(’MOOSE’) * 57

SQRT(144) + 72

my_fun(TO_CHAR(sysdate,’DD–MMM–YY’)

An expression using the special DECODE syntax:

, default

search, result

,

)DECODE (expr,

decode_expr ::=

To evaluate this expression, Oracle7 compares expr to each search value
one by one. If expr is equal to a search, Oracle7 returns the
corresponding result. If no match is found, Oracle7 returns default, or, if
default is omitted, returns null. If expr and search contain character data,
Oracle7 compares them using non–padded comparison semantics. For
information on these semantics, see the section “Datatype Comparison
Rules” on page 2 – 29.

Example

List of Expressions

Examples

3 – 76 Oracle7 Server SQL Reference

The search, result, and default values can be derived from expressions.
Oracle7 evaluates each search value only before comparing it to expr,
rather than evaluating all search values before comparing any of them
with expr. Consequently, Oracle7 never evaluates a search if a previous
search is equal to expr.

Oracle7 automatically converts expr and each search value to the
datatype of the first search value before comparing. Oracle7
automatically converts the return value to the same datatype as the
first result. If the first result has the datatype CHAR or if the first result
is null, then Oracle7 converts the return value to the datatype
VARCHAR2. For information on datatype conversion, see the section
“Data Conversion” on page 2 – 34.

In a DECODE expression, Oracle7 considers two nulls to be equivalent.
If expr is null, Oracle7 returns the result of the first search that is also
null.

The maximum number of components in the DECODE expression,
including expr, searches, results, and default is 255.

This expression decodes the value DEPTNO. If DEPTNO is 10, the
expression evaluates to ’ACCOUNTING’; if DEPTNO is 20, it evaluates
to ’RESEARCH’; etc. If DEPTNO is not 10, 20, 30, or 40, the expression
returns ’NONE’.

DECODE (deptno,10, ’ACCOUNTING’,

20, ’RESEARCH’,

30, ’SALES’,

40, ’OPERATION’,

’NONE’)

A parenthesized list of expressions.

expr

,

)(

expr_list ::=

An expression list can contain up to 254 expressions.

(10, 20, 40)

(’SCOTT’, ’BLAKE’, ’TAYLOR’)

(LENGTH(’MOOSE’) * 57, –SQRT(144) + 72, 69)

Usage Notes

Related Topics

3 – 77Operators, Functions, Expressions, Conditions

An expression is a combination of one or more values, operators, and
SQL functions that evaluates to a value. An expression generally
assumes the datatype of its components.

This simple expression evaluates to 4 and has datatype NUMBER (the
same datatype as its components):

2*2

The following expression is an example of a more complex expression
that uses both functions and operators. The expression adds seven days
to the current date, removes the time component from the sum, and
converts the result to CHAR datatype:

TO_CHAR(TRUNC(SYSDATE+7))

You can use expressions in any of these places:

• the select list of the SELECT command

• a condition of the WHERE and HAVING clauses

• the CONNECT BY, START WITH, and ORDER BY clauses

• the VALUES clause of the INSERT command

• the SET clause of the UPDATE command

For example, you could use an expression in place of the quoted string
’smith’ in this UPDATE statement SET clause:

SET ename = ’smith’

This SET clause has the expression LOWER(ENAME) instead of the
quoted string ’smith’:

SET ename = LOWER(ename)

The section “Functions” on page 3 – 17
The syntax description of ’text’ on page 2 – 15
The syntax description of number on page 2 – 17

Purpose

Syntax

Form I

3 – 78 Oracle7 Server SQL Reference

Condition

To specify a combination of one or more expressions and logical
operators that evaluates to either TRUE, FALSE, or unknown. You
must use this syntax whenever condition appears in SQL commands in
Chapter 4 “Commands” of this manual.

Conditions can have several forms. The description of each command
in Chapter 4 “Commands” of this manual documents the restrictions
on the conditions in the command.

A comparison with expressions or subquery results.

expr

(subquery)

expr_list

=

!=

^=

<>

expr

>

<

<=

>=

=

!=

^=

<>

�=

(subquery)

�=

condition (Form I ::=)

For information on comparison operators, see the section “Comparison
Operators” on page 3 – 5.

Form II

Form III

Form IV

Form V

3 – 79Operators, Functions, Expressions, Conditions

A comparison with any or all members in a list or subquery.

expr

(subquery)

expr_list

=

!=

^=

<>

expr_list

>

<

<=

>=

=

!=

^=

<>

�=

�=

ANY

ALL

SOME

ANY

ALL

SOME subquery

expr_list

,

ANY ()

condition (Form II) ::=

For the syntax of a subquery, see page 4 – 431.

A test for membership in a list or subquery.

expr

(subquery)

expr_list

IN

NOT

expr_list

IN

NOT subquery

expr_list
,

()

condition (Form III) ::=

A test for inclusion in a range.

expr BETWEEN expr AND expr

NOT

condition (Form IV) ::=

A test for nulls.

expr IS NULL

NOT

condition (Form V) ::=

Form VI

Form VII

Form VIII

Usage Notes

3 – 80 Oracle7 Server SQL Reference

A test for existence of rows in a subquery.

EXISTS (subquery)

condition (Form VI) ::=

A test involving pattern matching.

char1 LIKE char2

NOT ESCAPE ’c’

condition (Form VII) ::=

A combination of other conditions.

(condition)

condition

NOT condition

conditionAND

OR

condition (Form VIII) ::=

You can use a condition in the WHERE clause of these statements:

• DELETE

• SELECT

• UPDATE

You can use a condition in any of these clauses of the SELECT
command:

• WHERE

• START WITH

• CONNECT BY

• HAVING

A condition could be said to be of the “logical” datatype, although
Oracle7 does not formally support such a datatype.

The following is a simple condition that always evaluates to TRUE:

1 = 1

The following is a more complex condition that adds the SAL value to
the COMM value (substituting the value 0 for null) and determines
whether the sum is greater than the number constant 2500:

NVL(sal, 0) + NVL(comm, 0) > 2500

Examples

Related Topics

3 – 81Operators, Functions, Expressions, Conditions

Logical operators can combine multiple conditions into a single
condition. For example, you can use the AND operator to combine two
conditions:

(1 = 1) AND (5 < 7)

For more information on how to evaluate conditions with logical
operators, see the section “Logical beginning” on page 3 – 11.

ename = ’SMITH’

emp.deptno = dept.deptno

hiredate > ’01–JAN–88’

job IN (’PRESIDENT’, ’CLERK’, ’ANALYST’)

sal BETWEEN 500 AND 1000

comm IS NULL AND sal = 2000

SELECT command on page 4 – 405
UPDATE command on page 4 – 460
DELETE command on page 4 – 286

3 – 82 Oracle7 Server SQL Reference

C H A P T E R

4
T

4 – 1Commands

Commands

his chapter contains descriptions of all SQL commands and some
clauses. Commands and clauses appear alphabetically. The description
of each command or clause contains the following sections:

describes the basic uses of the command.

lists privileges you must have and steps that you
must take before using the command. In addition
to the prerequisites listed, most commands also
require that the database be open by your instance,
unless otherwise noted.

shows the keywords and parameters that make up
the command. The syntax diagrams used in this
chapter are explained in the Preface of this manual.

describes the purpose of each keyword and
parameter. The conventions for keywords and
parameters used in this chapter are also explained
in the Preface of this manual.

discusses how and when to use the command.

shows example statements based on the command.

lists related commands, clauses, and sections of
this and other manuals.

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Examples

Related Topics

Data Definition
Language Commands

4 – 2 Oracle7 Server SQL Reference

Summary of SQL Commands

The tables in the following sections provide a functional summary of
SQL commands and are divided into these categories:

• Data Definition Language commands

• Data Manipulation Language commands

• Transaction Control commands

• Session Control commands

• System Control commands

• Embedded SQL commands

Data Definition Language (DDL) commands allow you to perform
these tasks:

• create, alter, and drop objects

• grant and revoke privileges and roles

• analyze information on a table, index, or cluster

• establish auditing options

• add comments to the data dictionary

The CREATE, ALTER, and DROP commands require exclusive access
to the object being acted upon. For example, an ALTER TABLE
command fails if another user has an open transaction on the specified
table.

The GRANT, REVOKE, ANALYZE, AUDIT, and COMMENT
commands do not required exclusive access to the object being acted
upon. For example, you can analyze a table while other users are
updating the table.

Oracle7 implicitly commits the current transaction before and after
every Data Definition Language statement.

4 – 3Commands

Many Data Definition Language statements may cause Oracle7 to
recompile or reauthorize schema objects. For information on how
Oracle7 recompiles and reauthorizes schema objects and the
circumstances under which a Data Definition Language statement
would cause this, see the “Dependencies Among Schema Objects”
chapter of Oracle7 Server Concepts.

Data Definition Language commands are not directly supported by
PL/SQL, but may be available using packaged procedures supplied by
Oracle corporation. For more information, see PL/SQL User’s Guide and
Reference.

Table 4 – 1 shows the Data Definition Language Commands.

4 – 4 Oracle7 Server SQL Reference

Command Purpose

ALTER CLUSTER To change the storage characteristics of a cluster.
To allocate an extent for a cluster.

ALTER DATABASE To open/mount the database.
To convert an Oracle Version 6 data dictionary when migrating
to Oracle7.
To prepare to downgrade to an earlier release of Oracle7.
To choose archivelog/noarchivelog mode.
To perform media recovery.
To add/drop/clear redo log file groups members.
To rename a data file/redo log file member.
To backup the current control file.
To backup SQL commands (that can be used to re–create the
database) to the trace file.
To create a new data file.
To resize one or more datafiles.
To create a new datafile in place of an old one for recovery
purposes.
To enable/disable autoextending the size of datafiles.
To take a data file online/offline.
To enable/disable a thread of redo log file groups.
To change the database’s global name.
To change the MAC mode.
To set the DBHIGH or DBLOW labels.

ALTER FUNCTION To recompile a stored function.

ALTER INDEX To redefine an index’s future storage allocation.

ALTER PACKAGE To recompile a stored package.

ALTER PROCEDURE To recompile a stored procedure.

ALTER PROFILE To add or remove a resource limit to or from a profile.

ALTER RESOURCE COST To specify a formula to calculate the total cost of resources used
by a session.

ALTER ROLE To change the authorization needed to access a role.

Table 4 – 1 Data Definition Language Commands

4 – 5Commands

Command Purpose

ALTER ROLLBACK SEGMENT To change a rollback segment’s storage characteristics.
To bring a rollback segment online/offline.
To shrink a rollback segment to an optimal or given size.

ALTER SEQUENCE To redefine value generation for a sequence.

ALTER SNAPSHOT To change a snapshot’s storage characteristics, automatic
refresh time, or automatic refresh mode.

ALTER SHAPSHOT LOG To change a snapshot log’s storage characteristics.

ALTER TABLE To add a column/integrity constraint to a table.
To redefine a column, to change a table’s storage characteristics.
To enable/disable/drop an integrity constraint.
To enable/disable tables locks on a table.
To enable/disable all triggers on a table.
To allocate an extent for the table.
To allow/disallow writing to a table.
To modify the degree of parallelism for a table.

ALTER TABLESPACE To add/rename data files.
To change storage characteristics.
To take a tablespace online/offline.
To begin/end a backup.
To allow/disallow writing to a tablespace.

ALTER TRIGGER To enable/disable a database trigger.

ALTER USER To change a user’s password, default tablespace, temporary
tablespace, tablespace quotas, profile, or default roles.

ALTER VIEW To recompile a view.

ANALYZE To collect performance statistics, validate structure, or identify
chained rows for a table, cluster, or index.

AUDIT To choose auditing for specified SQL commands or operations
on schema objects.

COMMENT To add a comment about a table, view, shapshot, or column to
the data dictionary.

CREATE CLUSTER To create a cluster that can contain one or more tables.

CREATE CONTROLFILE To recreate a control file.

CREATE DATABASE To create a database.

Table 4 – 1 (continued) Data Definition Language Commands

4 – 6 Oracle7 Server SQL Reference

Command Purpose

CREATE DATABASE LINK To create a link to a remote database.

CREATE FUNCTION To create a stored function.

CREATE INDEX To create an index for a table or cluster.

CREATE PACKAGE To create the specification of a stored package.

CREATE PACKAGE BODY To create the body of a stored package

CREATE PROCEDURE To create a stored procedure.

CREATE PROFILE To create a profile and specify its resource limits.

CREATE ROLE To create a role.

CREATE ROLLBACK SEGMENT To create a rollback segment.

CREATE SCHEMA To issue multiple CREATE TABLE, CREATE VIEW, and
GRANT statements in a single transaction.

CREATE SEQUENCE To create a sequence for generating sequential values.

CREATE SHAPSHOT To create a snapshot of data from one or more remote master
tables.

CREATE SNAPSHOT LOG To create a snapshot log containing changes made to the master
table of a snapshot.

CREATE SYNONYM To create a synonym for a schema object.

CREATE TABLE To create a table, defining its columns, integrity constraints, and
storage allocation.

CREATE TABLESPACE To create a place in the database for storage of schema objects,
rollback segments, and temporary segments, naming the data
files to comprise the tablespace.

CREATE TRIGGER To create a database trigger.

CREATE USER To create a database user.

CREATE VIEW To define a view of one or more tables or views.

DROP CLUSTER To remove a cluster from the database.

DROP DATABASE LINK To remove a database link.

DROP FUNCTION To remove a stored function from the database.

Table 4 – 1 (continued) Data Definition Language Commands

4 – 7Commands

Command Purpose

DROP INDEX To remove an index from the database.

DROP PACKAGE To remove a stored package from the database.

DROP PROCEDURE To remove a stored procedure from the database.

DROP PROFILE To remove a profile from the database.

DROP ROLE To remove a role from the database.

DROP ROLLBACK SEGMENT To remove a rollback segment from the database.

DROP SEQUENCE To remove a sequence from the database.

DROP SNAPSHOT To remove a snapshot from the database.

DROP SNAPSHOT LOG To remove a snapshot log from the database.

DROP SYNONYM To remove a synonym from the database.

DROP TABLE To remove a table from the database.

DROP TABLESPACE To remove a tablespace from the database.

DROP TRIGGER To remove a trigger from the database.

DROP USER To remove a user and the objects in the user’s schema from the
database.

DROP VIEW To remove a view from the database.

GRANT To grant system privileges, roles and object privileges to users
and roles.

NOAUDIT To disable auditing by reversing, partially or completely, the
effect of a prior AUDIT statement.

RENAME To change the name of a schema object.

REVOKE To revoke system privileges, roles, and object privileges from
users and roles.

TRUNCATE To remove all rows from a table or cluster and free the space
that the rows used.

Table 4 – 1 (continued) Data Definition Language Commands

Data Manipulation
Language Commands

Transaction Control
Commands

4 – 8 Oracle7 Server SQL Reference

Data Manipulation Language (DML) commands query and manipulate
data in existing schema objects. These commands do not implicitly
commit the current transaction.

Command Purpose

DELETE To remove rows from a table.

EXPLAIN PLAN To return the execution plan for a SQL statement.

INSERT To add new rows to a table.

LOCK TABLE To lock a table or view, limiting access to it by other users.

SELECT To select data in rows and columns from one or more tables.

UPDATE To change data in a table.

Table 4 – 2 Data Manipulation Language Commands

All Data Manipulation Language commands except the EXPLAIN
PLAN command are supported in PL/SQL.

Transaction Control commands manage changes made by Data
Manipulation Language commands.

Command Purpose

COMMIT To make permanent the changes made by statements issued and
the beginning of a transaction.

ROLLBACK To undo all changes since the beginning of a transaction or since
a savepoint.

SAVEPOINT To establish a point back to which you may roll.

SET TRANSACTION To establish properties for the current transaction.

Table 4 – 3 Transaction Control Commands

All Transaction Control commands except certain forms of the
COMMIT and ROLLBACK commands are supported in PL/SQL. For
information on the restrictions, see COMMIT on page 4 – 141 and
ROLLBACK on page 4 – 397.

Session Control
Commands

System Control
Command

4 – 9Commands

Session Control commands dynamically manage the properties of a
user session. These commands do not implicitly commit the current
transaction.

PL/SQL does not support session control commands.

Command Purpose

ALTER SESSION To enable/disable the SQL trace facility.
To enable/disable global name resolution.
To change the values of the session’s NLS parameters.
For Trusted Oracle7, to change the session label.
To change the default label format.
In a parallel server, to indicate that the session must access
database files as if the session was connected to another
instance.
To close a database link.
To send advice to remote databases for forcing an in–doubt
distributed transaction.
To permit or prohibit procedures and stored procedures from
issuing COMMIT and ROLLBACK statements.
To change the goal of the cost–based optimization approach.

SET ROLE To enable/disable roles for the current session.

Table 4 – 4 Session Control Commands

The single System Control command dynamically manages the
properties of an Oracle7 instance. This command does not implicitly
commit the current transaction.

ALTER SYSTEM is not supported in PL/SQL.

Command Purpose

ALTER SYSTEM To alter the Oracle7 instance by performing a specialized
function.

Table 4 – 5 System Control Commands

Embedded SQL
Commands

4 – 10 Oracle7 Server SQL Reference

Embedded SQL commands place Data Definition Language, Data
Manipulation Language, and Transaction Control statements within a
procedural language program. Embedded SQL is supported by the
Oracle Precompilers.

Command Purpose

ALLOCATE To allocate a cursor variable.

CLOSE To disable a cursor, releasing the resources it holds.

CONNECT To log on to an Oracle7 instance.

DECLARE CURSOR To declare a cursor, associating it with a query.

DECLARE DATABASE To declare the name of a remote database.

DECLARE STATEMENT To assign a SQL variable name to a SQL statement.

DECLARE TABLE To declare the structure of a table for semantic checking of
embedded SQL statements by the Oracle Precompiler.

DESCRIBE To initialize a descriptor, a structure holding host variable
descriptions.

EXECUTE To execute a prepared SQL statement or PL/SQL block or to
execute an anonymous PL/SQL block.

EXECUTE IMMEDIATE To prepare and execute a SQL statement containing no host
variables.

FETCH To retrieve rows selected by a query.

OPEN To execute the query associated with a cursor.

PREPARE To parse a SQL statement.

TYPE To perform user–defined equivalencing.

VAR To perform host variable equivalencing.

WHENEVER To specify handling for error and warning conditions.

Table 4 – 6 Embedded SQL Commands

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

4 – 11Commands

ALLOCATE (Embedded SQL)

To allocate a cursor variable to be referenced in a PL/SQL block.

You must define the cursor variable as a SQL_CURSOR pseudotype
before allocating the cursor variable.

EXEC SQL ALLOCATE cursor_variable

is the cursor variable to be allocated.

Whereas a cursor is static, a cursor variable is dynamic because it is not
tied to a specific query. You can open a cursor variable for any
type–compatible query.

For more information on this command, see PL/SQL User’s Guide and
Reference and Programmer’s Guide to the Oracle Precompilers.

This partial example illustrates the use of the ALLOCATE command in
a Pro*C embedded SQL program:

EXEC SQL BEGIN DECLARE SECTION;

SQL_CURSOR emp_cv;

struct{ ... } emp_rec;

EXEC SQL END DECLARE SECTION;

EXEC SQL ALLOCATE emp_cursor;

EXEC SQL EXECUTE

BEGIN

 OPEN :emp_cv FOR SELECT * FROM emp;

END;

END–EXEC;

for (;;)

{EXEC SQL FETCH :emp_cv INTO emp_rec; }

CLOSE command on 4 – 139 EXECUTE command on 4 – 332 FETCH
command on 4 – 341

cursor_variable

Purpose

Prerequisites

Syntax

4 – 12 Oracle7 Server SQL Reference

ALTER CLUSTER

To redefine storage and parallelism characteristics for a cluster.

The cluster must be in your own schema or you must have ALTER
ANY CLUSTER system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the cluster’s creation label or you must satisfy one of
these criteria:

• If the cluster’s creation label is higher than your DBMS label, you
must have READUP and WRITEUP system privileges.

• If the cluster’s creation label is lower than your DBMS label, you
must have WRITEDOWN system privilege.

• If the cluster’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

schema.

ALTER CLUSTER cluster

SIZE integer

PCTFREE integer

K

M

MAXTRANS integer

INITRANS integer

ALLOCATE EXTENT

STORAGE storage_clause

()

K

M

SIZE integer

INSTANCE integer

DATAFILE ’filename’

PARALLEL parallel_clause

PCTUSED integer

DEALLLOCATE UNUSED

K

M

KEEP integer

Keywords and
Parameters

4 – 13Commands

is the schema containing the cluster. If you omit
schema, Oracle7 assumes the cluster is in your own
schema.

is the name of the cluster to be altered.

determines how many cluster keys will be stored in
data blocks allocated to the cluster. You can only
change the SIZE parameter for an indexed cluster,
not for a hash cluster. For a description of the SIZE
parameter, see the CREATE CLUSTER command
on page 4 – 164.

changes the values of these parameters for the
cluster. See the PCTUSED, PCTFREE, INITRANS,
and MAXTRANS parameters of the CREATE
CLUSTER command on page 4 – 164.

changes the storage characteristics for the cluster.
See the STORAGE clause on page 4 – 449.

ALLOCATE EXTENT

explicitly allocates a new extent for the cluster.

specifies the size of the extent in
bytes. You can use K or M to
specify the extent size in kilobytes
or megabytes. If you omit this
parameter, Oracle7 determines the
size based on the values of the
cluster’s STORAGE parameters.

specifies one of the datafiles in the
cluster’s tablespace to contain the
new extent. If you omit this
parameter, Oracle7 chooses the
datafile.

schema

cluster

SIZE

PCTUSED
PCTFREE
INITRANS
MAXTRANS

STORAGE

SIZE

DATAFILE

4 – 14 Oracle7 Server SQL Reference

makes the new extent available to
the specified instance. An instance
is identified by the value of its
initialization parameter
INSTANCE_NUMBER. If you omit
this parameter, the extent is
available to all instances. Only use
this parameter if you are using
Oracle7 with the Parallel Server
option in parallel mode.

Explicitly allocating an extent with this clause does
not cause Oracle7 to evaluate the cluster’s storage
parameters and determine a new size for the next
extent to be allocated. You can only allocate a new
extent for an indexed cluster, not a hash cluster.

DEALLOCATE UNUSED

explicitly deallocates unused space at the end of
the cluster and make the freed space available for
other segments. Only unused space above the
high–water mark can be freed. If KEEP is omitted,
all unused space is freed. For more information, see
the deallocate_clause on page 4 – 278.

specifies the number of bytes
above the high–water mark that
the cluster will have after
deallocation. If the number of
remaining extents are less than
MINEXTENTS, then
MINEXTENTS is set to the current
number of extents. If the initial
extent becomes smaller than
INITIAL, then INITIAL is set to the
value of the current initial extent.

specifies the degree of parallelism for creating the
cluster and the default degree of parallelism for
queries on the cluster once created. For more
information, see the parallel_clause on page 4 – 378.

INSTANCE

KEEP

PARALLEL

Usage Notes

Example I

Example II

Related Topics

4 – 15Commands

 You can perform these tasks with the ALTER CLUSTER command:

• change the MAXTRANS parameter value for data blocks in the
cluster

• change the SIZE, PCTUSED, PCTFREE, and INITRANS
parameter values for future data blocks in the cluster

• change future storage characteristics with the STORAGE
characteristics NEXT, PCTINCREASE, and MAXEXTENTS

• explicitly allocate an extent

• explicitly deallocate space from unused extents

You cannot perform these tasks with the ALTER CLUSTER command:

• change the number or the name of columns in the cluster key

• change the values of the STORAGE parameters INITIAL and
MINEXTENTS

• change the tablespace in which the cluster is stored

• remove tables from a cluster (see the DROP CLUSTER command
on 4 – 301 and DROP TABLE command on 4 – 318)

The following statement alters the CUSTOMER cluster in the schema
SCOTT:

ALTER CLUSTER scott.customer

SIZE 512

STORAGE (MAXEXTENTS 25)

Oracle7 now allocates 512 bytes for each cluster key value. Assuming a
data block size of 2 kilobytes, future data blocks within this cluster
contain 4 cluster keys per data block, or 2 kilobytes divided by 512
bytes.

The cluster can have a maximum of 25 extents.

The following statement deallocates unused space from CUSTOMER
cluster, keeping 30 Kilobytes of unused space for future use:

ALTER CLUSTER scott.customer DEALLOCATE UNUSED KEEP 30 K

CREATE CLUSTER command on 4 – 164
CREATE TABLE command on 4 – 245
DROP CLUSTER command on 4 – 301
DROP TABLE command on 4 – 318
STORAGE clause on 4 – 449

Purpose

Prerequisites

4 – 16 Oracle7 Server SQL Reference

ALTER DATABASE

To alter an existing database in one of these ways:

• mount the database or standby database

• convert an Oracle Version 6 data dictionary when migrating to
Oracle7

• open the database

• choose archivelog or noarchivelog mode for redo log file groups

• perform media recovery

• add or drop a redo log file group or a member of a redo log file
group

• clear and initialize an online redo log file

• rename a redo log file member or a datafile

• backup the current control file

• backup SQL commands (that can be used to re–create the
database) to the database’s trace file

• take a datafile online or offline

• enable or disable a thread of redo log file groups

• change the database’s global name

• prepare to downgrade to an earlier release of Oracle7

• change the MAC mode

• equate the predefined label DBHIGH or DBLOW with an
operating system label

• resize one or more datafiles

• create a new datafile in place of an old one for recovery purposes

• enable or disable the autoextending of the size of datafiles

You must have ALTER DATABASE system privilege.

Syntax

4 – 17Commands

database

ALTER DATABASE

MOUNT

PARALLEL

EXCLUSIVE

OPEN

CONVERT

NOARCHIVELOG

ARCHIVELOG

NORESETLOGS

RESETLOGS

RECOVER recover_clause

ADD LOGFILE

THREAD integer GROUP integer

filespec

,

ADD LOGFILE MEMBER

REUSE

’filename’

,

TO GROUP integer

’filename’

,

()’filename’

,

DROP LOGFILE

,

GROUP integer

’filename’

()’filename’

,

DROP LOGFILE MEMBER

,

’filename’

RENAME FILE TO

,

’filename’ ’filename’

,

BACKUP CONTROLFILE

REUSE

CLEAR LOGFILE

UNRECOVERABLE DATAFILE

TO ’filename’

TO TRACE

NORESETLOGS

RESETLOGS

,

GROUP integer

’filename’

()’filename’

,

STANDBY

CREATE STANDBY CONTROLFILE AS ’filename’

DATABASE

REUSE

UNARCHIVED

ACTIVATE STANDBY DATABASE

4 – 18 Oracle7 Server SQL Reference

.domain

MAXSIZENEXT integer

ON

OFFAUTOEXTEND

RESIZE integer

K

M

ONLINE

OFFLINE

DROP

DATAFILE

SET

RESET COMPATIBILITY

DBLOW = ’TEXT’

DBHIGH = ’TEXT’

DBMAC ON

OFF

RENAME GLOBAL_NAME TO database

K

M

END BACKUP

’filename’

integer

UNLIMITED

K

M

ENABLE THREAD integer

PUBLIC

DISABLE THREAD integer

CREATE DATAFILE ’filename’

AS filespec

,

Keywords and
Parameters

4 – 19Commands

identifies the database to be altered. If you omit
database, Oracle7 alters the database identified by
the value of the initialization parameter
DB_NAME. You can only alter the database whose
control files are specified by the initialization
parameter CONTROL_FILES. Note that the
database identifier is not related to the SQL*Net
database specification.

You can only use the following options when the database is not
mounted by your instance:

mounts the database.

mounts the standby database. For more
information, see the Oracle7 Server Administrator’s
Guide.

mounts the database in exclusive
mode. This mode allows the
database to be mounted by only
one instance at a time. You cannot
use this option if another instance
has already mounted the database.

mounts the database in parallel
mode. This mode allows the
database to be mounted by
multiple instances concurrently.
You can only use this option if you
are using Oracle7 with the Parallel
Server option. You cannot use this
option with the STANDBY option
or if another option has mounted
the database in exclusive mode.

The default is EXCLUSIVE.

completes the conversion of the Oracle Version 6
data dictionary. After you use this option, the
Version 6 data dictionary no longer exists in the
Oracle7 database. Only use this option when you
are migrating to Oracle7. For more information on
using this option, see Oracle7 Server Migration.

database

MOUNT

STANDBY
DATABASE

EXCLUSIVE

PARALLEL

CONVERT

4 – 20 Oracle7 Server SQL Reference

opens the database, making it available for normal
use. You must mount the database before you can
open it. You cannot open a standby database that
has not been activated.

resets the current log sequence
number to 1 and discards any redo
information that was not applied
during recovery; ensuring that it
will never be applied. This
effectively discards all changes to
the database. You must use this
option to open the database after
performing media recovery with
an incomplete recovery using the
RECOVER UNTIL clause (see
page 4 – 382) or with a backup
controlfile. After opening the
database with this option, you
should perform a complete
database backup.

NORESETLOGS

leaves the log sequence number
and redo log files in their current
state.

You can only specify the above options after
performing incomplete media recovery or
complete media recovery with a backup controlfile.
In any other case, Oracle7 uses the
NORESETLOGS automatically.

ACTIVATE STANDBY DATABASE

changes the state of a standby database to an active
database. For more information, see Oracle7 Server
Administrator’s Guide.

OPEN

RESETLOGS

4 – 21Commands

You can only use the following options when your instance has the
database mounted in exclusive mode, but not open:

establishes archivelog mode for redo log file
groups. In this mode, the contents of a redo log file
group must be archived before the group can be
reused. This option prepares for the possibility of
media recovery. You can only use this option after
shutting down your instance normally or
immediately with no errors and then restarting it,
mounting the database in exclusive mode.

NOARCHIVELOG

establishes noarchivelog mode for redo log files. In
this mode, the contents of a redo log file group
need not be archived so that the group can be
reused. This mode does not prepare for recovery
after media failure.

performs media recovery. See the RECOVER clause
on page 4 – 382. You only recover the entire
database when the database is closed. You can
recover tablespaces or datafiles when the database
is open or closed, provided the tablespaces or
datafiles to be recovered are offline. You cannot
perform media recovery if you are connected to
Oracle7 through the multi–threaded server
architecture. You can also perform media recovery
with the Server Manager recovery dialog box.

You can use any of the following options when your instance has the
database mounted, open or closed, and the files involved are not in use:

adds one or more redo log file groups to the
specified thread, making them available to the
instance assigned the thread. If you omit the
THREAD parameter, the redo log file group is
added to the thread assigned to your instance. You
need only use the THREAD parameter if you are
using Oracle7 with the Parallel Server option in
parallel mode.

Each filespec specifies a redo log file group
containing one or more members, or copies. See the
syntax description of filespec on page 4 – 343.

You can choose the value of the GROUP parameter
for each redo log file group. Each value uniquely

ARCHIVELOG

RECOVER

ADD LOGFILE

4 – 22 Oracle7 Server SQL Reference

identifies the redo log file group among all groups
in all threads and can range from 1 to the
MAXLOGFILES value. You cannot add multiple
redo log file groups having the same GROUP
value. If you omit this parameter, Oracle7
generates its value automatically. You can examine
the GROUP value for a redo log file group through
the dynamic performance table V$LOG.

ADD LOGFILE MEMBER

adds new members to existing redo log file groups.
Each new member is specified by ’filename’. If the
file already exists, it must be the same size as the
other group members and you must specify the
REUSE option. If the file does not exist, Oracle7
creates a file of the correct size. You cannot add a
member to a group if all of the group’s members
have been lost through media failure.

You can specify an existing redo log file group in
one of these ways:

You can specify the value of the
GROUP parameter that identifies
the redo log file group.

You can list all members of the
redo log file group. You must fully
specify each filename according to
the conventions for your operating
system.

drops all members of a redo log file group. You can
specify a redo log file group in the same manner as
the ADD LOGFILE MEMBER clause. You cannot
drop a redo log file group if it needs archiving or is
the currently active group. Nor can you drop a
redo log file group if doing so would cause the
redo thread to contain less than two redo log file
groups.

GROUP
parameter

list of filenames

DROP LOGFILE

4 – 23Commands

drops one or more redo log file members. Each
’filename’ must fully specify a member using the
conventions for filenames on your operating
system.

You cannot use this clause to drop all members of a
redo log file group that contain valid data. To
perform this operation, use the DROP LOGFILE
clause.

reinitialize an online redo log and optionally not
archive the redo log. CLEAR LOGFILE is similar to
adding and dropping a redo log except that the
command may be issued even if there are only two
logs for the thread and also may be issued for the
current redo log of a closed thread.

CLEAR LOGFILE cannot be used to clear a log
needed for media recovery. If it is necessary to
clear a log containing redo after the database
checkpoint, then incomplete media recovery will be
necessary. The current redo log of an open thread
can never be cleared. The current log of a closed
thread can be cleared by switching logs in the
closed thread.

If the CLEAR LOGFILE command is interrupted
by a system or instance failure, then the database
may hang. If so, the command must be reissued
once the database is restarted. If the failure
occurred because of I/O errors accessing one
member of a log group, then that member can be
dropped and other members added.

you must specify UNARCHIVED
if you want to reuse a redo log that
was not archived.

Warning: Specifying UNARCHIVED will make
backups unusable if the redo log is needed for
recovery.

UNRECOVERABLE DATAFILE

you must specify
UNRECOVERABLE DATAFILE if
the tablespace has a datafile offline

DROP LOGFILE
MEMBER

CLEAR LOGFILE

UNARCHIVED

4 – 24 Oracle7 Server SQL Reference

and the unarchived log must be
cleared to bring the tablespace
online. If so, then the datafile and
entire tablespace must be dropped
once the CLEAR LOGFILE
command completes.

renames datafiles or redo log file members. This
clause only renames files in the control file, it does
not actually rename them on your operating
system. You must specify each filename using the
conventions for filenames on your operating
system.

CREATE STANDBY CONTROLFILE

create a controlfile to be used to maintain a standby
database. For more information, see Oracle7 Server
Administrator’s Guide.

BACKUP CONTROLFILE
backs up the current control file.

specifies the file to which the
control file is backed up. You must
fully specify the ’filename’ using the
conventions for your operating
system. If the specified file already
exists, you must specify the REUSE
option.

writes SQL statements to the
database’s trace file, rather than
making a physical backup of the
control file.

The SQL commands can be used to
start up the database, re–create the
control file, and recover and open
the database appropriately, based
on the created control file.

You can copy the commands from
the trace file into a script file, edit
the commands as necessary, and

RENAME FILE

TO ’filename’

TO TRACE

4 – 25Commands

use the script to recover the
database if all copies of the control
file are lost (or to change the size of
the control file).

the SQL statement written to the
trace file for starting the database
is ALTER DATABASE OPEN
RESETLOGS.

NORESETLOGS

the SQL statement written to the
trace file for starting the database
is ALTER DATABASE OPEN
NORESETLOGS.

You can only use the following options when your instance has the
database open:

in a parallel server, enables the specified thread of
redo log file groups. The thread must have at least
two redo log file groups before you can enable it.

makes the enabled thread available
to any instance that does not
explicitly request a specific thread
with the initialization parameter
THREAD.

If you omit the PUBLIC option, the thread is only
available to the instance that explicitly requests it
with the initialization parameter THREAD.

disables the specified thread, making it unavailable
to all instances. You cannot disable a thread if an
instance using it has the database mounted.

RESETLOGS

ENABLE

PUBLIC

DISABLE

4 – 26 Oracle7 Server SQL Reference

RENAME GLOBAL_NAME
changes the global name of the database. The
database is the new database name and can be as
long as eight bytes. The optional domains specifies
where the database is effectively located in the
network hierarchy. Renaming your database
automatically clears all data from the shared pool
in the SGA. However, renaming your database
does not change global references to your database
from existing database links, synonyms, and stored
procedures and functions on remote databases.
Changing such references is the responsibility of
the administrator of the remote databases.

For more information on global names, see the
“Network Administration” chapter of Oracle7
Server Distributed Systems, Volume I.

RESET COMPATIBILITY

mark the database to be reset to an earlier version
of Oracle7 when the database is next restarted.

Note: RESET COMPATIBILITY will not work
unless you have successfully disabled Oracle7
features that affect backward compatibility.

For more information on downgrading to an earlier
version of Oracle7, see the “Upgrading and
Downgrading” chapter of Oracle7 Server Migration.

for Trusted Oracle7, changes one of the following:

equates the predefined label
DBHIGH to the operating system
label specified by ’text’.

equates the predefined label
DBLOW to the operating system
label specified by ’text’.

configures Trusted Oracle7 in
DBMS MAC mode.

configures Trusted Oracle7 in OS
MAC mode.

SET

DBHIGH

DBLOW

DBMAC ON

DBMAC OFF

4 – 27Commands

You must specify labels in the default label format
for your session. Changes made by this option take
effect when you next start your instance. You can
only use this clause if you are using Trusted
Oracle7. For more information on this clause, see
the Trusted Oracle7 Server Administrator’s Guide.

You can use any of the following options when your instance has the
database mounted, open or closed, and the files involved are not in use:

CREATE DATAFILE
creates a new empty datafile in place of an old one.
You can use this option to re–create a datafile that
was lost with no backup. The ’filename’ must
identify a file that is or was once part of the
database. The filespec specifies the name and size of
the new datafile. If you omit the AS clause, Oracle7
creates the new file with the same name and size as
the file specified by ’filename’.

During recovery, all archived redo logs written to
since the original datafile was created must be
applied to the new, empty version of the lost
datafile.

Oracle7 creates the new file in the same state as the
old file when it was created. You must perform
media recovery on the new file to return it to the
state of the old file at the time it was lost.

You cannot create a new file based on the first
datafile of the SYSTEM tablespace.

changes one of the following for your database:

brings the datafile online.

takes the datafile offline.

If the database is open, then you
must perform media recovery on
the datafile before bringing it back
online. This is because a
checkpoint is not performed on the
datafile before it is taken offline.

DATAFILE

ONLINE

OFFLINE

4 – 28 Oracle7 Server SQL Reference

takes a datafile offline when the
database is in NOARCHIVELOG
mode.

attempts to change the size of the
datafile to the specified absolute
size in bytes. You can also use K or
M to specify this size in kilobytes
or megabytes. There is no default,
so you must specify a size.

enables or disables the automatic
extension of a datafile.

disable autoextend if it is turned
on. NEXT and MAXSIZE are set to
zero. Values for NEXT and
MAXSIZE must be respecified in
further ALTER DATABASE
AUTOEXTEND commands.

enable autoextend.

the size in bytes of the next
increment of disk space to be
automatically allocated to the
datafile when more extents are
required. You can also use K or M
to specify this size in kilobytes or
megabytes. The default is one data
block.

maximum disk space allowed for
automatic extension of the datafile.

set no limit on allocating disk
space to the datafile.

avoid media recovery on database
startup after an online tablespace
backup was interrupted by a
system failure or instance failure or
SHUTDOWN ABORT.

DROP

RESIZE

AUTOEXTEND

OFF

ON

NEXT

MAXSIZE

UNLIMITED

END BACKUP

Usage Notes

Example I

Example II

Example III

Example IV

Example V

Example VI

4 – 29Commands

Warning: Do not use ALTER TABLESPACE ... END BACKUP
if you have restored any of the files affected from a backup.
Media recovery is fully described in the Oracle7 Server
Administrator’s Guide.

For more information on using the ALTER DATABASE command for
database maintenance, see the Oracle7 Server Administrator’s Guide.

The following statement mounts the database named STOCKS
exclusively:

ALTER DATABASE stocks MOUNT EXCLUSIVE

The following statement adds a redo log file group with two members
and identifies it with a GROUP parameter value of 3:

ALTER DATABASE stocks

 ADD LOGFILE GROUP 3

(’diska:log3.log’ ,

 ’diskb:log3.log’) SIZE 50K

The following statement adds a member to the redo log file group
added in the previous example:

ALTER DATABASE stocks

ADD LOGFILE MEMBER ’diskc:log3.log’

TO GROUP 3

The following statement drops the redo log file member added in the
previous example:

ALTER DATABASE stocks

DROP LOGFILE MEMBER ’diskc:log3.log’

The following statement renames a redo log file member:

ALTER DATABASE stocks

RENAME FILE ’diskb:log3.log’ TO ’diskd:log3.log’

The above statement only changes the member of the redo log group
from one file to another. The statement does not actually change the
name of the file ’DISKB:LOG3.LOG’ to ’DISKD:LOG3.LOG’. You must
perform this operation through your operating system.

The following statement drops all members of the redo log file group 3:

ALTER DATABASE stocks DROP LOGFILE GROUP 3

Example VII

Example VIII

Example IX

Example X

Example XI

Example XII

Example XIII

Related Topics

4 – 30 Oracle7 Server SQL Reference

The following statement adds a redo log file group containing three
members to thread 5 and assigns it a GROUP parameter value of 4:

ALTER DATABASE stocks

ADD LOGFILE THREAD 5 GROUP 4

(’diska:log4.log’,

 ’diskb:log4:log’,

 ’diskc:log4.log’)

The following statement disables thread 5 in a parallel server:

ALTER DATABASE stocks

DISABLE THREAD 5

The following statement enables thread 5 in a parallel server, making it
available to any Oracle7 instance that does not explicitly request a
specific thread:

ALTER DATABASE stocks

ENABLE PUBLIC THREAD 5

The following statement creates the datafile ’DISK1:DB1.DAT’ based on
the file ’DISK2:DB1.DAT’:

ALTER DATABASE

CREATE DATAFILE ’disk1:db1.dat’ AS ’disk2:db1.dat’

The following statement changes the global name of the database and
includes both the database name and domain:

ALTER DATABASE

RENAME GLOBAL_NAME TO sales.australia.acme.com

The following statement attempts to change the size of datafile
’DISK1:DB1.DAT’:

ALTER DATABASE

DATAFILE ’disk1:db1.dat’ RESIZE 10 M

For examples of performing media recovery, see the Oracle7 Server
Administrator’s Guide.

The following statement clears a log file:

ALTER DATABASE

CLEAR LOGFILE ’disk3:log.dbf’

CREATE DATABASE command 4 – 178
RECOVER, STARTUP, and SHUTDOWN Server Manager commands
in the Oracle Server Manager User’s Guide.

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 31Commands

ALTER FUNCTION

To recompile a stand–alone stored function.

The function must be in your own schema or you must have ALTER
ANY PROCEDURE system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the function’s creation label or you must satisfy one
of these criteria:

• If the function’s creation label is higher than your DBMS label,
you must have READUP and WRITEUP system privileges.

• If the function’s creation label is lower than your DBMS label,
you must have WRITEDOWN system privilege.

• If the function’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

ALTER FUNCTION function

schema.

COMPILE

is the schema containing the function. If you omit
schema, Oracle7 assumes the function is in your
own schema.

is the name of the function to be recompiled.

causes Oracle7 to recompile the function. The
COMPILE keyword is required.

schema

function

COMPILE

Usage Notes

Example

Related Topics

4 – 32 Oracle7 Server SQL Reference

 You can use the ALTER FUNCTION command to explicitly recompile
a function that is invalid. Explicit recompilation eliminates the need for
implicit runtime recompilation and prevents associated runtime
compilation errors and performance overhead.

The ALTER FUNCTION command is similar to the ALTER
PROCEDURE command on 4 – 42. For information on how Oracle7
recompiles functions and procedures, see the “Dependencies Among
Schema Objects” chapter of Oracle7 Server Concepts.

Note: This command does not change the declaration or
definition of an existing function. To re–declare or redefine a
function, you must use the CREATE FUNCTION command (on
page 4 – 188) with the OR REPLACE option.

To explicitly recompile the function GET_BAL owned by the user
MERRIWEATHER, issue the following statement:

ALTER FUNCTION merriweather.get_bal

 COMPILE

If Oracle7 encounters no compilation errors while recompiling
GET_BAL, GET_BAL becomes valid. Oracle7 can subsequently execute
it without recompiling it at runtime. If recompiling GET_BAL results in
compilation errors, Oracle7 returns an error message and GET_BAL
remains invalid.

Oracle7 also invalidates all objects that depend upon GET_BAL. If you
subsequently reference one of these objects without explicitly
recompiling it first, Oracle7 recompiles it implicitly at runtime.

ALTER PROCEDURE command on 4 – 42
CREATE FUNCTION command on 4 – 188

Purpose

Prerequisites

4 – 33Commands

ALTER INDEX

To change storage allocation for an index or rebuild an index.

The index must be in your own schema or you must have ALTER ANY
INDEX system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the index’s creation label or you must satisfy one of
these criteria:

• If the index’s creation label is higher than your DBMS label, you
must have READUP and WRITEUP system privileges

• If the index’s creation label is lower than your DBMS label, you
must have WRITEDOWN system privilege.

• If the index’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

Syntax

4 – 34 Oracle7 Server SQL Reference

ALTER INDEX index

schema.

DEALLLOCATE UNUSED

K

M

KEEP integer

MAXTRANS integer

INITRANS integer

STORAGE storage_clause

PCTFREE integer

REBUILD

PARALLEL integer

NOPARALLEL

RECPVERAB;E

TABLESPACE tablespace

ALLOCATE EXTENT

)(SIZE integer

K

M

DATAFILE ’filename’

INSTANCE integer

UNRECOVERABLE

Syntax

Keywords and
Parameters

4 – 35Commands

ALTER INDEX index

schema.

DEALLLOCATE UNUSED

K

M

KEEP integer

REBUILD

PARALLEL integer

NOPARALLEL

RECPVERAB;E

TABLESPACE tablespace

UNRECOVERABLE

MAXTRANS integer

INITRANS integer

STORAGE storage_clause

PCTFREE integer

ALLOCATE EXTENT

)(SIZE integer

K

M

DATAFILE ’filename’

INSTANCE integer

is the schema containing the index. If you omit
schema, Oracle7 assumes the index is in your own
schema.

is the name of the index to be altered.

changes the values of these parameters for the
index. See the PCTFREE, INITRANS and
MAXTRANS parameters of the CREATE TABLE
command on page 4 – 245.

schema

index

PCTFREE
INITRANS
MAXTRANS

4 – 36 Oracle7 Server SQL Reference

changes the storage parameters for the index. See
the STORAGE clause on page 4 – 449.

ALLOCATE EXTENT
explicitly allocates a new extent for the index.

specifies the size of the extent in
bytes. You can use K or M to
specify the extent size in kilobytes
or megabytes. If you omit this
parameter, Oracle7 determines the
size based on the values of the
index’s STORAGE parameters.

specifies one of the data files in the
index’s tablespace to contain the
new extent. If you omit this
parameter, Oracle7 chooses the
data file.

makes the new extent available to
the specified instance. An instance
is identified by the value of its
initialization parameter
INSTANCE_NUMBER. If you omit
this parameter, the extent is
available to all instances. Only use
this parameter if you are using
Oracle7 with the Parallel Server
option in parallel mode.

Explicitly allocating an extent with this clause does
affect the size for the next extent to be allocated as
specified by the NEXT and PCTINCREASE storage
parameters.

STORAGE

SIZE

DATAFILE

INSTANCE

4 – 37Commands

DEALLOCATE UNUSED

explicitly deallocates unused space at the end of
the index and make the freed space available for
other segments. Only unused space above the
high–water mark can be freed. If KEEP is omitted,
all unused space is freed. For more information, see
the deallocate_clause on page 4 – 278.

specifies the number of bytes
above the high–water mark that
the index will have after
deallocation. If the number of
remaining extents are less than
MINEXTENTS, then
MINEXTENTS is set to the current
number of extents. If the initial
extent becomes smaller than
INITIAL, then INITIAL is set to the
value of the current initial extent.

create the index anew using the existing index.

use integer parallel processes to
build the new index.

do not use parallel processes to
build the new index. This is the
default.

RECOVERABLE

specifies that the creation of the
index will be logged in the redo log
file. This is the default.

If the database is run in
ARCHIVELOG mode, media
recovery from a backup will
recreate the index. You cannot
specify RECOVERABLE when
using NOARCHIVELOG mode.

KEEP

REBUILD

PARALLEL

NOPARALLEL

Usage Notes

Example

Related Topics

4 – 38 Oracle7 Server SQL Reference

UNRECOVERABLE

specifies that the creation of the
index will not be logged in the
redo log file. As a result, media
recovery will not recreate the
index.

When this option is used, index
creation is faster than the
RECOVERABLE option because no
redo log entries are written.

TABLESPACE

specifies the tablespace where the
rebuilt index will be stored. The
default is the default tablespace of
the user issuing the command.

The INITRANS and MAXTRANS parameters as well as the STORAGE
and ALLOCATE EXTENT clauses, all have the same function as in the
CREATE TABLE command, which is described on page 4 – 245.

This statement alters SCOTT’S CUSTOMER index so that future data
blocks within this index use 5 initial transaction entries and an
incremental extent of 100 kilobytes:

ALTER INDEX scott.customer

INITRANS 5

STORAGE (NEXT 100K)

CREATE INDEX command on 4 – 192
CREATE TABLE command on 4 – 245
STORAGE clause on 4 – 449

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 39Commands

ALTER PACKAGE

To recompile a stored package.

The package must be in your own schema or you must have ALTER
ANY PROCEDURE system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the package’s creation label or you must satisfy one of
these criteria:

• If the package’s creation label is higher than your DBMS label,
you must have READUP and WRITEUP system privileges

• If the package’s creation label is lower than your DBMS label,
you must have WRITEDOWN system privilege.

• If the package’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

PACKAGE

BODY

package

schema.

ALTER PACKAGE COMPILE

is the schema containing the package. If you omit
schema, Oracle7 assumes the package is in your
own schema.

is the name of the package to be recompiled.

recompiles the package specification or body. The
COMPILE keyword is required.

recompiles the package body and specification.

recompiles only the package body.

The default option is PACKAGE.

schema

package

COMPILE

PACKAGE

BODY

Usage Notes

Recompiling Package
Specifications

Recompiling Package
Bodies

4 – 40 Oracle7 Server SQL Reference

You can use the ALTER PACKAGE command to explicitly recompile
either a package specification and body or only a package body.
Explicit recompilation eliminates the need for implicit runtime
recompilation and prevents associated runtime compilation errors and
performance overhead.

Because all objects in a package are stored as a unit, the ALTER
PACKAGE command recompiles all package objects together. You
cannot use the ALTER PROCEDURE command or ALTER FUNCTION
command to individually recompile a procedure or function that is part
of a package.

Note: This command does not change the declaration or
definition of an existing package. To re–declare or redefine a
package, you must use the CREATE PACKAGE or the CREATE
PACKAGE BODY command with the OR REPLACE option.

You might want to recompile a package specification to check for
compilation errors after modifying the specification. When you issue an
ALTER PACKAGE statement with the COMPILE PACKAGE option,
Oracle7 recompiles the package specification and body regardless of
whether it is invalid. When you recompile a package specification,
Oracle7 invalidates any local objects that depend on the specification,
such as procedures that call procedures or functions in the package.
Note that the body of a package also depends on its specification. If
you subsequently reference one of these dependent objects without first
explicitly recompiling it, Oracle7 recompiles it implicitly at runtime.

You might want to recompile a package body after modifying it. When
you issue an ALTER PACKAGE statement with the COMPILE BODY
option, Oracle7 recompiles the package body regardless of whether it is
invalid. When you recompile a package body, Oracle7 first recompiles
the objects on which the body depends, if any of these objects are
invalid. If Oracle7 recompiles the body successfully, the body becomes
valid. If recompiling the body results in compilation errors, Oracle7
returns an error and the body remains invalid. You can then debug the
body using the predefined package DBMS_OUTPUT. Note that
recompiling a package body does not invalidate objects that depend
upon the package specification.

For more information on debugging packages, see the “Using
Procedures and Packages” chapter of Oracle7 Server Application
Developer’s Guide. For information on how Oracle7 maintains
dependencies among schema objects, including remote objects, see the
“Dependencies Among Schema Objects” chapter of Oracle7 Server
Concepts.

Example I

Example II

Related Topics

4 – 41Commands

This statement explicitly recompiles the specification and body of the
ACCOUNTING package in the schema BLAIR:

ALTER PACKAGE blair.accounting

COMPILE PACKAGE

If Oracle7 encounters no compilation errors while recompiling the
ACCOUNTING specification and body, ACCOUNTING becomes
valid. BLAIR can subsequently call or reference all package objects
declared in the specification of ACCOUNTING without runtime
recompilation. If recompiling ACCOUNTING results in compilation
errors, Oracle7 returns an error message and ACCOUNTING remains
invalid.

Oracle7 also invalidates all objects that depend upon ACCOUNTING.
If you subsequently reference one of these objects without explicitly
recompiling it first, Oracle7 recompiles it implicitly at runtime.

To recompile the body of the ACCOUNTING package in the schema
BLAIR, issue the following statement:

ALTER PACKAGE blair.accounting

COMPILE BODY

If Oracle7 encounters no compilation errors while recompiling the
package body, the body becomes valid. BLAIR can subsequently call or
reference all package objects declared in the specification of
ACCOUNTING without runtime recompilation. If recompiling the
body results in compilation errors, Oracle7 returns an error message
and the body remains invalid.

Because the following statement recompiles the body and not the
specification of ACCOUNTING, Oracle7 does not invalidate dependent
objects.

CREATE PACKAGE command on 4 – 198
CREATE PACKAGE BODY command on 4 – 202

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

4 – 42 Oracle7 Server SQL Reference

ALTER PROCEDURE

To recompile a stand–alone stored procedure.

The procedure must be in your own schema or you must have ALTER
ANY PROCEDURE system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the procedure’s creation label or you must satisfy one
of these criteria:

• If the procedure’s creation label is higher than your DBMS label,
you must have READUP and WRITEUP system privileges

• If the procedure’s creation label is lower than your DBMS label,
you must have WRITEDOWN system privilege.

• If the procedure’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

package

schema.

ALTER PROCEDURE COMPILE

is the schema containing the procedure. If you omit
schema, Oracle7 assumes the procedure is in your
own schema.

is the name of the procedure to be recompiled.

causes Oracle7 to recompile the procedure. The
COMPILE keyword is required.

The ALTER PROCEDURE command and the ALTER FUNCTION
command are quite similar. The following discussion of explicitly
recompiling procedures also applies to functions.

You can use the ALTER PROCEDURE command to explicitly recompile
a procedure that is invalid. Explicit recompilation eliminates the need
for implicit runtime recompilation and prevents associated runtime
compilation errors and performance overhead.

When you issue an ALTER PROCEDURE statement, Oracle7
recompiles the procedure regardless of whether it is valid or invalid.

schema

procedure

COMPILE

Example

Related Topics

4 – 43Commands

You can only use the ALTER PROCEDURE command to recompile a
stand–alone procedure. To recompile a procedure that is part of a
package, you must recompile the entire package using the ALTER
PACKAGE command.

When you recompile a procedure, Oracle7 first recompiles objects upon
which the procedure depends, if any of these objects are invalid.
Oracle7 also invalidates any local objects that depend upon the
procedure, such as procedures that call the recompiled procedure or
package bodies that define procedures that call the recompiled
procedure. If Oracle7 recompiles the procedure successfully, the
procedure becomes valid. If recompiling the procedure results in
compilation errors, then Oracle7 returns an error and the procedure
remains invalid. You can then debug procedures using the predefined
package DBMS_OUTPUT. For information on debugging procedures,
see the “Using Procedures and Packages” chapter of the Oracle7 Server
Application Developer’s Guide. For information on how Oracle7
maintains dependencies among schema objects, including remote
objects, see the “Dependencies Among Schema Objects” chapter of
Oracle7 Server Concepts.

Note: This command does not change the declaration or
definition of an existing procedure. To re–declare or redefine a
procedure, you must use the CREATE PROCEDURE command
with the OR REPLACE option.

To explicitly recompile the procedure CLOSE_ACCT owned by the
user HENRY, issue the following statement:

ALTER PROCEDURE henry.close_acct

COMPILE

If Oracle7 encounters no compilation errors while recompiling
CLOSE_ACCT, CLOSE_ACCT becomes valid. Oracle7 can
subsequently execute it without recompiling it at runtime. If
recompiling CLOSE_ACCT results in compilation errors, Oracle7
returns an error and CLOSE_ACCT remains invalid.

Oracle7 also invalidates all dependent objects. These objects include
any procedures, functions, and package bodies that call CLOSE_ACCT.
If you subsequently reference one of these objects without first
explicitly recompiling it, Oracle7 recompiles it implicitly at runtime.

ALTER FUNCTION command on 4 – 31
ALTER PACKAGE command on 4 – 39
CREATE PROCEDURE command on 4 – 206

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 44 Oracle7 Server SQL Reference

ALTER PROFILE

To add, modify, or remove a resource limit in a profile.

You must have ALTER PROFILE system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the profile’s creation label or you must satisfy one of
these criteria:

• If the profile’s creation label is higher than your DBMS label, you
must have READUP and WRITEUP system privileges

• If the profile’s creation label is lower than your DBMS label, you
must have WRITEDOWN system privilege.

• If the profile’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

CPU_PER_SESSION

CPU_PER_CALL

SESSIONS_PER_USER

ALTER PROFILE profile LIMIT

CONNECT_TIME

IDLE_TIME

LOGICAL_READS_PER_SESSION

LOGICAL_READS_PER_CALL

COMPOSITE_LIMIT

PRIVATE_SGA

UNLIMITED

DEFAULT

integer

integer

K

M

DEFAULT

UNLIMITED

is the name of the profile to be altered.

defines a new limit for a resource in this profile.
For information on resource limits, see the
CREATE PROFILE command on page 4 – 210.

specifies that this profile allows unlimited use of
the resource.

profile

integer

UNLIMITED

Usage Notes

Example I

Example II

Example III

Example IV

Related Topics

4 – 45Commands

removes a resource limit from the profile. Any user
assigned the profile is subject to the limit on the
resource defined in the DEFAULT profile in their
subsequent sessions.

Changes made to a profile with an ALTER PROFILE statement only
affect users in their subsequent sessions, not in their current sessions.

You cannot remove a limit from the DEFAULT profile.

This statement defines a new limit of 5 concurrent sessions for the
ENGINEER profile:

ALTER PROFILE engineer LIMIT SESSIONS_PER_USER 5

If the ENGINEER profile does not currently define a limit for
SESSIONS_PER_USER, the above statement adds the limit of 5 to the
profile. If the profile already defines a limit, the above statement
redefines it to 5. Any user assigned the ENGINEER profile is
subsequently limited to 5 concurrent sessions.

This statement defines unlimited idle time for the ENGINEER profile:

ALTER PROFILE engineer LIMIT IDLE_TIME UNLIMITED

Any user assigned the ENGINEER profile is subsequently permitted
unlimited idle time.

This statement removes the IDLE_TIME limit from the ENGINEER
profile:

ALTER PROFILE engineer LIMIT IDLE_TIME DEFAULT

Any user assigned the ENGINEER profile is subject to the IDLE_TIME
limit defined in the DEFAULT profile in their subsequent sessions.

This statement defines a limit of 2 minutes of idle time for the
DEFAULT profile:

ALTER PROFILE default LIMIT IDLE_TIME 2

This IDLE_TIME limit applies to these users:

• users who are not explicitly assigned any profile

• users who are explicitly assigned a profile that does not define
an IDLE_TIME limit

CREATE PROFILE command on 4 – 210

DEFAULT

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

4 – 46 Oracle7 Server SQL Reference

ALTER RESOURCE COST

To specify a formula to calculate the total resource cost used in a
session. For any session, this cost is limited by the value of the
COMPOSITE_LIMIT parameter in the user’s profile.

You must have ALTER RESOURCE COST system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match DBLOW or you must have WRITEDOWN system
privileges.

CONNECT_TIME integer

LOGICAL_READS_PER_SESSION integer

CPU_PER_SESSION integer

PRIVATE_SGA integer

ALTER RESOURCE COST

integer is the weight of each resource.

The ALTER RESOURCE COST command specifies the formula by
which Oracle7 calculates the total resource cost used in a session. With
this command, you can assign a weight to each of these resources:

CPU_PER_SESSION
The amount of CPU time used by a session
measured in hundredths of seconds.

CONNECT_TIME
The amount of CPU time used by a session
measured in hundredths of seconds.

CPU_PER_SESSION
The elapsed time of a session measured in minutes.

LOGICAL_READS_PER_SESSION
The number of data blocks read during a session,
including blocks read from both memory and disk.

The number of bytes of private space in the System
Global Area (SGA) used by a session. This limit
only applies if you are using the multi–threaded
server architecture and allocating private space in
the SGA for your session.

PRIVATE_SGA

Example

4 – 47Commands

Oracle7 calculates the total resource cost by multiplying the amount of
each resource used in the session by the resource’s weight and
summing the products for all four resources. Both the products and the
total cost are expressed in units called service units.

Although Oracle7 monitors the use of other resources, only these four
can contribute to the total resource cost for a session. For information
on all resources, see the CREATE PROFILE command on page 4 – 210.

The weight that you assign to each resource determines how much the
use of that resource contributes to the total resource cost. Using a
resource with a lower weight contributes less to the cost than using a
resource with a higher weight. If you do not assign a weight to a
resource, the weight defaults to 0 and use of the resource subsequently
does not contribute to the cost. The weights you assign apply to all
subsequent sessions in the database.

Once you have specified a formula for the total resource cost, you can
limit this cost for a session with the COMPOSITE_LIMIT parameter of
the CREATE PROFILE command. If a session’s cost exceeds the limit,
Oracle7 aborts the session and returns an error. For information on
establishing resource limits, see the CREATE PROFILE command on
page 4 – 210. If you use the ALTER RESOURCE COST command to
change the weight assigned to each resource, Oracle7 uses these new
weights to calculate the total resource cost for all current and
subsequent sessions.

The following statement assigns weights to the resources
CPU_PER_SESSION and CONNECT_TIME:

ALTER RESOURCE COST

CPU_PER_SESSION 100

 CONNECT_TIME 1

The weights establish this cost formula for a session:

T = (100 * CPU) + CON

where:

is the total resource cost for the session expressed
in service units.

is the CPU time used by the session measured in
hundredths of seconds.

is the elapsed time of a session measured in
minutes.

T

CPU

CON

Related Topics

4 – 48 Oracle7 Server SQL Reference

Because the above statement assigns no weight to the resources
LOGICAL_READS_PER_SESSION and PRIVATE_SGA, these resources
do not appear in the formula.

If a user is assigned a profile with a COMPOSITE_LIMIT value of 500,
a session exceeds this limit whenever T exceeds 500. For example, a
session using 0.04 seconds of CPU time and 101 minutes of elapsed
time exceeds the limit. A session 0.0301 seconds of CPU time and 200
minutes of elapsed time also exceeds the limit.

You can subsequently change the weights with another ALTER
RESOURCE statement:

ALTER RESOURCE COST

LOGICAL_READS_PER_SESSION 2

CONNECT_TIME 0

These new weights establish a new cost formula:

T = (100 * CPU) + (2 * LOG)

where:

are the same as in the previous formula.

is the number of data blocks read during the
session.

This ALTER RESOURCE COST statement changes the formula in these
ways:

• Because the statement assigns a weight to the
LOGICAL_READS_PER_SESSION resource, this resource now
appears in the formula.

• Because the statement assigns a weight of 0 to the
CONNECT_TIME resource, this resource no longer appears in
the formula.

• Because the statement omits a weight for the
CPU_PER_SESSION resource and the resource was already
assigned a weight, the resource remains in the formula with its
original weight.

• Because the statement omits a weight for the PRIVATE_SGA
resource and the resource was not already assigned a weight, the
resource still does not appear in the formula.

CREATE PROFILE command on 4 – 210

T CPU

LOG

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Example

Related Topics

4 – 49Commands

ALTER ROLE

To change the authorization needed to enable a role.

You must either have been granted the role with the ADMIN OPTION
or have ALTER ANY ROLE system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the role’s creation label or you must satisfy one of
these criteria:

• If the role’s creation label is higher than your DBMS label, you
must have READUP and WRITEUP system privileges

• If the role’s creation label is lower than your DBMS label, you
must have WRITEDOWN system privilege.

• If the role’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

ALTER ROLE role

IDENTIFIED

NOT IDENTIFIED

EXTERNALLY

BY password

The keywords and parameters in the ALTER ROLE command all have
the same meaning as in the CREATE ROLE command. For information
on these keywords and parameters, see the CREATE ROLE command
on page 4 – 215.

This statement changes the password on the TELLER role to LETTER:

ALTER ROLE teller

IDENTIFIED BY letter

Users granted the TELLER role must subsequently specify the new
password to enable the role.

CREATE ROLE command on 4 – 215
SET ROLE command on 4 – 442

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 50 Oracle7 Server SQL Reference

ALTER ROLLBACK SEGMENT

To alter a rollback segment in one of these ways:

• by bringing it online

• by taking it offline

• by changing its storage characteristics

• by shrinking it to an optimal or given size

You must have ALTER ROLLBACK SEGMENT system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the rollback segment’s creation label or you must
satisfy one of these criteria:

• If the rollback segment’s creation label is higher than your DBMS
label, you must have READUP and WRITEUP system privileges

• If the rollback segment’s creation label is lower than your DBMS
label, you must have WRITEDOWN system privilege.

• If the rollback segment’s creation label and your DBMS label are
not comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

M

ALTER ROLLBACK SEGMENT rollback_segment ONLINE

STORAGE storage_clause

OFFLINE

SHRINK

TO integer

K

rollback_segment specifies the name of an existing rollback segment.

brings the rollback segment online.

takes the rollback segment offline.

changes the rollback segment’s storage
characteristics. See the STORAGE clause on
page 4 – 449.

attempts to shrink the rollback segment to an
optimal or given size.

ONLINE

OFFLINE

STORAGE

SHRINK

Usage Notes

4 – 51Commands

When you create a rollback segment, it is initially offline. An offline
rollback segment is not available for transactions.

The ONLINE option brings the rollback segment online making it
available for transactions by your instance. You can also bring a
rollback segment online when you start your instance with the
initialization parameter ROLLBACK_SEGMENTS.

The OFFLINE option takes the rollback segment offline. If the rollback
segment does not contain information necessary to rollback any active
transactions, Oracle7 takes it offline immediately. If the rollback
segment does contain information for active transactions, Oracle7
makes the rollback segment unavailable for future transactions and
takes it offline after all the active transactions are committed or rolled
back. Once the rollback segment is offline, it can be brought online by
any instance.

You cannot take the SYSTEM rollback segment offline.

You can tell whether a rollback segment is online or offline by querying
the data dictionary view DBA_ROLLBACK_SEGS. Online rollback
segments are indicated by a STATUS value of ’IN_USE’. Offline
rollback segments are indicated by a STATUS value of ’AVAILABLE’.

For more information on making rollback segments available and
unavailable, see the “Managing Rollback Segments” chapter of Oracle7
Server Administrator’s Guide.

The STORAGE clause of the ALTER ROLLBACK SEGMENT command
affects future space allocation in the rollback segment. You cannot
change the values of the INITIAL and MINEXTENTS for an existing
rollback segment.

The SHRINK clause of the ALTER ROLLBACK SEGMENT command
initiates an attempt to reduce the specified rollback segment to an
optimum size. If size is not specified, then the size defaults to the
OPTIMAL value of the STORAGE clause of the CREATE ROLLBACK
SEGMENT command that created the rollback segment. If the
OPTIMAL value was not specified, then the size defaults to the
MINEXTENTS value of the STORAGE clause. The specified size in a
SHRINK is valid for the execution of the command; thereafter,
OPTIMUM remains unchanged. Regardless of whether a size is
specified or not, the rollback segment cannot shrink to less than two
extents.

You can query the DBA_ROLLBACK_SEGS tables to determine the
actual size of a rollback segment after attempting to shrink a rollback
segment.

Example I

Example II

Example III

Related Topics

4 – 52 Oracle7 Server SQL Reference

For a parallel server, you can only shrink rollback segments that are
online to your instance.

The SHRINK option is an attempt to shrink the size of the rollback
segment; the success and amount of shrinkage depends on the
following:

• available free space in the rollback segment

• how active transactions are holding space in the rollback
segment

This statement brings the rollback segment RSONE online:

ALTER ROLLBACK SEGMENT rsone ONLINE

This statement changes the STORAGE parameters for RSONE:

ALTER ROLLBACK SEGMENT rsone

STORAGE (NEXT 1000 MAXEXTENTS 20)

This statement attempts to resize a rollback segment to an optimum
size of one hundred megabytes:

ALTER ROLLBACK SEGMENT rsone

SHRINK TO 100 M

CREATE ROLLBACK SEGMENT command on 4 – 218
CREATE TABLESPACE command on 4 – 254
STORAGE clause on 4 – 449

Purpose

Prerequisites

Syntax

4 – 53Commands

ALTER SEQUENCE

To change the sequence in one of these ways:

• changing the increment between future sequence values

• setting or eliminating the minimum or maximum value

• changing the number of cached sequence numbers

• specifying whether sequence numbers must be ordered

The sequence must be in your own schema or you must have ALTER
privilege on the sequence or you must have ALTER ANY SEQUENCE
system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the sequence’s creation label or you must satisfy one
of these criteria:

• If the sequence’s creation label is higher than your DBMS label,
you must have READUP and WRITEUP system privileges

• If the sequence’s creation label is lower than your DBMS label,
you must have WRITEDOWN system privilege.

• If the sequence’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

MAXVALUE integer

NOMAXVALUE

INCREMENT BY integer

ALTER SEQUENCE

MINVALUE integer

NOMINVALUE

CYCLE

NOCYCLE

CACHE integer

ORDER

NOORDER

NOCACHE

sequence

schema.

Keywords and
Parameters

Usage Notes

Example I

Example II

Related Topics

4 – 54 Oracle7 Server SQL Reference

The keywords and parameters in this command serve the same
purpose that they do in the CREATE SEQUENCE command on
page 4 – 224.

The sequence must be dropped and recreated to restart the sequence at
a different number. Only future sequence numbers are affected by the
ALTER SEQUENCE command.

Some validations are performed. For example, a new MAXVALUE
cannot be imposed that is less than the current sequence number.

This statement sets a new maximum value for the ESEQ sequence:

ALTER SEQUENCE eseq

MAXVALUE 1500

This statement turns on CYCLE and CACHE for the ESEQ sequence:

ALTER SEQUENCE eseq

CYCLE

 CACHE 5

CREATE SEQUENCE command on 4 – 224
DROP SEQUENCE command on 4 – 314

Purpose

Prerequisites

4 – 55Commands

ALTER SESSION

To alter your current session in one of the following:

• to enable or disable the SQL trace facility

• to enable or disable global name resolution

• to change the values of NLS parameters

• to change your DBMS session label in Trusted Oracle7

• to change the default label format for your session

• to specify the size of the cache used to hold frequently used
cursors

• to enable or disable the closing of cached cursors on COMMIT or
ROLLBACK

• in a parallel server, to indicate that the session must access
database files as if the session was connected to another instance

• to enable, disable, and change the behavior of hash join
operations

• to change the handling of remote procedure call dependencies

• to change transaction level handling

• to close a database link

• to send advice to remote databases for forcing an in–doubt
distributed transaction

• to permit or prohibit stored procedures and functions from
issuing COMMIT and ROLLBACK statements

• to change the goal of the cost–based optimization approach

To enable and disable the SQL trace facility or to change the default
label format, you must have ALTER SESSION system privilege.

To raise your session label, you must have WRITEUP and READUP
system privileges. To lower your session label, you must have
WRITEDOWN system privilege. To change your session label laterally,
you must have READUP, WRITEUP, and WRITEDOWN system
privileges.

To perform the other operations of this command, you do not need any
privileges.

Syntax

4 – 56 Oracle7 Server SQL Reference

NLS_LANGUAGE = language
NLS_TERRITORY = territory

ALTER SESSION

NLS_DATE_FORMAT = ’fmt’
NLS_DATE_LANGUAGE = language
NLS_NUMERIC_CHARACTERS = ’text’
NLS_ISO_CURRENCY = territory
NLS_CURRENCY = ’text’

CLOSE DATABASE LINK dblink

FALSE
TRUE

GLOBAL_NAMES
SQL_TRACE =SET

NLS_SORT =

BINARY

sort

DBHIGH

’text’

DBLOW

OSLABEL

LABEL =

MLS_LABEL_FORMAT = fmt

FIRST_ROWS

ALL_ROWS

RULE

OPTIMIZER_GOAL =

CHOOSE

ADVISE

ROLLBACK

COMMIT

NOTHING

ENABLE COMMIT IN PROCEDURE

DISABLE

INTERMEDIATE

ENTRY

FULL

FLAGGER =

OFF

SESSION_CACHED_CURSORS = integer

NLS_CALENDAR = ’text’

INSTANCE = integer

CLOSE_CACHED_OPEN_CURSORS =

FALSE

TRUE

HASH_JOIN_ENABLED =

FALSE

TRUE

HASH_AREA_SIZE = integer

HASH_MULTILBLOCK_IO_COUNT = integer

REMOTE_DEPENDENCIES_MODE =

SIGNATURE

TIMESTAMP

ISOLATION_LEVEL SERIALIZABLE

READ COMMITTED

Keywords and
Parameters

4 – 57Commands

SQL_TRACE controls the SQL trace facility for your session:

enables the SQL trace facility.

disables the SQL trace facility.

GLOBAL_NAMES
controls the enforcement of global name resolution
for your session:

enables the enforcement of global
name resolution.

disables the enforcement of global
name resolution.

For information on enabling and disabling global
name resolution with this parameter, see the
ALTER SYSTEM command on page 4 – 76.

NLS_LANGUAGE
changes the language in which Oracle7 returns
errors and other messages. This parameter also
implicitly specifies new values for these items:

• language for day and month names and
abbreviations and spelled values of other date
format elements

• sort sequence

• B.C. and A.D. indicators

• A.M. and P.M. meridian indicators

implicitly specifies new values for these items:

• default date format

• decimal character and group separator

• local currency symbol

• ISO currency symbol

• first day of the week for D date format element

TRUE

FALSE

TRUE

FALSE

NLS_TERRITORY

4 – 58 Oracle7 Server SQL Reference

NLS_DATE_FORMAT
explicitly specifies a new default date format. The
’fmt’ value must be a date format model as
specified in the section “Date Format” on
page 3 – 64.

NLS_DATE_LANGUAGE

explicitly changes the language for day and month
names and abbreviations and spelled values of
other date format elements.

NLS_NUMERIC_CHARACTERS
explicitly specifies a new decimal character and
group separator. The ’text’ value must have this
form:

’dg’

where:

is the new decimal character.

is the new group separator.

The decimal character and the group separator
must be two different single–byte characters, and
cannot be a numeric value or any of the following
characters:

“+” plus
“–” minus (or hyphen)
“<” less–than
“>” greater–than

NLS_ISO_CURRENCY
explicitly specifies the territory whose ISO
currency symbol should be used.

explicitly specifies a new local currency symbol.
The symbol cannot exceed 10 characters.

d

g

NLS_CURRENCY

4 – 59Commands

changes the sequence into which Oracle7 sorts
character values.

specifies the name of a linguistic
sort sequence.

specifies a binary sort.

The default sort for all character sets is binary.

NLS_CALENDAR
explicitly specifies a new calendar type.

changes your DBMS session label to either:

• the label specified by ’text’ in your session’s
default label format

• the label equivalent to DBHIGH

• the label equivalent to DBLOW

• your operating system label using OSLABEL

MLS_LABEL_FORMAT
changes the default label format for your session.
For more information on this parameter, see the
Trusted Oracle7 Server Administrator’s Guide.

OPTIMIZER_GOAL
specifies the approach and goal of the optimizer for
your session:

specifies the rule–based approach.

specifies the cost–based approach
and optimizes for best throughput.

specifies the cost–based approach
and optimizes for best response
time.

causes the optimizer to choose an
optimization approach based on
the presence of statistics in the data
dictionary.

NLS_SORT

sort

BINARY

LABEL

RULE

ALL_ROWS

FIRST_ROWS

CHOOSE

4 – 60 Oracle7 Server SQL Reference

specifies FIPS flagging.

flags for SQL92 Entry level

INTERMEDIATE

flags for SQL92 Intermediate level

flags for SQL92 Full level

turns off flagging

SESSION_CACHED_CURSORS
specify the size of the session cache for holding
frequently used cursors. integer specifies how many
cursors can be retained in the cache.

CLOSE_OPEN_CACHED_CURSORS
controls whether cursors opened and cached in
memory by PL/SQL are automatically closed at
each COMMIT. A value of FALSE signifies that
cursors opened by PL/SQL are held open so that
subsequent executions need not open a new cursor.
A value of TRUE causes open cursors to be closed
at each COMMIT or ROLLBACK.

in a parallel server, accesses database files as if the
session were connected to the instance specified by
integer.

HASH_JOIN_ENABLED
enables or disables the use of the hash join
operation in queries. The default is TRUE, which
allows hash joins.

HASH_AREA_SIZE
specifies in bytes the amount of memory to use for
hash join operations. The default is twice the value
of the SORT_AREA_SIZE initialization parameter.

FLAGGER

ENTRY

FULL

OFF

INSTANCE

4 – 61Commands

HASH_MULTIBLOCK_IO_COUNT
specifies the number of data blocks to read and
write during a hash join operation. The value
multiplied by the DB_BLOCK_SIZE initialization
parameter should not exceed 64 kilobytes. The
default value for this parameter is 1. If the
multi–threaded server is used, the value is always
1, and any value given here is ignored.

REMOTE_DEPENDENCIES_MODE
specifies how dependencies of remote stored
procedures are handled by the session. For more
information, refer to “Remote Dependencies” in
the Oracle7 Server Application Developer’s Guide.

ISOLATION_LEVEL
specifies how transactions containing database
modifications are handled.

SERIALIZABLE
transactions in the session use the
serializable transaction isolation
mode as specified in SQL92. That
is, if a serializable transaction
attempts to execute a DML
statement that updates rows that
are updated by another
uncommitted transaction at the
start of the serializable transaction,
then the DML statement fails. A
serializable transaction can see its
own updates. The COMPATIBLE
initialization parameter must be set
to 7.3.0 or higher for
SERIALIZABLE mode to work.

READ COMMITTED
transactions in the session will use
the default Oracle transaction
behavior. Thus, if the transaction
contains DML that require row
locks held by another transaction,
then the DML statement will wait
until the row locks are released.

Enabling and
Disabling the SQL
Trace Facility

4 – 62 Oracle7 Server SQL Reference

CLOSE DATABASE LINK
closes the database link dblink, eliminating your
session’s connection to the remote database. The
database link cannot be currently in use by an
active transaction or an open cursor.

sends advice for forcing a distributed transaction
to a remote database. This advice appears on the
remote database in the ADVICE column of the
DBA_2PC_PENDING data dictionary view in the
event the distributed transaction becomes
in–doubt. The following are advice options:

places the value ’C’ in
DBA_2PC_PENDING.ADVICE.

places the value ’R’ in
DBA_2PC_PENDING.ADVICE.

places the value ’ ’ in
DBA_2PC_PENDING.ADVICE.

COMMIT IN PROCEDURE
specifies whether procedures and stored functions
can issue COMMIT and ROLLBACK statements:

permits procedures and stored
functions to issue these statements.

prohibits procedures and stored
functions from issuing these
statements.

The SQL trace facility generates performance statistics for the
processing of SQL statements. You can enable and disable the SQL
trace facility for all sessions on an Oracle7 instance with the
initialization parameter SQL_TRACE. When you begin a session,
Oracle7 enables or disables the SQL trace facility based on the value of
this parameter. You can subsequently enable or disable the SQL trace
facility for your session with the SQL_TRACE option of the ALTER
SESSION command.

ADVISE

COMMIT

ROLLBACK

NOTHING

ENABLE

DISABLE

Example I

Using NLS Parameters

Language for Error
Messages

Example II

Default Date Format

4 – 63Commands

For more information on the SQL trace facility, including how to format
and interpret its output, see Appendix A “Performance Diagnostic
Tools” of the Oracle7 Server Tuning.

To enable the SQL trace facility for your session, issue the following
statement:

ALTER SESSION

SET SQL_TRACE = TRUE

Oracle7 contains support for use in different nations and with different
languages. When you start an instance, Oracle7 establishes support
based on the values of initialization parameters that begin with “NLS”.
For information on these parameters, see Oracle7 Server Reference. You
use the NLS clauses of the ALTER SESSION command to change NLS
characteristics dynamically for your session. You can query the
dynamic performance table V$NLS_PARAMETERS to see the current
NLS attributes for your session.

You can specify a new language for error messages with the
NLS_LANGUAGE parameter. Note that this parameter also implicitly
changes other language–related items. Oracle7 provides error messages
in a wide range of languages on many platforms.

The following statement changes the language for error messages to the
French:

ALTER SESSION

SET NLS_LANGUAGE = French

Oracle7 returns error messages in French:

SELECT * FROM emp

ORA–00942: Table ou vue n’existe pas

You can specify a new default date format either explicitly with the
NLS_DATE_FORMAT parameter or implicitly with the
NLS_TERRITORY parameter. For information on the default date
format models, see the section “Date Format Models” on page 3 – 64.

Example III

Language for Months and
Days

Example IV

Decimal Character and
Group Separator

4 – 64 Oracle7 Server SQL Reference

The following statement dynamically changes the default date format
for your session to ’YYYY MM DD–HH24:MI:SS’:

ALTER SESSION

SET NLS_DATE_FORMAT = ’YYYY MM DD HH24:MI:SS’

Oracle7 uses the new default date format:

SELECT TO_CHAR(SYSDATE) Today

 FROM DUAL

TODAY

–––––––––––––––––––

1993 08 12 14:25:56

You can specify a new language for names and abbreviations of months
and days either explicitly with the NLS_DATE_LANGUAGE
parameter or implicitly with the NLS_LANGUAGE parameter.

The following statement changes the language for date format elements
to the French:

ALTER SESSION

SET NLS_DATE_LANGUAGE = French

SELECT TO_CHAR(SYSDATE, ’Day DD Month YYYY’) Today

 FROM DUAL

TODAY

–––––––––––––––––––––––––––

Mardi 28 Février 1992

You can specify new values for these number format elements either
explicitly with the NLS_NUMERIC_CHARACTERS parameter or
implicitly with the NLS_TERRITORY parameter:

D
(decimal character)

is the character that separates the integer and
decimal portions of a number.

G
(group separator)

is the character that separates groups of digits
in the integer portion of a number.

For information on how to use number format models, see the section
“Number Format Models” on page 3 – 61.

The decimal character and the group separator can only be single–byte
characters and cannot be the same character. If the decimal character is
not a period (.), you must use single quotation marks to enclose all
number values that appear in expressions in your SQL statements.
When not using a period for the decimal point, you should always use
the TO_NUMBER function to ensure that a valid number is retrieved.

Example V

ISO Currency Symbol

Example VI

Local Currency Symbol

Example VII

4 – 65Commands

The following statement dynamically changes the decimal character to
’,’ and the group separator to ’.’:

ALTER SESSION SET NLS_NUMERIC_CHARACTERS = ’,.’

Oracle7 returns these new characters when you use their number
format elements:

SELECT TO_CHAR(SUM(sal), ’L999G999D99’) Total FROM emp

TOTAL

–––––––––––––

 FF29.025,00

You can specify a new value for the C number format element, the ISO
currency symbol, either explicitly with the NLS_ISO_CURRENCY
parameter or implicitly with the NLS_TERRITORY parameter. The
value that you specify for these parameters is a territory whose ISO
currency symbol becomes the value of the C number format element.

The following statement dynamically changes the ISO currency symbol
to the ISO currency symbol for the territory America:

ALTER SESSION

 SET NLS_ISO_CURRENCY = America

SELECT TO_CHAR(SUM(sal), ’L999G999D99’) Total

 FROM emp

TOTAL

–––––––––––––

 USD29,025.00

You can specify a new value for the L number format element, called
the local currency symbol, either explicitly with the NLS_CURRENCY
parameter or implicitly with the NLS_TERRITORY parameter.

The following statement dynamically changes the local currency
symbol to ’DM’:

ALTER SESSION

 SET NLS_CURRENCY = ’DM’

SELECT TO_CHAR(SUM(sal), ’L999G999D99’) Total

 FROM emp

TOTAL

–––––––––––––

 DM29.025,00

Linguistic Sort Sequence

Example VIII

Changing the
Optimization
Approach and Goal

4 – 66 Oracle7 Server SQL Reference

You can specify a new linguistic sort sequence or a binary sort either
explicitly with the NLS_SORT parameter or implicitly with the
NLS_LANGUAGE parameter.

The following statement dynamically changes the linguistic sort
sequence to Spanish:

ALTER SESSION

 SET NLS_SORT = XSpanish

Oracle7 sorts character values based on their position in the Spanish
linguistic sort sequence.

The Oracle7 optimizer can use either of these approaches to optimize a
SQL statement:

The optimizer optimizes a SQL statement based on
the indexes and clusters associated with the
accessed tables, the syntactic constructs of the
statement, and a heuristically ranked list of these
constructs.

The optimizer optimizes a SQL statement by
considering statistics describing the tables, indexes,
and clusters accessed by the statement as well as
the information considered with the rule–based
approach.

With the cost–based approach, the optimizer can optimize a SQL
statement with one of these goals:

or the minimal time necessary to return all rows
accessed by the statement

or the minimal time necessary to return the first
row accessed by the statement

When you start your instance, the optimization approach is established
by the initialization parameter OPTIMIZER_MODE. If this parameter
establishes the cost–based approach, the default goal is best
throughput. You can subsequently change the optimization approach or
the goal of the cost–based optimization approach for your session with
the OPTIMIZER_GOAL parameter.

rule–based

cost–based

best throughput

best response time

Example IX

FIPS Flagging

Caching Session
Cursors

4 – 67Commands

The following statement changes the goal of the cost–based approach to
best response time:

ALTER SESSION

 SET OPTIMIZER_GOAL = FIRST_ROWS

For information on how to choose a goal for the cost–based approach
based on the characteristics of your application, see the Oracle7 Server
Tuning.

FIPS flagging causes an error message to be generated when a SQL
statement is issued that is an extension of ANSI SQL92. In Oracle7,
Release 7.3, there is currently no difference between Entry,
Intermediate, or Full level flagging. Once flagging is set in a session, a
subsequent ALTER SESSION SET FLAGGER commands will work, but
generates the message, ORA–00097. This allows FIPS flagging to be
altered without disconnecting the session.

If an application repeatedly issues parse calls on the same set of SQL
statements, the reopening of the session cursors can affect performance.
The ALTER SESSION SET SESSION_CACHED_CURSORS command
allows frequently used session cursors to be stored in a session cache
even if they are closed. This is particularly useful for some Oracle7
tools. For example, Oracle Forms applications close all session cursors
associated with a form when switching to another form; in this case,
frequently used cursors would not have to be reparsed.

Oracle7 uses the shared SQL area to determine if more than three parse
requests were issued on a given statement. If so, Oracle7 moves the
cursor into the session cursor cache. Subsequent requests to parse that
SQL statement by the same session will find the cursor in the session
cursor cache.

Session cursors are automatically cached if the initialization parameter,
SESSION_CACHED_CURSORS is set to a positive value. This
parameter specifies the maximum number of session cursors to be kept
in the cache. A least recently used algorithm ages out entries in the
cache to make room for new entries when needed. You use the ALTER
SESSION SET SESSION_CACHED_CURSORS command to
dynamically enable session cursor caching.

For more information on session cursor caching, see the Oracle7 Server
Tuning.

Accessing the Database
as if Connected to
Another Instance in a
Parallel Server

Closing Database
Links

Example X

4 – 68 Oracle7 Server SQL Reference

For optimum performance, each instance of a parallel server uses its
own private rollback segments, freelist groups, and so on. A database is
usually designed for a parallel server such that users connect to a
particular instance and access data that is partitioned primarily for
their use. If the users for that instance must connect to another
instance, the data partitioning can be lost. The ALTER SESSION SET
INSTANCE command allows users to access an instance as if they were
connected to their usual instance.

A database link allows you to access a remote database in DELETE,
INSERT, LOCK TABLE, SELECT, and UPDATE statements. When you
issue a statement that uses a database link, Oracle7 creates a session for
you on the remote database using the database link. The connection
remains open until you end your local session or until the number of
database links for your session exceeds the value of the initialization
parameter OPEN_LINKS.

You can use the CLOSE DATABASE LINK clause of the ALTER
SESSION command to explicitly close a database link if you do not
plan to use it again in your session. You may want to explicitly close a
database link if the network overhead associated with leaving it open is
costly. Before closing a database link, you must first close all cursors
that use the link and then end your current transaction if it uses the
link.

This example updates the employee table on the SALES database using
a database link, commits the transaction, and explicitly closes the
database link:

UPDATE emp@sales

SET sal = sal + 200

 WHERE empno = 9001

COMMIT

ALTER SESSION

 CLOSE DATABASE LINK sales

Offering Advice for
Forcing In–doubt
Distributed
Transactions

Example XI

4 – 69Commands

If a network or machine failure occurs during the commit process for a
distributed transaction, the state of the transaction may be unknown, or
in–doubt. The transaction can be manually committed or rolled back on
each database involved in the transaction with the FORCE clause of the
COMMIT or ROLLBACK commands.

Before committing a distributed transaction, you can use the ADVISE
clause of the ALTER SESSION command to send advice to a remote
database in the event a distributed transaction becomes in–doubt. If the
transaction becomes in–doubt, the advice appears in the ADVICE
column of the DBA_2PC_PENDING view on the remote database. The
administrator of that database can then use this advice to decide
whether to commit or roll back the transaction on the remote database.
For more information on distributed transactions and how to decide
whether to commit or roll back in–doubt distributed transactions, see
the “Database Administration” chapter of Oracle7 Server Distributed
Systems, Volume I.

You issue multiple ALTER SESSION statements with the ADVISE
clause in a single transaction. Each such statement sends advice to the
databases referenced in the following statements in the transaction
until another such statement is issued. This allows you to send different
advice to different databases.

This transaction inserts an employee record into the EMP table on the
database identified by the database link SITE1 and deletes an employee
record from the EMP table on the database identified by SITE2:

ALTER SESSION

 ADVISE COMMIT

INSERT INTO emp@site1

VALUES (8002, ’FERNANDEZ’, ’ANALYST’, 7566,

 TO_DATE(’04–OCT–1992’, ’DD–MON–YYYY’), 3000, NULL, 20)

ALTER SESSION

 ADVISE ROLLBACK

DELETE FROM emp@site2

 WHERE empno = 8002

COMMIT

This transaction has two ALTER SESSION statements with the ADVISE
clause. If the transaction becomes in–doubt, SITE1 is sent the advice
’COMMIT’ by virtue of the first ALTER SESSION statement and SITE2
is sent the advice ’ROLLBACK’ by virtue of the second.

Enabling and
Disabling Transaction
Control in Procedures
and Stored Functions

Related Topics

4 – 70 Oracle7 Server SQL Reference

Since procedures and stored functions are written in PL/SQL, they can
issue COMMIT and ROLLBACK statements. If your application
performs record management that would be disrupted by a COMMIT
or ROLLBACK statement not issued directly by the application itself,
you may want to prevent procedures and stored functions called
during your session from issuing these statements. You can do this
with the following statement:

ALTER SESSION DISABLE COMMIT IN PROCEDURE

If you subsequently call a procedure or a stored function that issues a
COMMIT or ROLLBACK statement, Oracle7 returns an error and does
not commit or roll back the transaction. SQL*Forms automatically
prohibits COMMIT and ROLLBACK statements in procedures and
stored functions.

You can subsequently allow procedures and stored functions to issue
COMMIT and ROLLBACK statements in your session by issuing the
following statement:

ALTER SESSION ENABLE COMMIT IN PROCEDURE

This command does not apply to database triggers. Triggers can never
issue COMMIT or ROLLBACK statements.

“Tuning SQL Statements” and “Performance Diagnostic Tools” of the
Oracle7 Server Tuning Guide.

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 71Commands

ALTER SNAPSHOT

To alter a snapshot in one of the following ways:

• changing its storage characteristics

• changing its automatic refresh mode and times

The snapshot must be in your own schema or you must have ALTER
ANY SNAPSHOT system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the snapshot’s creation label or you must satisfy one
of the following criteria:

• If the snapshot’s creation label is higher than your DBMS label,
you must have READUP and WRITEUP system privileges

• If the snapshot’s creation label is lower than your DBMS label,
you must have WRITEDOWN system privilege.

• If the snapshot’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

To change the storage characteristics of the internal table that Oracle7
uses to maintain the snapshot’s data, you must also have the privileges
to alter that table. For information on these privileges, see the ALTER
TABLE command on page 4 – 89.

is the schema containing the snapshot. If you omit
schema, Oracle7 assumes the snapshot is in your
own schema.

is the name of the snapshot to be altered.

change the values of these parameters for the
internal table that Oracle7 uses to maintain the
snapshot’s data. For information on the PCTFREE,
PCTUSED, INITRANS, and MAXTRANS
parameters, see the CREATE TABLE command on
page 4 – 245.

changes the storage characteristics of the internal
table Oracle7 uses to maintain the snapshot’s data.
See the STORAGE clause on page 4 – 449.

schema

snapshot

PCTFREE
PCTUSED
INITRANS
MAXTRANS

STORAGE

4 – 72 Oracle7 Server SQL Reference

ALTER SNAPSHOT snapshot

schema.

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

STORAGE storage_clause

FAST

COMPLETE

REFRESH

FORCE

START WITH date NEXT date

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

STORAGE storage_clause

USING INDEX

changes the value of INITRANS, MAXTRANS, and
STORAGE parameters for the index Oracle7 uses
to maintain the snapshot’s data. If USING INDEX
is not specified then the index is written to the
user’s default tablespace.

changes the mode and times for automatic
refreshes:

specifies a fast refresh, or a refresh
using the snapshot log associated
with the master table.

specifies a complete refresh, or a
refresh that re–executes the
snapshot’s query.

USING INDEX

REFRESH

FAST

COMPLETE

Usage Notes

Example I

Example II

4 – 73Commands

specifies a fast refresh if one is
possible or complete refresh if a
fast refresh is not possible. Oracle7
decides whether a fast refresh is
possible at refresh time.

If you omit the FAST, COMPLETE,
and FORCE options, Oracle7 uses
FORCE by default.

specifies a date expression for the
next automatic refresh time.

specifies a new date expression for
calculating the interval between
automatic refreshes.

START WITH and NEXT values must evaluate to
times in the future.

For more information on snapshots, including refreshing snapshots, see
the CREATE SNAPSHOT command on page 4 – 230.

The following statement changes the automatic refresh mode for the
HQ_EMP snapshot to FAST:

ALTER SNAPSHOT hq_emp

 REFRESH FAST

The next automatic refresh of the snapshot will be a fast refresh
provided it is a simple snapshot and its master table has a snapshot log
that was created before the snapshot was created or last refreshed.

Because the REFRESH clause does not specify START WITH or NEXT
values, the refresh intervals established by the REFRESH clause when
the HQ_EMP snapshot was created or last altered are still used.

The following statement stores a new interval between automatic
refreshes for the BRANCH_EMP snapshot:

ALTER SNAPSHOT branch_emp

 REFRESH NEXT SYSDATE+7

FORCE

START WITH

NEXT

Example III

Related Topics

4 – 74 Oracle7 Server SQL Reference

Because the REFRESH clause does not specify a START WITH value,
the next automatic refresh occurs at the time established by the START
WITH and NEXT values specified when the BRANCH_EMP snapshot
was created or last altered.

At the time of the next automatic refresh, Oracle7 refreshes the
snapshot, evaluates the NEXT expression SYSDATE+7 to determine the
next automatic refresh time, and continues to automatically refresh the
snapshot once a week.

Because the REFRESH clause does not explicitly specify a refresh
mode, Oracle7 continues to use the refresh mode specified by the
REFRESH clause of a previous CREATE SNAPSHOT or ALTER
SNAPSHOT statement.

The following statement specifies a new refresh mode, next refresh
time, and new interval between automatic refreshes of the SF_EMP
snapshot:

ALTER SNAPSHOT sf_emp

 REFRESH COMPLETE

START WITH TRUNC(SYSDATE+1) + 9/24

NEXT SYSDATE+7

The START WITH value establishes the next automatic refresh for the
snapshot to be 9:00am tomorrow. At that point, Oracle7 performs a fast
refresh of the snapshot, evaluates the NEXT expression, and
subsequently refreshes the snapshot every week.

CREATE SNAPSHOT command on 4 – 230
DROP SNAPSHOT command on 4 – 315

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

4 – 75Commands

ALTER SNAPSHOT LOG

Changes the storage characteristics of a snapshot log.

Since a snapshot log is simply a table, the privileges that authorize
operations on it are the same as those for a table. To change its storage
characteristics, you must have the privileges listed for the ALTER
TABLE command later in this chapter.

ALTER SNAPSHOT LOG ON table

schema.

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

STORAGE storage_clause

is the schema containing the snapshot log and its
master table. If you omit schema, Oracle7 assumes
the snapshot log is in your own schema.

is the name of the master table associated with the
snapshot log to be altered.

change the values of these parameters for the
snapshot log. See the PCTFREE, PCTUSED,
INITRANS, and MAXTRANS parameters of the
CREATE TABLE command on page 4 – 245.

changes the storage characteristics of the snapshot
log. See the STORAGE clause on page 4 – 449.

For more information on snapshot logs, see the CREATE SNAPSHOT
LOG command on page 4 – 238.

The following statement changes the MAXEXTENTS value of a
snapshot log:

ALTER SNAPSHOT LOG dept STORAGE MAXEXTENTS 50

CREATE SNAPSHOT command on 4 – 230
CREATE SNAPSHOT LOG command on 4 – 238
DROP SNAPSHOT LOG command on 4 – 316

schema

table

PCTFREE
PCTUSED
INITRANS
MAXTRANS

STORAGE

Purpose

Prerequisites

4 – 76 Oracle7 Server SQL Reference

ALTER SYSTEM

To dynamically alter your Oracle7 instance in one of the following
ways:

• to restrict logons to Oracle7 to only those users with
RESTRICTED SESSION system privilege

• to clear all data from the shared pool in the System Global Area
(SGA)

• to explicitly perform a checkpoint

• to verify access to data files

• to enable or disable resource limits

• to enable or disable global name resolution

• to manage shared server processes or dispatcher processes for
the multi–threaded server architecture

• to dynamically change or disable limits or thresholds for
concurrent usage licensing and named user licensing

• to explicitly switch redo log file groups

• to enable distributed recovery in a single–process environment

• to disable distributed recovery

• to manually archive redo log file groups or to enable or disable
automatic archiving

• to terminate a session

You must have ALTER SYSTEM system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must be the equivalent of DBHIGH.

Syntax

Keywords and
Parameters

4 – 77Commands

MTS_SERVERS = integer

MTS_DISPATCHERS = ’protocol, integer’

ALTER SYSTEM

LICENSE_MAX_SESSIONS = integer

LICENSE_SESSIONS_WARNING = integer

LICENSE_MAX_USERS = integer

SWITCH LOGFILE

GLOBAL_NAMES

DISTRIBUTED RECOVERY

DISABLE

ENABLE

ENABLE RESTRICTED SESSION

DISABLE

FLUSH SHARED_POOL

CHECKPOINT

CHECK DATAFILES GLOBAL

LOCAL

SET RESOURCE_LIMIT =

FALSE

TRUE

ARCHIVE LOG archive_log_clause

KILL SESSION ’integer1, integer2’

SCAN_INSTANCES = integer

CACHE_INSTANCES = integer

REMOTE_DEPENDENCIES_MODE =

SIGNATURE

TIMESTAMP

You can use the following options regardless of whether your instance
has the database dismounted or mounted, open or closed:

ENABLE RESTRICTED SESSION

allows only users with RESTRICTED SESSION
system privilege to logon to Oracle7.

DISABLE RESTRICTED SESSION
reverses the effect of the ENABLE RESTRICTED
SESSION option, allowing all users with CREATE
SESSION system privilege to logon to Oracle7.

FLUSH SHARED_POOL
clears all data from the shared pool in the System
Global Area (SGA).

4 – 78 Oracle7 Server SQL Reference

You can use the following options when your instance has the database
mounted, open or closed:

performs a checkpoint.

performs a checkpoint for all
instances that have opened the
database.

performs a checkpoint only for the
thread of redo log file groups for
your instance. You can only use
this option when your instance has
the database open.

If you omit both the GLOBAL and LOCAL options,
Oracle7 performs a global checkpoint.

CHECK DATAFILES
verifies access to online data files.

verifies that all instances that have
opened the database can access all
online data files.

verifies that your instance can
access all online data files.

If you omit both the GLOBAL and LOCAL options,
Oracle7 uses GLOBAL by default.

You can only use the following parameters and options when your
instance has the database open:

RESOURCE_LIMIT
controls resource limits.

enables resource limits.

disables resource limits.

CHECKPOINT

GLOBAL

LOCAL

GLOBAL

LOCAL

TRUE

FALSE

4 – 79Commands

GLOBAL_NAMES
controls the enforcement of global naming:

enables the enforcement of global
names.

disables the enforcement of global
names.

SCAN_INSTANCES
in a parallel server, specify the number of instances
to participate in parallelized operations.

CACHE_INSTANCES
in a parallel server, specify the number of instances
that will cache a table.

For more information on parallel operations, see
the “Parallel Query Option” chapter of Oracle7
Server Tuning.

specifies a new minimum number of shared server
processes.

MTS_DISPATCHERS
specifies a new number of dispatcher processes:

is the network protocol of the
dispatcher processes.

is the new number of dispatcher
processes of the specified protocol.

You can specify multiple MTS_DISPATCHERS
parameters in a single command for multiple
network protocols.

LICENSE_MAX_SESSIONS
limits the number of sessions on your instance. A
value of 0 disables the limit.

LICENSE_SESSIONS_WARNING
establishes a threshold of sessions over which
Oracle7 writes warning messages to the ALERT file
for subsequent sessions. A value of 0 disables the
warning threshold.

TRUE

FALSE

MTS_SERVERS

protocol

integer

Restricting Logons

4 – 80 Oracle7 Server SQL Reference

LICENSE_MAX_USERS
limits the number of concurrent users on your
database. A value of 0 disables the limit.

REMOTE_DEPENDENCIES_MODE
specifies how dependencies of remote stored
procedures are handled by the server. For more
information, refer to “Remote Dependencies” in
the Oracle7 Server Application Developer’s Guide.

SWITCH LOGFILE
switches redo log file groups.

ENABLE DISTRIBUTED RECOVERY
enables distributed recovery. In a single–process
environment, you must use this option to initiate
distributed recovery.

DISABLE DISTRIBUTED RECOVERY
disables distributed recovery.

manually archives redo log files or enables or
disables automatic archiving. See the ARCHIVE
LOG clause on page 4 – 124.

terminates a session. You must identify the session
with both of the following values from the
V$SESSION view:

is the value of the SID column.

is the value of the SERIAL#
column.

By default, any user granted CREATE SESSION system privilege can
log on to Oracle7. The ENABLE RESTRICTED SESSION option of the
ALTER SYSTEM command prevents logons by all users except those
having RESTRICTED SESSION system privilege. Existing sessions are
not terminated.

You may want to restrict logons if you are performing application
maintenance and you want only application developers with
RESTRICTED SESSION system privilege to log on. To restrict logons,
issue the following statement:

ALTER SYSTEM

 ENABLE RESTRICTED SESSION

ARCHIVE LOG

KILL SESSION

integer1

integer2

Clearing the Shared
Pool

Performing a
Checkpoint

4 – 81Commands

You can then terminate any existing sessions using the KILL SESSION
clause of the ALTER SYSTEM command.

After performing maintenance on your application, issue the following
statement to allow any user with CREATE SESSION system privilege
to log on:

ALTER SYSTEM

 DISABLE RESTRICTED SESSION

The FLUSH SHARED_POOL option of the ALTER SYSTEM command
clears all information from the shared pool in the System Global Area
(SGA). The shared pool stores this information:

• cached data dictionary information

• shared SQL and PL/SQL areas for SQL statements, stored
procedures, functions, packages, and triggers

You might want to clear the shared pool before beginning performance
analysis. To clear the shared pool, issue the following statement:

ALTER SYSTEM

 FLUSH SHARED_POOL

The above statement does not clear shared SQL and PL/SQL areas for
SQL statements, stored procedures, functions, packages, or triggers
that are currently being executed or for SQL SELECT statements for
which all rows have not yet been fetched.

The CHECKPOINT clause of the ALTER SYSTEM command explicitly
forces Oracle7 to perform a checkpoint. You can force a checkpoint if
you want to ensure that all changes made by committed transactions
are written to the data files on disk. For more information on
checkpoints, see the “Recovery Structures” chapter of Oracle7 Server
Concepts. If you are using Oracle7 with the Parallel Server option in
parallel mode, you can specify either the GLOBAL option to perform a
checkpoint on all instances that have opened the database or the
LOCAL option to perform a checkpoint on only your instance.

The following statement forces a checkpoint:

ALTER SYSTEM

CHECKPOINT

Oracle7 does not return control to you until the checkpoint is complete.

Checking Data Files

Using Resource Limits

Enabling and
Disabling Global
Name Resolution

4 – 82 Oracle7 Server SQL Reference

The CHECK DATAFILES clause of the ALTER SYSTEM command
verifies access to all online data files. If any data file is not accessible,
Oracle7 writes a message to an ALERT file. You may want to perform
this operation after fixing a hardware problem that prevented an
instance from accessing a data file. For more information on using this
clause, see Oracle7 Parallel Server Concepts & Administration.

The following statement verifies that all instances that have opened the
database can access all online data files:

ALTER SYSTEM

 CHECK DATAFILES GLOBAL

When you start an instance, Oracle7 enables or disables resource limits
based on the value of the initialization parameter RESOURCE_LIMIT.
You can issue an ALTER SYSTEM statement with the
RESOURCE_LIMIT option to enable or disable resource limits for
subsequent sessions.

Enabling resource limits only causes Oracle7 to enforce the resource
limits assigned to users. To choose resource limit values for a user, you
must create a profile, or a set of limits, and assign that profile to the
user. For more information on this process, see the CREATE PROFILE
command on page 4 – 210 and the CREATE USER command on
page 4 – 267.

This ALTER SYSTEM statement dynamically enables resource limits:

ALTER SYSTEM

 SET RESOURCE_LIMIT = TRUE

When you start an instance, Oracle7 determines whether to enforce
global name resolution for remote objects accessed in SQL statements
based on the value of the initialization parameter GLOBAL_NAMES.
You can subsequently enable or disable global names resolution while
your instance is running with the GLOBAL_NAMES parameter of the
ALTER SYSTEM command. You can also enable or disable global name
resolution for your session with the GLOBAL_NAMES parameter of
the ALTER SESSION command discussed earlier in this chapter.

It is recommended that you enable global name resolution. For more
information on global name resolution and how Oracle7 enforces it, see
section “Referring to Objects in Remote Databases” on page 2 – 11 and
Oracle7 Server Distributed Systems, Volume I.

Managing Processes
for the Multi–Threaded
Server

4 – 83Commands

When you start your instance, Oracle7 creates shared server processes
and dispatcher processes for the multi–threaded server architecture
based on the values of the following initialization parameters:

This parameter specifies the initial and minimum
number of shared server processes. Oracle7 may
automatically change the number of shared server
processes if the load on the existing processes
changes. While your instance is running, the
number of shared server processes can vary
between the values of the initialization parameters
MTS_SERVERS and MTS_MAX_SERVERS.

MTS_DISPATCHERS
This parameter specifies one or more network
protocols and the number of dispatcher processes
for each protocol.

For more information on the multi–threaded server architecture, see
Oracle7 Server Concepts.

You can subsequently use the MTS_SERVERS and
MTS_DISPATCHERS parameters of the ALTER SYSTEM command to
perform one of the following operations while the instance is running:

To create additional shared server processes:

You can cause Oracle7 to create additional shared server processes by
increasing the minimum number of shared server processes.

To terminate existing shared server processes:

Oracle7 terminates the shared server processes after finishing
processing their current calls,unless the load on the server processes is
so high that it cannot be managed by the remaining processes.

To create more dispatcher processes for a specific protocol:

You can create additional dispatcher processes up to a maximum across
all protocols specified by the initialization parameter
MTS_MAX_DISPATCHERS.

You cannot use this command to create dispatcher processes for
network protocols that are not specified by the initialization parameter
MTS_DISPATCHERS. To create dispatcher processes for a new
protocol, you must change the value of the initialization parameter.

To terminate existing dispatcher processes for a specific protocol:

Oracle7 terminates the dispatcher processes only after their current
user processes disconnect from the instance.

MTS_SERVERS

Example I

Example II

4 – 84 Oracle7 Server SQL Reference

The following statement changes the minimum number of shared
server processes to 25:

ALTER SYSTEM

 SET MTS_SERVERS = 25

If there are currently fewer than 25 shared server processes, Oracle7
creates more. If there are currently more than 25, Oracle7 terminates
some of them when they are finished processing their current calls if
the load could be managed by the remaining 25.

The following statement dynamically changes the number of dispatcher
processes for the TCP/IP protocol to 5 and the number of dispatcher
processes for the DECNET protocol to 10:

ALTER SYSTEM

SET MTS_DISPATCHERS = ’TCP, 5’

 MTS_DISPATCHERS = ’DECnet, 10’

If there are currently fewer than 5 dispatcher processes for TCP,
Oracle7 creates new ones. If there are currently more than 5, Oracle7
terminates some of them after the connected users disconnect.

If there are currently fewer than 10 dispatcher processes for DECnet,
Oracle7 creates new ones. If there are currently more than 10, Oracle7
terminates some of them after the connected users disconnect.

If there are currently existing dispatchers for another protocol, the
above statement does not affect the number of dispatchers for this
protocol.

Using Licensing Limits

4 – 85Commands

Oracle7 enforces concurrent usage licensing and named user licensing
limits specified by your Oracle7 license. When you start your instance,
Oracle7 establishes the licensing limits based on the values of the
following initialization parameters:

LICENSE_MAX_SESSIONS
This parameter establishes the concurrent usage
licensing limit, or the limit for concurrent sessions.
Once this limit is reached, only users with
RESTRICTED SESSION system privilege can
connect.

LICENSE_SESSIONS_WARNING
This parameter establishes a warning threshold for
concurrent usage. Once this threshold is reached,
Oracle7 writes a warning message to the database
ALERT file for each subsequent session. Also, users
with RESTRICTED SESSION system privilege
receive warning messages when they begin
subsequent sessions.

LICENSE_MAX_USERS
This parameter establishes the limit for users
connected to your database. Once this limit for
users is reached, more users cannot connect.

You can subsequently use the LICENSE_MAX_SESSIONS,
LICENSE_SESSIONS_WARNING, and LICENSE_MAX_USERS
parameters of the ALTER SYSTEM command to dynamically change or
disable limits or thresholds while your instance is running. Do not
disable or raise session or user limits unless you have appropriately
upgraded your Oracle7 license. For information on upgrading your
license, contact your Oracle sales representative.

New limits apply only to future sessions and users:

• If you reduce the limit on sessions below the current number of
sessions, Oracle7 does not end existing sessions to enforce the
new limit. Users without RESTRICTED SESSION system
privilege can only begin new sessions when the number of
sessions falls below the new limit.

• If you reduce the warning threshold for sessions below the
current number of sessions, Oracle7 writes a message to the
ALERT file for all subsequent sessions.

• You cannot reduce the limit on users below the current number
of users created for the database.

Example III

Example IV

Example V

Switching Redo Log
File Groups

4 – 86 Oracle7 Server SQL Reference

The following statement dynamically changes the limit on sessions for
your instance to 64 and the warning threshold for sessions on your
instance to 54:

ALTER SYSTEM

SET LICENSE_MAX_SESSIONS = 64

 LICENSE_SESSIONS_WARNING = 54

If the number of sessions reaches 54, Oracle7 writes a warning message
to the ALERT file for each subsequent session. Also, users with
RESTRICTED SESSION system privilege receive warning messages
when they begin subsequent sessions.

If the number of sessions reaches 64, only users with RESTRICTED
SESSION system privilege can begin new sessions until the number of
sessions falls below 64 again.

The following statement dynamically disables the limit for sessions on
your instance:

ALTER SYSTEM

 SET LICENSE_MAX_SESSIONS = 0

After you issue the above statement, Oracle7 no longer limits the
number of sessions on your instance.

The following statement dynamically changes the limit on the number
of users in the database to 200:

ALTER SYSTEM

 SET LICENSE_MAX_USERS = 200

After you issue the above statement, Oracle7 prevents the number of
users in the database from exceeding 200.

The SWITCH LOGFILE option of the ALTER SYSTEM command
explicitly forces Oracle7 to begin writing to a new redo log file group,
regardless of whether the files in the current redo log file group are full.
You may want to force a log switch to drop or rename the current redo
log file group or one of its members, since you cannot drop or rename a
file while Oracle7 is writing to it. The forced log switch only affects
your instance’s redo log thread. Note that when you force a log switch,
Oracle7 begins to perform a checkpoint. Oracle7 returns control to you
immediately rather than when the associated checkpoint is complete.

The following statement forces a log switch:

ALTER SYSTEM

SWITCH LOGFILE

Enabling Distributed
Recovery

Disabling Distributed
Recovery

Terminating a Session

4 – 87Commands

Oracle7 allows you to perform distributed transactions, or transactions
that modify data on multiple databases. If a network or machine failure
occurs during the commit process for a distributed transaction, the
state of the transaction may be unknown, or in–doubt. Once the failure
has been corrected and the network and its nodes are back online,
Oracle7 recovers the transaction.

If you are using Oracle7 in multiple–process mode, this distributed
recovery is performed automatically. If you are using Oracle7 in
single–process (single user) mode, such as on the MS–DOS operating
system, you must explicitly initiate distributed recovery with the
following statement.

ALTER SYSTEM ENABLE DISTRIBUTED RECOVERY

You may need to issue the above statement more than once to recover
an in–doubt transaction, especially if the remote node involved in the
transaction is not accessible. In–doubt transactions appear in the data
dictionary view DBA_2PC_PENDING. You can tell that the transaction
is recovered when it no longer appears in DBA_2PC_PENDING. For
more information about distributed transactions and distributed
recovery, see Oracle7 Server Distributed Systems, Volume I.

You can use the following statement to disable distributed recovery in
both single–process and multiprocess mode:

ALTER SYSTEM DISABLE DISTRIBUTED RECOVERY

You may want to disable distributed recovery for demonstration
purposes. You can then enable distributed recovery again by issuing an
ALTER SYSTEM statement with the ENABLE DISTRIBUTED
RECOVERY clause.

The KILL SESSION clause of the ALTER SYSTEM command terminates
a session, immediately performing the following tasks:

• rolling back its current transactions

• releasing all of its locks

• freeing all of its resources

You may want to kill the session of a user that is holding resources
needed by other users. The user receives an error message indicating
that the session has been killed and can no longer make calls to the
database without beginning a new session. You can only kill a session
on the same instance as your current session.

Example VI

Related Topics

4 – 88 Oracle7 Server SQL Reference

If you try to kill a session that is performing some activity that must be
completed, such as waiting for a reply from a remote database or
rolling back a transaction, Oracle7 waits for this activity to complete,
kills the session, and then returns control to you. If the waiting lasts as
long as a minute, Oracle7 marks the session to be killed and returns
control to you with a message indicating that the session is marked to
be killed. Oracle7 then kills the session when the activity is complete.

Consider this data from the V$SESSION dynamic performance table:

SELECT sid, serial#, username

FROM v$session

 SID SERIAL# USERNAME

–––––––––– –––––––––– ––––––––––––––––––––––––––––––

 1 1

 2 1

 3 1

 4 1

 5 1

 7 1

 8 28 OPS$BQUIGLEY

 10 211 OPS$SWIFT

 11 39 OPS$OBRIEN

 12 13 SYSTEM

 13 8 SCOTT

The following statement kills the session of the user SCOTT using the
SID and SERIAL# values from V$SESSION:

ALTER SYSTEM

KILL SESSION ’13, 8’

ALTER SESSION command on 4 – 55
CREATE PROFILE command on 4 – 210
CREATE USER command on 4 – 267

Purpose

Prerequisites

4 – 89Commands

ALTER TABLE

To alter the definition of a table in one of the following ways:

• to add a column

• to add an integrity constraint

• to redefine a column (datatype, size, default value)

• to modify storage characteristics or other parameters

• to enable, disable, or drop an integrity constraint or trigger

• to explicitly allocate an extent

• to explicitly deallocate the unused space of a table

• to allow or disallow writing to a table

• to modify the degree of parallelism for a table

The table must be in your own schema or you must have ALTER
privilege on the table or you must have ALTER ANY TABLE system
privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the table’s creation label or you must satisfy one of
the following criteria:

• If the table’s creation label is higher than your DBMS label, you
must have READUP and WRITEUP system privileges

• If the table’s creation label is lower than your DBMS label, you
must have WRITEDOWN system privilege.

• If the table’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

Syntax

4 – 90 Oracle7 Server SQL Reference

ALTER TABLE

schema.

table

ADD (

,

column datatype

DEFAULT expr column_constraint

MODIFY (

,

)

)
DEFAULT expr column_constraintdatatype

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

STORAGE storage_clause

DROP drop_clause

ALLOCATE EXTENT

)(SIZE integer

K

M

DATAFILE ’filename’

INSTANCE integer

ENABLE

column

PARALLEL parallel_clause CACHE

NOCACHE

enable_clause

TABLE LOCK

DISABLE disable_clause

TABLE LOCK

table_constraint

DEALLLOCATE UNUSED

K

M

KEEP integer

Keywords and
Parameters

4 – 91Commands

is the schema containing the table. If you omit
schema, Oracle7 assumes the table is in your own
schema.

is the name of the table to be altered.

adds a column or integrity constraint.

modifies the definition of an existing column. If
you omit any of the optional parts of the column
definition (datatype, default value, or column
constraint), these parts remain unchanged.

is the name of the column to be added or modified.

specifies a datatype for a new column or a new
datatype for an existing column.

You can only omit the datatype if the statement
also designates the column as part of the foreign
key of a referential integrity constraint. Oracle7
automatically assigns the column the same
datatype as the corresponding column of the
referenced key of the referential integrity
constraint.

specifies a default value for a new column or a new
default for an existing column. Oracle7 assigns this
value to the column if a subsequent INSERT
statement omits a value for the column. The
datatype of the default value must match the
datatype specified for the column. The column
must also be long enough to hold the default value.
A DEFAULT expression cannot contain references
to other columns, the pseudocolumns CURRVAL,
NEXTVAL, LEVEL, and ROWNUM, or date
constants that are not fully specified.

adds or removes a NOT NULL constraint to or
from and existing column. See the syntax of
column_constraint on page 4 – 152.

adds an integrity constraint to the table. See the
syntax of table_constraint on page 4 – 152.

changes the value of specified parameters for the
table. See the PCTFREE, PCTUSED, INITRANS,
and MAXTRANS parameters of the CREATE
TABLE command on page 4 – 245.

schema

table

ADD

MODIFY

column

datatype

DEFAULT

column_constraint

table_constraint

PCTFREE
PCTUSED
INITRANS
MAXTRANS

4 – 92 Oracle7 Server SQL Reference

changes the storage characteristics of the table. See
the STORAGE clause beginning on page 4 – 449.

drops an integrity constraint. See the DROP clause
on page 4 – 299.

ALLOCATE EXTENT
explicitly allocates a new extent for the table.

specifies the size of the extent in
bytes. You can use K or M to
specify the extent size in kilobytes
or megabytes. If you omit this
parameter, Oracle7 determines the
size based on the values of the
table’s STORAGE parameters.

specifies one of the data files in the
table’s tablespace to contain the
new extent. If you omit this
parameter, Oracle7 chooses the
data file.

makes the new extent available to
the freelist group associated with
the specified instance. If the
instance number exceeds the
maximum number of freelist
groups, the former is divided by
the latter, and the remainder is
used to identify the freelist group
to be used. An instance is
identified by the value of its
initialization parameter
INSTANCE_NUMBER. If you omit
this parameter, the space is
allocated to the table, but is not
drawn from any particular freelist
group. Rather the master freelist is
used, and space is allocated as
needed. For more information, see
Oracle7 Server Concepts. Only use
this parameter if you are using
Oracle7 with the Parallel Server
option in parallel mode.

STORAGE

DROP

SIZE

DATAFILE

INSTANCE

4 – 93Commands

Explicitly allocating an extent with this clause does
affect the size for the next extent to be allocated as
specified by the NEXT and PCTINCREASE storage
parameters.

DEALLOCATE UNUSED

explicitly deallocate unused space at the end of the
table and make the freed space available for other
segments. You can free only unused space above
the high–water mark. If KEEP is omitted, all
unused space is freed. For more information, see
the deallocate_clause.

specifies the number of bytes
above the high–water mark that
the table will have after
deallocation. If the number of
remaining extents are less than
MINEXTENTS, then
MINEXTENTS is set to the current
number of extents. If the initial
extent becomes smaller than
INITIAL, then INITIAL is set to the
value of the current initial extent.

ENABLE enable_clause
enables a single integrity constraint or all triggers
associated with the table. See the ENABLE clause
on page 4 – 326.

ENABLE TABLE LOCK
enables DML and DDL locks on a table in a parallel
server environment. For more information, see
Oracle7 Parallel Server Concepts & Administration.

KEEP

Adding Columns

4 – 94 Oracle7 Server SQL Reference

DISABLE disable_clause
disables a single integrity constraint or all triggers
associated with the table. See the DISABLE clause
on page 4 – 295.

Integrity constraints specified in DISABLE clauses
must be defined in the ALTER TABLE statement or
in a previously issued statement. You can also
enable and disable integrity constraints with the
ENABLE and DISABLE keywords of the
CONSTRAINT clause. If you define an integrity
constraint but do not explicitly enable or disable it,
Oracle7 enables it by default.

DISABLE TABLE LOCK
disables DML and DDL locks on a table to improve
performance in a parallel server environment. For
more information, see Oracle7 Parallel Server
Concepts & Administration.

specifies the degree of parallelism for the table. See
the parallel_clause on page 4 – 378.

Specifies that the blocks retrieved for this table are
placed at the most recently used end of the LRU
list in the buffer cache when a full table scan is
performed. This option is useful for small lookup
tables.

Specifies that the blocks retrieved for this table are
placed at the least recently used end of the LRU list
in the buffer cache when a full table scan is
performed. This is the default behavior.

If you use the ADD clause to add a new column to the table, then the
initial value of each row for the new column is null. You can add a
column with a NOT NULL constraint only to a table that contains no
rows.

If you create a view with a query that uses the asterisk (*) in the select
list to select all columns from the base table and you subsequently add
columns to the base table, Oracle7 will not automatically add the new
column to the view. To add the new column to the view, you can
re–create the view using the CREATE VIEW command with the OR
REPLACE option.

PARALLEL

CACHE

NOCACHE

Modifying Column
Definitions

Datatypes and Sizes

Default Values

Integrity Constraints

4 – 95Commands

Operations performed by the ALTER TABLE command can cause
Oracle7 to invalidate procedures and stored functions that access the
table. For information on how and when Oracle7 invalidates such
objects, see the “Dependencies Among Schema Objects” chapter of
Oracle7 Server Concepts.

You can use the MODIFY clause to change any of the following parts of
a column definition:

• datatype

• size

• default value

• NOT NULL column constraint

The MODIFY clause need only specify the column name and the
modified part of the definition, rather than the entire column
definition.

You can change a CHAR column to VARCHAR2 (or VARCHAR) and a
VARCHAR2 (or VARCHAR) to CHAR only if the column contains
nulls in all rows or if you do not attempt to change the column size.
You can change any column’s datatype or decrease any column’s size if
all rows for the column contain nulls. However, you can always
increase the size of a character or raw column or the precision of a
numeric column.

A change to a column’s default value only affects rows subsequently
inserted into the table. Such a change does not change default values
previously inserted.

The only type of integrity constraint that you can add to an existing
column using the MODIFY clause with the column constraint syntax is
a NOT NULL constraint. However, you can define other types of
integrity constraints (UNIQUE, PRIMARY KEY, referential integrity,
and CHECK constraints) on existing columns using the ADD clause
and the table constraint syntax.

You can define a NOT NULL constraint on an existing column only if
the column contains no nulls.

Example I

Example II

Example III

Example IV

4 – 96 Oracle7 Server SQL Reference

The following statement adds a column named THRIFTPLAN of
datatype NUMBER with a maximum of seven digits and two decimal
places and a column named LOANCODE of datatype CHAR with a
size of one and a NOT NULL integrity constraint:

ALTER TABLE emp

ADD (thriftplan NUMBER(7,2),

 loancode CHAR(1) NOT NULL)

The following statement increases the size of the THRIFTPLAN column
to nine digits:

ALTER TABLE emp

 MODIFY (thriftplan NUMBER(9,2))

Because the MODIFY clause contains only one column definition, the
parentheses around the definition are optional.

The following statement changes the values of the PCTFREE and
PCTUSED parameters for the EMP table to 30 and 60, respectively:

ALTER TABLE emp

PCTFREE 30

 PCTUSED 60

The following statement allocates an extent of 5 kilobytes for the EMP
table and makes it available to instance 4:

ALTER TABLE emp

ALLOCATE EXTENT (SIZE 5K INSTANCE 4)

Because this command omits the DATAFILE parameter, Oracle7
allocates the extent in one of the data files belonging to the tablespace
containing the table.

Example V

Other Examples

Related Topics

4 – 97Commands

This example modifies the BAL column of the ACCOUNTS table so
that it has a default value of 0:

ALTER TABLE accounts

 MODIFY (bal DEFAULT 0)

If you subsequently add a new row to the ACCOUNTS table and do
not specify a value for the BAL column, the value of the BAL column is
automatically 0:

INSERT INTO accounts(accno, accname)

 VALUES (accseq.nextval, ’LEWIS’)

 SELECT *

FROM accounts

WHERE accname = ’LEWIS’

 ACCNO ACCNAME BAL

–––––– ––––––– –––

815234 LEWIS 0

For examples of defining integrity constraints with the ALTER TABLE
command, see the CONSTRAINT clause beginning on page 4 – 152.

For examples of enabling, disabling, and dropping integrity constraints
and triggers with the ALTER TABLE command, see the ENABLE
clause on page 4 – 326, the DISABLE clause on page 4 – 295, and DROP
clause on page 4 – 299.

For examples of changing the value of a table’s storage parameters, see
the STORAGE clause on page 4 – 449.

CREATE TABLE command on 4 – 245
CONSTRAINT clause on 4 – 149
DISABLE clause on 4 – 295
DROP clause on 4 – 299
ENABLE clause on 4 – 326
STORAGE clause on 4 – 449

Purpose

Prerequisites

4 – 98 Oracle7 Server SQL Reference

ALTER TABLESPACE

To alter an existing tablespace in one of the following ways:

• to add datafile(s)

• to rename datafiles

• to change default storage parameters

• to take the tablespace online or offline

• to begin or end a backup

• to allow or disallow writing to a tablespace

If you have ALTER TABLESPACE system privilege, you can perform
any of this command’s operations. If you have MANAGE
TABLESPACE system privilege, you can only perform the
following operations:

• to take the tablespace online or offline

• to begin or end a backup

• make the tablespace read–only or read–write

Before you can make a tablespace read–only, the following conditions
must be met. It may be easiest to meet these restrictions by performing
this function in restricted mode, so that only users with the
RESTRICTED SESSION system privilege can be logged on.

• The tablespace must be online.

• There must not be any active transactions in the entire database.

This is necessary to ensure that there is no undo information that
needs to be applied to the tablespace.

• The tablespace must not contain any active rollback segments.

For this reason, the SYSTEM tablespace can never be made
read–only, since it contains the SYSTEM rollback segment.
Additionally, because the rollback segments of a read–only
tablespace are not accessible, it is recommended that you drop
the rollback segments before you make a tablespace read–only.

• The tablespace must not be involved in an online backup, since
the end of a backup updates the header file of all datafiles in the
tablespace.

• The COMPATIBLE initialization parameter must be set to 7.1.0
or greater.

Syntax

4 – 99Commands

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the tablespace’s creation label or you must satisfy one
of the following criteria:

• If the tablespace’s creation label is higher than your DBMS label,
you must have READUP and WRITEUP system privileges.

• If the tablespace’s creation label is lower than your DBMS label,
you must have WRITEDOWN system privilege.

• If the tablespace’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

If you are using Trusted Oracle7 in DBMS MAC mode, to add a datafile,
your operating system process label must be the equivalent of DBHIGH.

ALTER TABLESPACE tablespace

ADD DATAFILE ’filespec’

,

RENAME DATAFILE ’filename’

,

’filename’TO

DEFAULT STORAGE storage_clause

ONLINE

OFFLINE

NORMAL

TEMPORARY

IMMEDIATE

BEGIN BACKUP

END

READ

MAXSIZENEXT integer

K

M

ON

OFFAUTOEXTEND

integer

K

M

UNLIMITED

ONLY

WRITE

COALESCE

PERMANENT

TEMPORARY

Keywords and
Parameters

4 – 100 Oracle7 Server SQL Reference

is the name of the tablespace to be altered.

adds the datafile specified by filespec to the
tablespace. See the syntax description of filespec.
You can add a datafile while the tablespace is
online or offline. Be sure that the datafile is not
already in use by another database.

enables or disables the autoextending of the size of
the datafile in the tablespace.

disable autoextend if it is turned
on. NEXT and MAXSIZE are set to
zero. Values for NEXT and
MAXSIZE must be respecified in
further ALTER TABLESPACE
AUTOEXTEND commands.

enable autoextend.

the size in bytes of the next
increment of disk space to be
automatically allocated to the
datafile when more extents are
required. You can also use K or M
to specify this size in kilobytes or
megabytes. The default is one data
block.

maximum disk space allowed for
automatic extension of the datafile.

set no limit on allocating disk
space to the datafile.

tablespace

ADD DATAFILE

AUTOEXTEND

OFF

ON

NEXT

MAXSIZE

UNLIMITED

4 – 101Commands

RENAME DATAFILE
renames one or more of the tablespace’s datafiles.
Take the tablespace offline before renaming the
datafile. Each ’filename’ must fully specify a datafile
using the conventions for filenames on your
operating system.

This clause only associates the tablespace with the
new file rather than the old one. This clause does
not actually change the name of the operating
system file. You must change the name of the file
through your operating system.

COALESCE
for each datafile in the tablespace, coalesce all
contiguous free extents into larger contiguous
extents.

COALESCE cannot be specified with any other
command option.

DEFAULT STORAGE
specifies the new default storage parameters for
objects subsequently created in the tablespace. See
the STORAGE clause.

brings the tablespace online.

takes the tablespace offline and prevents further
access to its segments.

performs a checkpoint for all
datafiles in the tablespace. All of
these datafiles must be online. You
need not perform media recovery
on this tablespace before bringing
it back online. You must use this
option if the database is in
noarchivelog mode.

performs a checkpoint for all online
datafiles in the tablespace but does
not ensure that all files can be
written. Any offline files may
require media recovery before you
bring the tablespace back online.

ONLINE

OFFLINE

NORMAL

TEMPORARY

4 – 102 Oracle7 Server SQL Reference

does not ensure that tablespace
files are available and does not
perform a checkpoint. You must
perform media recovery on the
tablespace before bringing it back
online.

The default is NORMAL.

Suggestion: Before taking a tablespace offline for a long time,
you may want to alter any users who have been assigned the
tablespace as either a default or temporary tablespace. When
the tablespace is offline, these users cannot allocate space for
objects or sort areas in the tablespace. You can reassign users
new default and temporary tablespaces with the ALTER USER
command.

signifies that an online backup is to be performed
on the datafiles that comprise this tablespace. This
option does not prevent users from accessing the
tablespace. You must use this option before
beginning an online backup. You cannot use this
option on a read–only tablespace.

While the backup is in progress, you cannot:

• take the tablespace offline normally

• shutdown the instance

• begin another backup of the tablespace

signifies that an online backup of the tablespace is
complete. Use this option as soon as possible after
completing an online backup. You cannot use this
option on a read–only tablespace.

signifies that no further write operations are
allowed on the tablespace.

signifies that write operations are allowed on a
previously read only tablespace.

specifies that the tablespace is to be converted from
a temporary to a permanent one. A permanent
tablespace is one wherein permanent database
objects can be stored. This is the default when a
tablespace is created.

IMMEDIATE

BEGIN BACKUP

END BACKUP

READ ONLY

READ WRITE

PERMANENT

Usage Notes

Example I

Example II

Example III

4 – 103Commands

specifies that the tablespace is to be converted from
a permanent to a temporary one. A temporary
tablespace is one wherein no permanent database
objects can be stored.

If you are using Trusted Oracle7, datafiles that you add to a tablespace
are labelled with the operating system equivalent of DBHIGH.

Before taking a tablespace offline for a long time, you may want to alter
any users who have been assigned the tablespace as either a default or
temporary tablespace. When the tablespace is offline, these users
cannot allocate space for objects or sort areas in the tablespace. You can
reassign users new default and temporary tablespaces with the ALTER
USER command.

Once a tablespace is read–only, you can copy its files to read–only
media. You must then rename the datafiles in the control file to point to
the new location by using the SQL command ALTER DATABASE
RENAME.

If you forget to indicate the end of an online tablespace backup, and an
instance failure or SHUTDOWN ABORT occurs, Oracle assumes that
media recovery (possibly requiring archived redo log) is necessary at
the next instance start up. To restart the database without media
recovery, see Oracle7 Server Administrator’s Guide.

The following statement signals to the database that a backup is about
to begin:

ALTER TABLESPACE accounting

BEGIN BACKUP

The following statement signals to the database that the backup is
finished:

ALTER TABLESPACE accounting

END BACKUP

This example moves and renames a datafile associated with the
ACCOUNTING tablespace from ’DISKA:PAY1.DAT’ to
’DISKB:RECEIVE1.DAT’:

1. Take the tablespace offline using an ALTER TABLESPACE
statement with the OFFLINE option:

ALTER TABLESPACE accounting OFFLINE NORMAL

2. Copy the file from ’DISKA:PAY1.DAT’ to ’DISKB:RECEIVE1.DAT’
using your operating system’s commands.

TEMPORARY

Example IV

Related Topics

4 – 104 Oracle7 Server SQL Reference

3. Rename the datafile using the ALTER TABLESPACE command
with the RENAME DATAFILE clause:

ALTER TABLESPACE accounting

 RENAME DATAFILE ’diska:pay1.dbf’

 TO ’diskb:receive1.dbf’

4. Bring the tablespace back online using an ALTER TABLESPACE
statement with the ONLINE option:

ALTER TABLESPACE accounting ONLINE

The following statement adds a datafile to the tablespace; when more
space is needed new extents of size 10 kilobytes will be added up to a
maximum of 100 kilobytes:

ALTER TABLESPACE accounting

ADD DATAFILE ’disk3:pay3.dbf’

AUTOEXTEND ON

NEXT 10 K

MAXSIZE 100 K

CREATE TABLESPACE command on 4 – 254
CREATE DATABASE command on 4 – 178
DROP TABLESPACE command on 4 – 320
STORAGE clause on 4 – 449

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

4 – 105Commands

ALTER TRIGGER

To enable, disable, or compile a database trigger:

The trigger must be in your own schema or you must have ALTER
ANY TRIGGER system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the trigger’s creation label or you must satisfy one of
the following criteria:

• If the trigger’s creation label is higher than your DBMS label, you
must have READUP and WRITEUP system privileges

• If the trigger’s creation label is lower than your DBMS label, you
must have WRITEDOWN system privilege.

• If the trigger’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

ALTER TRIGGER

schema. DISABLE

ENABLEtrigger

COMPILE

is the schema containing the trigger. If you omit
schema, Oracle7 assumes the trigger is in your own
schema.

is the name of the trigger to be altered.

enables the trigger.

disables the trigger.

compiles the trigger.

You can use the ALTER TRIGGER command to explicitly recompile a
trigger that is invalid. Explicit recompilation eliminates the need for
implicit runtime recompilation and prevents associated runtime
compilation errors and performance overhead.

When you issue an ALTER TRIGGER statement, Oracle7 recompiles
the trigger regardless of whether it is valid or invalid.

When you recompile a trigger, Oracle7 first recompiles objects upon
which the trigger depends, if any of these objects are invalid. If Oracle7
recompiles the trigger successfully, the trigger becomes valid. If

schema

trigger

ENABLE

DISABLE

COMPILE

Enabling and
Disabling Triggers

Example

4 – 106 Oracle7 Server SQL Reference

recompiling the trigger results in compilation errors, then Oracle7
returns an error and the trigger remains invalid. You can then debug
triggers using the predefined package DBMS_OUTPUT. For
information on debugging procedures, see the “Using Procedures and
Packages” chapter of the Oracle7 Server Application Developer’s Guide.
For information on how Oracle7 maintains dependencies among
schema objects, including remote objects, see the “Dependencies
Among Schema Objects” chapter of Oracle7 Server Concepts.

Note: This command does not change the declaration or
definition of an existing trigger. To redeclare or redefine a
trigger, you must use the CREATE TRIGGER command with
the OR REPLACE option.

A database trigger is always in one of the following states:

If a trigger is enabled, Oracle7 fires the trigger
when a triggering statement is issued.

If the trigger is disabled, Oracle7 does not fire the
trigger when a triggering statement is issued.

When you create a trigger, Oracle7 enables it automatically. You can use
the ENABLE and DISABLE options of the ALTER TRIGGER command
to enable and disable a trigger.

You can also use the ENABLE and DISABLE clauses of the ALTER
TABLE command to enable and disable all triggers associated with a
table.

Note: The ALTER TRIGGER command does not change the
definition of an existing trigger. To redefine a trigger, you must
use the CREATE TRIGGER command with the OR REPLACE
option.

Consider a trigger named REORDER created on the INVENTORY table
that is fired whenever an UPDATE statement reduces the number of a
particular part on hand below the part’s reorder point. The trigger
inserts into a table of pending orders a row that contains the part
number, a reorder quantity, and the current date.

When this trigger is created, Oracle7 enables it automatically. You can
subsequently disable the trigger with the following statement:

ALTER TRIGGER reorder

 DISABLE

When the trigger is disabled, Oracle7 does not fire the trigger when an
UPDATE statement causes the part’s inventory to fall below its reorder
point.

enabled

disabled

Related Topics

4 – 107Commands

After disabling the trigger, you can subsequently enable it with the
following statement:

ALTER TRIGGER reorder

 ENABLE

After you reenable the trigger, Oracle7 fires the trigger whenever a
part’s inventory falls below its reorder point as a result of an UPDATE
statement. Note that a part’s inventory may have fallen below its
reorder point while the trigger was disabled. When you reenable the
trigger, Oracle7 does not automatically fire the trigger for this part.

CREATE TRIGGER command on 4 – 257
DROP TRIGGER command on 4 – 322
DISABLE clause on 4 – 295
ENABLE clause on 4 – 326

Purpose

Prerequisites

4 – 108 Oracle7 Server SQL Reference

ALTER USER

To change any of the following characteristics of a database user:

• password

• default tablespace for object creation

• tablespace for temporary segments created for the user

• tablespace access and tablespace quotas

• limits on database resources

• default roles

You must have ALTER USER privilege. However, you can change your
own password without this privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the user’s creation label or you must satisfy one of the
following criteria:

• If the user’s creation label is higher than your DBMS label, you
must have READUP and WRITEUP system privileges.

• If the user’s creation label is lower than your DBMS label, you
must have WRITEDOWN system privilege.

• If the user’s creation label and your DBMS label are not, you
must have READUP, WRITEUP, and WRITEDOWN system
privileges.

You can only change a user’s default roles if your DBMS label matches
the creation label of the user. Your DBMS label must also dominate the
role’s creation label or you must have READUP system privilege.

You can only establish a default or temporary tablespace if both your
DBMS label and the user’s creation label dominates the tablespace’s
creation label or if both you and the user have READUP system
privilege.

You can only change a user’s profile if both your DBMS label and the
user’s creation label dominate the profile’s creation label or if both you
and the user have READUP system privilege.

Syntax

Keywords and
Parameters

4 – 109Commands

ALTER USER user

IDENTIFIED BY password

DEFAULT TABLESPACE tablespace

,

TEMPORARY TABLESPACE tablespace

EXTERNALLY

QUOTA integer ON tablespace

UNLIMITED

K

M

PROFILE profile

,

DEFAULT ROLE

ALL

EXCEPT role

,

NONE

role

is the user to be altered.

indicates how Oracle7 permits user access.

specifies a new password for the
user. The password is not usually
quoted and must also follow the
rules described in the section
“Object Naming Rules” on page
2 – 3. A password can only contain
single–byte characters from your
database character set regardless of
whether your character set also
contains multi–byte characters.

indicates that Oracle7 verifies user
access with the operating system,
rather than with a password. See
the CREATE USER command on
page 4 – 267.

user

IDENTIFIED

BY

EXTERNALLY

4 – 110 Oracle7 Server SQL Reference

Although you do not need privileges to change
your own password, you must have ALTER USER
system privilege to change from BY password to
EXTERNALLY or vice versa.

DEFAULT TABLESPACE
specifies the default tablespace for object creation.

TEMPORARY TABLESPACE
specifies the tablespace for the creation of
temporary segments for operations such as sorting
that require more space than is available in
memory.

establishes a space quota of integer bytes on the
tablespace for the user. This quota is the maximum
space in tablespace that can be allocated for objects
in the user’s schema. You can use K or M to specify
the quota in kilobytes or megabytes. You need not
have quota on the tablespace to establish a quota
on the tablespace for another user. See the CREATE
USER command on page 4 – 267.

If you reduce an existing quota to a value below
the space allocated for existing objects in the user’s
schema in the tablespace, no more space in the
tablespace can be allocated to objects in the
schema.

Note that an ALTER USER statement can contain
multiple QUOTA clauses for multiple tablespaces.

places no limit on the space in the
tablespace allocated to objects in
the user’s schema.

changes the user’s profile to profile. In subsequent
sessions, the user is subject to the limits defined in
the new profile.

To assign the default limits to the user, assign the
user the DEFAULT profile.

establishes default roles for the user. Oracle7
enables the user’s default roles at logon. By
default, all roles granted to the user are default
roles.

QUOTA

UNLIMITED

PROFILE

DEFAULT ROLE

Establishing Default
Roles

Example I

Example II

Example III

Related Topics

4 – 111Commands

makes all the roles granted to the
user default roles, except those
listed in the EXCEPT clause.

makes none of the roles granted to
the user default roles.

The DEFAULT ROLE clause can only contain roles that have been
granted directly to the user with a GRANT statement. You cannot use
the DEFAULTROLE clause to enable:

• roles not granted to the user

• roles granted through other roles

• roles managed by the operating system

Note that Oracle7 enables default roles at logon without requiring the
user to specify their passwords.

The following statement changes the user SCOTT’s password to LION
and default tablespace to the tablespace TSTEST:

ALTER USER scott

IDENTIFIED BY lion

 DEFAULT TABLESPACE tstest

The following statement assigns the CLERK profile to SCOTT:

ALTER USER scott

PROFILE clerk

In subsequent sessions, SCOTT is restricted by limits in the CLERK
profile.

The following statement makes all roles granted directly to SCOTT
default roles, except the AGENT role:

ALTER USER scott

DEFAULT ROLE ALL EXCEPT agent

At the beginning of SCOTT’s next session, Oracle7 enables all roles
granted directly to SCOTT except the AGENT role.

CREATE PROFILE command on 4 – 210
CREATE ROLE command on 4 – 215
CREATE USER command on 4 – 267
CREATE TABLESPACE command on 4 – 254

ALL

NONE

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 112 Oracle7 Server SQL Reference

ALTER VIEW

To recompile a view.

The view must be in your own schema or you must have ALTER ANY
TABLE system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the view’s creation label or you must satisfy one of
the following criteria:

• If the view’s creation label is higher than your DBMS label, you
must have READUP and WRITEUP system privileges

• If the view’s creation label is lower than your DBMS label, you
must have WRITEDOWN system privilege.

• If the view’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

ALTER VIEW

schema.

COMPILEview

is the schema containing the view. If you omit
schema, Oracle7 assumes the view is in your own
schema.

is the name of the view to be recompiled.

causes Oracle7 to recompile the view. The
COMPILE keyword is required.

schema

view

COMPILE

Usage Notes

Example

Related Topics

4 – 113Commands

You can use the ALTER VIEW command to explicitly recompile a view
that is invalid. Explicit recompilation allows you to locate
recompilation errors before runtime. You may want to explicitly
recompile a view after altering one of its base tables to ensure that the
alteration does not affect the view or other objects that depend on it.

When you issue an ALTER VIEW statement, Oracle7 recompiles the
view regardless of whether it is valid or invalid. Oracle7 also
invalidates any local objects that depend on the view. For more
information, see the “Dependencies Among Schema Objects” chapter
of Oracle7 Server Concepts.

Note: This command does not change the definition of an
existing view. To redefine a view, you must use the CREATE
VIEW command with the OR REPLACE option.

To recompile the view CUSTOMER_VIEW, issue the following
statement:

ALTER VIEW customer_view

 COMPILE

If Oracle7 encounters no compilation errors while recompiling
CUSTOMER_VIEW, CUSTOMER_VIEW becomes valid. If recompiling
results in compilation errors, Oracle7 returns an error and
CUSTOMER_VIEW remains invalid.

Oracle7 also invalidates all dependent objects. These objects include
any procedures, functions, package bodies, and views that reference
CUSTOMER_VIEW. If you subsequently reference one of these objects
without first explicitly recompiling it, Oracle7 recompiles it implicitly
at runtime.

CREATE VIEW command on 4 – 271

Purpose

Prerequisites

4 – 114 Oracle7 Server SQL Reference

ANALYZE

To perform one of the following functions on an index, table, or cluster:

• to collect statistics about the object used by the optimizer and
store them in the data dictionary

• to delete statistics about the object from the data dictionary

• to validate the structure of the object

• to identify migrated and chained rows of the table or cluster

The object to be analyzed must be in your own schema or you must
have the ANALYZE ANY system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the creation label of the object to be analyzed or you
must satisfy one of the following criteria:

• If the object’s creation label is higher than your DBMS label, you
must have READUP and WRITEUP system privileges

• If the object’s creation label is lower than your DBMS label, you
must have WRITEDOWN system privilege.

• If the object’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

If you want to list chained rows of a table or cluster into a list table, the
list table must be in your own schema or you must have INSERT
privilege on the list table or you must have INSERT ANY TABLE
system privilege. If you are using Trusted Oracle7 in DBMS MAC
mode, the list table must also meet the criteria for the analyzed object
described above.

Syntax

Keywords and
Parameters

4 – 115Commands

ANALYZE INDEX index

schema.TABLE

cluster

COMPUTE STATISTICS

ESTIMATE STATISTICS

SAMPLE integer ROWS

PERCENT
DELETE STATISTICS

VALIDATE STRUCTURE

CASCADE

LIST CHAINED ROWS

INTO

schema.

table

CLUSTER

table

FOR for_clause

FOR for_clause

for_clause ::=

FOR ALL

SIZE integer

FOR TABLE

INDEXED

COLUMNS

FOR COLUMNS

SIZE integer

column

SIZE integer

FOR ALL INDEXES

identifies an index to be analyzed (if no FOR clause
is used). If you omit schema, Oracle7 assumes the
index is in your own schema.

identifies a table to be analyzed. If you omit schema,
Oracle7 assumes the table is in your own schema.
When you collect statistics for a table, Oracle7 also
automatically collects the statistics for each of the
table’s indexes, provided that no FOR clauses are
used.

identifies a cluster to be analyzed. If you omit
schema, Oracle7 assumes the cluster is in your own
schema. When you collect statistics for a cluster,
Oracle7 also automatically collects the statistics for
all the cluster’s tables and all their indexes,
including the cluster index.

INDEX

TABLE

CLUSTER

4 – 116 Oracle7 Server SQL Reference

COMPUTE STATISTICS
computes exact statistics about the analyzed object
and stores them in the data dictionary.

ESTIMATE STATISTICS
estimates statistics about the analyzed object and
stores them in the data dictionary.

specifies the amount of data from
the analyzed object Oracle7
samples to estimate statistics. If
you omit this parameter, Oracle7
samples 1064 rows. If you specify
more than half of the data, Oracle7
reads all the data and computes
the statistics.

causes Oracle7 to sample integer
rows of the table or cluster or
integer entries from the index. The
integer must be at least 1.

causes Oracle7 to sample integer
percent of the rows from the table
or cluster or integer percent of the
index entries. The integer can range
from 1 to 99.

Histogram statistics are described in Oracle7 Server Tuning. The
following clauses only apply to the ANALYZE TABLE version of this
command:

collect table statistics for the table.

FOR ALL COLUMNS
collect column statistics for all
columns in the table.

FOR ALL INDEXED COLUMNS
collect column statistics for all
indexed columns in the table.

SAMPLE

ROWS

PERCENT

FOR TABLE

4 – 117Commands

FOR COLUMNS
collect column statistics for the
specified columns.

FOR ALL INDEXES
all indexes associated with the
table will be analyzed.

specifies the maximum number of
partitions in the histogram. The
default value is 75, minimum value
is 1, and maximum value is 254.

DELETE STATISTICS
deletes any statistics about the analyzed object that
are currently stored in the data dictionary.

VALIDATE STRUCTURE
validates the structure of the analyzed object. If
you use this option when analyzing a cluster,
Oracle7 automatically validates the structure of the
cluster’s tables.

validates the structure of the indexes associated
with the table or cluster. If you use this option
when validating a table, Oracle7 also validates the
table’s indexes. If you use this option when
validating a cluster, Oracle7 also validates all the
clustered tables’ indexes, including the cluster
index.

LIST CHAINED ROWS
identifies migrated and chained rows of the
analyzed table or cluster. You cannot use this
option when analyzing an index.

specifies a table into which Oracle7
lists the migrated and chained
rows. If you omit schema, Oracle7
assumes the list table is in your
own schema. If you omit this
clause altogether, Oracle7 assumes
that the table is named
CHAINED_ROWS. The list table
must be on your local database.

SIZE

CASCADE

INTO

Collecting Statistics

Indexes

4 – 118 Oracle7 Server SQL Reference

You can collect statistics about the physical storage characteristics and
data distribution of an index, table, column, or cluster and store them
in the data dictionary. For computing or estimating statistics

• Computation always provides exact values, but can take longer
than estimation.

• Estimation is often much faster than computation and the results
are usually nearly exact.

Use estimation, rather than computation, unless you feel you need
exact values. Some statistics are always computed exactly, regardless of
whether you specify computation or estimation. If you choose
estimation and the time saved by estimating a statistic is negligible,
Oracle7 computes the statistic exactly.

If the data dictionary already contains statistics for the analyzed object,
Oracle7 updates the existing statistics with the new ones.

The statistics are used by the Oracle7 optimizer to choose the execution
plan for SQL statements that access analyzed objects. These statistics
may also be useful to application developers who write such
statements. For information on how these statistics are used, see
Oracle7 Server Tuning.

The following sections list the statistics for indexes, tables, columns,
and clusters.

For an index, Oracle7 collects the following statistics:

• depth of the index from its root block to its leaf blocks*

• number of leaf blocks

• number of distinct index values

• average number of leaf blocks per index value

• average number of data blocks per index value (for an index on a
table)

• clustering factor (how well ordered are the rows about the
indexed values)

The statistics marked with asterisks (*) are always computed exactly.

Index statistics appear in the data dictionary views USER_INDEXES,
ALL_INDEXES, and DBA_INDEXES.

Tables

Columns

4 – 119Commands

For a table, Oracle7 collects the following statistics:

• number of rows

• number of data blocks currently containing data *

• number of data blocks allocated to the table that have never been
used *

• average available free space in each data block in bytes

• number of chained rows

• average row length, including the row’s overhead, in bytes

The statistics marked with asterisks (*) are always computed exactly.

Table statistics appear in the data dictionary views USER_TABLES,
ALL_TABLES, and DBA_TABLES.

Column statistics can be based on the entire column or can use a
histogram. A histogram partitions the values in the column into bands,
so that all column values in a band fall within the same range In some
cases, it is useful to see how many values fall in various ranges.
Oracle’s histograms are height balanced as opposed to width balanced.
This means that the column values are divided into bands so that each
band contains approximately the same number of values. The useful
information the histogram provides, then, is where in the range of
values the endpoints fall. Width–balanced histograms, on the other
hand, divide the data into a number of ranges, all of which are the
same size, and then count the number of values falling into each range.

The size parameter specifies how many bands the column should be
divided into. A size of 1 treats the entire column as a single band,
which is equivalent to not using histograms at all.

The column statistics that Oracle7 collects are the following:

• number of distinct values in the column as a whole

• maximum and minimum values in each band

When to use Histograms

For uniformly distributed data, the cost–based approach makes fairly
accurate guesses at the cost of executing a particular statement. For
non–uniformly distributed data, Oracle allows you to store histograms
describing the data distribution of a particular column. These
histograms are stored in the dictionary and can be used by the
cost–based optimizer.

Clusters

Example I

4 – 120 Oracle7 Server SQL Reference

Since they are persistent objects, there is a maintenance and space cost
for using histograms. You should only compute histograms for
columns that you know have highly–skewed data distribution. Also, be
aware that histograms, as well as all optimizer statistics, are static. If
the data distribution of a column changes frequently, you must reissue
the ANALYZE command to recompute the histogram for that column.

Histograms are not useful for columns with the following characteristics:

• all predicates on the column use bind variables

• the column data is uniformly distributed

• the column is not used in WHERE clauses of queries

• the column is unique and is used only with equality predicates

Create histograms on columns that are frequently used in WHERE
clauses of queries and have a highly–skewed data distribution. You
create a histogram by using the ANALYZE TABLE option of this
command. For example, if you want to create a 10–band histogram on
the SAL column of the EMP table, issue the following statement:

ANALYZE TABLE emp

COMPUTE STATISTICS FOR COLUMNS sal SIZE 10;

Column statistics appear in the data dictionary views
USER_TAB_COLUMNS, ALL_TAB_COLUMNS, and
DBA_TAB_COLUMNS. Histograms appear in the data dictionary
views USER_HISTOGRAMS, DBA_HISTOGRAMS, and
ALL_HISTOGRAMS.

For an indexed cluster, Oracle7 collects the average number of data
blocks taken up by a single cluster key value and all of its rows. For a
hash clusters, Oracle7 collects the average number of data blocks taken
up by a single hash key value and all of its rows. These statistics appear
in the data dictionary views USER_CLUSTERS and DBA_CLUSTERS.

The following statement estimates statistics for the CUST_HISTORY
table and all of its indexes:

ANALYZE TABLE cust_history

 ESTIMATE STATISTICS

Deleting Statistics

Example II

Validating Structures

Indexes

4 – 121Commands

With the DELETE STATISTICS option of the ANALYZE command, you
can remove existing statistics about an object from the data dictionary.
You may want to remove statistics if you no longer want the Oracle7
optimizer to use them.

When you use the DELETE STATISTICS option on a table, Oracle7 also
automatically removes statistics for all the table’s indexes. When you
use the DELETE STATISTICS option on a cluster, Oracle7 also
automatically removes statistics for all the cluster’s tables and all their
indexes, including the cluster index.

The following statement deletes statistics about the CUST_HISTORY
table and all its indexes from the data dictionary:

ANALYZE TABLE cust_history

 DELETE STATISTICS

With the VALIDATE STRUCTURE option of the ANALYZE command,
you can verify the integrity of the structure of an index, table, or
cluster. If Oracle7 successfully validates the structure, a message
confirming its validation is returned to you. If Oracle7 encounters
corruption in the structure of the object, an error message is returned to
you. In this case, drop and recreate the object.

Since the validating the structure of a object prevents SELECT, INSERT,
UPDATE, and DELETE statements from concurrently accessing the
object, do not use this option on the tables, clusters, and indexes of
your production applications during periods of high database activity.

For an index, the VALIDATE STRUCTURE option verifies the integrity
of each data block in the index and checks for block corruption. Note
that this option does not confirm that each row in the table has an
index entry or that each index entry points to a row in the table. You
can perform these operations by validating the structure of the table.

When you use the VALIDATE STRUCTURE option on an index,
Oracle7 also collects statistics about the index and stores them in the
data dictionary view INDEX_STATS. Oracle7 overwrites any existing
statistics about previously validated indexes. At any time,
INDEX_STATS can contain only one row describing only one index.
The INDEX_STATS view is described in the Oracle7 Server Reference.

The statistics collected by this option are not used by the Oracle7
optimizer. Do not confuse these statistics with the statistics collected by
the COMPUTE STATISTICS and ESTIMATE STATISTICS options.

Example III

Tables

Example IV

Clusters

Example V

Listing Chained Rows

4 – 122 Oracle7 Server SQL Reference

The following statement validates the structure of the index
PARTS_INDEX:

ANALYZE INDEX parts_index

 VALIDATE STRUCTURE

For a table, the VALIDATE STRUCTURE option verifies the integrity of
each of the table’s data blocks and rows. You can use the CASCADE
option to also validate the structure of all indexes on the table and to
perform cross–referencing between the table and each of its indexes.
For each index, the cross–referencing involves the following
validations:

• Each value of the tables’ indexed column must match the
indexed column value of an index entry. The matching index
entry must also identify the row in the table by the correct
ROWID.

• Each entry in the index identifies a row in the table. The indexed
column value in the index entry must match that of the
identified row.

The following statement analyzes the EMP table and all of its indexes:

ANALYZE TABLE emp

 VALIDATE STRUCTURE CASCADE

For a cluster, the VALIDATE STRUCTURE option verifies the integrity
of each row in the cluster and automatically validates the structure of
each of the cluster’s tables. You can use the CASCADE option to also
validate the structure of all indexes on the cluster’s tables, including
the cluster index.

The following statement analyzes the ORDER_CUSTS cluster, all of its
tables, and all of their indexes, including the cluster index:

ANALYZE CLUSTER order_custs

 VALIDATE STRUCTURE CASCADE

With the LIST option of the ANALYZE command, you can collect
information about the migrated and chained rows in a table or cluster.
A migrated row is one that has been moved from one data block to
another. For example, Oracle7 migrates a row in a cluster if its cluster
key value is updated. A chained row is one that is contained in more
than one data block. For example, Oracle7 chains a row of a table or
cluster if the row is too long to fit in a single data block. Migrated and
chained rows may cause excessive I/O. You may want to identify such

Example VI

Related Topics

4 – 123Commands

rows to eliminate them. For information on eliminating migrated and
chained rows, see Oracle7 Server Tuning.

You can use the INTO clause to specify an output table into which
Oracle7 places this information. The definition of a sample output table
CHAINED_ROWS is provided in a SQL script available on your
distribution media. Your list table must have the same column names,
types, and sizes as the CHAINED_ROWS table. On many operating
systems, the name of this script is UTLCHAIN.SQL. The actual name and
location of this script may vary depending on your operating system.

The following statement collects information about all the chained rows
of the table ORDER_HIST:

ANALYZE TABLE order_hist

LIST CHAINED ROWS INTO cr

The preceding statement places the information into the table CR.

You can then examine the rows with this query:

SELECT *

FROM cr

OWNER_NAME TABLE_NAME CLUSTER_NAME HEAD_ROWID TIMESTAMP

–––––––––– –––––––––– –––––––––––– –––––––––––––––––– –––––––––

SCOTT ORDER_HIST 0000346A.000C.0003 15–MAR–93

Oracle7 Server Tuning

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 124 Oracle7 Server SQL Reference

ARCHIVE LOG clause

To manually archive redo log file groups or to enable or disable
automatic archiving.

The ARCHIVE LOG clause must appear in an ALTER SYSTEM
command. You must have the privileges necessary to issue this
statement. For information on these privileges, see the ALTER SYSTEM
command on page 4 – 76.

You must also have the OSDBA or OSOPER role enabled.

You can use most of the options of this clause when your instance has
the database mounted, open or closed. Options that require your
instance to have the database open are noted.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must be the equivalent of DBHIGH.

CHANGE integer

CURRENT

ARCHIVE LOG

GROUP integer

LOGFILE ’filename’

SEQUENCE integer

THREAD integer

NEXT

ALL

START

STOP

TO ’location’

specifies thread containing the redo log file group
to be archived. You only need to specify this
parameter if you are using Oracle7 with the
Parallel Server option in parallel mode.

manually archives the online redo log file group
identified by the log sequence number integer in the
specified thread. If you omit the THREAD
parameter, Oracle7 archives the specified group
from the thread assigned to your instance.

THREAD

SEQ

4 – 125Commands

manually archives the online redo log file group
containing the redo log entry with the system
change number (SCN) specified by integer in the
specified thread. If the SCN is in the current redo
log file group, Oracle7 performs a log switch. If
you omit the THREAD parameter, Oracle7 archives
the groups containing this SCN from all enabled
threads. You can only use this option when your
instance has the database open.

manually archives the current redo log file group of
the specified thread, forcing a log switch. If you
omit the THREAD parameter, Oracle7 archives all
redo log file groups from all enabled threads,
including logs previous to current logs. You can
only use this option when your instance has the
database open.

manually archives the online redo log file group
with the specified GROUP value. You can
determine the GROUP value for a redo log file
group by examining the data dictionary view
DBA_LOG_FILES. If you specify both the
THREAD and GROUP parameters, the specified
redo log file group must be in the specified thread.

manually archives the online redo log file group
containing the redo log file member identified by
’filename’. If you specify both the THREAD and
LOGFILE parameters, the specified redo log file
group must be in the specified thread.

manually archives the next online redo log file
group from the specified thread that is full but has
not yet been archived. If you omit the THREAD
parameter, Oracle7 archives the earliest unarchived
redo log file group from any enabled thread.

manually archives all online redo log file groups
from the specified thread that are full but have not
been archived. If you omit the THREAD
parameter, Oracle7 archives all full unarchived
redo log file groups from all enabled threads.

enables automatic archiving of redo log file groups.
You can only enable automatic archiving for the
thread assigned to your instance.

CHANGE

CURRENT

GROUP

LOGFILE

NEXT

ALL

START

Usage Notes

Example I

Example II

Example III

Related Topics

4 – 126 Oracle7 Server SQL Reference

specifies the location to which the redo log file
group is archived. The value of this parameter
must be a fully–specified file location following the
conventions of your operating system. If you omit
this parameter, Oracle7 archives the redo log file
group to the location specified by the initialization
parameter LOG_ARCHIVE_DEST.

disables automatic archiving of redo log file
groups. You can only disable automatic archiving
for the thread assigned to your instance.

You must archive redo log file groups in the order in which they are
filled. If you specify a redo log file group for archiving with these or
LOGFILE parameter and earlier redo log file groups are not yet
archived, Oracle7 returns an error. If you specify a redo log file group
for archiving with the CHANGE parameter or CURRENT option and
earlier redo log file groups are not yet archived, Oracle7 archives all
unarchived groups up to and including the specified group.

You can also manually archive redo log file groups with the ARCHIVE
LOG Server Manager command. For information on this command, see
the Oracle Server Manager User’s Guide.

You can also choose to have Oracle7 archive redo log files groups
automatically. For information on automatic archiving, see the
“Archiving Redo Information” chapter of the Oracle7 Server
Administrator’s Guide. Note that you can always manually archive redo
log file groups regardless of whether automatic archiving is enabled.

The following statement manually archives the redo log file group with
the log sequence number 4 in thread number 3:

ALTER SYSTEM ARCHIVE LOG THREAD 3 SEQ 4

The following statement manually archives the redo log file group
containing the redo log entry with the SCN 9356083:

ALTER SYSTEM ARCHIVE LOG CHANGE 9356083

The following statement manually archives the redo log file group
containing a member named ’DISKL:LOG6.LOG’ to an archived redo
log file in the location ’DISKA:[ARCH$]’:

ALTER SYSTEM ARCHIVE LOG

LOGFILE ’diskl:log6.log’

TO ’diska:[arch$]’

ALTER SYSTEM command on 4 – 76

TO

STOP

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 127Commands

AUDIT (SQL Statements)

To choose specific SQL statements for auditing in subsequent user
sessions. To choose particular schema objects for auditing, use the
AUDIT command (Schema Objects).

You must have AUDIT SYSTEM system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must dominate the creation label of the users whose SQL
statements you are auditing.

AUDIT

BY

,

statement_opt

system_priv

user

SESSION

ACCESS

WHENEVER SUCCESSFUL

NOT

,

BY

chooses specific SQL statements for auditing. For a
list of these statement options and the SQL
statements they audit, see Table 4 – 7 on page
4 – 130 and Table 4 – 8 on page 4 – 132.

chooses SQL statements that are authorized by the
specified system privilege for auditing. For a list of
all system privileges and the SQL statements that
they authorize, see Table 4 – 11 on page 4 – 351.

chooses only SQL statements issued by specified
users for auditing. If you omit this clause, Oracle7
audits all users’ statements.

causes Oracle7 to write a single record for all SQL
statements of the same type issued in the same
session.

causes Oracle7 to write one record for each audited
statement.

If you specify statement options or system
privileges that audit Data Definition Language
statements, Oracle7 automatically audits by access
regardless of whether you specify the BY SESSION
or BY ACCESS option.

statement_opt

system_priv

BY user

BY SESSION

BY ACCESS

Auditing

How to Audit

4 – 128 Oracle7 Server SQL Reference

For statement options and system privileges that
audit other types of SQL statements, you can
specify either the BY SESSION or BY ACCESS
option. BY SESSION is the default.

WHENEVER SUCCESSFUL
chooses auditing only for SQL statements that
complete successfully.

chooses auditing only for
statements that fail, or result in
errors.

If you omit the WHENEVER clause, Oracle7 audits
SQL statements regardless of success or failure.

 Auditing keeps track of operations performed by database users. For
each audited operation, Oracle7 produces an audit record containing
this information:

• user performing the operation

• type of operation

• object involved in the operation

• date and time of the operation

Oracle7 writes audit records to the audit trail. The audit trail is a
database table that contains audit records. You can review database
activity by examining the audit trail through data dictionary views. For
information on these views, see the “Data Dictionary” chapter of
Oracle7 Server Reference.

To generate audit records, you must perform the following steps:

Enable auditing: You must enable auditing with the initialization
parameter AUDIT_TRAIL.

Specify auditing options: To specify auditing options, you must use the
AUDIT command. Auditing options choose which SQL commands,
operations, database objects, and users Oracle7 audits. After you
specify auditing options, they appear in the data dictionary. For more
information on data dictionary views containing auditing options see
the “Data Dictionary” chapter of Oracle7 Server Reference.

You can specify auditing options regardless of whether auditing is
enabled. However, Oracle7 does not generate audit records until you
enable auditing.

NOT

Statement Options

4 – 129Commands

Auditing options specified by the AUDIT command (SQL Statements)
apply only to subsequent sessions, rather than to current sessions.

Table 4 – 7 lists the statement options and the statements that they
audit.

Statement Option SQL Statements and Operations

CLUSTER CREATE CLUSTER
AUDIT CLUSTER
DROP CLUSTER
TRUNCATE CLUSTER

DATABASE LINK CREATE DATABASE LINK
DROP DATABASE LINK

EXISTS All SQL statements that fail because an
object, part of an object, or values
already exists in the database. This
option is only available with Trusted
Oracle.

INDEX CREATE INDEX
ALTER INDEX
DROP INDEX

NOT EXISTS All SQL statements that fail because a
specified object does not exist.

PROCEDURE CREATE FUNCTION
CREATE PACKAGE
CREATE PACKAGE BODY
CREATE PROCEDURE
DROP FUNCTION
DROP PACKAGE
DROP PROCEDURE

PROFILE CREATE PROFILE
ALTER PROFILE
DROP PROFILE

PUBLIC DATABASE LINK CREATE PUBLIC DATABASE LINK
DROP PUBLIC DATABASE LINK

PUBLIC SYNONYM CREATE PUBLIC SYNONYM
DROP PUBLIC SYNONYM

ROLE CREATE ROLE
ALTER ROLE
DROP ROLE
SET ROLE

ROLLBACK STATEMENT CREATE ROLLBACK SEGMENT
ALTER ROLLBACK SEGMENT
DROP ROLLBACK SEGMENT

Table 4 – 7 Statement Auditing Options

4 – 130 Oracle7 Server SQL Reference

Statement Option SQL Statements and Operations

SEQUENCE CREATE SEQUENCE
DROP SEQUENCE

SESSION Logons

SYNONYM CREATE SYNONYM
DROP SYNONYM

SYSTEM AUDIT AUDIT (SQL Statements)
NOAUDIT (SQL Statements)

SYSTEM GRANT GRANT (System Privileges and Roles)
REVOKE (System Privileges and Roles)

TABLE CREATE TABLE
DROP TABLE
TRUNCATE TABLE

TABLESPACE CREATE TABLESPACE
ALTER TABLESPACE
DROP TABLESPACE

TRIGGER CREATE TRIGGER
ALTER TRIGGER
 with ENABLE and DISABLE options
DROP TRIGGER
ALTER TABLE
 with ENABLE ALL TRIGGERS
 and DISABLE ALL TRIGGERS clauses

USER CREATE USER
ALTER USER
DROP USER

VIEW CREATE VIEW
DROP VIEW

Table 4 – 7 (continued) Statement Auditing Options

Short Cuts for System
Privileges and
Statement Options

4 – 131Commands

Oracle7 provides short cuts for specifying system privileges and
statement options. With these shortcuts, you can specify auditing for
multiple system privileges and statement options at once:

This short cut is equivalent to specifying the
CREATE SESSION system privilege.

This short cut is equivalent to specifying the
following system privileges:

• ALTER SYSTEM

• CREATE CLUSTER

• CREATE DATABASE LINK

• CREATE PROCEDURE

• CREATE ROLLBACK SEGMENT

• CREATE SEQUENCE

• CREATE SYNONYM

• CREATE TABLE

• CREATE TABLESPACE

• CREATE VIEW

This short cut is equivalent to the SYSTEM
GRANT statement option and the following system
privileges:

• AUDIT SYSTEM

• CREATE PUBLIC DATABASE LINK

• CREATE PUBLIC SYNONYM

• CREATE ROLE

• CREATE USER

This short cut is equivalent to specifying all
statement options shown in Table 4 – 7, but not the
additional statement options shown in Table 4 – 8.

This short cut is equivalent to specifying all system
privileges.

Oracle Corporation encourages you to choose individual system
privileges and statement options for auditing, rather than these short cuts.
These short cuts may not be supported in future versions of Oracle.

CONNECT

RESOURCE

DBA

ALL

ALL PRIVILEGES

Additional Statement
Options

4 – 132 Oracle7 Server SQL Reference

Table 4 – 8 lists additional statement options and the SQL statements
and operations that they audit. Note that these statement options are
not included in the ALL short cut.

Statement Option SQL Statements and Operations

ALTER SEQUENCE ALTER SEQUENCE

ALTER TABLE ALTER TABLE

COMMENT TABLE COMMENT ON TABLE table, view, snapshot
COMMENT ON COLUMN table.column,

view.column, snapshot.column

DELETE TABLE DELETE FROM table, view

EXECUTE PROCEDURE Execution of any procedure or function
or access to any variable or cursor inside
a package.

GRANT PROCEDURE GRANT privilege ON procedure, function,
package

REVOKE privilege ON procedure,
function, package

GRANT SEQUENCE GRANT privilege ON sequence
REVOKE privilege ON sequence

GRANT TABLE GRANT privilege ON table, view,
snapshot.

REVOKE privilege ON table, view,
snapshot

INSERT TABLE INSERT INTO table, view

LOCK TABLE LOCK TABLE table, view

SELECT SEQUENCE Any statement containing
sequence.CURRVAL or
sequence.NEXTVAL

SELECT TABLE SELECT FROM table, view, snapshot

UPDATE TABLE UPDATE table, view

Table 4 – 8 Additional Statement Auditing Options

Example I

Example II

Example III

Related Topics

4 – 133Commands

To choose auditing for every SQL statement that creates, alters, drops,
or sets a role, regardless of whether the statement completes
successfully, issue the following statement:

AUDIT ROLE

To choose auditing for every statement that successfully creates, alters,
drops, or sets a role, issue the following statement:

AUDIT ROLE

 WHENEVER SUCCESSFUL

To choose auditing for every CREATE ROLE, ALTER ROLE, DROP
ROLE, or SET ROLE statement that results in an Oracle7 error, issue
the following statement:

AUDIT ROLE

 WHENEVER NOT SUCCESSFUL

To choose auditing for any statement that queries or updates any table,
issue the following statement:

AUDIT SELECT TABLE, UPDATE TABLE

To choose auditing for statements issued by the users SCOTT and
BLAKE that query or update a table or view, issue the following
statement:

AUDIT SELECT TABLE, UPDATE TABLE

 BY scott, blake

To choose auditing for statements issued using the DELETE ANY
TABLE system privilege, issue the following statement:

AUDIT DELETE ANY TABLE

AUDIT (Schema Objects) command on 4 – 134
NOAUDIT (SQL Statements) command on 4 – 372

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 134 Oracle7 Server SQL Reference

AUDIT (Schema Objects)

To choose a specific schema object for auditing. To choose particular
SQL commands for auditing, use the AUDIT command (SQL
Statements) described in the previous section of this chapter.

The object you choose for auditing must be in your own schema or you
must have AUDIT ANY system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the object’s creation label or you must satisfy one of
the following criteria:

• If the object’s creation label is higher than your DBMS label, you
must have READUP and WRITEUP system privileges

• If the object’s creation label is lower than your DBMS label, you
must have WRITEDOWN system privilege.

If the object’s creation label and your DBMS label are not comparable,
you must have READUP, WRITEUP, and WRITEDOWN system
privileges.

AUDIT

BY

,

object_opt

DEFAULT

SESSION

ACCESS

WHENEVER SUCCESSFUL

NOT

schema.

objectON

specifies a particular operation for auditing.
Table 4 – 9 shows each object option and the types
of objects for which it applies.

is the schema containing the object chosen for
auditing. If you omit schema, Oracle7 assumes the
object is in your own schema.

object_opt

schema

Auditing

4 – 135Commands

identifies the object chosen for auditing. The object
must be one of the following types:

• table

• view

• sequence

• stored procedure, function, or package

• snapshot

You can also specify a synonym for a table, view,
sequence, procedure, stored function, package, or
snapshot.

establishes the specified object options as default
object options for subsequently created objects.

If you omit both of the following options, Oracle7 audits by session.

means that Oracle7 writes a single record for all
operations of the same type on the same object
issued in the same session.

means that Oracle7 writes one record for each
audited operation.

WHENEVER SUCCESSFUL
chooses auditing only for SQL statements that
complete successfully.

chooses auditing only for statements that fail, or
result in errors.

If you omit the WHENEVER clause entirely,
Oracle7 audits all SQL statements, regardless of
success or failure.

Auditing keeps track of operations performed by database users. Fora
brief conceptual overview of auditing including how to enable
auditing, see the AUDIT command (SQL Statements) described on
page 4 – 127. Note that auditing options established by the AUDIT
command (Schema Objects) apply to current sessions as well as to
subsequent sessions.

object

DEFAULT

BY SESSION

BY ACCESS

NOT

Object Options

Short Cuts for Object
Options

Default Auditing

4 – 136 Oracle7 Server SQL Reference

Table 4 – 9 shows the object options you can choose for each type of
object.

Object
Option

Tables Views Sequences Procedures
Functions
Packages

Snapshots

ALTER 3 3 3

AUDIT 3 3 3 3 3

COMMENT 3 3 3

DELETE 3 3 3

EXECUTE 3

GRANT 3 3 3 3 3

INDEX 3 3

INSERT 3 3 3

LOCK 3 3 3

RENAME 3 3 3 3

SELECT 3 3 3 3

UPDATE 3 3 3

Table 4 – 9 Object Auditing Options

The name of each object option specifies a command to be audited. For
example, if you choose to audit a table with the ALTER option, Oracle7
audits all ALTER TABLE statements issued against the table. If you
choose to audit a sequence with the SELECT option, Oracle7 audits all
statements that use any of the sequence’s values.

Oracle7 provides a short cut for specifying object auditing options:

This short cut is equivalent to specifying all object
options applicable for the type of object. You can
use this short cut rather than explicitly specifying
all options for an object.

You can use the DEFAULT option of the AUDIT command to specify
auditing options for objects that have not yet been created. Once you
have established these default auditing options, any subsequently
created object is automatically audited with those options. Note that
the default auditing options for a view are always the union of the
auditing options for the view’s base tables.

If you change the default auditing options, the auditing options for
previously–created objects remain the same. You can only change the

 ALL

Example I

Example II

Example III

4 – 137Commands

auditing options for an existing object by specifying the object in the
ON clause of the AUDIT command.

To choose auditing for every SQL statement that queries the EMP table
in the schema SCOTT, issue the following statement:

AUDIT SELECT

 ON scott.emp

To choose auditing for every statement that successfully queries the
EMP table in the schema SCOTT, issue the following statement:

AUDIT SELECT

ON scott.emp

 WHENEVER SUCCESSFUL

To choose auditing for every statement that queries the EMP table in
the schema SCOTT and results in an Oracle7 error, issue the following
statement:

AUDIT SELECT

ON scott.emp

 WHENEVER NOT SUCCESSFUL

To choose auditing for every statement that inserts or updates a row in
the DEPT table in the schema BLAKE, issue the following statement:

AUDIT INSERT, UPDATE

 ON blake.dept

To choose auditing for every statement that performs any operation on
the ORDER sequence in the schema ADAMS, issue the following
statement:

AUDIT ALL

 ON adams.order

The above statement uses the ALL short cut to choose auditing for the
following statements that operate on the sequence:

• ALTER SEQUENCE

• AUDIT

• GRANT

• any statement that accesses the sequence’s values using the
pseudocolumns CURRVAL or NEXTVAL

Example IV

Related Topics

4 – 138 Oracle7 Server SQL Reference

The following statement specifies default auditing options for objects
created in the future:

AUDIT ALTER, GRANT, INSERT, UPDATE, DELETE

 ON DEFAULT

Any objects created later are automatically audited with the specified
options that apply to them, provided that auditing has been enabled:

• If you create a table, Oracle7 automatically audits any ALTER,
INSERT, UPDATE, or DELETE statements issued against the
table.

• If you create a view, Oracle7 automatically audits any INSERT,
UPDATE, or DELETE statements issued against the view.

• If you create a sequence, Oracle7 automatically audits any
ALTER statements issued against the sequence.

• If you create a procedure, package, or function, Oracle7
automatically audits any ALTER statements issued against it.

AUDIT (SQL Statements) command on 4 – 127
NOAUDIT (Schema Objects) command on 4 – 374

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

4 – 139Commands

CLOSE (Embedded SQL)

To disable a cursor, freeing the resources acquired by opening the
cursor, and releasing parse locks.

 The cursor must be already open.

EXEC SQL CLOSE cursor

is the cursor to be closed. The cursor must
currently be open.

 Rows cannot be fetched from a closed cursor. A cursor need not be
closed to be reopened. The HOLD_CURSOR and RELEASE_CURSOR
precompiler options alter the effect of the CLOSE command. For
information on these options, see Programmer’s Guide to the Oracle
Precompilers.

This example illustrates the use of the CLOSE command:

EXEC SQL CLOSE emp_cursor

PREPARE command on 4 – 381
DECLARE CURSOR command on 4 – 280
OPEN command on 4 – 376

cursor

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

4 – 140 Oracle7 Server SQL Reference

COMMENT

To add a comment about a table, view, snapshot, or column into the
data dictionary.

The table, view, or snapshot must be in your own schema or you must
have COMMENT ANY TABLE system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS label
must match the creation label of the table, view, snapshot, or column.

COMMENT ON TABLE

schema. view

table

snapshot

table.column

IS ’text’

COLUMN

view.column

snapshot.column

schema.

specifies the schema and name of the table, view,
or snapshot to be commented.

specifies the name of the column of a table, view, or
snapshot to be commented.

If you omit schema, Oracle7 assumes the table,
view, or snapshot is in your own schema.

is the text of the comment. See the syntax
description of ’text’ on page 2 – 15.

You can effectively drop a comment from the database by setting it to
the empty string ’’. For information on the data dictionary views that
contain comments, see Appendix B “Data Dictionary Reference” of
Oracle7 Server Reference.

To insert an explanatory remark on the NOTES column of the
SHIPPING table, you might issue the following statement:

COMMENT ON COLUMN shipping.notes

IS ’Special packing or shipping instructions’

To drop this comment from the database, issue the following statement:

COMMENT ON COLUMN shipping.notes IS ’’

The section “Comments” on page 2 – 43.

TABLE

COLUMN

IS ’text’

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 141Commands

COMMIT

To end your current transaction and make permanent all changes
performed in the transaction. This command also erases all savepoints
in the transaction and releases the transaction’s locks.

You can also use this command to manually commit an in–doubt
distributed transaction.

You need no privileges to commit your current transaction.

To manually commit a distributed in–doubt transaction that you
originally committed, you must have FORCE TRANSACTION system
privilege. To manually commit a distributed in–doubt transaction that
was originally committed by another user, you must have FORCE ANY
TRANSACTION system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, you can only
commit an in–doubt transaction if your DBMS label matches the label
the transaction’s label and the creation label of the user who originally
committed the transaction or if you satisfy one of the following criteria:

• If the transaction’s label or the user’s creation label is higher than
your DBMS label, you must have READUP and WRITEUP
system privileges.

• If the transaction’s label or the user’s creation label is lower than
your DBMS label, you must have WRITEDOWN system
privilege.

• If the transaction’s label or the user’s creation label is not
comparable with your DBMS label, you must have READUP,
WRITEUP, and WRITEDOWN system privileges.

COMMIT

WORK COMMENT ’text’

FORCE ’text’

, integer

is supported only for compliance with standard
SQL. The statements COMMIT and COMMIT
WORK are equivalent.

WORK

Usage Notes

Transactions

4 – 142 Oracle7 Server SQL Reference

specifies a comment to be associated with the
current transaction. The ’text’ is a quoted literal of
up to 50 characters that Oracle7 stores in the data
dictionary view DBA_2PC_PENDING along with
the transaction ID if the transaction becomes
in–doubt.

manually commits an in–doubt distributed
transaction. The transaction is identified by the
’text’ containing its local or global transaction ID.
To find the IDs of such transactions, query the data
dictionary view DBA_2PC_PENDING. You can
also use the integer to specifically assign the
transaction a system change number (SCN). If you
omit the integer, the transaction is committed using
the current SCN.

COMMIT statements using the FORCE clause are
not supported in PL/SQL.

It is recommended that you explicitly end every transaction in your
application programs with a COMMIT or ROLLBACK statement,
including the last transaction, before disconnecting from Oracle7. If you
do not explicitly commit the transaction and the program terminates
abnormally, the last uncommitted transaction is automatically rolled
back.

A normal exit from most Oracle7 utilities and tools causes the current
transaction to be committed. A normal exit from an Oracle Precompiler
program does not commit the transaction and relies on Oracle7 to
rollback the current transaction. See the COMMIT command
(Embedded SQL) on page 4 – 141.

A transaction (or a logical unit of work) is a sequence of SQL
statements that Oracle7 treats as a single unit. A transaction begins
with the first executable SQL statement after a COMMIT, ROLLBACK
or connection to the database. A transaction ends with a COMMIT,
ROLLBACK or disconnection (intentional or unintentional) from the
database. Note that Oracle7 issues an implicit COMMIT before and
after any Data Definition Language statement.

You can also use a COMMIT or ROLLBACK statement to terminate a
read only transaction begun by a SET TRANSACTION statement.

COMMENT

FORCE

Example I

Example II

Distributed Transactions

Example III

Related Topics

4 – 143Commands

This example inserts a row into the DEPT table and commits this
change:

INSERT INTO dept VALUES (50, ’MARKETING’, ’TAMPA’)

COMMIT WORK

The following statement commits the current transaction and associates
a comment with it:

COMMIT WORK

COMMENT ’In–doubt transaction Code 36, Call (415) 555–2637’

If a network or machine failure prevents this distributed transaction
from committing properly, Oracle7 stores the comment in the data
dictionary along with the transaction ID. The comment indicates the
part of the application in which the failure occurred and provides
information for contacting the administrator of the database where the
transaction was committed.

Oracle7 with the distributed option allows you to perform distributed
transactions, or transactions that modify data on multiple databases. To
commit a distributed transaction, you need only issue a COMMIT
statement as you would to commit any other transaction. Each
component of the distributed transaction is then committed on each
database.

If a network or machine failure during the commit process for a
distributed transaction, the state of the transaction may be unknown, or
in–doubt. After consultation with the administrators of the other
databases involved in the transaction, you may decide to manually
commit or roll back the transaction on your local database. You can
manually commit the transaction on your local database by using the
FORCE clause of the COMMIT command. For more information on
these topics, see the “Database Administration” chapter of Oracle7
Server Distributed Systems, Volume I.

Note that a COMMIT statement with a FORCE clause only commits the
specified transaction. Such a statement does not affect your current
transaction.

The following statement manually commits an in–doubt distributed
transaction:

COMMIT FORCE ’22.57.53’

COMMIT (Embedded SQL) command on 4 – 141
ROLLBACK command on 4 – 397
SAVEPOINT command on 4 – 404
SET TRANSACTION command on 4 – 445

Purpose

Prerequisites

Syntax

4 – 144 Oracle7 Server SQL Reference

COMMIT (Embedded SQL)

To end your current transaction, making permanent all its changes to
the database and optionally freeing all resources and disconnecting
from Oracle7.

To commit your current transaction, no privileges are necessary.

To manually commit a distributed in–doubt transaction that you
originally committed, you must have FORCE TRANSACTION system
privilege. To manually commit a distributed in–doubt transaction that
was originally committed by another user, you must have FORCE ANY
TRANSACTION system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, you can only
commit an in–doubt transaction if your DBMS label matches the label
the transaction’s label and the creation label of the user who originally
committed the transaction or if you satisfy one of the following criteria:

• If the transaction’s label or the user’s creation label is higher than
your DBMS label, you must have READUP and WRITEUP
system privileges.

• If the transaction’s label or the user’s creation label is lower than
your DBMS label, you must have WRITEDOWN system
privilege.

• If the transaction’s label or the user’s creation label is not
comparable with your DBMS label, you must have READUP,
WRITEUP, and WRITEDOWN system privileges.

WORK

FORCE ’text’

EXEC SQL

, integer

AT db_name

:host_variable

COMMIT

COMMENT ’text’ RELEASE

Keyword and
Parameters

4 – 145Commands

identifies the database to which the COMMIT
statement is issued. The database can be identified
by either:

is a database identifier declared in
a previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name.

If you omit this clause, Oracle7 issues the
statement to your default database.

is supported only for compliance with standard
SQL. The statements COMMIT and COMMIT
WORK are equivalent.

specifies a comment to be associated with the
current transaction. The ’text’ is a quoted literal of
up to 50 characters that Oracle7 stores in the data
dictionary view DBA_2PC_PENDING along with
the transaction ID if the transaction becomes
in–doubt.

frees all resources and disconnects you from
Oracle7.

manually commits an in–doubt distributed
transaction. The transaction is identified by the
’text’ containing its local or global transaction ID.
To find the IDs of such transactions, query the data
dictionary view DBA_2PC_PENDING. You can
also use the optional integer to explicitly assign the
transaction a system change number (SCN). If you
omit the integer, the transaction is committed using
the current SCN.

AT

db_name

:host_variable

WORK

COMMENT

RELEASE

FORCE

Usage Notes

Example

Related Topics

4 – 146 Oracle7 Server SQL Reference

Always explicitly commit or rollback the last transaction in your
program by using the COMMIT or ROLLBACK command and the
RELEASE option. Oracle7 automatically rolls back changes if the
program terminates abnormally.

The COMMIT command has no effect on host variables or on the flow
of control in the program.

For more information on this command, see Programmer’s Guide to the
Oracle Precompilers.

This example illustrates the use of the embedded SQL COMMIT
command:

EXEC SQL AT sales_db COMMIT RELEASE

COMMIT command on 4 – 141
ROLLBACK command on 4 – 397
SAVEPOINT command on 4 – 404
SET TRANSACTION command on 4 – 445

Purpose

Prerequisites

Syntax

Keyword and
Parameters

4 – 147Commands

CONNECT (Embedded SQL)

To log on to an Oracle7 database.

You must have CREATE SESSION system privilege in the specified
database.

If you are using Trusted Oracle7 in DBMS MAC mode, your operating
system label must dominate both your creation label and the label at
which you were granted CREATE SESSION system privilege. Your
operating system label must also fall between the operating system
equivalents of DBHIGH and DBLOW, inclusive.

If you are using Trusted Oracle7 in OS MAC mode, your operating
system label must match the label of the database to which you are
connecting.

AT

EXEC SQL CONNECT

:host_variable

:user IDENTIFIED BY :password

:user_password

USING :dbstring

db_name

specifies your username and password separately.

is a single host variable containing the Oracle7
username and password separated by a slash (/).

To allow Oracle7 to verify your connection through
your operating system, specify a :user_password
value of ’/’.

identifies the database to which the connection is
made. The database can be identified by either:

is a database identifier declared in
a previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name.

:user
:password

:user_password

AT

db_name

:host_variable

Usage Notes

Example

Related Topics

4 – 148 Oracle7 Server SQL Reference

specifies the SQL*Net database specification string
used to connect to a non–default database. If you
omit this clause, you are connected to your default
database.

A program can have multiple connections, but can only connect once to
your default database. For more information on this command, the
Programmer’s Guide to the Oracle Precompilers.

The following example illustrate the use of CONNECT:

EXEC SQL CONNECT :username

IDENTIFIED BY :password

You can also use this statement in which the value of :userid is the value
of :username and :password separated by a “/” such as ’SCOTT/TIGER’:

EXEC SQL CONNECT :userid

COMMIT command on 4 – 141
DECLARE DATABASE command on 4 – 282
ROLLBACK command on 4 – 397

USING

Purpose

Prerequisites

Syntax

4 – 149Commands

CONSTRAINT clause

To define an integrity constraint. An integrity constraintis a rule that
restricts the values for one or more columns in a table.

CONSTRAINT clauses can appear in either CREATE TABLE or ALTER
TABLE commands. To define an integrity constraint, you must have the
privileges necessary to issue one of these commands. See the CREATE
TABLE command on page 4 – 245 and the ALTER TABLE command on
page 4 – 89.

Defining a constraint may also require additional privileges or
preconditions that depend on the type of constraint. For information on
these privileges, see the descriptions of each type of integrity constraint
beginning on page 4 – 152.

table_constraint ::=

CONSTRAINT constraint

UNIQUE column

PRIMARY KEY

PCTFREE integer

INITRANS integer

MAXTRANS integer

TABLESPACE tablespace

STORAGE storage_clause

USING INDEX

DISABLE

,

()

,

columnFOREIGN KEY() REFERENCES

schema.

table

column() ON DELETE CASCADE

CHECK (condition)

NOSORT

RECOVERABLE

UNRECOVERABLE

Syntax

Keywords and
Parameters

4 – 150 Oracle7 Server SQL Reference

column_constraint ::=

CONSTRAINT constraint

NULL

NOT

PCTFREE integer

INITRANS integer

MAXTRANS integer

TABLESPACE tablespace

STORAGE storage_clause

USING INDEX

DISABLE

REFERENCES

UNIQUE

PRIMARY KEY

schema.

table

(column) ON DELETE CASCADE

NOSORT

CHECK (condition)

UNRECOVERABLE

RECOVERABLE

identifies the integrity constraint by the name
constraint. Oracle7 stores this name in the data
dictionary along with the definition of the integrity
constraint. If you omit this identifier, Oracle7
generates a name with this form:

SYS_Cn

where n is an integer that makes the name unique
within the database. For the names and definitions
of integrity constraints, query the data dictionary.
For information on data dictionary views that
contain constraints, see the “Data Dictionary
Reference” chapter of Oracle7 Server Reference.

specifies that a column can contain null values.

specifies that a column cannot contain null values.

If you do not specify NULL or NOT NULL in a
column definition, NULL is the default.

CONSTRAINT

NULL

NOT NULL

4 – 151Commands

designates a column or combination of columns as
a unique key.

designates a column or combination of columns as
the table’s primary key.

designates a column or combination of columns as
the foreign key in a referential integrity constraint.

identifies the primary or unique key that is
referenced by a foreign key in a referential integrity
constraint.

ON DELETE CASCADE
specifies that Oracle7 maintains referential integrity
by automatically removing dependent foreign key
values if you remove a referenced primary or
unique key value.

specifies a condition that each row in the table
must satisfy.

specifies parameters for the index Oracle7 uses to
enforce a UNIQUE or PRIMARY KEY constraint.
The name of the index is the same as the name of
the constraint. You can choose the values of the
INITRANS, MAXTRANS, TABLESPACE,
STORAGE, PCTFREE, RECOVERABLE, and
UNRECOVERABLE parameters for the index. For
information on these parameters, see the CREATE
TABLE command on page 4 – 245.

Only use this clause when enabling UNIQUE and
PRIMARY KEY constraints.

indicates that the rows are stored in the database in
ascending order and therefore Oracle7 does not
have to sort the rows when creating the index.

disables the integrity constraint. If an integrity
constraint is disabled, Oracle7 does not enforce it.
If you do not specify this option, Oracle7
automatically enables the integrity constraint.

You can also enable and disable integrity
constraints with the ENABLE and DISABLE
clauses of the CREATE TABLE and ALTER TABLE
commands. See the ENABLE clause on
page 4 – 326 and DISABLE clause on pages 4 – 295.

UNIQUE

PRIMARY KEY

FOREIGN KEY

REFERENCES

CHECK

USING INDEX

NOSORT

DISABLE

Defining Integrity
Constraints

NOT NULL
Constraints

Example I

4 – 152 Oracle7 Server SQL Reference

To define an integrity constraint, include a CONSTRAINT clause in
CREATE TABLE or ALTER TABLE statement. The CONSTRAINT
clause has two syntactic forms:

The table_constraint syntax is part of the table
definition. An integrity constraint defined with this
syntax can impose rules on any columns in the table.

The table_constraint syntax can appear in a CREATE
TABLE or ALTER TABLE statement. This syntax
can define any type of integrity constraint except a
NOT NULL constraint.

The column_constraint syntax is part of a column
definition. Usually, an integrity constraint defined
with this syntax can only impose rules on the
column in which it is defined.

The column_constraint syntax that appears in a
CREATE TABLE statement can define any type of
integrity constraint. Column_constraint syntax that
appears in an ALTER TABLE statement can only
define or remove a NOT NULL constraint.

The table_constraint syntax and the column_constraint syntax are simply
different syntactic means of defining integrity constraints. A constraint
that references more than one column must be defined as a table
constraint. There is no other functional difference between an integrity
constraint defined with table_constraint syntax and the same constraint
defined with column_constraint syntax.

The NOT NULL constraint specifies that a column cannot contain
nulls. To satisfy this constraint, every row in the table must contain a
value for the column.

The NULL keyword indicates that a column can contain nulls. It does
not actually define an integrity constraint. If you do not specify either
NOT NULL or NULL, the column can contain nulls by default.

You can only specify NOT NULL or NULL with column_constraint
syntax in a CREATE TABLE or ALTER TABLE statement, not with
table_constraint syntax.

The following statement alters the EMP table and defines and enables a
NOT NULL constraint on the SAL column:

ALTER TABLE emp

MODIFY (sal NUMBER CONSTRAINT nn_sal NOT NULL)

NN_SAL ensures that no employee in the table has a null salary.

table_constraint

column_constraint

UNIQUE Constraints

Defining Unique Keys

Example II

Defining Composite
Unique Keys

4 – 153Commands

The UNIQUE constraint designates a column or combination of
columns as a unique key. To satisfy a UNIQUE constraint, no two rows
in the table can have the same value for the unique key. However, the
unique key made up of a single column can contain nulls.

A unique key column cannot be of datatype LONG or LONG RAW.
You cannot designate the same column or combination of columns as
both a unique key and a primary key or as both a unique key and a
cluster key. However, you can designate the same column or
combination of columns as both a unique key and a foreign key.

You can define a unique key on a single column with column_constraint
syntax.

The following statement creates the DEPT table and defines and
enables a unique key on the DNAME column:

CREATE TABLE dept

(deptno NUMBER(2),

 dname VARCHAR2(9) CONSTRAINT unq_dname UNIQUE,

 loc VARCHAR2(10))

The constraint UNQ_DNAME identifies the DNAME column as a
unique key. This constraint ensures that no two departments in the
table have the same name. However, the constraint does allow
departments without names.

Alternatively, you can define and enable this constraint with the
table_constraint syntax:

CREATE TABLE dept

(deptno NUMBER(2),

 dname VARCHAR2(9),

 loc VARCHAR2(10),

CONSTRAINT unq_dname

UNIQUE (dname)

USING INDEX PCTFREE 20

TABLESPACE user_x

STORAGE (INITIAL 8K NEXT 6K))

The above statement also uses the USING INDEX option to specify
storage characteristics for the index that Oracle7 creates to enforce the
constraint.

A composite unique key is a unique key made up of a combination of
columns. Since Oracle7 creates an index on the columns of a unique
key, a composite unique key can contain a maximum of 16 columns. To
define a composite unique key, you must use table_constraint syntax,
rather than column_constraint syntax.

Example III

PRIMARY KEY
Constraints

Defining Primary Keys

4 – 154 Oracle7 Server SQL Reference

To satisfy a constraint that designates a composite unique key, no two
rows in the table can have the same combination of values in the key
columns. Also, any row that contains nulls in all key columns
automatically satisfies the constraint. However, two rows that contain
nulls for one or more key columns and the same combination of values
for the other key columns violate the constraint.

The following statement defines and enables a composite unique key
on the combination of the CITY and STATE columns of the CENSUS
table:

ALTER TABLE census

ADD CONSTRAINT unq_city_state

UNIQUE (city, state)

USING INDEX PCTFREE 5

TABLESPACE user_y

EXCEPTIONS INTO bad_keys_in_ship_cont

The UNQ_CITY_STATE constraint ensures that the same combination
of CITY and STATE values does not appear in the table more than once.

The CONSTRAINT clause also specifies other properties of the
constraint:

• The USING INDEX option specifies storage characteristics for
the index Oracle7 creates to enforce the constraint.

• The EXCEPTIONS option causes Oracle7 to write information to
the BAD_KEYS_IN_SHIP_CONT table about any rows currently
in the SHIP_CONT table that violate the constraint.

A PRIMARY KEY constraint designates a column or combination of
columns as the table’s primary key. To satisfy a PRIMARY KEY
constraint, both of the following conditions must be true:

• No primary key value can appear in more than one row in the
table.

• No column that is part of the primary key can contain a null.

A table can have only one primary key.

A primary key column cannot be of datatype LONG or LONG RAW.
You cannot designate the same column or combination of columns as
both a primary key and a unique key or as both a primary key and a
cluster key. However, you can designate the same column or
combination of columns as both a primary key and a foreign key.

You can use the column_constraint syntax to define a primary key on a
single column.

Example IV

Defining Composite
Primary Keys

Example V

4 – 155Commands

The following statement creates the DEPT table and defines and
enables a primary key on the DEPTNO column:

CREATE TABLE dept

(deptno NUMBER(2) CONSTRAINT pk_dept PRIMARY KEY,

 dname VARCHAR2(9),

 loc VARCHAR2(10))

The PK_DEPT constraint identifies the DEPTNO column as the
primary key of the DEPTNO table. This constraint ensures that no two
departments in the table have the same department number and that
no department number is NULL.

Alternatively, you can define and enable this constraint with
table_constraint syntax:

CREATE TABLE dept

(deptno NUMBER(2),

 dname VARCHAR2(9),

 loc VARCHAR2(10),

 CONSTRAINT pk_dept PRIMARY KEY (deptno))

A composite primary key is a primary key made up of a combination of
columns. Because Oracle7 creates an index on the columns of a primary
key, a composite primary key can contain a maximum of 16 columns.
To define a composite primary key, you must use the table_constraint
syntax, rather than the column_constraint syntax.

The following statement defines a composite primary key on the
combination of the SHIP_NO and CONTAINER_NO columns of the
SHIP_CONT table:

ALTER TABLE ship_cont

ADD PRIMARY KEY (ship_no, container_no) DISABLE

This constraint identifies the combination of the SHIP_NO and
CONTAINER_NO columns as the primary key of the
SHIP_CONTAINER. The constraint ensures that no two rows in the
table have the same values for both the SHIP_NO column and the
CONTAINER_NO column.

The CONSTRAINT clause also specifies the following properties of the
constraint:

• Since the constraint definition does not include a constraint
name, Oracle7 generates a name for the constraint.

• The DISABLE option causes Oracle7 to define the constraint but
not enforce it.

Referential Integrity
Constraints

4 – 156 Oracle7 Server SQL Reference

A referential integrity constraint designates a column or combination of
columns as a foreign key and establishes a relationship between that
foreign key and a specified primary or unique key, called the referenced
key. In this relationship, the table containing the foreign key is called
the child table and the table containing the referenced key is called the
parent table. Note the following caveats:

• The child and parent tables must be on the same database. They
cannot be on different nodes of a distributed database. Oracle7
allows you to enforce referential integrity across nodes of a
distributed database with database triggers. For information on
how to use database triggers for this purpose, see the “Using
Database Triggers” chapter of the Oracle7 Server Application
Developer’s Guide.

• The foreign key and the referenced key can be in the same table.
In this case, the parent and child tables are the same.

To satisfy a referential integrity constraint, each row of the child table
must meet one of the following conditions:

• The value of the row’s foreign key must appear as a referenced
key value in one of the parent table’s rows. The row in the child
table is said to depend on the referenced key in the parent table.

• The value of one of the columns that makes up the foreign key
must be null.

A referential integrity constraint is defined in the child table. A
referential integrity constraint definition can include any of the
following keywords:

identifies the column or combination of columns in
the child table that makes up of the foreign key.
Only use this keyword when you define a foreign
key with a table constraint clause.

identifies the parent table and the column or
combination of columns that make up the
referenced key.

If you only identify the parent table and omit the
column names, the foreign key automatically
references the primary key of the parent table.

The corresponding columns of the referenced key
and the foreign key must match in number and
datatypes.

FOREIGN KEY

REFERENCES

Defining Referential
Integrity Constraints

Example VI

4 – 157Commands

allows deletion of referenced key values in the
parent table that have dependent rows in the child
table and causes Oracle7 to automatically delete
dependent rows from the child table to maintain
referential integrity.

If you omit this option, Oracle7 forbids deletions of
referenced key values in the parent table that have
dependent rows in the child table.

Before you define a referential integrity constraint in the child table, the
referenced UNIQUE or PRIMARY KEY constraint on the parent table
must already be defined. Also, the parent table must be in your own
schema or you must have REFERENCES privilege on the columns of
the referenced key in the parent table. Before you enable a referential
integrity constraint, its referenced constraint must be enabled.

You cannot define a referential integrity constraint in a CREATE TABLE
statement that contains an AS clause. Instead, you can create the table
without the constraint and then add it later with an ALTER TABLE
statement.

A foreign key column cannot be of datatype LONG or LONG RAW.
You can designate the same column or combination of columns as both
a foreign key and a primary or unique key. You can also designate the
same column or combination of columns as both a foreign key and a
cluster key.

You can define multiple foreign keys in a table. Also, a single column
can be part of more than one foreign key.

You can use column_constraint syntax to define a referential integrity
constraint in which the foreign key is made up of a single column.

The following statement creates the EMP table and defines and enables
a foreign key on the DEPTNO column that references the primary key
on the DEPTNO column of the DEPT table:

CREATE TABLE emp

(empno NUMBER(4),

 ename VARCHAR2(10),

 job VARCHAR2(9),

 mgr NUMBER(4),

 hiredate DATE,

 sal NUMBER(7,2),

 comm NUMBER(7,2),

 deptno CONSTRAINT fk_deptno REFERENCES dept(deptno))

ON DELETE
CASCADE

4 – 158 Oracle7 Server SQL Reference

The constraint FK_DEPTNO ensures that all departments given for
employees in the EMP table are present in the DEPT table. However,
employees can have null department numbers, meaning they are not
assigned to any department. If you wished to prevent the latter, you
could create a NOT NULL constraint on the deptno column in the EMP
table, in addition to the REFERENCES constraint.

Before you define and enable this constraint, you must define and
enable a constraint that designates the DEPTNO column of the DEPT
table as a primary or unique key. For the definition of such a constraint,
see Example IV on page 4 – 155.

Note that the referential integrity constraint definition does not use the
FOREIGN KEY keyword to identify the columns that make up the
foreign key. Because the constraint is defined with a column constraint
clause on the DEPTNO column, the foreign key is automatically on the
DEPTNO column.

Note that the constraint definition identifies both the parent table and
the columns of the referenced key. Because the referenced key is the
parent table’s primary key, the referenced key column names are
optional.

Note that the above statement omits the DEPTNO column’s datatype.
Because this column is a foreign key, Oracle7 automatically assigns it
the datatype of the DEPT.DEPTNO column to which the foreign key
refers.

Alternatively, you can define a referential integrity constraint with
table_constraint syntax:

CREATE TABLE emp

 (empno NUMBER(4),

 ename VARCHAR2(10),

 job VARCHAR2(9),

 mgr NUMBER(4),

 hiredate DATE,

 sal NUMBER(7,2),

 comm NUMBER(7,2),

 deptno,

 CONSTRAINT fk_deptno

 FOREIGN KEY (deptno)

 REFERENCES dept(deptno))

Note that the foreign key definitions in both of the above statements
omit the ON DELETE CASCADE option, causing Oracle7 to forbid the
deletion of a department if any employee works in that department.

Maintaining Referential
Integrity with the ON
DELETE CASCADE
Option

Example VII

Referential Integrity
Constraints with
Composite Keys

4 – 159Commands

If you use the ON DELETE CASCADE option, Oracle7 permits
deletions of referenced key values in the parent table and automatically
deletes dependent rows in the child table to maintain referential
integrity.

This example creates the EMP table, defines and enables the referential
integrity constraint FK_DEPTNO, and uses the ON DELETE
CASCADE option:

CREATE TABLE emp

(empno NUMBER(4),

ename VARCHAR2(10),

job VARCHAR2(9),

mgr NUMBER(4),

hiredate DATE,

sal NUMBER(7,2),

comm NUMBER(7,2),

deptno NUMBER(2) CONSTRAINT fk_deptno

REFERENCES dept(deptno)

ON DELETE CASCADE)

Because of the ON DELETE CASCADE option, Oracle7 cascades any
deletion of a DEPTNO value in the DEPT table to the DEPTNO values
of its dependent rows of the EMP table. For example, if department 20
is deleted from the DEPT table, Oracle7 deletes the department’s
employees from the EMP table.

A composite foreign key is a foreign key made up of a combination of
columns. A composite foreign key can contain as many as 16 columns.
To define a referential integrity constraint with a composite foreign key,
you must use table_constraint syntax. You cannot use column_constraint
syntax because this syntax can only impose rules on a single column. A
composite foreign key must refer to a composite unique key or a
composite primary key.

To satisfy a referential integrity constraint involving composite keys,
each row in the child table must satisfy one of the following conditions:

• The values of the foreign key columns must match the values of
the referenced key columns in a row in the parent table.

• The value of at least one of the columns of the foreign key must
be null.

Example VIII

CHECK Constraints

4 – 160 Oracle7 Server SQL Reference

The following statement defines and enables a foreign key on the
combination of the AREACO and PHONENO columns of the
PHONE_CALLS table:

ALTER TABLE phone_calls

 ADD CONSTRAINT fk_areaco_phoneno

 FOREIGN KEY (areaco, phoneno)

 REFERENCES customers(areaco, phoneno)

 EXCEPTIONS INTO wrong_numbers

The constraint FK_AREACO_PHONENO ensures that all the calls in
the PHONE_CALLS table are made from phone numbers that are listed
in the CUSTOMERS table. Before you define and enable this constraint,
you must define and enable a constraint that designates the
combination of the AREACO and PHONENO columns of the
CUSTOMERS table as a primary or unique key.

The EXCEPTIONS option causes Oracle7 to write information to the
WRONG_NUMBERS about any rows in the PHONE_CALLS table that
violate the constraint.

The CHECK constraint explicitly defines a condition. To satisfy the
constraint, each row in the table must make the condition either TRUE
or unknown (due to a null). For information on conditions, see the
syntax description of condition on page 3 – 78. The condition of a
CHECK constraint can refer to any column in the table, but it cannot
refer to columns of other tables. CHECK constraint conditions cannot
contain the following constructs:

• queries to refer to values in other rows

• calls to the functions SYSDATE, UID, USER, or USERENV

• the pseudocolumns CURRVAL, NEXTVAL, LEVEL, or
ROWNUM

• date constants that are not fully specified

Whenever Oracle7 evaluates a CHECK constraint condition for a
particular row, any column names in the condition refer to the column
values in that row.

If you create multiple CHECK constraints for a column, design them
carefully so their purposes do not conflict. Oracle7 does not verify that
CHECK conditions are not mutually exclusive.

Example IX

Example X

4 – 161Commands

The following statement creates the DEPT table and defines a CHECK
constraint in each of the table’s columns:

CREATE TABLE dept (deptno NUMBER CONSTRAINT check_deptno

CHECK (deptno BETWEEN 10 AND 99)

DISABLE,

dname VARCHAR2(9) CONSTRAINT check_dname

CHECK (dname = UPPER(dname))

DISABLE,

loc VARCHAR2(10) CONSTRAINT check_loc

CHECK (loc IN (’DALLAS’,’BOSTON’,

’NEW YORK’,’CHICAGO’))

DISABLE)

Each constraint restricts the values of the column in which it is defined:

ensures that no department numbers are less
than 10 or greater than 99.

ensures that all department names are in
uppercase.

restricts department locations to Dallas,
Boston, New York, or Chicago.

Unlike other types of constraints, a CHECK constraint defined with
column_constraint syntax can impose rules on any column in the table,
rather than only on the column in which it is defined.

Because each CONSTRAINT clause contains the DISABLE option,
Oracle7 only defines the constraints and does not enforce them.

The following statement creates the EMP table and uses a table
constraint clause to define and enable a CHECK constraint:

CREATE TABLE emp

 (empno NUMBER(4),

 ename VARCHAR2(10),

 job VARCHAR2(9),

 mgr NUMBER(4),

 hiredate DATE,

 sal NUMBER(7,2),

 comm NUMBER(7,2),

 deptno NUMBER(2),

 CHECK (sal + comm <= 5000))

CHECK_DEPTNO

CHECK_DNAME

CHECK_LOC

Example XI

4 – 162 Oracle7 Server SQL Reference

This constraint uses an inequality condition to limit an employee’s total
compensation, the sum of salary and commission, to $5000:

• If an employee has non–null values for both salary and
commission, the sum of these values must not be more than
$5000 to satisfy the constraint.

• If an employee has a null salary or commission, the result of the
condition is unknown and the employee automatically satisfies
the constraint.

Because the CONSTRAINT clause in this example does not supply a
constraint name, Oracle7 generates a name for the constraint.

The following statement defines and enables a PRIMARY KEY
constraint, two referential integrity constraints, a NOT NULL
constraint, and two CHECK constraints:

CREATE TABLE order_detail

(CONSTRAINT pk_od PRIMARY KEY (order_id, part_no),

 order_id NUMBER

 CONSTRAINT fk_oid REFERENCES scott.order (order_id),

 part_no NUMBER

 CONSTRAINT fk_pno REFERENCES scott.part (part_no),

 quantity NUMBER

 CONSTRAINT nn_qty NOT NULL

 CONSTRAINT check_qty_low CHECK (quantity > 0),

 cost NUMBER

 CONSTRAINT check_cost CHECK (cost > 0))

The constraints enforce the following rules on table data:

identifies the combination of the ORDER_ID and
PART_NO columns as the primary key of the table.
To satisfy this constraint, the following conditions
must be true:

• No two rows in the table can contain the same
combination of values in the ORDER_ID and the
PART_NO columns.

• No row in the table can have a null in either the
ORDER_ID column or the PART_NO column.

identifies the ORDER_ID column as a foreign key
that references the ORDER_ID column in the
ORDER table in SCOTT’s schema. All new values
added to the column ORDER_DETAIL.ORDER_ID
must already appear in the column
SCOTT.ORDER.ORDER_ID.

PK_OD

FK_OID

Related Topics

4 – 163Commands

identifies the PART_NO column as a foreign key
that references the PART_NO column in the PART
table owned by SCOTT. All new values added to
the column ORDER_DETAIL.PART_NO must
already appear in the column
SCOTT.PART.PART_NO.

forbids nulls in the QUANTITY column.

ensures that values in the QUANTITY column are
always greater than 0.

ensures the values in the COST column are always
greater than 0.

This example also illustrates the following points about constraint
clauses and column definitions:

• Table_constraint syntax and column definitions can appear in any
order. In this example, note that the table_constraint syntax that
defines the PK_OD constraint precedes the column definitions.
In Example IV in this section, the table_constraint syntax defining
the table’s primary key follows the column definitions.

• A column definition can use column_constraint syntax multiple
times. In this example, the definition of the QUANTITY column
contains the definitions of both the NN_QTY and CHECK_QTY
constraints.

• A table can have multiple CHECK constraints. Multiple CHECK
constraints, each with a simple condition enforcing a single
business rule is better than a single CHECK constraint with a
complicated condition enforcing multiple business rules. When a
constraint is violated, Oracle7 returns an error message
identifying the constraint. Such an error message more precisely
identifies the violated business rule if the identified constraint
enforces a single business rule.

CREATE TABLE command on 4 – 245
ALTER TABLE command on 4 – 89
ENABLE clause on 4 – 326
DISABLE clauses on 4 – 295

FK_PNO

NN_QTY

CHECK_QTY

CHECK_COST

Purpose

Prerequisites

Syntax

4 – 164 Oracle7 Server SQL Reference

CREATE CLUSTER

To create a cluster. A cluster is a schema object that contains one or
more tables that all have one or more columns in common.

To create a cluster in your own schema, you must have CREATE
CLUSTER system privilege. To create a cluster in another user’s
schema, you must have CREATE ANY CLUSTER system privilege.
Also, the owner of the schema to contain the cluster must have either
space quota on the tablespace containing the cluster or UNLIMITED
TABLESPACE system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must dominate the label of the tablespace to contain the cluster. To
create a cluster in another user’s schema, your DBMS label must
dominate the creation label of the owner of the schema.

CREATE CLUSTER

PTCTUSED integer

PCTFREE integer

HASHKEYS integer

K

M

schema.

cluster ()column datatype

,

INITRANS integer

MAXTRANS integer

SIZE integer

TABLESPACE tablespace

STORAGE storage_clause

INDEX

HASH IS

PARALLEL parallel_clause CACHE

NOCACHE

expr

Keywords and
Parameters

4 – 165Commands

is the schema to contain the cluster. If you omit
schema, Oracle7 creates the cluster in your current
schema.

is the name of the cluster to be created.

is the name of a column in the cluster key.

is the datatype of a cluster key column. A cluster
key column can have any datatype except LONG
or LONG RAW. You cannot use the HASH IS
clause if any column datatype is not INTEGER or
NUMBER with scale 0. For information on
datatypes, see the section “Datatypes” on
page 2 – 18.

specifies the limit that Oracle7 uses to determine
when additional rows can be added to a cluster’s
data block. The value of this parameter is
expressed as a whole number and interpreted as a
percentage.

specifies the space reserved in each of the cluster’s
data blocks for future expansion. The value of the
parameter is expressed as a whole number and
interpreted as a percentage.

specifies the initial number of concurrent update
transactions allocated for data blocks of the cluster.
The value of this parameter for a cluster cannot be
less than 2 or more than the value of the
MAXTRANS parameter. The default value is the
greater of the INITRANS value for the cluster’s
tablespace and 2.

specifies the maximum number of concurrent
update transactions for any given data block
belonging to the cluster. The value of this
parameter cannot be less than the value of the
INITRANS parameter. The maximum value of this
parameter is 255. The default value is the
MAXTRANS value for the tablespace to contain
the cluster.

For a complete description of the PCTUSED,
PCTFREE, INITRANS, and MAXTRANS
parameters, see the CREATE TABLE command on
page 4 – 245.

schema

cluster

column

datatype

PCTUSED

PCTFREE

INITRANS

MAXTRANS

4 – 166 Oracle7 Server SQL Reference

specifies the amount of space in bytes to store all
rows with the same cluster key value or the same
hash value. You can use K or M to specify this
space in kilobytes or megabytes. If you omit this
parameter, Oracle7 reserves one data block for each
cluster key value or hash value.

specifies the tablespace in which the cluster is
created.

specifies how data blocks are allocated to the
cluster. See the STORAGE clause on page 4 – 449.

creates an indexed cluster. In an indexed cluster,
rows are stored together based on their cluster key
values.

creates a hash cluster and specifies the number of
hash values for a hash cluster. Oracle7 rounds the
HASHKEYS value up to the nearest prime number
to obtain the actual number of hash values. The
minimum value for this parameter is 2. If you omit
both the INDEX option and the HASHKEYS
parameter, Oracle7 creates an indexed cluster by
default.

specifies a expression to be used as the hash
function for the hash cluster.

The expression must:

• evaluate to a positive value

• contain one or more columns of datatype
INTEGER or datatype NUMBER with scale 0.

The expression:

• cannot reference user defined PL/SQL functions

• cannot reference the following:
 SYSDATE, USERENV, TO_DATE, UID, USER,
LEVEL, ROWNUM

• cannot evaluate to a constant value

• cannot contain a subquery

• cannot contain columns qualified with a schema
or object name (other than the cluster name)

If you omit the HASH IS clause, Oracle7 uses an
internal hash function for the hash cluster.

SIZE

TABLESPACE

STORAGE

INDEX

HASHKEYS

HASH IS

Usage Notes

4 – 167Commands

The cluster key of a hash column can have one or
more columns of any datatype. Hash clusters with
composite cluster keys or cluster keys made up of
non–integer columns must use the internal hash
function.

specifies the degree of parallelism to use when
creating the cluster and the default degree of
parallelism to use when querying the cluster after
creation. See the parallel_clause on page 4 – 378.

specifies that the blocks retrieved for this table are
placed at the most recently used end of the LRU
list in the buffer cache when a full table scan is
performed. This option is useful for small lookup
tables.

specifies that the blocks retrieved for this table are
placed at the least recently used end of the LRU list
in the buffer cache when a full table scan is
performed. This is the default behavior.

A cluster is a schema object that contains one or more tables that all
have one or more columns in common. Rows of one or more tables that
share the same value in these common columns are physically stored
together within the database.

Clustering provides more control over the physical storage of rows
within the database. Clustering can reduce both the time it takes to
access clustered tables and the space needed to store the table. After
you create a cluster and add tables to it, the cluster is transparent. You
can access clustered tables with SQL statements just as you can
non–clustered tables.

If you cannot fit all rows for one hash value into a data block, do not
use hash clusters. Performance is very poor in this circumstance
because an insert or update of a row in a hash cluster with a size
exceeding the data block size fills the block and row chaining to contain
the rest of the row.

PARALLEL

CACHE

NOCACHE

Cluster Keys

Types of Clusters

Indexed Clusters

4 – 168 Oracle7 Server SQL Reference

Generally, you should only cluster tables that are frequently joined on
the cluster key columns in SQL statements. While clustering multiple
tables improves the performance of joins, it is likely to reduce the
performance of full table scans, INSERT statements, and UPDATE
statements that modify cluster key values. Before clustering, consider
its benefits and tradeoffs in light of the operations you plan to perform
on your data. For more information on the performance implications of
clustering, see the “Tuning SQL Statements” chapter of Oracle7 Server
Tuning.

When you create a cluster in Trusted Oracle7, it is labeled with your
DBMS label.

The columns defined by the CREATE CLUSTER command make up
the cluster key. These cluster columns must correspond in both datatype
and size to columns in each of the clustered tables, although they need
not correspond in name.

You cannot specify integrity constraints as part of the definition of a
cluster key column. Instead, you can associate integrity constraints
with the tables that belong to the cluster.

A cluster can be one of the following types:

• indexed cluster

• hash cluster

In an indexed cluster, Oracle7 stores rows having the same cluster key
value together. Each distinct cluster key value is stored only once in
each data block, regardless of the number of tables and rows in which it
occurs. This saves disk space and improves performance for many
operations.

You may want to use indexed clusters in the following cases:

• Your queries retrieve rows over a range of cluster key values.

• Your clustered tables may grow unpredictably.

After you create an indexed cluster, you must create an index on the
cluster key before you can issue any Data Manipulation Language
statements against a table in the cluster. This index is called the cluster
index. For information on creating a cluster index, see the CREATE
INDEX command on page 4 – 192. As with the columns of any index,
the order of the columns in the cluster key affects the structure of the
cluster index.

Hash Clusters

4 – 169Commands

A cluster index provides quick access to rows within a cluster based on
the cluster key. If you issue a SQL statement that searches for a row in
the cluster based on its cluster key value, Oracle7 searches the cluster
index for the cluster key value and then locates the row in the cluster
based on its ROWID.

In a hash cluster, Oracle7 stores together rows that have the same hash
key value. The hash value for a row is the value returned by the cluster’s
hash function. When you create a hash cluster, you can either specify a
hash function or use the Oracle7 internal hash function. Hash values
are not actually stored in the cluster, although cluster key values are
stored for every row in the cluster.

You may want to use hash clusters in the following cases:

• Your queries retrieve rows based on equality conditions
involving all cluster key columns.

• Your clustered tables are static or you can determine the
maximum number of rows and the maximum amount of space
required by the cluster when you create the cluster.

The hash function provides access to rows in the table based on the
cluster key value. If you issue a SQL statement that locates a row in the
cluster based on its cluster key value, Oracle7 applies the hash function
to the given cluster key value and uses the resulting hash value to
locate the matching rows. Because multiple cluster key values can map
to the same hash value, Oracle7 must also check the row’s cluster key
value. Note that this process often results in less I/O than the process
for the indexed cluster because the index search is not required.

Oracle7’s internal hash function returns values ranging from 0 to the
value of HASHKEYS – 1. If you specify a column with the HASH IS
clause, the column values need not fall into this range. Oracle7 divides
the column value by the HASHKEYS value and uses the remainder as
the hash value. The hash value for null is HASHKEYS – 1. Oracle7 also
rounds the HASHKEYS value up to the nearest prime number to obtain
the actual number of hash values. This rounding reduces the likelihood
of hash collisions, or multiple cluster key values having the same hash
value.

You cannot create a cluster index for a hash cluster, and you need not
create an index on a hash cluster key.

Cluster Size

Adding Tables to a
Cluster

4 – 170 Oracle7 Server SQL Reference

Oracle7 uses the value of the SIZE parameter to determine the space
reserved for rows corresponding to one cluster key value or one hash
value. This space then determines the maximum number of cluster or
hash values stored in a data block. If the SIZE value is not a divisor of
the data block size, Oracle7 uses the next largest divisor. If the SIZE
value is larger than the data block size, Oracle7 uses the operating
system block size, reserving at least one data block per cluster or hash
value.

Oracle7 also considers the length of the cluster key when determining
how much space to reserve for the rows having a cluster key value.
Larger cluster keys require larger sizes. To see the actual size, query the
KEY_SIZE column of the USER_CLUSTERS data dictionary view. This
does not apply to hash clusters because hash values are not actually
stored in the cluster.

Although the maximum number of cluster and hash key values per
data block is fixed on a per cluster basis, Oracle7 does not reserve an
equal amount of space for each cluster or hash key value. Varying this
space stores data more efficiently because the data stored per cluster or
hash key value is rarely fixed.

A SIZE value smaller than the space needed by the average cluster or
hash key value may require the data for one cluster key or hash key
value to occupy multiple data blocks. A SIZE value much larger results
in wasted space.

When you create a hash cluster, Oracle7 immediately allocates space
for the cluster based on the values of the SIZE and HASHKEYS
parameters. For more information on how Oracle7 allocates space for
clusters, see the “Schema Objects” chapter of Oracle7 Server Concepts.

You can add tables to an existing cluster by issuing a CREATE TABLE
statement with the CLUSTER clause. A cluster can contain as many as
32 tables, although the performance gains of clustering are often
negated in clusters of more than four or five tables.

All tables in the cluster have the cluster’s storage characteristics as
specified by the PCTUSED, PCTFREE, INITRANS, MAXTRANS,
TABLESPACE, and STORAGE parameters.

Example I

Example II

4 – 171Commands

The following statement creates an indexed cluster named
PERSONNEL with the cluster key column DEPARTMENT_NUMBER,
a cluster size of 512 bytes, and storage parameter values:

CREATE CLUSTER personnel

(department_number NUMBER(2))

SIZE 512

STORAGE (INITIAL 100K NEXT 50K PCTINCREASE 10)

The following statements add the EMP and DEPT tables to the cluster:

CREATE TABLE emp

(empno NUMBER PRIMARY KEY,

 ename VARCHAR2(10) NOT NULL

 CHECK (ename = UPPER(ename)),

 job VARCHAR2(9),

 mgr NUMBER REFERENCES scott.emp(empno),

 hiredate DATE CHECK (hiredate >= SYSDATE),

 sal NUMBER(10,2) CHECK (sal > 500),

 comm NUMBER(9,0) DEFAULT NULL,

deptno NUMBER(2) NOT NULL)

CLUSTER personnel (deptno)

CREATE TABLE dept

(deptno NUMBER(2),

 dname VARCHAR2(9),

 loc VARCHAR2(9))

CLUSTER personnel (deptno)

The following statement creates the cluster index on the cluster key of
PERSONNEL:

CREATE INDEX idx_personnel ON CLUSTER personnel

After creating the cluster index, you can insert rows into either the
EMP or DEPT tables.

The following statement creates a hash cluster named PERSONNEL
with the cluster key column DEPARTMENT_NUMBER, a maximum of
503 hash key values, each of size 512 bytes, and storage parameter
values:

CREATE CLUSTER personnel

(department_number NUMBER)

SIZE 512 HASHKEYS 500

STORAGE (INITIAL 100K NEXT 50K PCTINCREASE 10)

Because the above statement omits the HASH IS clause, Oracle7 uses
the internal hash function for the cluster.

Example III

Related Topics

4 – 172 Oracle7 Server SQL Reference

The following statement creates a hash cluster named PERSONNEL
with the cluster key comprised of the columns HOME_AREA_CODE
and HOME_PREFIX, and uses a SQL expression containing these
columns for the hash function:

CREATE CLUSTER personnel

 (home_area_code NUMBER,

 home_prefix NUMBER)

 HASHKEYS 20

 HASH IS MOD(home_area_code + home_prefix, 101)

CREATE INDEX command on 4 – 192
CREATE TABLE command on 4 – 245
STORAGE clause on 4 – 449

Purpose

Prerequisites

Syntax

4 – 173Commands

CREATE CONTROLFILE

To recreate a control file in one of the following cases:

• All copies of your existing control files have been lost through
media failure.

• You want to change the name of the database.

• You want to change the maximum number of redo log file
groups, redo log file members, archived redo log files, data files,
or instances that can concurrently have the database mounted
and open.

Warning: It is recommended that you perform a full backup of all files
in the database before using this command.

You must have the OSDBA role enabled. The database must not be
mounted by any instance.

If you are using Trusted Oracle7 in DBMS MAC mode, your operating
system label must be the equivalent of DBHIGH.

CREATE CONTROLFILE

GROUP integer

REUSE

DATABASE database

SET

LOGFILE
,

filespec RESETLOGS

NORESETLOGS

MAXLOGFILES integer

MAXLOGMEMBERS integer

MAXLOGHISTORY integer

MAXDATAFILES integer

MAXINSTANCES integer

DATAFILE filespec

,

ARCHIVELOG

NOARCHIVELOG

Keywords and
Parameters

4 – 174 Oracle7 Server SQL Reference

specifies that existing control files identified by the
initialization parameter CONTROL_FILES can be
reused, thus ignoring and overwriting any
information they may currently contain. If you
omit this option and any of these control files
already exist, Oracle7 returns an error.

changes the name of the database. The name of a
database can be as long as eight bytes.

specifies the name of the database. The value of
this parameter must be the existing database name
established by the previous CREATE DATABASE
statement or CREATE CONTROLFILE statement.

specifies the redo log file groups for your database.
You must list all members of all redo log file
groups. See the syntax description of filespec on
page 4 – 343.

ignores the contents of the files listed in the
LOGFILE clause. These files do not have to exist.
Each filespec in the LOGFILE clause must specify
the SIZE parameter. Oracle7 assigns all redo log file
groups to thread 1 and enables this thread for
public use by any instance. After using this option,
you must open the database using the RESETLOGS
option of the ALTER DATABASE command.

specifies that all files in the LOGFILE clause should
be used as they were when the database was last
open. These files must exit and must be the current
redo log files rather than restored backups. Oracle7
reassigns the redo log file groups to the threads to
which they were previously assigned and
re–enables the threads as they were previously
enabled. If you specify GROUP values, Oracle7
verifies these values with the GROUP values when
the database was last open.

specifies the data files of the database. You must
list all data files. These files must all exist, although
they may be restored backups that require media
recovery. See the syntax description of filespec on
page 4 – 343.

REUSE

SET DATABASE

DATABASE

LOGFILE

RESETLOGS

NORESETLOGS

DATAFILE

OSDoc

4 – 175Commands

specifies the maximum number of redo log file
groups that can ever be created for the database.
Oracle7 uses this value to determine how much
space in the control file to allocate for the names of
redo log files. The default and maximum values
depend on your operating system. The value that
you specify should not be less than the greatest
GROUP value for any redo log file group.

Note that the number of redo log file groups
accessible to your instance is also limited by the
initialization parameter LOG_FILES.

MAXLOGMEMBERS
specifies the maximum number of members, or
copies, for a redo log file group. Oracle7 uses this
value to determine how much space in the control
file to allocate for the names of redo log files. The
minimum value is 1. The maximum and default
values depend on your operating system.

MAXLOGHISTORY
specifies the maximum number of archived redo
log file groups for automatic media recovery of the
Oracle7 Parallel Server. Oracle7 uses this value to
determine how much space in the control file to
allocate for the names of archived redo log files.
The minimum value is 0. The default value is a
multiple of the MAXINSTANCES value and varies
depending on your operating system. The
maximum value is limited only by the maximum
size of the control file. Note that this parameter is
only useful if you are using Oracle7 with the
Parallel Server option in both parallel mode and
archivelog mode.

specifies the maximum number of data files that
can ever be created for the database. The minimum
value is 1. The maximum and default values
depend on your operating system. The value you
specify should not be less than the total number of
data files ever in the database, including those for
tablespaces that have been dropped.

Note that the number of data files accessible to
your instance is also limited by the initialization
parameter DB_FILES.

MAXLOGFILES

MAXDATAFILES

Usage Notes

4 – 176 Oracle7 Server SQL Reference

specifies the maximum number of instances that
can simultaneously have the database mounted
and open. This value takes precedence over the
value of the initialization parameter INSTANCES.
The minimum value is 1. The maximum and
default values depend on your operating system.

establishes the mode of archiving the contents of
redo log files before reusing them. This option
prepares for the possibility of media recovery as
well as instance recovery.

NOARCHIVELOG
establishes the initial mode of reusing redo log files
without archiving their contents. This option
prepares for the possibility of instance recovery but
not media recovery.

If you omit both the ARCHIVELOG and
NOARCHIVELOG options, Oracle7 chooses
noarchivelog mode by default. After creating the
control file, you can change between archivelog
mode and noarchivelog mode with the ALTER
DATABASE command.

It is recommended that you take a full backup of all files in the
database before issuing a CREATE CONTROLFILE statement.

When you issue a CREATE CONTROLFILE statement, Oracle7 creates
a new control file based on the information you specify in the
statement. If you omit any of the options from the statement, Oracle7
uses the default options, rather than the options for the previous
control file. After successfully creating the control file, Oracle7 mounts
the database in exclusive mode. You then must perform media
recovery before opening the database. It is recommended that you then
shutdown the instance and take a full backup of all files in the
database.

For more information on using this command, see the “Recovering a
Database” chapter of Oracle7 Server Administrator’s Guide.

MAXINSTANCES

ARCHIVELOG

Example

Related Topics

4 – 177Commands

When you create a control file in Trusted Oracle7, it is labeled with
your DBMS label. The control file cannot be used unless it is labeled at
the operating system equivalent of DBHIGH. If you issue a CREATE
CONTROLFILE statement in DBMS MAC mode, Trusted Oracle7
automatically switches to OS MAC mode. You can then return to
DBMS MAC mode by issuing an ALTER DATABASE statement with
the SET DBMAC ON clause.

This example recreates a control file:

CREATE CONTROLFILE REUSE

SET DATABASE orders_2

LOGFILE GROUP 1 (’diskb:log1.log’, ’diskc:log1.log’) SIZE 50K,

 GROUP 2 (’diskb:log2.log’, ’diskc:log2.log’) SIZE 50K

NORESETLOGS

DATAFILE ’diska:dbone.dat’ SIZE 2M

MAXLOGFILES 5

MAXLOGHISTORY 100

MAXDATAFILES 10

MAXINSTANCES 2

ARCHIVELOG

CREATE DATABASE command on 4 – 178

Purpose

Prerequisites

Syntax

4 – 178 Oracle7 Server SQL Reference

CREATE DATABASE

To create a database, making it available for general use, with the
following options:

• to establish a maximum number of instances, data files, redo log
files groups, or redo log file members

• to specify names and sizes of data files and redo log files

• to choose a mode of use for the redo log

Warning: This command prepares a database for initial use and erases
any data currently in the specified files. Only use this command when
you understand its ramifications.

You must have the OSDBA role enabled.

If you are using Trusted Oracle7 and you plan to use the database in
DBMS MAC mode, your operating system label should be the
equivalent of DBLOW.

CREATE DATABASE

,

LOGFILE

,

filespec

GROUP integer

database

CONTROLFILE REUSE

MAXLOGFILES integer

MAXLOGMEMBERS integer

MAXLOGHISTORY integer

MAXDATAFILES integer

MAXINSTANCES integer

ARCHIVELOG

NOARCHIVELOG

EXCLUSIVE

CHARACTER SET charset

DATAFILE

,

filespec

MAXSIZENEXT integer

K

M

ON

OFFAUTOEXTEND

integer

UNLIMITED

K

M

Keyword and
Parameters

4 – 179Commands

is the name of the database to be created and can
be up to eight bytes long. Oracle7 writes this name
into the control file. If you subsequently issue an
ALTER DATABASE statement and that explicitly
specifies a database name, Oracle7 verifies that
name with the name in the control file. Database
names should adhere to the rules described in
section, “Object Naming Rules,” on page 2 – 3.

Note: You cannot use special characters from
European or Asian character sets in a database
name. For example, the umlaut is not allowed.

The database cannot be a Server Manager reserved
word as documented in the Oracle Server Manager
Manual. If you omit the database name from a
CREATE DATABASE statement, the name
specified by the initialization parameter
DB_NAME is used.

CONTROLFILE REUSE
reuses existing control files identified by the
initialization parameter CONTROL_FILES, thus
ignoring and overwriting any information they
currently contain. This option is usually used only
when you are recreating a database, rather than
creating one for the first time. You cannot use this
option if you also specify a parameter value that
requires that the control file be larger than the
existing files. These parameters are
MAXLOGFILES, MAXLOGMEMBERS,
MAXLOGHISTORY, MAXDATAFILES, and
MAXINSTANCES.

If you omit this option and any of the files specified
by CONTROL_FILES already exist, Oracle7 returns
an error message.

database

4 – 180 Oracle7 Server SQL Reference

specifies one or more files to be used as redo log
files. Each filespec specifies a redo log file group
containing one or more redo log file members, or
copies. See the syntax description of filespec on
page 4 – 343. All redo log files specified in a
CREATE DATABASE statement are added to redo
log thread number 1.

You can also choose the value of the GROUP
parameter for the redo log file group. Each value
uniquely identifies a redo log file group and can
range from 1 to the value of the MAXLOGFILES
parameter. You cannot specify multiple redo log
file groups having the same GROUP value. If you
omit this parameter, Oracle7 generates its value
automatically. You can examine the GROUP value
for a redo log file group through the dynamic
performance table V$LOG.

If you omit the LOGFILE clause, Oracle7 creates
two redo log file groups by default. The names and
sizes of the default files vary depending on your
operating system.

MAXLOGFILES
specifies the maximum number of redo log file
groups that can ever be created for the database.
Oracle7 uses this value to determine how much
space in the control file to allocate for the names of
redo log files. The default, minimum, and
maximum values vary depending on your
operating system.

The number of redo log file groups accessible to
your instance is also limited by the initialization
parameter LOG_FILES.

MAXLOGMEMBERS
specifies the maximum number of members, or
copies, for a redo log file group. Oracle7 uses this
value to determine how much space in the control
file to allocate for the names of redo log files. The
minimum value is 1. The maximum and default
values vary depending on your operating system.

LOGFILE

4 – 181Commands

MAXLOGHISTORY
specifies the maximum number of archived redo
log files for automatic media recovery of Oracle7
with the Parallel Server option. Oracle7 uses this
value to determine how much space in the control
file to allocate for the names of archived redo log
files. The minimum value is 0. The default value is
a multiple of the MAXINSTANCES value and
varies depending on your operating system. The
maximum value is limited only by the maximum
size of the control file. Note that this parameter is
only useful if you are using the Oracle7 with the
Parallel Server option in parallel mode and
archivelog mode.

specifies the maximum number of data files that
can ever be created for the database.

The minimum value is 1. The maximum and
default values depend on your operating system.
The number of data files accessible to your instance
is also limited by the initialization parameter
DB_FILES.

specifies the maximum number of instances that
can simultaneously have this database mounted
and open. This value takes precedence over the

value of the initialization parameter INSTANCES.
The minimum value is 1. The maximum and
default values depend on your operating system.

establishes archivelog mode for redo log file
groups. In this mode, the contents of a redo log file
group must be archived before the group can be
reused. This option prepares for the possibility of
media recovery.

MAXDATAFILES

MAXINSTANCES

ARCHIVELOG

4 – 182 Oracle7 Server SQL Reference

NOARCHIVELOG
establishes noarchivelog mode for redo log files
groups. In this mode, the contents of a redo log file
group need not be archived before the group can be
reused. This option does not prepares for the
possibility of media recovery.

The default is noarchivelog mode. After creating
the database, you can change between archivelog
mode and noarchivelog mode with the ALTER
DATABASE command.

mounts the database in exclusive mode after it is
created. This mode allows only your instance to
access the database. Oracle7 automatically mounts
the database in exclusive mode after creating it, so
this keyword is entirely optional.

For multiple instances to access the database, you
must first create the database, close and dismount
the database, and then mount it in parallel mode.
For information on closing, dismounting, and
mounting the database, see the ALTER DATABASE
command on page 4 – 16.

CHARACTER SET
specifies the character set the database uses to store
data. You cannot change the database character set
after creating the database. The supported
character sets and default value of this parameter
depends on your operating system.

specifies one or more files to be used as data files.
See the syntax description of filespec on
page 4 – 343. These files all become part of the
SYSTEM tablespace. If you omit this clause,
Oracle7 creates one data file by default. The name
and size of this default file depends on your
operating system.

EXCLUSIVE

DATAFILE

Usage Notes

4 – 183Commands

enables or disables the automatic extension of a
datafile.

disable autoextend if it is turned
on. NEXT and MAXSIZE are set to
zero. Values for NEXT and
MAXSIZE must be respecified in
ALTER DATABASE
AUTOEXTEND or ALTER
TABLESPACE AUTOEXTEND
commands.

enable autoextend.

the size in bytes of the next
increment of disk space to be
automatically allocated to the
datafile when more extents are
required. You can also use K or M
to specify this size in kilobytes or
megabytes. The default is one data
block.

maximum disk space allowed for
automatic extension of the datafile.

set no limit on allocating disk
space to the datafile.

This command erases all data in any specified data files that already
exist to prepare them for initial database use. If you use the command
on an existing database, all data in the data files is lost.

After creating the database, this command mounts it in exclusive mode
and opens it, making it available for normal use.

If you create a database using Trusted Oracle7, it is labeled with your
operating system label and is created in OS MAC mode. If you plan to
use the database in DBMS MAC mode, be sure you set values for
DBHIGH and DBLOW. For more information on creating Trusted
Oracle7 databases, see Trusted Oracle7 Server Administrator’s Guide.

AUTOEXTEND

OFF

ON

NEXT

MAXSIZE

UNLIMITED

Example

Related Topics

4 – 184 Oracle7 Server SQL Reference

The following statement creates a small database using defaults for all
arguments:

CREATE DATABASE

The following statement creates a database and fully specifies each
argument:

CREATE DATABASE newtest

CONTROLFILE REUSE

LOGFILE

GROUP 1 (’diskb:log1.log’, ’diskc:log1.log’) SIZE 50K,

GROUP 2 (’diskb:log2.log’, ’diskc:log2.log’) SIZE 50K

MAXLOGFILES 5

MAXLOGHISTORY 100

DATAFILE ’diska:dbone.dat’ SIZE 2M

MAXDATAFILES 10

MAXINSTANCES 2

ARCHIVELOG

EXCLUSIVE

CHARACTER SET US7ASCII

DATAFILE

’disk1:df1.dbf’ AUTOEXTEND ON

’disk2:df2.dbf’ AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED

ALTER DATABASE command on 4 – 16
CREATE ROLLBACK SEGMENT command on 4 – 218
CREATE TABLESPACE command on 4 – 254
STARTUP and SHUTDOWN commands in Oracle Server Manager User’s
Guide.

Purpose

Prerequisites

Syntax

Keyword and
Parameters

4 – 185Commands

CREATE DATABASE LINK

To create a database link. A database link is an object in the local
database that allows you to access objects on a remote database or to
mount a secondary database in read–only mode. The remote database
can be either an Oracle7 or a non–Oracle7 database.

To create a private database link, you must have CREATE DATABASE
LINK system privilege. To create a public database link, you must have
CREATE PUBLIC DATABASE LINK system privilege. Also, you must
have CREATE SESSION privilege on a remote database. SQL*Net must
be installed on both the local and remote databases.

CREATE

PUBLIC

DATABASE LINK dblink

CONNECT TO user IDENTIFIED BY password USING ’connect_string’

creates a public database link available to all users.
If you omit this option, the database link is private
and is available only to you.

is the complete or partial name of the database
link. For guidelines for naming database links, see
“Referring to Objects In Remote Databases,” on
page 2 – 11.

CONNECT TO user IDENTIFIED BY password

is the username and password used to connect to
the remote database. If you omit this clause, the
database link uses the username and password of
each user who uses the database link.

PUBLIC

dblink

Usage Notes

4 – 186 Oracle7 Server SQL Reference

specifies either:

• the database specification of a remote database

• the specification of a secondary database for a
read–only mount.

For information on specifying remote databases,
see the SQL*Net User’s Guide for your specific
SQL*Net protocol.

Read–only mounts are only available in Trusted
Oracle7 and can only be specified for public
database links. For more information on specifying
read–only mounts, see Trusted Oracle7 Server
Administrator’s Guide.

You cannot create a database link in another user’s schema and you
cannot qualify dblink with the name of a schema. Since periods are
permitted in names of database links, Oracle7 interprets the entire
name, such as RALPH.LINKTOSALES, as the name of a database link
in your schema rather than as a database link named LINKTOSALES in
the schema RALPH.

Once you have created a database link, you can use it to refer to tables
and views on the remote database. You can refer to a remote table or
view in a SQL statement by appending @dblink to the table or view
name. You can query a remote table or view with the SELECT
command. If you are using Oracle7 with the distributed option, you
can also access remote tables and views in any of the following
commands:

• DELETE command on page 4 – 286

• INSERT command on page 4 – 361

• LOCK TABLE command on page 4 – 369

• UPDATE command on page 4 – 460

The number of different database links that can appear in a single
statement is limited to the value of the initialization parameter
OPEN_LINKS.

When you create a database link in Trusted Oracle7, it is labeled with
your DBMS label.

USING

Example

Related Topics

4 – 187Commands

The following statement defines a database link named
SALES.HQ.ACME.COM that refers to user SCOTT with password
TIGER on the database specified by the string D:BOSTON–MFG:

CREATE DATABASE LINK sales.hq.acme.com

CONNECT TO scott IDENTIFIED BY tiger

USING ’D:BOSTON–MFG’

Once this database link is created, you can query tables in the schema
SCOTT on the remote database in this manner:

SELECT *

FROM emp@sales.hq.acme.com

You can also use Data Manipulation Language commands to modify
data on the remote database:

INSERT INTO accounts@sales.hq.acme.com(acc_no, acc_name, balance)

 VALUES (5001, ’BOWER’, 2000)

UPDATE accounts@sales.hq.acme.com

SET balance = balance + 500

DELETE FROM accounts@sales.hq.acme.com

WHERE acc_name = ’BOWER’

You can also access tables owned by other users on the same database.
This example assumes SCOTT has access to ADAM’s DEPT table:

SELECT *

FROM adams.dept@sales.hq.acme.com

The previous statement connects to the user SCOTT on the remote
database and then queries ADAM’s DEPT table.

A synonym may be created to hide the fact that SCOTT’s EMP table is
on a remote database. The following statement causes all future
references to EMP to access a remote EMP table owned by SCOTT.

CREATE SYNONYM emp

FOR scott.emp@sales.hq.acme.com

CREATE SYNONYM command on 4 – 241
DELETE command on page 4 – 286
INSERT command on page 4 – 361
LOCK TABLE command on page 4 – 369
SELECT command on 4 – 405
UPDATE command on page 4 – 460

Purpose

Prerequisites

Syntax

4 – 188 Oracle7 Server SQL Reference

CREATE FUNCTION

To create a user function. A user function or stored function is a set of
PL/SQL statements you can call by name. Stored functions are very
similar to procedures, except that a function returns a value to the
environment in which it is called.

User functions can be used as part of a SQL expression.

Before a stored function can be created, the user SYS must run the SQL
script DBMSSTDX.SQL. The exact name and location of this script may
vary depending on your operating system.

To create a function in your own schema, you must have CREATE
PROCEDURE system privilege. To create a function in another user’s
schema, you must have CREATE ANY PROCEDURE system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, you can create a
function in another user’s schema if your DBMS label dominates the
creation label of the other user.

To create a stored function, you must be using Oracle7 with PL/SQL
installed. For more information, see PL/SQL User’s Guide and Reference.

CREATE

argument

IN

OR REPLACE

FUNCTION

AS

schema.

function

ISRETURN datatype pl/sql_subprogram_body

datatype

,

()

OUT

IN OUT

Keywords and
Parameters

4 – 189Commands

recreates the function if it already exists. You can
use this option to change the definition of an
existing function without dropping, recreating, and
regranting object privileges previously granted on
the function. If you redefine a function, Oracle7
recompiles it. For information on recompiling
functions, see the ALTER FUNCTION command
on page 4 – 31.

Users who had previously been granted privileges
on a redefined function can still access the function
without being regranted the privileges.

is the schema to contain the function. If you omit
schema, Oracle7 creates the function in your current
schema.

is the name of the function to be created.

is the name of an argument to the function. If the
function does not accept arguments, you can omit
the parentheses following the function name.

specifies that you must supply a value for the
argument when calling the function. This is the
default.

specifies the function will set the value of the
argument.

specifies that a value for the argument can be
supplied by you and may be set by the function.

is the datatype of an argument. An argument can
have any datatype supported by PL/SQL.

The datatype cannot specify a length, precision, or
scale. Oracle7 derives the length, precision, or scale
of an argument from the environment from which
the function is called.

OR REPLACE

schema

function

argument

IN

OUT

IN OUT

datatype

Usage Notes

Example

4 – 190 Oracle7 Server SQL Reference

specifies the datatype of the function’s return
value. Because every function must return a value,
this clause is required. The return value can have
any datatype supported by PL/SQL.

The datatype cannot specify a length, precision, or
scale. Oracle7 derives the length, precision, or scale
of the return value from the environment from
which the function is called. For information on
PL/SQL datatypes, see the PL/SQL User’s Guide and
Reference.

pl/sql_subprogram_body

is the definition of the function. Function
definitions are written in PL/SQL. For information
on PL/SQL, including

To embed a CREATE FUNCTION statement inside an Oracle
Precompiler program, you must terminate the statement with the
keyword END–EXEC followed by the embedded SQL statement
terminator for the specific language.

A stored function is a set of PL/SQL statements that you can call by
name. Functions are very similar to procedures, except that a function
explicitly returns a value to its calling environment. For a general
discussion of procedures and functions, see the CREATE PROCEDURE
command on page 4 – 206.

The CREATE FUNCTION command creates a function as a
stand–alone schema object. You can also create a function as part of a
package. For information on creating packages, see the CREATE
PACKAGE command 4 – 198.

When you create a stored function in Trusted Oracle7, it is labeled with
your DBMS label.

The following statement creates the function GET_BAL:

CREATE FUNCTION get_bal(acc_no IN NUMBER)

RETURN NUMBER

IS

acc_bal NUMBER(11,2);

BEGIN

SELECT balance

INTO acc_bal

FROM accounts

WHERE account_id = acc_no;

RETURN(acc_bal);

END

RETURN datatype

Related Topics

4 – 191Commands

The GET_BAL function returns the balance of a specified account.

When you call the function, you must specify the argument ACC_NO,
the number of the account whose balance is sought. The datatype of
ACC_NO is NUMBER.

The function returns the account balance. The RETURN clause of the
CREATE FUNCTION statement specifies the datatype of the return
value to be NUMBER.

The function uses a SELECT statement to select the BALANCE column
from the row identified by the argument ACC_NO in the ACCOUNTS
table. The function uses a RETURN statement to return this value to
the environment in which the function is called.

The above function can be used in a SQL statement. For example:

SELECT get_bal(100) FROM DUAL;

ALTER FUNCTION command on 4 – 188
CREATE PACKAGE command on 4 – 198
CREATE PACKAGE BODY command on 4 – 202
CREATE PROCEDURE command on 4 – 206
DROP FUNCTION command on 4 – 304

Purpose

Prerequisites

4 – 192 Oracle7 Server SQL Reference

CREATE INDEX

To create an index on one or more columns of a table or a cluster. An
index is a database object that contains an entry for each value that
appears in the indexed column(s) of the table or cluster and provides
direct, fast access to rows.

To create an index in your own schema, one of the following conditions
must be true:

• The table or cluster to be indexed must be in your own schema.

• You must have INDEX privilege on the table to be indexed.

• You must have CREATE ANY INDEX system privilege.

To create an index in another schema, you must have CREATE ANY
INDEX system privilege.

Also, the owner of the schema to contain the index must have either
space quota on the tablespace to contain the index or UNLIMITED
TABLESPACE system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must dominate the tablespace’s label and match the table’s label.
If the table was created at DBHIGH or DBLOW, you must explicitly set
your label to DBHIGH or DBLOW. You can create an index in another
user’s schema if your DBMS label dominates the creation label of the
other user.

Syntax

Keywords and
Parameters

4 – 193Commands

CREATE

schema.

index

ON

,

column)

CLUSTER

INITRANS integer

MAXTRANS integer

TABLESPACE tablespace

STORAGE storage_clause

PCTFREE integer

NOSORT

schema.

cluster

ASC

DESC

schema.

table (

PARALLEL parallel_clause

UNIQUE

RECOVERABLE

UNRECOVERABLE

INDEX

specifies that the value of the column (or
combination of columns) in the table to be indexed
must be unique.

is the schema to contain the index. If you omit
schema, Oracle7 creates the index in your own
schema.

is the name of the index to be created.

is the name of the table for which the index is to be
created. If you do not qualify table with schema,
Oracle7 assumes the table is contained in your own
schema.

is the name of a column in the table. An index can
have as many as 16 columns. A column of an index
cannot be of datatype LONG or LONG RAW.

are allowed for DB2 syntax compatibility, although
indexes are always created in ascending order.
Indexes on character data are created in ascending
order of the character values in the database
character set.

UNIQUE

schema

index

table

column

ASC
DESC

4 – 194 Oracle7 Server SQL Reference

specifies the cluster for which a cluster index is to
be created. If you do not qualify cluster with
schema, Oracle7 assumes the cluster is contained in
your current schema. You cannot create a cluster
index for a hash cluster.

establishes values for these parameters for the
index. See the INITRANS and MAXTRANS
parameters of the CREATE TABLE command on
page 4 – 245.

is the name of the tablespace to hold the index. If
you omit this option, Oracle7 creates the index in
the default tablespace of the owner of the schema
containing the index.

establishes the storage characteristics for the index.
See the STORAGE clause on page 4 – 449.

is the percentage of space to leave free for updates
and insertions within each of the index’s data
blocks.

indicates to Oracle7 that the rows are stored in the
database in ascending order and therefore Oracle7
does not have to sort the rows when creating the
index.

specifies that the creation of the index will be
logged in the redo log file. This is the default.

If the database is run in ARCHIVELOG mode,
media recovery from a backup will recreate the
index. You cannot specify RECOVERABLE when
using NOARCHIVELOG mode.

UNRECOVERABLE
specifies that the creation of the index will not be
logged in the redo log file. As a result, media
recovery will not recreate the index.

Using this keyword makes index creation faster
than using the RECOVERABLE option because
redo log entries are not written.

specifies the degree of parallelism for creating the
index. See the parallel_clause on page 4 – 378.

CLUSTER

INITRANS
MAXTRANS

TABLESPACE

STORAGE

PCTFREE

NOSORT

RECOVERABLE

PARALLEL

Usage Notes

Index Columns

4 – 195Commands

 An index is an ordered list of all the values that reside in a group of
one or more columns at a given time. Such a list makes queries that test
the values in those columns vastly more efficient. Indexes also take up
data storage space, however, and must be changed whenever the data
is, so a cost–benefit analysis must be made in each case to determine
whether and how indexes should be used. Oracle7 can use indexes to
improve performance when:

• searching for rows with specified index column values

• accessing tables in index column order

When you initially insert rows into a new table, it is generally faster to
create the table, insert the rows, and then create the index. If you create
the index before inserting the rows, Oracle7 must update the index for
every row inserted.

Oracle recommends that you do not explicitly define UNIQUE indexes
on tables; uniqueness is strictly a logical concept and should be
associated with the definition of a table. Alternatively, define UNIQUE
integrity constraints on the desired columns. Oracle enforces UNIQUE
integrity constraints by automatically defining a unique index on the
unique key. Exceptions to this recommendation are usually
performance related. For example, using a CREATE TABLE ... AS
SELECT with a UNIQUE constraint is very much slower than creating
the table without the constraint and then manually creating the
UNIQUE index.

If indexes contain NULLs, the NULLS generally are considered distinct
values. There is, however, one exception: if all the non–NULL values in
two or more rows of an index are identical, the rows are considered
identical; therefore, UNIQUE indexes prevent this from occurring. This
does not apply if there are no non–NULL values—in other words, if the
rows are entirely NULL..

When you create an index in Trusted Oracle7, it is labeled with your
DBMS label.

An index can contain a maximum of 16 columns. The index entry
becomes the concatenation of all data values from each column. You
can specify the columns in any order. The order you choose is
important to how Oracle7 uses the index.

When appropriate, Oracle7 uses the entire index or a leading portion of
the index. Assume an index named IDX1 is created on columns A, B,
and C of table TAB1 (in the order A, B, C). Oracle7 uses the index for
references to columns A, B, C (the entire index); A, B; or just column A.

Multiple Indexes Per
Table

The NOSORT Option

4 – 196 Oracle7 Server SQL Reference

References to columns B and C do not use the IDX1 index. Of course,
you can also create another index just for columns B and C.

Unlimited indexes can be created for a table provided that the
combination of columns differ for each index. You can create more than
one index using the same columns provided that you specify distinctly
different combinations of the columns. For example, the following
statements specify valid combinations:

CREATE INDEX emp_idx1 ON emp (ename, job);

CREATE INDEX emp_idx2 ON emp (job, ename);

You cannot create an index that references only one column in a table if
another such index already exists.

Note that each index increases the processing time needed to maintain
the table during updates to indexed data.

Note that there is overhead in maintaining indexes when a table is
updated. Thus, updating a table with a single index will take less time
than if the table had five indexes.

The NOSORT option can substantially reduce the time required to
create an index. Normal index creation first sorts the rows of the table
based on the index columns and then builds the index. The sort
operation is often a substantial portion of the total work involved. If
the rows are physically stored in ascending order (based on the
indexed column values), then the NOSORT option causes Oracle7 to
bypass the sort phase of the process.

You cannot use the NOSORT option to create a cluster index.

The NOSORT option also reduces the amount of space required to
build the index. Oracle7 uses temporary segments during the sort.
Since a sort is not performed, the index is created with much less
temporary space.

To use the NOSORT option, you must guarantee that the rows are
physically sorted in ascending order. Because of the physical data
independence inherent in relational database management systems,
especially Oracle7, there is no way to force a physical internal order on
a table. The CREATE INDEX command with the NOSORT option
should be used immediately after the initial load of rows into a table.

You run no risk by trying the NOSORT option. If your rows are not in
the ascending order, Oracle7 returns an error. You can issue another
CREATE INDEX without the NOSORT option.

UNRECOVERABLE

Example I

Nulls

Example II

Creating Cluster
Indexes

Example III

Related Topics

4 – 197Commands

The UNRECOVERABLE option may substantially reduce the time
required to create a large index. This feature is particularly useful after
creating a large table or cluster in parallel. For backup and recovery
considerations, see Oracle7 Server Administrator’s Guide.

To quickly create an index in parallel on a table that was created using
a fast parallel load (so all rows are already sorted), you might issue the
following statement:

CREATE INDEX i_loc

ON big_table (akey)

NOSORT

UNRECOVERABLE

PARALLEL (DEGREE 5)

Nulls are not indexed.

Consider the following statement:

SELECT ename

FROM emp

WHERE comm IS NULL

The above query does not use an index created on the COMM column.

Oracle7 does not automatically create an index for a cluster when the
cluster is initially created. Data Manipulation Language statements
cannot be issued against clustered tables until a cluster index has been
created.

To create an index for the EMPLOYEE cluster, issue the following
statement:

CREATE INDEX ic_emp

ON CLUSTER employee

Note that no index columns are specified since the index is
automatically built on all the columns of the cluster key.

ALTER INDEX command on 4 – 33
DROP INDEX command on 4 – 306
CONSTRAINT clause on 4 – 149
STORAGE clause on 4 – 449

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 198 Oracle7 Server SQL Reference

CREATE PACKAGE

To create the specification for a stored package. A package is an
encapsulated collection of related procedures, functions, and other
program objects stored together in the database. The specification
declares these objects.

Before a package can be created, the user SYS must run the SQL script
DBMSSTDX.SQL. The exact name and location of this script may vary
depending on your operating system.

To create a package in your own schema, you must have CREATE
PROCEDURE system privilege. To create a package in another user’s
schema, you must have CREATE ANY PROCEDURE system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, you can only
create a package in another user’s schema if your DBMS label
dominates the creation label of the other user.

To create a package, you must be using Oracle7 with PL/SQL installed.
For more information, see PL/SQL User’s Guide and Reference.

CREATE

,

IS

AS

OR REPLACE

PACKAGE

,schema.

package

pl/sql_package_spec

recreates the package specification if it already
exists. You can use this option to change the
specification of an existing package without
dropping, recreating, and regranting object
privileges previously granted on the package. If
you change a package specification, Oracle7
recompiles it. For information on recompiling
package specifications, see the ALTER
PROCEDURE command on page 4 – 42.

Users who had previously been granted privileges
on a redefined package can still access the package
without being regretted the privileges.

is the schema to contain the package. If you omit
schema, Oracle7 creates the package in your own
schema.

OR REPLACE

schema

Packages

4 – 199Commands

is the name of the package to be created.

is the package specification. The package
specification can declare program objects. Package
specifications are written in PL/SQL. For
information on PL/SQL, including writing package
specifications, see PL/SQL User’s Guide and
Reference.

To embed a CREATE PACKAGE statement inside an Oracle
Precompiler program, you must terminate the statement with the
keyword END–EXEC followed by the embedded SQL statement
terminator for the specific language.

A package is an encapsulated collection of related program objects
stored together in the database. Program objects are:

• procedures

• functions

• variables

• constants

• cursors

• exceptions

Using packages is an alternative to creating procedures and functions
as stand–alone schema objects. Packages have many advantages over
stand–alone procedures and functions:

• Packages allow you to organize your application development
more efficiently.

• Packages allow you to grant privileges more efficiently.

• Packages allow you to modify package objects without
recompiling dependent schema objects.

• Packages allow Oracle7 to read multiple package objects into
memory at once.

• Packages can contain global variables and cursors that are
available to all procedures and functions in the package.

• Packages allow you to overload procedures or functions.
Overloading a procedure means creating multiple procedures
with the same name in the same package, each taking arguments
of different number or datatype.

package

pl/sql_package_spec

How to Create
Packages

The Separation of
Specification and Body

4 – 200 Oracle7 Server SQL Reference

For more information on these and other benefits of packages, see the
“Using Procedures and Packages” chapter of the Oracle7 Server
Application Developer’s Guide.

When you create a package in Trusted Oracle7, it is labeled with your
DBMS label.

To create a package, you must perform two distinct steps:

1. Create the package specification with the CREATE PACKAGE
command. You can declare program objects in the package
specification. Such objects are called public objects. Public objects can be
referenced outside the package as well as by other objects in the
package.

2. Create the package body with the CREATE PACKAGE BODY
command. You can declare and define program objects in the package
body:

• You must define public objects declared in the package
specification.

• You can also declare and define additional package objects. Such
objects are called private objects. Since private objects are
declared in the package body rather than in the package
specification, they can only be referenced by other objects in the
package. They cannot be referenced outside the package.

See the CREATE PACKAGE BODY command 4 – 202.

Oracle7 stores the specification and body of a package separately in the
database. Other schema objects that call or reference public program
objects depend only on the package specification, not on the package
body. This distinction allows you to change the definition of a program
object in the package body without causing Oracle7 to invalidate other
schema objects that call or reference the program object. Oracle7 only
invalidates dependent schema objects if you change the declaration of
the program object in the package specification.

Example

Related Topics

4 – 201Commands

This SQL statement creates the specification of the EMP_MGMT
package:

CREATE PACKAGE emp_mgmt AS

FUNCTION hire(ename VARCHAR2, job VARCHAR2, mgr NUMBER,

sal NUMBER, comm NUMBER, deptno NUMBER)

RETURN NUMBER;

FUNCTION create_dept(dname VARCHAR2, loc VARCHAR2)

RETURN NUMBER;

PROCEDURE remove_emp(empno NUMBER);

PROCEDURE remove_dept(deptno NUMBER);

PROCEDURE increase_sal(empno NUMBER, sal_incr NUMBER);

PROCEDURE increase_comm(empno NUMBER, comm_incr NUMBER);

no_comm EXCEPTION;

no_sal EXCEPTION;

END emp_mgmt

The specification for the EMP_MGMT package declares the following
public program objects:

• the functions HIRE and CREATE_DEPT

• the procedures REMOVE_EMP, REMOVE_DEPT,
INCREASE_SAL, and INCREASE_COMM

• the exceptions NO_COMM and NO_SAL

All of these objects are available to users who have access to the
package. After creating the package, you can develop applications that
call any of the package’s public procedures or functions or raise any of
the package’s public exceptions.

Before you can call this package’s procedures and functions, you must
define these procedures and functions in the package body. For an
example of a CREATE PACKAGE BODY statement that creates the
body of the EMP_MGMT package, see the CREATE PACKAGE BODY
command on page 4 – 202.

ALTER PACKAGE command on 4 – 39
CREATE FUNCTION command on 4 – 188
CREATE PROCEDURE command on 4 – 206
CREATE PACKAGE BODY command on 4 – 202
DROP PACKAGE command 4 – 307

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 202 Oracle7 Server SQL Reference

CREATE PACKAGE BODY

To create the body of a stored package. A package is an encapsulated
collection of related procedures, stored functions, and other program
objects stored together in the database. The body defines these objects.

Before a package can be created, the user SYS must run the SQL script
DBMSSTDX.SQL. The exact name and location of this script may vary
depending on your operating system.

To create a package in your own schema, you must have CREATE
PROCEDURE system privilege. To create a package in another user’s
schema, you must have CREATE ANY PROCEDURE system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, you can only
create a package in another user’s schema if your DBMS label
dominates the creation label of the other user.

To create a package, you must be using Oracle7 with PL/SQL installed.
For more information, see PL/SQL User’s Guide and Reference.

CREATE

,

IS

AS

OR REPLACE

PACKAGE BODY

,schema.

package

pl/sql_package_body

recreates the package body if it already exists. You
can use this option to change the body of an
existing package without dropping, recreating, and
regranting object privileges previously granted on
it. If you change a package body, Oracle7
recompiles it. For information on recompiling
package bodies, see the ALTER PACKAGE BODY
command on page 4 – 39.

Users who had previously been granted privileges
on a redefined package can still access the package
without being regranted the privileges.

is the schema to contain the package. If you omit
schema, Oracle7 creates the package in your current
schema.

is the name of the package to be created.

OR REPLACE

schema

package

Packages

Example

4 – 203Commands

is the package body. The package body can declare
and define program objects. Package bodies are
written in PL/SQL. For information on PL/SQL,
including writing package bodies, see PL/SQL
User’s Guide and Reference.

To embed a CREATE PACKAGE BODY statement inside an Oracle
Precompiler program, you must terminate the statement with the
keyword END–EXEC followed by the embedded SQL statement
terminator for the specific language.

A package is an encapsulated collection of related procedures, functions,
and other program objects stored together in the database. Packages
are an alternative to creating procedures and functions as stand–alone
schema objects. For a discussion of packages, including how to create
packages, see the CREATE PACKAGE command on page 4 – 198.

This SQL statement creates the body of the EMP_MGMT package:

CREATE PACKAGE BODY emp_mgmt AS

tot_emps NUMBER;

tot_depts NUMBER;

 FUNCTION hire(ename VARCHAR2, job VARCHAR2, mgr NUMBER,

sal NUMBER, comm NUMBER, deptno NUMBER)

 RETURN NUMBER IS

 new_empno NUMBER(4);

 BEGIN

 SELECT empseq.NEXTVAL

 INTO new_empno

 FROM DUAL;

 INSERT INTO emp

 VALUES (new_empno, ename, job, mgr, sal, comm, deptno,

 tot_emps := tot_emps + 1;

 RETURN(new_empno);

 END;

 FUNCTION create_dept(dname VARCHAR2, loc VARCHAR2)

 RETURN NUMBER IS

 new_deptno NUMBER(4);

 BEGIN

 SELECT deptseq.NEXTVAL

 INTO new_deptno

 FROM dual;

 INSERT INTO dept

 VALUES (new_deptno, dname, loc);

 tot_depts := tot_depts + 1;

 RETURN(new_deptno);

 END;

pl/sql_package_
body

4 – 204 Oracle7 Server SQL Reference

 PROCEDURE remove_emp(empno NUMBER) IS

 BEGIN

 DELETE FROM emp

 WHERE emp.empno = remove_emp.empno;

 tot_emps := tot_emps – 1;

 END;

PROCEDURE remove_dept(deptno NUMBER) IS

BEGIN

 DELETE FROM dept

WHERE dept.deptno = remove_dept.deptno;

 tot_depts := tot_depts – 1;

 SELECT COUNT(*)

INTO tot_emps

FROM emp;

/* In case Oracle7 deleted employees from the EMP table

 to enforce referential integrity constraints, reset

 the value of the variable TOT_EMPS to the total

 number of employees in the EMP table. */

END;

PROCEDURE increase_sal(empno NUMBER, sal_incr NUMBER) IS

curr_sal NUMBER(7,2);

BEGIN

 SELECT sal

INTO curr_sal

FROM emp

WHERE emp.empno = increase_sal.empno;

 IF curr_sal IS NULL

 THEN RAISE no_sal;

 ELSE

UPDATE emp

 SET sal = sal + sal_incr

WHERE empno = empno;

 END IF;

END;

PROCEDURE increase_comm(empno NUMBER, comm_incr NUMBER) IS

 curr_comm NUMBER(7,2);

 BEGIN

 SELECT comm

 INTO curr_comm

 FROM emp

 WHERE emp.empno = increase_comm.empno

 IF curr_comm IS NULL

 THEN RAISE no_comm;

 ELSE

UPDATE emp

 SET comm = comm + comm_incr;

Related Topics

4 – 205Commands

 END IF;

 END;

END emp_mgmt

This package body corresponds to the package specification in the
example of the CREATE PACKAGE statement earlier in this chapter.
The package body defines the public program objects declared in the
package specification:

• the functions HIRE and CREATE_DEPT

• the procedures REMOVE_EMP, REMOVE_DEPT,
INCREASE_SAL, and INCREASE_COMM

Since these objects are declared in the package specification, they can
be called by application programs, procedures, and functions outside
the package. For example, if you have access to the package, you can
create a procedure INCREASE_ALL_COMMS separate from the
EMP_MGMT package that calls the INCREASE_COMM procedure.

Since these objects are defined in the package body, you can change
their definitions without causing Oracle7 to invalidate dependent
schema objects. For example, if you subsequently change the definition
of HIRE, Oracle7 need not recompile INCREASE_ALL_COMMS before
executing it.

The package body in this example also declares private program
objects, the variables TOT_EMPS and TOT_DEPTS. Since these objects
are declared in the package body rather than the package specification,
they are accessible to other objects in the package, but they are not
accessible outside the package. For example, you cannot develop an
application that explicitly changes the value of the variable
TOT_DEPTS. However, since the function CREATE_DEPT is part of the
package, CREATE_DEPT can change the value of TOT_DEPTS.

ALTER PACKAGE command on 4 – 39
CREATE FUNCTION command on 4 – 188
CREATE PROCEDURE command on 4 – 206
CREATE PACKAGE command on 4 – 198
DROP PACKAGE command 4 – 307

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 206 Oracle7 Server SQL Reference

CREATE PROCEDURE

To create a stand–alone stored procedure. A procedure is a group of
PL/SQL statements that you can call by name.

Before a procedure can be created, the user SYS must run the SQL
script DBMSSTDX.SQL. The exact name and location of this script may
vary depending on your operating system.

To create a procedure in your own schema, you must have CREATE
PROCEDURE system privilege. To create a procedure in another
schema, you must have CREATE ANY PROCEDURE system privilege.
To replace a procedure in another schema, you must have REPLACE
ANY PROCEDURE system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, you can only
create a procedure in another user’s schema if your DBMS label
dominates the creation label of the other user.

To create a procedure, you must be using Oracle7 with PL/SQL
installed. For more information, see PL/SQL User’s Guide and Reference.

CREATE

argument

OR REPLACE

procedure

schema.

,

AS

IN

OUT

IN OUT

IS

PROCEDURE

()

pl/sql_subprogram_body

datatype

recreates the procedure if it already exists. You can
use this option to change the definition of an
existing procedure without dropping, recreating,
and regranting object privileges previously granted
on it. If you redefine a procedure, Oracle7
recompiles it. For information on recompiling
procedures, see the ALTER PROCEDURE
command on page 4 – 42.

Users who had previously been granted privileges
on a redefined procedure can still access the
procedure without being regranted the privileges.

OR REPLACE

4 – 207Commands

is the schema to contain the procedure. If you omit
schema, Oracle7 creates the procedure in your
current schema.

is the name of the procedure to be created.

is the name of an argument to the procedure. If the
procedure does not accept arguments, you can
omit the parentheses following the procedure
name.

specifies that you must specify a value for the
argument when calling the procedure.

specifies that the procedure passes a value for this
argument back to its calling environment after
execution.

specifies that you must specify a value for the
argument when calling the procedure and that the
procedure passes a value back to its calling
environment after execution.

If you omit IN, OUT, and IN OUT, the argument
defaults to IN.

is the datatype of an argument. As long as no length
specifier is used, an argument can have any
datatype supported by PL/SQL. For information
on PL/SQL datatypes, see PL/SQL User’s Guide and
Reference.

Datatypes are specified without a length, precision,
or scale. For example, VARCHAR2(10) is not valid,
but VARCHAR2 is valid. Oracle7 derives the
length, precision, or scale of an argument from the
environment from which the procedure is called.

pl/sql_subprogram_body
is the definition of the procedure. Procedure
definitions are written in PL/SQL. For information
on PL/SQL, including how to write a PL/SQL
subprogram body, see PL/SQL User’s Guide and
Reference.

To embed a CREATE PROCEDURE statement inside an Oracle
Precompiler program, you must terminate the statement with the
keyword END–EXEC followed by the embedded SQL statement
terminator for the specific language.

schema

procedure

argument

IN

OUT

IN OUT

datatype

Usage Notes

4 – 208 Oracle7 Server SQL Reference

A procedure is a group of PL/SQLstatements that you can call by name.
Stored procedures and stored functions are similar in many ways. This
discussion applies to functions as well as to procedures. For
information specific to functions, see the CREATE FUNCTION
command on page 4 – 188.

With PL/SQL, you can group multiple SQL statements together with
procedural PL/SQL statements similar to those in programming
languages such as Ada and C. With the CREATE PROCEDURE
command, you can create a procedure and store it in the database. You
can call a stored procedure from any environment from which you can
issue a SQL statement.

Stored procedures offer you advantages in the following areas:

• development

• integrity

• security

• performance

• memory allocation

For more information on stored procedures, including how to call
stored procedures, see the “Using Procedures and Packages” chapter of
Oracle7 Server Application Developer’s Guide.

When you create a procedure in Trusted Oracle7, it is labeled with your
DBMS label.

The CREATE PROCEDURE command creates a procedure as a
stand–alone schema object. You can also create a procedure as part of a
package. For information on creating packages, see the CREATE
PACKAGE command on page 4 – 198.

Example

Related Topics

4 – 209Commands

The following statement creates the procedure CREDIT in the schema
SAM:

CREATE PROCEDURE sam.credit (acc_no IN NUMBER, amount IN NUMBER)

AS BEGIN

UPDATE accounts

SET balance = balance + amount

WHERE account_id = acc_no;

END;

The CREDIT procedure credits a specified bank account with a
specified amount. When you call the procedure, you must specify the
following arguments:

This argument is the number of the bank account
to be credited. The argument’s datatype is
NUMBER.

This argument is the amount of the credit. The
argument’s datatype is NUMBER.

The procedure uses an UPDATE statement to increase the value in the
BALANCE column of the ACCOUNTS table by the value of the
argument AMOUNT for the account identified by the argument
ACC_NO.

ALTER PPROCEDURE command on 4 – 42
CREATE FUNCTION command on 4 – 188
CREATE PACKAGE command on 4 – 198
CREATE PROCEDURE BODY command on 4 – 202
DROP PPROCEDURE command 4 – 309

ACC_NO

AMOUNT

Purpose

Prerequisites

Syntax

4 – 210 Oracle7 Server SQL Reference

CREATE PROFILE

To create a profile. A profile is a set of limits on database resources. If
you assign the profile to a user, that user cannot exceed these limits.

You must have CREATE PROFILE system privilege.

CREATE PROFILE profile LIMIT

UNLIMITED

SESSION_PER_USER

DEFAULT

CPU_PER_SESSION

CPU_PER_CALL

CONNECT_TIME

IDLE_TIME

LOGICAL_READS_PER_SESSION

LOGICAL_READS_PER_CALL

integer

COMPOSITE_LIMIT

DEFAULT

PRIVATE_SGA integer

K

M

UNLIMITED

Keywords and
Parameters

4 – 211Commands

is the name of the profile to be created.

SESSIONS_PER_USER
limits a user to integer concurrent sessions.

CPU_PER_SESSION
limits the CPU time for a session. This value is
expressed in hundredths of seconds.

limits the CPU time for a call (a parse, execute, or
fetch). This value is expressed in hundredths of
seconds.

limits the total elapsed time of a session. This value
is expressed in minutes.

limits periods of continuous inactive time during a
session. This value is expressed in minutes.
Long–running queries and other operations are not
subject to this limit.

LOGICAL_READS_PER_SESSION
limits the number of data blocks read in a session,
including blocks read from memory and disk, to
integer blocks.

LOGICAL_READS_PER_CALL
limits the number of data blocks read for a call to
process a SQL statement (a parse, execute, or fetch)
to integer blocks.

limits the amount of private space a session can
allocate in the shared pool of the System Global
Area (SGA) to integer bytes. You can also use the K
or M to specify this limit in kilobytes or megabytes.
This limit only applies if you are using the
multi–threaded server architecture. The private
space for a session in the SGA includes private
SQL and PL/SQL areas, but not shared SQL and
PL/SQL areas.

COMPOSITE_LIMIT
limits the total resource cost for a session. You
must express the value of this parameter in service
units.

profile

CPU_PER_CALL

CONNECT_TIME

IDLE_TIME

PRIVATE_SGA

Usage Notes

Using Profiles

4 – 212 Oracle7 Server SQL Reference

Oracle7 calculates the total resource cost as a
weighted sum of the following resources:

• CPU_PER_SESSION

• CONNECT_TIME

• LOGICAL_READS_PER_SESSION

• PRIVATE_SGA

For information on how to specify the weight for
each session resource see the ALTER RESOURCE
COST command on page 4 – 46.

indicates that a user assigned this profile can use
an unlimited amount of this resource.

omits a limit for this resource in this profile. A user
assigned this profile is subject to the limit for this
resource specified in the DEFAULT profile.

 In Trusted Oracle7, the new profile is automatically labeled with your
DBMS label.

A profile is a set of limits on database resources. You can use profiles to
limit the database resources available to a user for a single call or a
single session. Oracle7 enforces resource limits in the following ways:

• If a user exceeds the CONNECT_TIME or IDLE_TIME session
resource limit, Oracle7 rolls back the current transaction and
ends the session. When the user process next issues a call to
Oracle7, an error message is returned.

• If a user attempts to perform an operation that exceeds the limit
for other session resources, Oracle7 aborts the operation, rolls
back the current statement, and immediately returns an error.
The user can then commit or roll back the current transaction.
The user must then end the session.

• If a user attempts to perform an operation that exceeds the limit
for a single call, Oracle7 aborts the operation, rolls back the
current statement, and returns an error message, leaving the
current transaction intact.

UNLIMITED

DEFAULT

How to Limit Resources

The DEFAULT Profile

Example

4 – 213Commands

To specify resource limits for a user, you must perform both of the
following operations:

Enable resource limits: You can enable resource limits through one of
the following ways:

• You can enable resources limits with the initialization parameter
RESOURCE_LIMIT.

• You can enable resource limits dynamically with the ALTER
SYSTEM command. See the ALTER SYSTEM command 4 – 76.

Specify resource limits: To specify a resource limit for a user, you must
perform following steps:

1. Create a profile that defines the limits using the CREATE PROFILE
command.

2. Assign the profile to the user using the CREATE USER or ALTER
USER command.

Note that you can specify resource limits for users regardless of
whether resource limits are enabled. However, Oracle7 does not
enforce these limits until you enable them.

Oracle7 automatically creates a default profile named DEFAULT. This
profile initially defines unlimited resources. You can change the limits
defined in this profile with the ALTER PROFILE command.

Any user who is not explicitly assigned a profile is subject to the limits
defined in the DEFAULT profile. Also, if the profile that is explicitly
assigned to a user omits limits for some resources or specifies
DEFAULT for some limits, the user is subject to the limits on those
resources defined by the DEFAULT profile.

The following statement creates the profile SYSTEM_MANAGER:

CREATE PROFILE system_manager

LIMIT SESSIONS_PER_USER UNLIMITED

CPU_PER_SESSION UNLIMITED

CPU_PER_CALL 3000

CONNECT_TIME 45

LOGICAL_READS_PER_SESSION DEFAULT

LOGICAL_READS_PER_CALL 1000

PRIVATE SGA 15K

COMPOSITE_LIMIT 5000000

Related Topics

4 – 214 Oracle7 Server SQL Reference

If you then assign the SYSTEM_MANAGER profile to a user, the user is
subject to the following limits in subsequent sessions:

• The user can have any number of concurrent sessions.

• In a single session, the user can consume an unlimited amount of
CPU time.

• A single call made by the user cannot consume more than 30
seconds of CPU time.

• A single session cannot last for more than 45 minutes.

• In a single session, the number of data blocks from memory and
disk is subject to the limit specified in the DEFAULT profile.

• A single call made by the user cannot read more than 1000 total
data blocks from memory and disk.

• A single session cannot allocate more than 15 kilobytes of
memory in the SGA.

• In a single session, the total resource cost cannot exceed 5 million
service units. The formula for calculating the total resource cost
is specified by the ALTER RESOURCE COST command.

• Since the SYSTEM_MANAGER profile omits a limit for
IDLE_TIME, the user is subject to the limit on this resource
specified in the DEFAULT profile.

ALTER PROFILE command on 4 – 44
ALTER RESOURCE COST command on 4 – 46
ALTER SYSTEM command on 4 – 76
ALTER USER command on 4 – 108
DROP PROFILE command on 4 – 311

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 215Commands

CREATE ROLE

To create a role. A role is a set of privileges that can be granted to users
or to other roles.

You must have CREATE ROLE system privilege.

CREATE ROLE role

NOT IDENTIFIED

IDENTIFIED

EXTERNALLY

BY password

is the name of the role to be created. It is
recommended that the role contain at least one
single–byte character regardless of whether the
database character set also contains multi–byte
characters.

NOT IDENTIFIED
indicates that a user granted the role need not be
verified when enabling it.

indicates that a user granted the role must be
verified when enabling it with the SET ROLE
command:

The user must specify the password
to Oracle7 when enabling the role.
The password can only contain
single–byte characters from your
database character set regardless of
whether this character set also
contains multi–byte characters.

role

IDENTIFIED

BY password

Usage Notes

Using Roles

Roles Defined by Oracle7

4 – 216 Oracle7 Server SQL Reference

The operating system verifies the
user enabling to the role.
Depending on the operating
system, the user may have to
specify a password to the
operating system when enabling
the role.

If you omit both the NOT IDENTIFIED option and
the IDENTIFIED clause, the role defaults to NOT
IDENTIFIED.

In Trusted Oracle7, the new role is automatically labeled with your
DBMS label.

A role is a set of privileges that can be granted to users or to other roles.
You can use roles to administer database privileges. You can add
privileges to a role’s privilege domain and then grant the role to a user.
The user can then enable the role and exercise the privileges in the
role’s privilege domain. For information on enabling roles, see the
ALTER USER command on page 4 – 108.

A role’s privilege domain contains all privileges granted to the role and
all privileges in the privilege domains of the other roles granted to it. A
new role’s privilege domain is initially empty. You can add privileges to
a role’s privilege domain with the GRANT command.

When you create a role, Oracle7 grants you the role with ADMIN
OPTION. The ADMIN OPTION allows you to perform the following
operations:

• grant the role to another user or role

• revoke the role from another user or role

• alter the role to change the authorization needed to access it

• drop the role

Some roles are defined by SQL scripts provided on your distribution
media. The following roles are predefined:

• CONNECT

• RESOURCE

• DBA

• EXP_FULL_DATABASE

• IMP_FULL_DATABASE

EXTERNALLY

Example

Related Topics

4 – 217Commands

The CONNECT, RESOURCE, and DBA roles are provided for
compatibility with previous versions of Oracle7. You should not rely on
these roles, rather, it is recommended that you to design your own
roles for database security. These roles may not be created
automatically by future versions of Oracle7.

The EXP_FULL_DATABASE and IMP_FULL_DATABASE roles are
provided for convenience in using the Import and Export utilities.

For more information on these roles, see Table 4 – 12 on page 4 – 352.

Oracle7 also creates other roles that authorize you to administer the
database. On many operating systems, these roles are called OSOPER
and OSDBA. Their names may be different on your operating system.

The following statement creates the role TELLER:

CREATE ROLE teller

IDENTIFIED BY cashflow

Users who are subsequently granted the TELLER role must specify the
passwords CASHFLOW to enable the role.

ALTER ROLE command on 4 – 49
DROP ROLE command on 4 – 312
GRANT (System Privileges and Roles) command on 4 – 346
REVOKE (System Privileges and Roles) command on 4 – 388
SET ROLE command on 4 – 442

Purpose

Prerequisites

Syntax

Keyword and
Parameters

4 – 218 Oracle7 Server SQL Reference

CREATE ROLLBACK SEGMENT

To create a rollback segment. A rollback segment is an object that Oracle7
uses to store data necessary to reverse, or undo, changes made by
transactions.

You must have CREATE ROLLBACK SEGMENT system privilege.
Also, you must have either space quota on the tablespace to contain the
rollback segment or UNLIMITED TABLESPACE system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must dominate the tablespace’s label.

CREATE

TABLESPACE tablespace

STORAGE storage_clause

ROLLBACK SEGMENT rollback_segment

PUBLIC

OPTIMAL

M

TO integer

K

NULL

specifies that the rollback segment is public and is
available to any instance. If you omit this option,
the rollback segment is private and is only
available to the instance naming it in its
initialization parameter ROLLBACK_SEGMENTS.

is the name of the rollback segment to be created.

identifies the tablespace in which the rollback
segment is created. If you omit this option, Oracle7
creates the rollback segment in the SYSTEM
tablespace.

specifies the characteristics for the rollback
segment. See the STORAGE clause on page 4 – 449.

PUBLIC

rollback_segment

TABLESPACE

STORAGE

Usage Notes

4 – 219Commands

specifies an optimal size in bytes for a rollback
segment. You can also use K or M to specify this
size in kilobytes or megabytes. Oracle7 tries to
maintain this size for the rollback segment by
dynamically deallocating extents when their data is
no longer needed for active transactions. Oracle7
deallocates as many extents as possible without
reducing the total size of the rollback segment
below the OPTIMAL value.

specifies no optimal size for the
rollback segment, meaning that
Oracle7 never deallocates the
rollback segment’s extents. This is
the default behavior.

The value of this parameter cannot be less than the
space initially allocated for the rollback segment
specified by the MINEXTENTS, INITIAL, NEXT,
and PCTINCREASE parameters. The maximum
value varies depending on your operating system.
Oracle7 rounds values to the next multiple of the
data block size.

 The tablespace must be online for you to add a rollback segment to it.

When you create a rollback segment, it is initially offline. To make it
available for transactions by your Oracle7 instance, you must bring it
online using one of the following:

• ALTER ROLLBACK SEGMENT command

• ROLLBACK_SEGMENTS initialization parameter

For more information on creating rollback segments and making them
available, see the “Managing Rollback Segments” chapter of the Oracle7
Server Administrator’s Guide.

A tablespace can have multiple rollback segments. Generally, multiple
rollback segments improve performance. When you create a rollback
segment in Trusted Oracle7, it is labeled with your DBMS label.

OPTIMAL

NULL

Example

Related Topics

4 – 220 Oracle7 Server SQL Reference

The following statement creates a rollback segment with default
storage values in the system tablespace:

CREATE ROLLBACK SEGMENT rbs_2

TABLESPACE system;

The above statement is the equivalent of the following:

CREATE ROLLBACK SEGEMENT rbs_2

TABLESPACE system

STORAGE

(INITIAL 2

MINEXTENTS 121

MAXEXTENTS 10240

NEXT 10240

PCT_INCREASE 0)

CREATE TABLESPACE command on 4 – 254
CREATE DATABASE command on 4 – 178
ALTER ROLLBACK SEGMENT command on 4 – 50
DROP ROLLBACK SEGMENT command on 4 – 313
STORAGE clause on 4 – 449

Purpose

Prerequisites

Syntax

Keyword and
Parameters

4 – 221Commands

CREATE SCHEMA

To create multiple tables and views and perform multiple grants in a
single transaction.

The CREATE SCHEMA statement can include CREATE TABLE,
CREATE VIEW, and GRANT statements. To issue a CREATE SCHEMA
statement, you must have the privileges necessary to issue the included
statements.

CREATE SCHEMA AUTHORIZATION schema

CREATE VIEW command

GRANT command

CREATE TABLE command

is the name of the schema. The schema name must
be the same as your Oracle7 username.

CREATE TABLE command
is a CREATE TABLE statement to be issued as part
of this CREATE SCHEMA statement. See the
CREATE TABLE command on page 4 – 245.

CREATE VIEW command
is a CREATE VIEW statement to be issued as part
of this CREATE SCHEMA statement. See the
CREATE VIEW command on page 4 – 271.

is a GRANT statement (Objects Privileges) to be
issued as part of this CREATE SCHEMA
statement. See the GRANT command on
page 4 – 355.

The CREATE SCHEMA statement only supports
the syntax of these commands as defined by
standard SQL, rather than the complete syntax
supported by Oracle7. For information on which
parts of the syntax for these commands are
standard SQL and which are Oracle7 extensions,
see Appendix B of this manual.

schema

GRANT command

Usage Notes

PARALLEL Clause Syntax

4 – 222 Oracle7 Server SQL Reference

With the CREATE SCHEMA command, you can issue multiple Data
Definition Language statements in a single transaction. To execute a
CREATE SCHEMA statement, Oracle7 executes each included
statement. If all statements execute successfully, Oracle7 commits the
transaction. If any statement results in an error, Oracle7 rolls back all
the statements.

Terminate a CREATE SCHEMA statement just as you would any other
SQL statement using the terminator character specific to your tool. For
example, if you issue a CREATE SCHEMA statement in SQL*Plus or
Server Manager, terminate the statement with a semicolon (;). Do not
separate the individual statements within a CREATE SCHEMA
statement with the terminator character.

The order in which you list the CREATE TABLE, CREATE VIEW, and
GRANT statements is unimportant:

• A CREATE VIEW statement can create a view that is based on a
table that is created by a later CREATE TABLE statement.

• A CREATE TABLE statement can create a table with a foreign
key that depends on the primary key of a table that is created by
a later CREATE TABLE statement.

• A GRANT statement can grant privileges on a table or view that
is created by a later CREATE TABLE or CREATE VIEW
statement.

The statements within a CREATE SCHEMA statement can also
reference existing objects:

• A CREATE VIEW statement can create a view on a table that
existed before the CREATE SCHEMA statement.

• A GRANT statement can grant privileges on a previously
existing object.

The syntax of the PARALLEL clause is allowed for a CREATE TABLE,
INDEX, or CLUSTER, when used in CREATE SCHEMA, but
parallelism is not used when creating the objects.

Example

Related Topics

4 – 223Commands

The following statement creates a schema named BLAIR for the user
BLAIR:

CREATE SCHEMA AUTHORIZATION blair

CREATE TABLE sox

(color VARCHAR2(10) PRIMARY KEY, quantity NUMBER)

CREATE VIEW red_sox

AS SELECT color, quantity FROM sox WHERE color = ’RED’

GRANT select ON red_sox TO waites

The following statement creates the table SOX, creates the view
RED_SOX, and grants SELECT privilege on the RED_SOX view to the
user WAITES.

CREATE TABLE command on 4 – 245
CREATE VIEW command on 4 – 271
GRANT command on 4 – 346

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 224 Oracle7 Server SQL Reference

CREATE SEQUENCE

To create a sequence. A sequence is a database object from which
multiple users may generate unique integers. You can use sequences to
automatically generate primary key values.

To create a sequence in your own schema, you must have CREATE
SEQUENCE privilege.

To create a sequence in another user’s schema, you must have CREATE
ANY SEQUENCE privilege. If you are using Trusted Oracle7 in DBMS
MAC mode, your DBMS label must dominate the creation label of the
owner of the schema to contain the sequence.

START WITH integer

NOMAXVALUE

INCREMENT BY integer

CREATE SEQUENCE

MINVALUE integer

NOMINVALUE

CYCLE

NOCYCLE

CACHE integer

ORDER

NOORDER

NOCACHE

sequence

schema.

MAXVALUE integer

is the schema to contain the sequence. If you omit
schema, Oracle7 creates the sequence in your own
schema.

is the name of the sequence to be created.

schema

sequence

4 – 225Commands

specifies the interval between sequence numbers.
This integer value can be any positive or negative
integer, but it cannot be 0. This value can have 28
or less digits. The absolute of this value must be
less than the difference of MAXVALUE and
MINVALUE. If this value is negative, then the
sequence descends. If the increment is positive,
then the sequence ascends. If you omit this clause,
the interval defaults to 1.

specifies the sequence’s minimum value. This
integer value can have 28 or less digits.
MINVALUE must be less than or equal to START
WITH and must be less than MAXVALUE.

specifies a minimum value of 1 for an ascending
sequence or –(1026) for a descending sequence.

The default is NOMINVALUE.

specifies the maximum value the sequence can
generate. This integer value can have 28 or less
digits. MAXVALUE must be equal to or less than
START WITH and must be greater than
MINVALUE.

specifies a maximum value of 1027 for an ascending
sequence or –1 for a descending sequence.

The default is NOMAXVALUE.

specifies the first sequence number to be generated.
You can use this option to start an ascending
sequence at a value greater than its minimum or to
start a descending sequence at a value less than its
maximum. For ascending sequences, the default
value is the sequence’s minimum value. For
descending sequences, the default value is the
sequence’s maximum value. This integer value can
have 28 or less digits.

specifies that the sequence continues to generate
values after reaching either its maximum or
minimum value. After an ascending sequence
reaches its maximum value, it generates its
minimum value. After a descending sequence
reaches its minimum, it generates its maximum.

INCREMENT BY

MINVALUE

NOMINVALUE

MAXVALUE

NOMAXVALUE

START WITH

CYCLE

4 – 226 Oracle7 Server SQL Reference

specifies that the sequence cannot generate more
values after reaching its maximum or minimum
value.

The default is NOCYCLE.

specifies how many values of the sequence Oracle7
pre–allocates and keeps in memory for faster
access. This integer value can have 28 or less digits.
The minimum value for this parameter is 2. For
sequences that cycle, this value must be less than
the number of values in the cycle. You cannot cache
more values than will fit in a given cycle of
sequence numbers; thus, the maximum value
allowed for CACHE must be less than the value
determined by the following formula:

(CEIL (MAXVALUE–MINVALUE)) / ABS(INCREMENT)

specifies that values of the sequence are not
pre–allocated.

If you omit both the CACHE parameter and the
NOCACHE option, Oracle7 caches 20 sequence
numbers by default. However, if you are using
Oracle7 with the Parallel Server option in parallel
mode and you specify the ORDER option,
sequence values are never cached, regardless of
whether you specify the CACHE parameter or the
NOCACHE option.

guarantees that sequence numbers are generated in
order of request. You may want to use this option if
you are using the sequence numbers as
timestamps. Guaranteeing order is usually not
important for sequences used to generate primary
keys.

does not guarantee sequence numbers are
generated in order of request.

If you omit both the ORDER and NOORDER
options, Oracle7 chooses NOORDER by default.
Note that the ORDER option is only necessary to
guarantee ordered generation if you are using
Oracle7 with the Parallel Server option in parallel
mode. If you are using exclusive mode, sequence
numbers are always generated in order.

NOCYCLE

CACHE

NOCACHE

ORDER

NOORDER

Usage Notes

Using Sequences

Sequence Defaults

4 – 227Commands

If you are using Trusted Oracle7, the new sequence is automatically
labeled with your DBMS label.

You can use sequence numbers to automatically generate unique
primary key values for your data, and you can also coordinate the keys
across multiple rows or tables.

Values for a given sequence are automatically generated by special
Oracle7 routines and, consequently, sequences avoid the performance
bottleneck which results from implementation of sequences at the
application level. For example, one common application–level
implementation is to force each transaction to lock a sequence number
table, increment the sequence, and then release the table. Under this
implementation, only one sequence number may be generated at a
time. In contrast, Oracle7 sequences permit the simultaneous
generation of multiple sequence numbers while guaranteeing that
every sequence number is unique.

When a sequence number is generated, the sequence is incremented,
independent of the transaction committing or rolling back. If two users
concurrently increment the same sequence, the sequence numbers each
user acquires may have gaps because sequence numbers are being
generated by the other user. One user can never acquire the sequence
number generated by another user. Once a sequence value is generated
by one user, that user can continue to access that value regardless of
whether the sequence is incremented by another user.

Because sequence numbers are generated independently of tables, the
same sequence can be used for one or for multiple tables. It is possible
that individual sequence numbers will appear to be skipped, because
they were generated and used in a transaction that ultimately rolled
back. Additionally, a single user may not realize that other users are
drawing from the same sequence.

The sequence defaults are designed so that if you specify none of the
clauses, you create an ascending sequence that starts with 1 and
increases by 1 with no upper limit. Specifying only INCREMENT BY –1
creates a descending sequence that starts with –1 and decreases with no
lower limit.

Incrementing Sequence
Values

Caching Sequence
Numbers

4 – 228 Oracle7 Server SQL Reference

You can create a sequence so that its values increment in one of
following ways:

• The sequence values increment without bound.

• The sequence values increment to a predefined limit and then
stop.

• The sequence values increment to a predefined limit and then
restart.

To create a sequence that increments without bound, omit the
MAXVALUE parameter or specify the NOMAXVALUE option for
ascending sequences or omit the MINVALUE parameter or specify the
NOMINVALUE for descending sequences.

To create a sequence that stops at a predefined limit, specify a value for
the MAXVALUE parameter for an ascending sequence or a value for
the MINVALUE parameter for a descending sequence. Also specify the
NOCYCLE option. Any attempt to generate a sequence number once
the sequence has reached its limit results in an error.

To create a sequence that restarts after reaching a predefined limit,
specify values for both the MAXVALUE and MINVALUE parameters.
Also specify the CYCLE option. If you do not specify MINVALUE, then
it defaults to NOMINVALUE; that is, the value 1.

The value of the START WITH parameter establishes the initial value
generated after the sequence is created. Note that this value is not
necessarily the value to which an ascending cycling sequence cycles
after reaching its maximum or minimum value.

The number of values cached in memory for a sequence is specified by
the value of the sequence’s CACHE parameter. Cached sequences
allow faster generation of sequence numbers. A cache for a given
sequence is populated at the first request for a number from that
sequence. The cache is repopulated every CACHE requests. If there is a
system failure, all cached sequence values that have not been used in
committed Data Manipulation Language statements are lost. The
potential number of lost values is equal to the value of the CACHE
parameter.

A CACHE of 20 future sequence numbers is the default.

Accessing and
Incrementing Sequence
Values

Example

Related Topics

4 – 229Commands

Once a sequence is created, you can access its values in SQL statements
with the following pseudocolumns:

returns the current value of the sequence.

increments the sequence and returns the new
value.

For more information on using the above pseudocolumns, see the
section “Pseudocolumns” beginning on page 2 – 38.

The following statement creates the sequence ESEQ:

CREATE SEQUENCE eseq

INCREMENT BY 10

The first reference to ESEQ.NEXTVAL returns 1. The second returns 11.
Each subsequent reference will return a value 10 greater than the one
previous.

ALTER SEQUENCE command on 4 – 53
DROP SEQUENCE command on 4 – 314

CURRVAL

NEXTVAL

Purpose

Prerequisites

4 – 230 Oracle7 Server SQL Reference

CREATE SNAPSHOT

To create a snapshot. A snapshot is a table that contains the results of a
query of one or more tables or views, often located on a remote
database.

The following prerequisites apply to creating snapshots:

• The distributed option must be installed.

• To create a snapshot in your own schema, you must have the
CREATE SNAPSHOT, CREATE TABLE, and CREATE VIEW
system privileges, and SELECT privilege on the master tables.

• To create a snapshot in another user’s schema, you must have
the CREATE ANY SNAPSHOT system privilege, as well as
SELECT privilege on the master table. Additionally, the owner of
the snapshot must be able to create the snapshot.

• To use updatable snapshots, the replication option must be
installed and you must have the CREATE TRIGGER system
privilege.

Before a snapshot can be created, the user SYS must run the SQL
scripts DBMSSNAP.SQL and PRVTSNAP.PLB on both the database to
contain the snapshot and the database(s) containing the tables and
views of the snapshot’s query. If you have the procedural option, this is
done automatically. This script creates the package DBMS_SNAPSHOT
which contains the stored procedures used for refreshing the snapshot
and purging the snapshot log. The exact name and location of this
script may vary depending on your operating system.

When you create a snapshot, Oracle7 creates a table, two views, and an
index in the schema of the snapshot. Oracle7 uses these objects to
maintain the snapshot’s data. You must have the privileges necessary
to create these objects. For information on these privileges, see the
CREATE TABLE command on 4 – 245, the CREATE VIEW command
on 4 – 271, and the CREATE INDEX command on 4 – 192.

The owner of the schema containing the snapshot must have either
space quota on the tablespace to contain the snapshot or UNLIMITED
TABLESPACE system privilege. Also, both you (the creator) and the
owner must also have the privileges necessary to issue the snapshot’s
query. For information on these privileges, see the SELECT command
on page 4 – 405.

To create or refresh a snapshot, Oracle7 must be installed with PL/SQL.
To create a snapshot on a remote table or view, Oracle7 must be
installed with the distributed option.

Syntax

Keywords and
Parameters

4 – 231Commands

CREATE SNAPSHOT

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

TABLESPACE tablespace

STORAGE storage_clause

CLUSTER cluster

schema.

snapshot

,
column()

REFRESH

FAST

COMPLETE

FORCE

START WITH date NEXT date

AS subquery

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

USING INDEX

FOR UPDATE

is the schema to contain the snapshot. If you omit
schema, Oracle7 creates the snapshot in your
schema.

is the name of the snapshot to be created.

Oracle7 chooses names for the table, views, and
index used to maintain the snapshot by adding a
prefix and suffix to the snapshot name. To limit
these names to 30 bytes and allow them to contain
the entire snapshot name, It is recommended that
you limit your snapshot names to 19 bytes.

establishes values for the specified parameters for
the internal table Oracle7 uses to maintain the
snapshot’s data. For information on the PCTFREE,
PCTUSED, INITRANS, and MAXTRANS
parameters, see the CREATE TABLE command on

schema

snapshot

PCTFREE
PCTUSED
INITRANS
MAXTRANS

4 – 232 Oracle7 Server SQL Reference

4 – 245. For information on the STORAGE clause,
see page 4 – 449.

specifies the tablespace in which the snapshot is to
be created. If you omit this option, Oracle7 creates
the snapshot in the default tablespace of the owner
of the snapshot’s schema.

establishes storage characteristics for the table
Oracle7 uses to maintain the snapshot’s data.

creates the snapshot as part of the specified cluster.
Since a clustered snapshot uses the cluster’s space
allocation, do not use the PCTFREE, PCTUSED,
INITRANS, MAXTRANS, TABLESPACE, or
STORAGE parameters with the CLUSTER option.

specifies parameters for the index Oracle7 creates
to maintain the snapshot. You can choose the
values of the INITRANS, MAXTRANS,
TABLESPACE, STORAGE, and PCTFREE
parameters for the index. For information on the
PCTFREE, PCTUSED, INITRANS, and
MAXTRANS parameters, see the CREATE TABLE
command on 4 – 245. For information on the
STORAGE clause, see page 4 – 449.

specifies how and when Oracle7 automatically
refreshes the snapshot:

specifies a fast refresh, or a refresh
using only the updated data stored
in the snapshot log associated with
the master table.

specifies a complete refresh, or a
refresh that re–executes the
snapshot’s query.

specifies a fast refresh if one is
possible or complete refresh if a
fast refresh is not possible. Oracle7
decides whether a fast refresh is
possible at refresh time.

If you omit the FAST, COMPLETE, and FORCE
options, Oracle7 uses FORCE by default.

TABLESPACE

STORAGE

CLUSTER

USING INDEX

REFRESH

FAST

COMPLETE

FORCE

Usage Notes

4 – 233Commands

specifies a date expression for the
first automatic refresh time.

specifies a date expression for
calculating the interval between
automatic refreshes.

Both the START WITH and NEXT values must
evaluate to a time in the future. If you omit the
START WITH value, Oracle7 determines the first
automatic refresh time by evaluating the NEXT
expression when you create the snapshot. If you
specify a START WITH value but omit the NEXT
value, Oracle7 refreshes the snapshot only once. If
you omit both the START WITH and NEXT values
or if you omit the REFRESH clause entirely,
Oracle7 does not automatically refresh the
snapshot.

Allows a simple snapshot to be updated. When
used in conjunction with the Replication Option,
these updates will be propagated to the master. For
more information, see Oracle7 Server Distributed
Systems, Volume II.

specifies the snapshot query. When you create the
snapshot, Oracle7 executes this query and places
the results in the snapshot. The select list can
contain up to 253 expressions. For the syntax of a
snapshot query, see the syntax description of
subquery on page 4 – 436. The syntax of a snapshot
query is subject to the same restrictions as a view
query. For a list of these restrictions, see the
CREATE VIEW command on 4 – 271.

A snapshot is a table that contains the results of a query of one or more
tables or views, often located on a remote database. The tables or views
in the query are called master tables. The databases containing the
master tables are called the master databases. Note that a snapshot query
cannot select from tables or views owned by the user SYS.

Snapshots are useful in distributed databases. Snapshots allow you to
maintain read–only copies of remote data on your local node. You can
select data from a snapshot as if it were a table or view.

It is recommended that you qualify each table and view in the FROM
clause of the snapshot query with the schema containing it.

START WITH

NEXT

FOR UPDATE

AS subquery

Types of Snapshots

Refreshing Snapshots

4 – 234 Oracle7 Server SQL Reference

Snapshots cannot contain long columns.

For more information on snapshots, see Oracle7 Server Distributed
Systems, Volume II.

You can create the following types of snapshots:

A simple snapshot is one in which the snapshot
query selects rows from only one master table. This
master table must be a table, not a view. Each row
of a simple snapshot must be based on a single row
of this table. The query for a simple snapshot
cannot contain any of the following SQL
constructs:

• GROUP BY clause

• CONNECT BY clause

• subqueries

• joins

• set operations

A complex snapshot is one in which the snapshot
query contains one or more of the constructs not
allowed in the query of a simple snapshot. A
complex snapshot can be based on multiple master
tables on multiple master databases.

Because a snapshot’s master tables can be modified, the data in a
snapshot must occasionally be updated to ensure that the snapshot
accurately reflects the data currently in its master tables. The process of
updating a snapshot for this purpose is called refreshing the snapshot.
With the REFRESH clause of the CREATE SNAPSHOT command, you
can schedule the times and specify the mode for Oracle7 to
automatically refresh the snapshot.

After you create a snapshot, you can subsequently change its automatic
refresh mode and time with the REFRESH clause of the ALTER
SNAPSHOT command. You can also refresh a snapshot immediately
with the DBMS_SNAPSHOT.REFRESH() procedure.

simple

complex

Specifying Refresh Modes

4 – 235Commands

You can use the FAST or COMPLETE options of the REFRESH clause
to specify the refresh mode.

Fast To perform a fast refresh, Oracle7 updates the snapshot with the
changes to the master table recorded in its snapshot log. For more
information on snapshot logs, see the CREATE SNAPSHOT LOG
command on 4 – 238.

Oracle7 can only perform a fast refresh if all of the following conditions
are true:

• The snapshot is a simple snapshot.

• The snapshot’s master table has a snapshot log.

• The snapshot log was created before the snapshot was last
refreshed or created.

If you specify a fast refresh and all of above conditions are true, then
Oracle7 performs a fast refresh. If any of the conditions are not true,
Oracle7 returns an error at refresh time and does not refresh the
snapshot.

Complete To perform a complete refresh, Oracle7 executes the snapshot
query and places the results in the snapshot. If you specify a complete
refresh, Oracle7 performs a complete refresh regardless of whether a
fast refresh is possible.

A fast refresh is often faster than a complete refresh because it sends
less data from the master database across the network to the snapshot’s
database. A fast refresh sends only changes to master table data, while
a complete refresh sends the complete result of the snapshot query.

You can also use the FORCE option of the REFRESH clause to allow
Oracle7 to decide how to refresh the snapshot at the scheduled refresh
time. If a fast refresh is possible based on the fast refresh conditions,
then Oracle7 performs a fast refresh. If a fast refresh is not possible,
then Oracle7 performs a complete refresh.

Specifying Automatic
Refresh Times

Example I

4 – 236 Oracle7 Server SQL Reference

To cause Oracle7 to automatically refresh a snapshot, you must
perform the following tasks:

1. Specify the START WITH and NEXT parameters in the REFRESH
clause of the CREATE SNAPSHOT statement. These parameters
establish the time of the first automatic refresh time and the
interval between automatic refreshes.

2. Enable one or more snapshot refresh processes using the
initialization parameters SNAPSHOT_REFRESH_PROCESSES,
SNAPSHOT_REFRESH_INTERVAL,
SNAPSHOT_REFRESH_KEEP_CONNECTIONS. The snapshot
refresh processes then examine the automatic refresh time of each
snapshot in the database. For each snapshot that is scheduled to be
refreshed at or before the current time, one of the snapshot refresh
processes performs the following operations:

• re–evaluates the snapshot’s NEXT value to determine the next
automatic refresh time

• refreshes the snapshot

• stores the next automatic refresh time in the data dictionary

For information, see the “Initialization Parameters” chapter of Oracle7
Server Reference.

The following statement creates the simple snapshot EMP_SF that
contains the data from a SCOTT’s employee table in New York:

CREATE SNAPSHOT emp_sf

PCTFREE 5 PCTUSED 60

TABLESPACE users

STORAGE INITIAL 50K NEXT 50K

REFRESH FAST NEXT sysdate + 7

AS

SELECT * FROM scott.emp@ny

Since the statement does not include a START WITH parameter,
Oracle7 determines the first automatic refresh time by evaluating the
NEXT value using the current SYSDATE. Provided a snapshot log
currently exists for the employee table in New York, Oracle7 performs
a fast refresh of the snapshot every 7 days, beginning 7 days after the
snapshot is created.

The above statement also establishes storage characteristics for the
table that Oracle7 uses to maintain the snapshot.

Example II

Related Topics

4 – 237Commands

The following statement creates the complex snapshot ALL_EMPS that
queries the employee tables in Dallas and Baltimore:

CREATE SNAPSHOT all_emps

PCTFREE 5 PCTUSED 60

TABLESPACE users

STORAGE INITIAL 50K NEXT 50K

USING INDEX STORAGE (INITIAL 25K NEXT 25K)

REFRESH START WITH ROUND(SYSDATE + 1) + 11/24

 NEXT NEXT_DAY(TRUNC(SYSDATE, ’MONDAY’) + 15/24

AS

SELECT * FROM fran.emp@dallas

UNION

SELECT * FROM marco.emp@balt

Oracle7 automatically refreshes this snapshot tomorrow at 11:00am.
and subsequently every Monday at 3:00pm. Since this command does
not specify either fast or complete refreshes, Oracle7 must decide how
to refresh the snapshot. Since ALL_EMPS is a complex snapshot,
Oracle7 must perform a complete refresh.

The above statement also establishes storage characteristics for both the
table and the index that Oracle7 uses to maintain the snapshot:

• The first STORAGE clause establishes the sizes of the first and
second extents of the table as 50 kilobytes each.

• The second STORAGE clause (appearing with the USING
INDEX option) establishes the sizes of the first and second
extents of the index as 25 kilobytes each.

ALTER SNAPSHOT command on 4 – 71
CREATE SNAPSHOT LOG command on 4 – 238
DROP SNAPSHOT command on 4 – 315

Purpose

Prerequisites

4 – 238 Oracle7 Server SQL Reference

CREATE SNAPSHOT LOG

To create a snapshot log. A snapshot log is a table associated with the
master table of a snapshot. Oracle7 stores changes to the master table’s
data in the snapshot log and then uses the snapshot log to refresh the
master table’s snapshots.

The privileges required to create a snapshot log directly relate to the
privileges necessary to create the underlying objects associated with a
snapshot log. For example, you must have the privileges necessary to
create a table in the schema of the master table. For information on
these privileges, see the CREATE TABLE command on 4 – 245.

If you own the master table, you can create an associated snapshot log
if you have the CREATE TABLE and CREATE TRIGGER system
privileges. If you are creating a snapshot log for a table in another
user’s schema, you must have the CREATE ANY TABLE and CREATE
ANY TRIGGER system privileges. In either case, the owner of the
snapshot log must have sufficient quota in the tablespace intended to
hold the snapshot log.

Before a snapshot log can be created, the user SYS must run the SQL
scripts DBMSSNAP.SQL and PRVTSNAP.PLB on the database
containing the master table.. If you have the procedural option, this is
done automatically This script creates the package DBMS_SNAPSHOT,
which contains the stored procedures used for refreshing the snapshot
and for purging the snapshot log. The exact name and location of this
script may vary depending on your operating system.

You must also have the privileges to create a trigger on the master
table. For information on these privileges, see the CREATE TRIGGER
command on page 4 – 257.

To create a snapshot log, you must be using Oracle7 with PL/SQL
installed.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must dominate the label of the tablespace in which the snapshot
log is to be stored.

Syntax

Keywords and
Parameters

4 – 239Commands

CREATE SNAPSHOT LOG ON

schema.

table

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

TABLESPACE tablespace

STORAGE storage_clause

is the schema containing the snapshot log’s master
table. If you omit schema, Oracle7 assumes the
master table is contained in your own schema.
Oracle7 creates the snapshot log in the schema of
its master table. You cannot create a snapshot log
for a table in the schema of the user SYS.

is the name of the master table for which the
snapshot log is to be created. You cannot create a
snapshot log for a view.

Oracle7 chooses names for the table and trigger
used to maintain the snapshot log by prefixing and
suffixing the master table name. To limit these
names to 30 bytes and allow them to contain the
entire master table name, It is recommended that
you limit master table names to 20 bytes.

establishes values for the specified parameters for
the snapshot log. See the descriptions of these
parameters in the CREATE TABLE command on
page 4 – 245.

specifies the tablespace in which the snapshot log is
to be created. If you omit this option, Oracle7
creates the snapshot log in the default tablespace
the owner of the snapshot log’s schema.

establishes storage characteristics for the snapshot
log. See the STORAGE clause on page 4 – 449.

schema

table

PCTFREE
PCTUSED
INITRANS
MAXTRANS

TABLESPACE

STORAGE

Usage Notes

Using Snapshot Logs

Example

Related Topics

4 – 240 Oracle7 Server SQL Reference

If you are using Trusted Oracle7, the new snapshot log is automatically
labeled with your DBMS label.

A snapshot log is a table that is associated with the master table of a
snapshot. When changes are made to the master table’s data, Oracle7
adds rows describing these changes to the snapshot log. Later Oracle7
can use these rows to refresh snapshots based on the master table. This
process is called a fast refresh. Without a snapshot log, Oracle7 must
execute the snapshot query to refresh the snapshot. This process is
called a complete refresh. Usually, a fast refresh takes less time than a
complete refresh.

A snapshot log is located in the master database in the same schema as
the master table. You can create only a single snapshot log for a master
table. Oracle7 can use this snapshot log to perform fast refreshes for all
simple snapshots based on the master table. Oracle7 records changes in
the snapshot log only if there is a simple snapshot based on the master
table. For more information on snapshots, including how Oracle7
refreshes snapshots, see the CREATE SNAPSHOT command on
page 4 – 230 and Oracle7 Server Distributed Systems, Volume II.

The following statement creates a snapshot log on the employee table:

CREATE SNAPSHOT LOG ON emp

PCTFREE 5

TABLESPACE users

STORAGE (INITIAL 10K NEXT 10K PCTINCREASE 50)

Oracle7 can use this snapshot log to perform a fast refresh on any
simple snapshot subsequently created on the EMP table.

ALTER SNAPSHOT LOG command on 4 – 75
CREATE SNAPSHOT command on 4 – 230
DROP SNAPSHOT LOG command on 4 – 316

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 241Commands

CREATE SYNONYM

To create a synonym. A synonym is an alternative name for a table,
view, sequence, procedure, stored function, package, snapshot, or
another synonym.

To create a private synonym in your own schema, you must have
CREATE SYNONYM system privilege.

To create a private synonym in another user’s schema, you must have
CREATE ANY SYNONYM system privilege. If you are using Trusted
Oracle7 in DBMS MAC mode, your DBMS label must dominate the
creation label of the owner of schema to contain the synonym.

To create a PUBLIC synonym, you must have CREATE PUBLIC
SYNONYM system privilege.

CREATE SYNONYM

PUBLIC schema.

synonym

FOR object

schema. @dblink

creates a public synonym. Public synonyms are
accessible to all users. If you omit this option, the
synonym is private and is accessible only within its
schema.

is the schema to contain the synonym. If you omit
schema, Oracle7 creates the synonym in your own
schema. You cannot specify schema if you have
specified PUBLIC.

is the name of the synonym to be created.

PUBLIC

schema

synonym

4 – 242 Oracle7 Server SQL Reference

identifies the object for which the synonym is
created. If you do not qualify object with schema,
Oracle7 assumes that the object is in your own
schema. The object can be of the following types:

• table

• view

• sequence

• stored procedure, function, or package

• snapshot

• synonym

The object cannot be contained in a package.

Note that the object need not currently exist and
you need not have privileges to access the object.

You can use a complete or partial dblink to create a
synonym for an object on a remote database where
the object is located. For more information on
referring to database links, see the section,
“Referring to Objects in Remote Databases,” on
page 2 – 11. If you specify dblink and omit schema,
the synonym refers to an object in the schema
specified by the database link. It is recommended
that you specify the schema containing the object in
the remote database.

If you omit dblink, Oracle7 assumes the object is
located on the local database.

FOR

Usage Notes

4 – 243Commands

In Trusted Oracle7, the new synonym is automatically labeled with
your DBMS label.

A synonym can be used to stand for its base object in any of the
following Data Manipulation Language statements:

• SELECT

• INSERT

• UPDATE

• DELETE

• EXPLAIN PLAN

• LOCK TABLE

Synonyms can also be used in the following Data Definition Language
statements:

• AUDIT

• NOAUDIT

• GRANT

• REVOKE

• COMMENT

Synonyms are used for security and convenience. Creating a synonym
for an object allows you to:

• reference the object without specifying its owner

• reference the object without specifying the database on which it
is located

• provide another name for the object

Synonyms provide both data independence and location transparency;
synonyms permit applications to function without modification
regardless of which user owns the table or view and regardless of
which database holds the table or view.

Scope of Synonyms

Example I

Example II

Related Topics

4 – 244 Oracle7 Server SQL Reference

A private synonym name must be distinct from all other objects in its
schema. Oracle7 attempts to resolve references to objects at the schema
level before resolving them at the PUBLIC synonym level. Oracle7 only
uses a public synonym when resolving references to an object if both of
the following cases are true:

• the object is not prefaced by a schema

• the object is not followed by a database link

For example, assume the schemas SCOTT and BLAKE each contain
tables named DEPT and the user SYSTEM creates a PUBLIC synonym
named DEPT for BLAKE.DEPT. If the user SCOTT then issues the
following statement, Oracle7 returns rows from SCOTT.DEPT:

SELECT *

FROM dept

To retrieve rows from BLAKE.DEPT, the user SCOTT must preface
DEPT with the schema name:

SELECT *

 FROM blake.dept

If the user ADAM’s schema does not contain an object named DEPT,
then ADAM can access the DEPT table in BLAKE’s schema by using
the public synonym DEPT:

SELECT *

FROM dept

To define the synonym MARKET for the table MARKET_RESEARCH
in the schema SCOTT, issue the following statement:

CREATE SYNONYM market

FOR scott.market_research

To create a PUBLIC synonym for the EMP table in the schema SCOTT
on the remote SALES database, you could issue the following
statement:

CREATE PUBLIC SYNONYM emp

FOR scott.emp@sales

Note that a synonym may have the same name as the base table
provided the base table is contained in another schema.

CREATE DATABASE LINK command on 4 – 185
CREATE TABLE command on 4 – 245
CREATE VIEW command 4 – 271

Purpose

Prerequisites

4 – 245Commands

CREATE TABLE

To create a table, the basic structure to hold user data, specifying the
following information:

• column definitions

• integrity constraints

• the table’s tablespace

• storage characteristics

• an optional cluster

• data from an arbitrary query

• degree of parallelism used to create the table and the default
degree of parallelism for queries on the table

To create a table in your own schema, you must have CREATE TABLE
system privilege. To create a table in another user’s schema, you must
have CREATE ANY TABLE system privilege. Also, the owner of the
schema to contain the table must have either space quota on the
tablespace to contain the table or UNLIMITED TABLESPACE system
privilege.

Syntax

Keywords and
Parameters

4 – 246 Oracle7 Server SQL Reference

CREATE TABLE

CLUSTER cluster

schema.

table

,
column()

,

DEFAULT expr column_constraint

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

TABLESPACE tablespace

STORAGE storage_clause

ENABLE enable_clause

DISABLE disable_clause

AS subquery

PARALLEL parallel_clause

CACHE

NOCACHE

(column datatype)

RECOVERABLE

UNRECOVERABLE

table_constraint

is the schema to contain the table. If you omit
schema, Oracle7 creates the table in your own
schema.

is the name of the table to be created.

specifies the name of a column of the table. A table
can have up to 254 columns. You may only omit
column definitions when using the AS subquery
clause.

is the datatype of a column. Datatypes are defined
on page 2 – 18.

schema

table

column

datatype

4 – 247Commands

You can omit the datatype only if the statement
also designates the column as part of a foreign key
in a referential integrity constraint. Oracle7
automatically assigns the column the datatype of
the corresponding column of the referenced key of
the referential integrity constraint.

specifies a value to be assigned to the column if a
subsequent INSERT statement omits a value for the
column. The datatype of the expression must
match the datatype of the column. The column
must also be long enough to hold this expression.
For the syntax of expr, see page 3 – 73. A DEFAULT
expression cannot contain references to other
columns, the pseudocolumns CURRVAL,
NEXTVAL, LEVEL, and ROWNUM, or date
constants that are not fully specified.

defines an integrity constraint as part of the
column definition. See the syntax description of
column_constraint on page 4 – 152.

defines an integrity constraint as part of the table
definition. See the syntax description of
table_constraint on page 4 – 152.

specifies the percentage of space in each of the
table’s data blocks reserved for future updates to
the table’s rows. The value of PCTFREE must be a
value from 0 to 99. A value of 0 allows the entire
block to be filled by inserts of new rows. The
default value is 10. This value reserves 10% of each
block for updates to existing rows and allows
inserts of new rows to fill a maximum of 90% of
each block.

PCTFREE has the same function in the commands
that create and alter clusters, indexes, snapshots,
and snapshot logs. The combination of PCTFREE
and PCTUSED determines whether inserted rows
will go into existing data blocks or into new blocks.

specifies the minimum percentage of used space
that Oracle7 maintains for each data block of the
table. A block becomes a candidate for row
insertion when its used space falls below
PCTUSED. PCTUSED is specified as a positive
integer from 1 to 99 and defaults to 40.

DEFAULT

column_constraint

table_constraint

PCTFREE

PCTUSED

4 – 248 Oracle7 Server SQL Reference

PCTUSED has the same function in the commands
that create and alter clusters, snapshots, and
snapshot logs.

The sum of PCTFREE and PCTUSED must be less
than 100. You can use PCTFREE and PCTUSED
together use space within a table more efficiently.
For information on the performance effects of
different values PCTUSED and PCTFREE, see
Oracle7 Server Tuning.

specifies the initial number of transaction entries
allocated within each data block allocated to the
table. This value can range from 1 to 255 and
defaults to 1. In general, you should not change the
INITRANS value from its default.

Each transaction that updates a block requires a
transaction entry in the block. The size of a
transaction entry depends on your operating
system.

This parameter ensures that a minimum number of
concurrent transactions can update the block and
helps avoid the overhead of dynamically allocating
a transaction entry.

The INITRANS parameter serves the same purpose
in clusters, indexes, snapshots, and snapshot logs
as in tables. The minimum and default INITRANS
value for a cluster or index is 2, rather than 1.

specifies the maximum number of concurrent
transactions that can update a data block allocated
to the table. This limit does not apply to queries.
This value can range from 1 to 255 and the default
is a function of the data block size. You should not
change the MAXTRANS value from its default.

If the number concurrent transactions updating a
block exceeds the INITRANS value, Oracle7
dynamically allocates transaction entries in the
block until either the MAXTRANS value is
exceeded or the block has no more free space.

The MAXTRANS parameter serves the same
purpose in clusters, snapshots, and snapshot logs
as in tables.

INITRANS

MAXTRANS

4 – 249Commands

specifies the tablespace in which Oracle7 creates
the table. If you omit this option, then Oracle7
creates the table in the default tablespace of the
owner of the schema containing the table.

specifies the storage characteristics for the table.
This clause has performance ramifications for large
tables. Storage should be allocated to minimize
dynamic allocation of additional space. See the
STORAGE clause on page 4 – 449.

specifies that the creation of the table (and any
indices required because of constraints) will be
logged in the redo log file. This is the default.

If the database is run in ARCHIVELOG mode,
media recovery from a backup will recreate the
table (and any indices required because of
constraints). You cannot specify RECOVERABLE
when using NOARCHIVELOG mode.

UNRECOVERABLE
specifies that the creation of the table (and any
indices required because of constraints) will not be
logged in the redo log file. As a result, media
recovery will not recreate the table (and any indices
required because of constraints).

This keyword can only be specified with the AS
subquery clause. Using this keyword makes table
creation faster than using the RECOVERABLE
option because redo log entries are not written.

specifies that the table is to be part of the cluster.
The columns listed in this clause are the table
columns that correspond to the cluster’s columns.
Generally, the cluster columns of a table are the
column or columns that comprise its primary key
or a portion of its primary key.

Specify one column from the table for each column
in the cluster key. The columns are matched by
position, not by name. Since a clustered table uses
the cluster’s space allocation, do not use the
PCTFREE, PCTUSED, INITRANS, or MAXTRANS
parameters, the TABLESPACE option, or the
STORAGE clause with the CLUSTER option.

TABLESPACE

STORAGE

RECOVERABLE

CLUSTER

4 – 250 Oracle7 Server SQL Reference

specifies the degree of parallelism for creating the
table and the default degree of parallelism for
queries on the table once created. For more
information, see the parallel_clause on page 4 – 378.

enables an integrity constraint. See the ENABLE
clause on page 4 – 326.

disables an integrity constraint. See the DISABLE
clause on page 4 – 295.

Constraints specified in the ENABLE and
DISABLE clauses of a CREATE TABLE statement
must be defined in the statement. You can also
enable and disable constraints with the ENABLE
and DISABLE keywords of the CONSTRAINT
clause. If you define a constraint but do not
explicitly enable or disable it, Oracle7 enables it by
default.

You cannot use the ENABLE and DISABLE clauses
in a CREATE TABLE statement to enable and
disable triggers.

inserts the rows returned by the subquery into the
table upon its creation. See the syntax description
of subquery on page 4 – 431.

The number of columns in the table must equal the
number of expressions in the subquery. The
column definitions can only specify column names,
default values, and integrity constraints, not
datatypes. Oracle7 derives datatypes and lengths
from the subquery. Oracle7 also follows the
following rules for integrity constraints:

• Oracle7 also automatically defines any NOT
NULL constraints on columns in the new table
that existed on the corresponding columns of the
selected table if the subquery selects the column
rather than an expression containing the column.

• A CREATE TABLE statement cannot contain
both the AS clause and a referential integrity
constraint definition.

PARALLEL

ENABLE

DISABLE

AS subquery

Usage Notes

UNRECOVERABLE

4 – 251Commands

• If a CREATE TABLE statement contains both the
AS clause and a CONSTRAINT clause or an
ENABLE clause with the EXCEPTIONS option,
Oracle7 ignores the EXCEPTIONS option. If any
rows violate the constraint, Oracle7 does not
create the table and returns an error message.

If all expressions in the subquery are columns,
rather than expressions, you can omit the columns
from the table definition entirely. In this case, the
names of the columns of table are the same as the
columns in the subquery.

specifies that the blocks retrieved for this table are
placed at the most recently used end of the LRU
list in the buffer cache when a full table scan is
performed. This option is useful for small lookup
tables.

specifies that the blocks retrieved for this table are
placed at the least recently used end of the LRU list
in the buffer cache when a full table scan is
performed. This is the default behavior.

Tables are created with no data unless a query is specified. You can add
rows to a table with the INSERT command.

After creating a table, you can define additional columns and integrity
constraints with the ADD clause of the ALTER TABLE command. You
can change the definition of an existing column with the MODIFY
clause of the ALTER TABLE command. To modify an integrity
constraint, you must drop the constraint and redefine it.

Use of this option may significantly reduce the time taken to create
large tables. Note that the keyword UNRECOVERABLE must be
explicitly specified. For backup and recovery considerations, see
Oracle7 Server Administrator’s Guide.

CACHE

NOCACHE

Example I

Example II

4 – 252 Oracle7 Server SQL Reference

To define the EMP table owned by SCOTT, you could issue the
following statement:

CREATE TABLE scott.emp

(empno NUMBER CONSTRAINT pk_emp PRIMARY KEY,

 ename VARCHAR2(10) CONSTRAINT nn_ename NOT NULL

 CONSTRAINT upper_ename

 CHECK (ename = UPPER(ename)),

 job VARCHAR2(9),

 mgr NUMBER CONSTRAINT fk_mgr

 REFERENCES scott.emp(empno),

 hiredate DATE DEFAULT SYSDATE,

 sal NUMBER(10,2) CONSTRAINT ck_sal

 CHECK (sal > 500),

 comm NUMBER(9,0) DEFAULT NULL,

 deptno NUMBER(2) CONSTRAINT nn_deptno NOT NULL

 CONSTRAINT fk_deptno

REFERENCES scott.dept(deptno))

PCTFREE 5 PCTUSED 75 ;

This table contains 8 columns. For example, the EMPNO column is of
datatype NUMBER and has an associated integrity constraint named
PK_EMP. The HIRDEDATE column is of datatype DATE and has a
default value of SYSDATE.

This table definition specifies a PCTFREE of 5 and a PCTUSED of 75,
which is appropriate for a relatively static table. The definition also
defines integrity constraints on the columns of the EMP table.

To define the sample table SALGRADE in the HUMAN_RESOURCE
tablespace with a small storage and limited allocation potential, issue
the following statement:

CREATE TABLE salgrade

(grade NUMBER CONSTRAINT pk_salgrade

 PRIMARY KEY

 USING INDEX TABLESPACE users_a,

 losal NUMBER,

 hisal NUMBER)

TABLESPACE human_resource

STORAGE (INITIAL 6144

 NEXT 6144

 MINEXTENTS 1

 MAXEXTENTS 5

 PCTINCREASE 5);

The above statement also defines a PRIMARY KEY constraint on the
GRADE column and specifies that the index Oracle7 creates to enforce
this constraint is created in the USERS_A tablespace.

Example III

Related Topics

4 – 253Commands

For more examples of defining integrity constraints, see the
CONSTRAINT clause on page 4 – 152. For examples of enabling and
disabling integrity constraints, see the ENABLE and DISABLE clauses
on pages 4 – 326 and 4 – 295, respectively.

Assuming you have the parallel query option, then the fastest method
to create a table that has the same columns as the EMP table, but only
for those employees in department 10, is to issue a command similar to
the following:

CREATE TABLE emp_tmp

UNRECOVERABLE

PARALLEL (DEGREE 3)

AS SELECT * FROM emp WHERE deptno = 10;

The UNRECOVERABLE keyword speeds up table creation because
there is no overhead in generating and logging redo information.

Using parallelism speeds up the creation of the table because three
processes are used to create the table. After the table is created,
querying the table is also faster because the same degree of parallelism
is used to access the table.

ALTER TABLE command on 4 – 89
CREATE CLUSTER command on 4 – 164
CREATE INDEX command on 4 – 192
CREATE TABLESPACE command on 4 – 254
DROP TABLE command on 4 – 318
CONSTRAINT clause on 4 – 149
DISABLE clause on 4 – 295
ENABLE clause on 4 – 326
PARALLEL clause on 4 – 378
STORAGE clause on 4 – 449

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 254 Oracle7 Server SQL Reference

CREATE TABLESPACE

To create a tablespace. A tablespace is an allocation of space in the
database that can contain objects.

You must have CREATE TABLESPACE system privilege. Also, the
SYSTEM tablespace must contain at least two rollback segments
including the SYSTEM rollback segment.

CREATE TABLESPACE tablespace

OFFLINE

DEFAULT STORAGE storage_clause

ONLINE

DATAFILE

,

filespec

MAXSIZENEXT integer

K

M

ON

OFFAUTOEXTEND

integer

UNLIMITED

K

M

TEMPORARY

PERMANENT

is the name of the tablespace to be created.

specifies the data file or files to comprise the
tablespace. See the syntax description of filespec on
page 4 – 343.

enables or disables the automatic extension of
datafile.

disable autoextend if it is turned
on. NEXT and MAXSIZE are set to
zero. Values for NEXT and
MAXSIZE must be respecified in
further ALTER TABLESPACE
AUTOEXTEND commands.

enable autoextend.

tablespace

DATAFILE

AUTOEXTEND

OFF

ON

Usage Notes

4 – 255Commands

disk space to allocate to the
datafile when more extents are
required.

maximum disk space allowed for
allocation to the datafile.

set no limit on allocating disk
space to the datafile.

DEFAULT STORAGE
specifies the default storage parameters for all
objects created in the tablespace. For information
on storage parameters, see the STORAGE clause.

makes the tablespace available immediately after
creation to users who have been granted access to
the tablespace.

makes the tablespace unavailable immediately
after creation.

If you omit both the ONLINE and OFFLINE
options, Oracle7 creates the tablespace online by
default. The data dictionary view
DBA_TABLESPACES indicates whether each
tablespace is online or offline.

specifies that the tablespace will be used to hold
permanent objects. This is the default.

specifies that the tablespace will only be used
to hold temporary objects. For example, segments
used by implicit sorts to handle ORDER
BY clauses.

A tablespace is an allocation of space in the database that can contain
any of the following segments:

• data segments

• index segments

• rollback segments

• temporary segments

NEXT

MAXSIZE

UNLIMITED

ONLINE

OFFLINE

PERMANENT

TEMPORARY

Example I

Example II

Related Topics

4 – 256 Oracle7 Server SQL Reference

All databases have at least one tablespace, SYSTEM, which Oracle7
creates automatically when you create the database.

When you create a tablespace, it is initially a read–write tablespace.
After creating the tablespace, you can subsequently use the ALTER
TABLESPACE command to take it offline or online, add data files to it,
or make it a read–only tablespace.

Many schema objects have associated segments that occupy space in
the database. These objects are located in tablespaces. The user creating
such an object can optionally specify the tablespace to contain the
object. The owner of the schema containing the object must have space
quota on the object’s tablespace. You can assign space quota on a
tablespace to a user with the QUOTA clause of the CREATE USER or
ALTER USER commands.

Warning: For operating systems that support raw devices, be
aware that the STORAGE clause REUSE keyword has no
meaning when specifying a raw device as a datafile in a
CREATE TABLESPACE command; such a command will
always succeed even if REUSE is not specified.

This command creates a tablespace named TABSPACE_2 with one
datafile:

CREATE TABLESPACE tabspace_2

DATAFILE ’diska:tabspace_file2.dat’ SIZE 20M

DEFAULT STORAGE (INITIAL 10K NEXT 50K

 MINEXTENTS 1 MAXEXTENTS 999

 PCTINCREASE 10)

ONLINE

This command creates a tablespace named TABSPACE_3 with one
datafile; when more space is required, 50 kilobyte extents will be
added up to a maximum size of 10 megabytes:

CREATE TABLESPACE tabspace_3

DATAFILE ’diskb:tabspace_file3.dat’ SIZE 500K REUSE

AUTOEXTEND ON NEXT 500K MAXSIZX 10M

ALTER TABLESPACE command on 4 – 98
DROP TABLESPACE command on 4 – 320

Purpose

Prerequisites

OSDoc

4 – 257Commands

CREATE TRIGGER

To create and enable a database trigger. A database trigger is a stored
PL/SQL block that is associated with a table. Oracle7 automatically
executes a trigger when a specified SQL statement is issued against the
table.

Before a trigger can be created, the user SYS must run the SQL script
DBMSSTDX.SQL. The exact name and location of this script may vary
depending on your operating system.

To issue this statement, you must have one of the following system
privileges:

CREATE TRIGGER
This system privilege allows you to create a trigger
in your own schema on a table in your own
schema.

CREATE ANY TRIGGER
This system privilege allows you to create a trigger
in any user’s schema on a table in any user’s
schema.

If the trigger issues SQL statements or calls procedures or functions,
then the owner of the schema to contain the trigger must have the
privileges necessary to perform these operations. These privileges must
be granted directly to the owner, rather than acquired through roles.

To create a trigger, you must be using Oracle7 with PL/SQL installed.

Syntax

Keywords and
Parameters

4 – 258 Oracle7 Server SQL Reference

OR REPLACE

BEFORE

AFTER

pl/sql_block

CREATE TRIGGER

schema.

trigger

DELETE

OR

ON

schema.

table

INSERT

UPDATE

,

columnOF

FOR EACH ROW

OLDREFERENCING

AS

old

WHEN (condition)

NEW new

AS

recreates the trigger if it already exists. You can use
this option to change the definition of an existing
trigger without first dropping it.

is the schema to contain the trigger. If you omit
schema, Oracle7 creates the trigger in your own
schema.

is the name of the trigger to be created.

indicates that Oracle7 fires the trigger before
executing the triggering statement. For row
triggers, this is a separate firing before each
affected row is changed.

indicates that Oracle7 fires the trigger after
executing the triggering statement. For row
triggers, this is a separate firing after each affected
row is changed.

indicates that Oracle7 fires the trigger whenever a
DELETE statement removes a row from the table.

indicates that Oracle7 fires the trigger whenever an
INSERT statement adds a row to table.

OR REPLACE

schema

trigger

BEFORE

AFTER

DELETE

INSERT

4 – 259Commands

indicates that Oracle7 fires the trigger whenever an
UPDATE statement changes a value in one of the
columns specified in the OF clause. If you omit the
OF clause, Oracle7 fires the trigger whenever an
UPDATE statement changes a value in any column
of the table.

specifies the schema and name of the table on
which the trigger is to be created. If you omit
schema, Oracle7 assumes the table is in your own
schema. You cannot create a trigger on a table in
the schema SYS.

specifies correlation names. You can use correlation
names in the PL/SQL block and WHEN clause of a
row trigger to refer specifically to old and new
values of the current row. The default correlation
names are OLD and NEW. If your row trigger is
associated with a table named OLD or NEW, you
can use this clause to specify different correlation
names to avoid confusion between the table name
and the correlation name.

designates the trigger to be a row trigger. Oracle7
fires a row trigger once for each row that is affected
by the triggering statement and meets the optional
trigger constraint defined in the WHEN clause.

If you omit this clause, the trigger is a statement
trigger. Oracle7 fires a statement trigger only once
when the triggering statement is issued if the
optional trigger constraint is met.

specifies the trigger restriction. The trigger
restriction contains a SQL condition that must be
satisfied for Oracle7 to fire the trigger. See the
syntax description of condition on page 3 – 78. This
condition must contain correlation names and
cannot contain a query.

You can only specify a trigger restriction for a row
trigger. Oracle7 evaluates this condition for each
row affected by the triggering statement.

UPDATE OF

ON

REFERENCING

FOR EACH ROW

WHEN

Usage Notes

Triggers

4 – 260 Oracle7 Server SQL Reference

is the PL/SQL block that Oracle7 executes to fire
the trigger. For information on PL/SQL, including
how to write PL/SQL blocks, see PL/SQL User’s
Guide and Reference.

Note that the PL/SQL block of a trigger cannot
contain transaction control SQL statements
(COMMIT, ROLLBACK, and SAVEPOINT).

Before Release 7.3, triggers were parsed and compiled whenever a
trigger was fired. From Release 7.3 onwards, the compiled version of a
trigger is stored in the data dictionary and is called when a trigger is
fired. This feature provides a significant performance improvement to
applications that use many triggers.

If a trigger produces compilation errors, it still will be created, but it
will fail on execution. This means it effectively blocks all triggering
DML statements until it is disabled, replaced by a version without
compilation errors, or dropped.

To embed a CREATE TRIGGER statement inside an Oracle
Precompiler program, you must terminate the statement with the
keyword END–EXEC followed by the embedded SQL statement
terminator for the specific language.

A database trigger is a stored procedure that is associated with a table.
Oracle7 automatically fires, or executes, a trigger when a triggering
statement is issued.

You can use triggers for the following purposes:

• to provide sophisticated auditing and transparent event logging

• to automatically generate derived column values

• to enforce complex security authorizations and business
constraints

• to maintain replicate asynchronous tables

For more information on how to design triggers for the above
purposes, see the “Using Database Triggers” chapter of Oracle7 Server
Application Developer’s Guide.

pl/sql_block

Parts of a Trigger

Types of Triggers

4 – 261Commands

The syntax of the CREATE TRIGGER statement includes the following
parts of the trigger:

Triggering statement The definition of the triggering statement
specifies what SQL statements cause Oracle7 to fire the trigger.

You must specify at least one of these commands
that causes Oracle7 to fire the trigger. You can
specify as many as three.

You must also specify the table with which the
trigger is associated. The triggering statement is
one that modifies this table.

Trigger restriction The trigger restriction specifies an additional
condition that must be satisfied for a row trigger to be fired. You can
specify this condition with the WHEN clause. This condition must be a
SQL condition, rather than a PL/SQL condition.

Trigger action The trigger action specifies the PL/SQL block Oracle7
executes to fire the trigger.

Oracle7 evaluates the condition of the trigger restriction whenever a
triggering statement is issued. If this condition is satisfied, then Oracle7
fires the trigger using the trigger action.

You can create different types of triggers. The type of a trigger
determines the following things:

• when Oracle7 fires the trigger in relation to executing the
triggering statement

• how many times Oracle7 fires the trigger

The type of a trigger is based on the use of the following options of the
CREATE TRIGGER command:

• BEFORE

• AFTER

• FOR EACH ROW

Using all combinations of the options for the above parts, you can
create four basic types of triggers. Table 4 – 10 describes each type of
trigger, its properties, and the options used to create it.

DELETE
INSERT
UPDATE

ON

4 – 262 Oracle7 Server SQL Reference

FOR EACH ROW option

BEFORE
Option

BEFORE statement
trigger: Oracle7 fires the
trigger once before
executing the triggering
statement.

BEFORE row trigger:
Oracle7 fires the trigger
before modifying each
row affected by the
triggering statement.

AFTER Option AFTER statement
trigger: Oracle7 fires the
trigger once after
executing the triggering
statement.

AFTER row trigger:
Oracle7 fires the trigger
after modifying each row
affected by the triggering
statement.

Table 4 – 10 Types of Triggers

For a single table, you can create each type of trigger for each of the
following commands:

• DELETE

• INSERT

• UPDATE

You can also create triggers that fire for more than one command.

If you create multiple triggers of the same type that fire for the same
command on the same table, the order in which Oracle7 fires these
triggers is indeterminate. If your application requires that one trigger
be fired before another of the same type for the same command,
combine these triggers into a single trigger whose trigger action
performs the trigger actions of the original triggers in the appropriate
order.

Enabling and
Disabling Triggers

Snapshot Log Triggers

4 – 263Commands

An existing trigger must be in one of the following states:

If a trigger is enabled, Oracle7 fires the trigger
whenever a triggering statement is issued and the
condition of the trigger restriction is met.

If a trigger is disabled, Oracle7 does not fire the
trigger when a triggering statement is issued and
the condition of the trigger restriction is met.

When you create a trigger, Oracle7 enables it automatically.

You can subsequently disable and enable a trigger with one of the
following commands:

• the ALTER TRIGGER command with the DISABLE and
ENABLE options

• the ALTER TABLE command with the DISABLE and ENABLE
clauses

For information on how to enable and disable triggers, see the ALTER
TRIGGER command on page 4 – 105, the ALTER TABLE command on
page 4 – 89, the ENABLE clause on page 4 – 326, and the DISABLE
clause on page 4 – 295.

When you create a snapshot log for a table, Oracle7 implicitly creates
an AFTER ROW trigger on the table. This trigger inserts a row into the
snapshot log whenever an INSERT, UPDATE, or DELETE statement
modifies the table’s data. Since you cannot control the order in which
multiple row triggers fire, you shouldn’t write triggers intended to
affect the content of the snapshot. For more information on snapshot
logs, see the CREATE SNAPSHOT LOG command earlier in this
chapter.

enabled

disabled

Example I

4 – 264 Oracle7 Server SQL Reference

This example creates a BEFORE statement trigger named
EMP_PERMIT_CHANGES in the schema SCOTT. This trigger ensures
that changes to employee records are only made during business hours
on working days:

CREATE TRIGGER scott.emp_permit_changes

BEFORE

DELETE OR INSERT OR UPDATE

ON scott.emp

DECLARE

dummy INTEGER;

BEGIN

/* If today is a Saturday or Sunday,

 then return an error.*/

IF (TO_CHAR(SYSDATE, ’DY’) = ’SAT’ OR

TO_CHAR(SYSDATE, ’DY’) = ’SUN’)

THEN raise_application_error(–20501,

’May not change employee table during the weekend’);

END IF;

/* Compare today’s date with the dates of all

company holidays. If today is a company holiday,

then return an error. */

SELECT COUNT(*)

INTO dummy

FROM company_holidays

WHERE day = TRUNC(SYSDATE);

IF dummy > 0

THEN raise_application_error(–20501,

’May not change employee table during a holiday’);

END IF;

/* If the current time is before 8:00AM or after

6:00PM, then return an error.

*/

IF (TO_CHAR(SYSDATE, ’HH24’) < 8 OR

TO_CHAR(SYSDATE, ’HH24’) >= 18)

THEN raise_application_error(–20502,

’May only change employee table during working hours’);

END IF;

END;

Oracle7 fires this trigger whenever a DELETE, INSERT, or UPDATE
statement affects the EMP table in the schema SCOTT.

Example II

4 – 265Commands

Since EMP_PERMIT_CHANGES is a BEFORE statement trigger,
Oracle7 fires it once before executing the triggering statement.

The trigger performs the following operations:

1. If the current day is a Saturday or Sunday, the trigger raises an
application error with a message that the employee table cannot be
changed during weekends.

2. The trigger compares the current date with the dates listed in the
table of company holidays.

3. If the current date is a company holiday, the trigger raises an
application error with a message that the employee table cannot be
changed during holidays.

4. If the current time is not between 8:00AM and 6:00PM, the trigger
raises an application error with a message that the employee table
can only be changed during business hours.

This example creates a BEFORE row trigger named SALARY_CHECK
in the schema SCOTT. Whenever a new employee is added to the
employee table or an existing employee’s salary or job is changed, this
trigger guarantees that the employee’s salary falls within the
established salary range for the employee’s job:

CREATE TRIGGER scott.salary_check

BEFORE

INSERT OR UPDATE OF sal, job ON scott.emp

FOR EACH ROW

WHEN (new.job <> ’PRESIDENT’)

DECLARE

minsal NUMBER;

maxsal NUMBER;

BEGIN

/* Get the minimum and maximum salaries for the

 employee’s job from the SAL_GUIDE table. */

SELECT minsal, maxsal

INTO minsal, maxsal

FROM sal_guide

WHERE job = :new.job;

/* If the employee’s salary is below the minimum or */

/* above the maximum for the job, then generate an */

/* error. */

IF (:new.sal < minsal OR :new.sal > maxsal)

THEN raise_application_error(–20601,

’Salary ’ || :new.sal || ’ out of range for job ’

|| :new.job || ’ for employee ’ || :new.ename);

END IF;

END;

Related Topics

4 – 266 Oracle7 Server SQL Reference

Oracle7 fires this trigger whenever one of the following statements is
issued:

• an INSERT statement that adds rows to the EMP table

• an UPDATE statement that changes values of the SAL or JOB
columns of the EMP table

Since SALARY_CHECK is a BEFORE row trigger, Oracle7 fires it before
changing each row that is updated by the UPDATE statement or before
adding each row that is inserted by the INSERT statement.

SALARY_CHECK has a trigger restriction that prevents it from
checking the salary of the company president. For each new or
modified employee row that meets this condition, the trigger performs
the following steps:

1. The trigger queries the salary guide table for the minimum and
maximum salaries for the employee’s job.

2. The trigger compares the employee’s salary with these minimum
and maximum values.

3. If the employee’s salary does not fall within the acceptable range,
the trigger raises an application error with a message that the
employee’s salary is not within the established range for the
employee’s job.

ALTER TRIGGER command on 4 – 105
DROP TRIGGER command on 4 – 322
ENABLE clause on 4 – 326
DISABLE clause on 4 – 295

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 267Commands

CREATE USER

To create a database user, or an account through which you can log in to
the database, and establish the means by which Oracle7 permits access
by the user. You can optionally assign the following properties to the
user:

• default tablespace

• temporary tablespace

• quotas for allocating space in tablespaces

• profile containing resource limits

You must have CREATE USER system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, you must meet
additional prerequisites to perform the optional assignments of this
statement:

• To assign a default or temporary tablespace, your DBMS label
must dominate the tablespace’s creation label.

• To assign a profile, your DBMS label must dominate the profile’s
creation label.

CREATE USER user

DEFAULT TABLESPACE tablespace

TEMPORARY TABLESPACE tablespace

QUOTA

PROFILE profile

K

M

UNLIMITED

IDENTIFIED BY password

EXTERNALLY

integer ON tablespace

is the name of the user to be created. This name can
only contain characters from your database
character set and must follow the rules described
in the section “Object Naming on Rule” on
page 2 – 3. It is recommended that the user contain
at least one single–byte character regardless of
whether the database character set also contains
multi–byte characters.

user

4 – 268 Oracle7 Server SQL Reference

indicates how Oracle7 permits user access:

The user must specify this
password to logon. Password must
follow the rules described in the
section “Object Naming Rules” on
page 2 – 3 and can only contain
single–byte characters from your
database character set regardless of
whether this character set also
contains multi–byte characters.

Oracle7 verifies that the operating
system username matches the
database username specified in a
database connection.

DEFAULT TABLESPACE
identifies the default tablespace for objects that the
user creates. If you omit this clause, objects default
to the SYSTEM tablespace.

TEMPORARY TABLESPACE
identifies the tablespace for the user’s temporary
segments. If you omit this clause, temporary
segments default to the SYSTEM tablespace.

allows the user to allocate space in the tablespace
and optionally establishes a quota of integer bytes.
This quota is the maximum space in the tablespace
the user can allocate. You can also use the K or M
to specify the quota in kilobytes or megabytes.

Note that a CREATE USER command can have
multiple QUOTA clauses for multiple tablespaces.

allows the user to allocate space in
the tablespace without bound.

reassigns the profile named profile to the user. The
profile limits the amount of database resources the
user can use. If you omit this clause, Oracle7
assigns the DEFAULT profile to the user.

IDENTIFIED

BY password

EXTERNALLY

QUOTA

UNLIMITED

PROFILE

Usage Notes

Verifying Users Through
Your Operating System

Establishing Tablespace
Quotas for Users

Granting Privileges
to a User

4 – 269Commands

If you create a new user in Trusted Oracle7, the user’s creation label is
your DBMS label.

Using CREATE USER ... INDENTIFIED EXTERNALLY allows a
database administrator to create a database user that can only be
accessed from a specific operating system account. During a database
connection, Oracle7 verifies that the operating system username
matches the specified database username (prefixed by the value of the
initialization parameter OS_AUTHENT_PREFIX). Effectively, you are
relying on the login authentication of the operating system to ensure
that a specific operating system user has access to a specific database
user. Thus, the effective security of such database accounts is
dependent entirely on the strength of the operating security
mechanisms. For more information, see the Oracle7 Server
Administrator’s Guide.

Oracle Corporation strongly recommends that you do not use
IDENTIFIED EXTERNALLY with operating systems that have
inherently weak login security.

To create an object or a temporary segment, the user must allocate
space in some tablespace. To allow the user to allocate space, use the
QUOTA clause. A CREATE USER statement can have multiple QUOTA
clauses, each for a different tablespace. Other clauses can appear only
once.

Note that you need not have a quota on a tablespace to establish a
quota for another user on that tablespace.

For a user to perform any database operation, the user’s privilege
domain must contain a privilege that authorizes that operation. A
user’s privilege domain contains all privileges granted to the user and
all privileges in the privilege domains of the user’s enabled roles. When
you create a user with the CREATE USER command, the user’s
privilege domain is empty.

Note: To logon to Oracle7, a user must have CREATE
SESSION system privilege. After creating a user, you should
grant the user this privilege.

Example I

Example II

Related Topics

4 – 270 Oracle7 Server SQL Reference

You can create the user SIDNEY by issuing the following statement:

CREATE USER sidney

IDENTIFIED BY carton

DEFAULT TABLESPACE cases_ts

QUOTA 10M ON cases_ts

QUOTA 5M ON temp_ts

QUOTA 5M ON system

PROFILE engineer

The user SIDNEY has the following characteristics:

• the password CARTON

• default tablespace CASES_TS, with a quota of 10 megabytes

• temporary tablespace TEMP_TS, with a quota of 5 megabytes

• access to the tablespace SYSTEM, with a quota of 5 megabytes

• limits on database resources defined by the profile ENGINEER

To create a user accessible only by the operating system account
GEORGE, prefix GEORGE by the value of the initialization parameter
OS_AUTHENT_PREFIX. For example, if this value is “OPS$”, you can
create the user OPS$GEORGE with the following statement:

CREATE USER ops$george

IDENTIFIED EXTERNALLY

DEFAULT TABLESPACE accs_ts

TEMPORARY TABLESPACE temp_ts

QUOTA UNLIMITED ON accs_ts

 QUOTA UNLIMITED ON temp_ts

The user OPS$GEORGE has the following additional characteristics:

• default tablespace ACCS_TS

• default temporary tablespace TEMP_TS

• unlimited space on the tablespaces ACCS_TS and TEMP_TS

• limits on database resources defined by the DEFAULT profile

ALTER USER command on 4 – 108
CREATE PROFILE command on 4 – 210
CREATE TABLESPACE command 4 – 254
GRANT command on 4 – 346

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 271Commands

CREATE VIEW

To define a view, a logical table based on one or more tables or views.

To create a view in your own schema, you must have CREATE VIEW
system privilege. To create a view in another user’s schema, you must
have CREATE ANY VIEW system privilege.

The owner of the schema containing the view must have the privileges
necessary to either select, insert, update, or delete rows from all the
tables or views on which the view is based. For information on these
privileges, see the SELECT command on page 4 – 405, the INSERT
command on page 4 – 361, the UPDATE command on page 4 – 460, and
the DELETE command on page 4 – 286. The owner must be granted
these privileges directly, rather than through a role.

CREATE

alias

OR REPLACE

view

schema.

CHECK OPTION

VIEW

()

FORCE

NO FORCE

AS subquery

CONSTRAINT constraint

WITH

READ ONLY

recreates the view if it already exists. You can use
this option to change the definition of an existing
view without dropping, recreating, and regranting
object privileges previously granted on it.

creates the view regardless of whether the view’s
base tables exist or the owner of the schema
containing the view has privileges on them. Note
that both of these conditions must be true before
any SELECT, INSERT, UPDATE, or DELETE
statements can be issued against the view.

creates the view only if the base tables exist and the
owner of the schema containing the view has
privileges on them.

The default is NOFORCE.

OR REPLACE

FORCE

NOFORCE

4 – 272 Oracle7 Server SQL Reference

is the schema to contain the view. If you omit schema,
Oracle7 creates the view in your own schema.

is the name of the view.

specifies names for the expressions selected by the
view’s query. The number of aliases must match
the number of expressions selected by the view.
Aliases must follow the rules for naming schema
objects in the section, “Naming Objects and Parts,”
on page 2 – 3. Aliases must be unique within the
view.

If you omit the aliases, Oracle7 derives them from
the columns or column aliases in the view’s query.
For this reason, you must use aliases if the view’s
query contains expressions rather than only
column names.

identifies columns and rows of the table(s) that the
view is based on. A view’s query can be any
SELECT statement without the ORDER BY or FOR
UPDATE clauses. Its select list can contain up to
254 expressions. See the syntax description of
subquery on page 4 – 436.

WITH READ ONLY
specifies that no deletes, inserts, or updates can be
performed through the view.

WITH CHECK OPTION
specifies that inserts and updates performed
through the view must result in rows that the view
query can select. The CHECK OPTION cannot
make this guarantee if there is a subquery in the
query of this view or any view on which this view
is based.

is the name assigned to the CHECK OPTION
constraint. If you omit this identifier, Oracle7
automatically assigns the constraint a name of this
form:

SYS_Cn

where n is an integer that makes the constraint
name unique within the database.

schema

view

alias

AS subquery

CONSTRAINT

Usage Notes

The View Query

4 – 273Commands

A view is a logical table that allows you to access data from other tables
and views. A view contains no data itself. The tables upon which a
view is based are called base tables.

Views are used for the following purposes:

• To provide an additional level of table security, by restricting access
to a predetermined set of rows and/or columns of a base table.

• To hide data complexity. For example, a view may be used to act as
one table when actually several tables are used to construct
the result.

• To present data from another perspective. For example, views
provide a means of renaming columns without actually changing
the base table’s definition.

• To cause Oracle7 to perform some operations, such as joins, on
the database containing the view, rather than another database
referenced in the same SQL statement.

You can use a view anywhere you can use a table in any of the
following SQL statements:

• COMMENT

• DELETE

• INSERT

• LOCK TABLE

• UPDATE

• SELECT

For the syntax of the view’s query, see the syntax description of
subquery on page 4 – 436. Note the following caveats:

• A view’s query cannot select the CURRVAL or NEXTVAL
pseudocolumns.

• If a view’s query selects the ROWID, ROWNUM, or LEVEL
pseudocolumns, they must have aliases in the view’s query.

Join Views

4 – 274 Oracle7 Server SQL Reference

• You can define a view with a query that uses an asterisk (*) to
select all the columns of a table:

 CREATE VIEW emp_vu

 AS SELECT * FROM emp

Oracle7 translates the asterisk into a list of all the columns in the
table at the time the CREATE VIEW statement is issued. If you
subsequently add new columns to the table, the view will not
contain these columns unless you recreate the view by issuing
another CREATE VIEW statement with the OR REPLACE
option. It is recommended that you explicitly specify all columns
in the select list of a view query, rather than use the asterisk.

• You can create views that refer to remote tables and views by
using database links in the view query. It is recommended that
any remote table or view referenced in the view query be
qualified with the name of the schema containing it. It is
recommended that any database links used in the view query be
defined using the CONNECT TO clause of the CREATE
DATABASE LINK command.

The above caveats also apply to the query for a snapshot.

If the view query contains any of the following constructs, you cannot
perform inserts, updates, or deletes on the view:

• set operators

• group functions

• GROUP BY, CONNECT BY, or START WITH clauses

• the DISTINCT operator

Note that if a view contains pseudocolumns or expressions, you can
only update the view with an UPDATE statement that does not refer to
any of the pseudocolumns or expressions.

A join view is a view with a subquery containing a join. The restrictions
described above also apply to join views.

If at least one column in the subquery join has a unique index, then it
may be possible to modify one base table in a join view. You can query
USER_UPDATABLE_COLUMNS to see whether the columns in a join
view are updatable. For example:

Partition Views

4 – 275Commands

CREATE VIEW ed AS

SELECT e.empno, e.ename, d.deptno, d.loc

 FROM emp e, dept d

 WHERE e.deptno = d.deptno

View created.

SELECT column_name, updatable

 FROM user_updatable_columns

 WHERE table_name = ’ED’;

COLUMN_NAME UPD

––––––––––––––– –––

ENAME YES

DEPTNO NO

EMPNO YES

LOC NO

In the above example, note that there is a unique index on the DEPTNO
column of the DEPT table.

In the above example, you may insert, update or delete a row from the
EMP base table because all the columns in the view mapping to the
emp table are marked as updatable and because the primary key of
emp is included in the view. For more information on updating join
views, see ”Modifying a Join View” in the Oracle7 Server Application
Developer’s Guide. If there were not null columns in the base EMP table
that were not specified in the view subquery, then you could not insert
into the table using the view.

A partition view is a view that for performance reasons brings together
several tables to behave as one. The effect is as though a single table
were divided into multiple tables (partitions) that could be
independently accessed. Each partition contains some subset of the
values in the view, typically a range of values in some column. Among
the advantages of partition views are the following:

• each table in the view is separately indexed, and all indexes can
be scanned in parallel.

• if Oracle can tell by the definition of a partition that it can
produce no rows to satisfy a query, Oracle will save time by not
examining that partition.

• the partitions can be as sophisticated as can be expressed in
CHECK constraints.

• if you have the parallel query option, the partitions can be
scanned in parallel.

4 – 276 Oracle7 Server SQL Reference

• partitions can overlap.

 Among the disadvantages of partition views are the following:

• they cannot be updated.

• they have no master index; rather each component table is
separately indexed. For this reason, they are recommended for
DSS (Decision Support Systems or ”data warehousing”)
applications, but not for OLTP.

To create a partition view, do the following:

• CREATE the tables that will comprise the view or ALTER
existing tables suitably.

• give each table a constraint that limits the values it can hold to
the range or other restriction criteria desired.

• create a local index on the constrained column(s) of each table.

• create the partition view as a series of SELECT statements whose
outputs are combined using UNION ALL. The view should
select all rows and columns from the underlying tables. For more
information on SELECT or UNION ALL, see ”SELECT” on page
4 – 405.

• if you have the parallel query option enabled, specify that the
view is parallel, so that the tables within it are accessed
simultaneously when the view is queried. There are two ways to
do this:

– specify ”parallel” for each underlying table. For more
information on this, see page 4 – 378.

– place a comment in the SELECT statement that the view
contains to give a hint of ”parallel” to the Oracle optimizer.
For more information on how to do this, see Oracle7 Server
Tuning.

There is no special syntax required for partition views. Oracle
interprets a UNION ALL view of several tables, each of which have
local indexes on the same columns, as a partition view. To confirm that
Oracle has correctly identified a partition view, examine the output of
the EXPLAIN PLAN command. For more information on EXPLAIN
PLAN, or on partition views, see Oracle7 Server Tuning.

Example I

Example II

Example III

Related Topics

4 – 277Commands

The following statement creates a view of the EMP table named
DEPT20. The view shows the employees in department 20 and their
annual salary:

CREATE VIEW dept20

AS SELECT ename, sal*12 annual_salary

FROM emp

WHERE deptno = 20

Note that the view declaration need not define a name for the column
based on the expression SAL*12 because the subquery uses a column
alias (ANNUAL_SALARY) for this expression.

The following statement creates an updatable view named CLERKS of
all clerks in the employee table; only the employees’ IDs, names, and
department numbers are visible in this view and only these columns
can be updated in rows identified as clerks:

CREATE VIEW clerk (id_number, person, department, position)

AS SELECT empno, ename, deptno, job

FROM emp

WHERE job = ’CLERK’

 WITH CHECK OPTION CONSTRAINT wco

The following statement creates a read only view named CLERKS of all
clerks in the employee table; only the employee’s IDs, names, and
department numbers are visible in this view:

CREATE VIEW clerk (id_number, person, department, position)

AS SELECT empno, ename, deptno, job

FROM emp

WHERE job = ’CLERK’

 WITH READ ONLY

Because of the CHECK OPTION, you cannot subsequently insert a new
row into CLERK if the new employee is not a clerk.

CREATE TABLE command on 4 – 245
CREATE SYNONYM command on 4 – 241
DROP VIEW command on 4 – 325
RENAME command on 4 – 386
SELECT command on 4 – 405

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

4 – 278 Oracle7 Server SQL Reference

DEALLOCATE clause

To specify the amount of unused space to deallocate from extents.

This clause can only be used in the following commands:

• ALTER CLUSTER

• ALTER TABLE

• ALTER INDEX

K

KEEP integer

DEALLOCATE UNUSED

M

specifies the amount of unused space to keep.

the number of bytes to keep. You
can also use K or M to specify the
size in kilobytes or megabytes.

For more information on the administration of schema objects, see
Oracle7 Server Administrator’s Guide.

You use the DEALLOCATE clause to reclaim unused space in extents
in a cluster, table or index for reuse by other objects in the tablespace.
The user quota for the tablespace in which the deallocation occurs is
credited by the amount of the released space.

Unused space is deallocated from the end of the object toward the high
water mark at the beginning of the object. If an extent is completely
contained in the deallocation, then the whole extent is freed for reuse. If
an extent is partially contained in the deallocation, then the used part
up to the high water mark becomes the extent and the remaining
unused space is freed for reuse.

INITIAL, MINEXTENTS and NEXT are described in the STORAGE
clause on page 4 – 449.

If you omit the KEEP option and the high water mark is above the size
of INITIAL and MINEXTENTS, then all unused space above the high
water mark is freed. When the high water mark is less than the size of
INITIAL or MINEXTENTS, then all unused space above
MINEXTENTS is freed.

KEEP

integer

Example I

Related Topics

4 – 279Commands

If you use the KEEP option, then the specified amount of space is kept
and the remaining space is freed. When the remaining number of
extents is less than MINEXTENTS, then MINEXTENTS is adjusted to
the new number of extents. If the initial extent becomes smaller than
INITIAL, then INITIAL is adjusted to the new size.

NEXT is set to the size of the last extent that was deallocated.

The following command frees all unused space for reuse in table EMP,
where the high water mark is above MINEXTENTS:

ALTER TABLE emp

DEALLOCATE UNUSED

ALTER CLUSTER command on page 4 – 16
ALTER INDEX command on page 4 – 33
ALTER TABLE command on 4 – 89
Chapter “Managing Schema Objects,” of Oracle7 Server Administrator’s
Guide.

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 280 Oracle7 Server SQL Reference

DECLARE CURSOR (Embedded SQL)

To declare a cursor, giving it a name and associating it with a SQL
statement or a PL/SQL block.

If you associate the cursor with an identifier for a SQL statement or
PL/SQL block, you must have declared this identifier in a previous
DECLARE STATEMENT statement.

EXEC SQL

statement_name

blockname

AT

:host_variable

db_name

SELECT commandDECLARE cursor CURSOR FOR

identifies the database on which the cursor is
declared. The database can be identified by either:

is a database identifier declared in
a previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name.

If you omit this clause, Oracle7 declares the cursor
on your default database.

is the name of the cursor to be declared.

is a SELECT statement to be associated with the
cursor. The following statement cannot contain an
INTO clause.

identifies a SQL statement or PL/SQL block to be
associated with the cursor. The statement_name or
block_name must be previously declared in a
DECLARE STATEMENT statement.

AT

db_name

:host_variable

cursor

SELECT command

statement_name
block_name

Usage Notes

Example

Related Topics

4 – 281Commands

You must declare a cursor before referencing it in other embedded SQL
statements. The scope of a cursor declaration is global within its
precompilation unit and the name of each cursor must be unique in its
scope. You cannot declare two cursors with the same name in a single
precompilation unit.

You can reference the cursor in the WHERE clause of an UPDATE or
DELETE statement using the CURRENT OF syntax, provided that the
cursor has been opened with an OPEN statement and positioned on a
row with a FETCH statement. For more information on this command,
see Programmer’s Guide to the Oracle Precompilers.

This example illustrates the use of a DECLARE CURSOR:

EXEC SQL DECLARE emp_cursor CURSOR

FOR SELECT ename, empno, job, sal

FROM emp

WHERE deptno = :deptno

FOR UPDATE OF sal

CLOSE command on 4 – 139
DECLARE DATABASE command on 4 – 282
DECLARE STATEMENT command on 4 – 283
DELETE command on 4 – 286
FETCH command on 4 – 341
OPEN command on 4 – 376
PREPARE command on 4 – 381
SELECT command on 4 – 405
UPDATE command on 4 – 460

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

4 – 282 Oracle7 Server SQL Reference

DECLARE DATABASE (Embedded SQL)

To declare an identifier for a non–default database to be accessed in
subsequent embedded SQL statements.

You must have access to a username on the non–default database.

EXEC SQL DECLARE db_name DATABASE

is the identifier established for the non–default
database.

You declare a db_name for a non–default database so that other
embedded SQL statements can refer to that database using the AT
clause. Before issuing a CONNECT statement with an AT clause, you
must declare a db_name for the non–default database with a DECLARE
DATABASE statement.

For more information on this command, see Programmer’s Guide to the
Oracle Precompilers.

This example illustrates the use of a DECLARE DATABASE statement:

EXEC SQL DECLARE oracle3 DATABASE

COMMIT command on 4 – 141
CONNECT command on 4 – 147
DECLARE CURSOR command on 4 – 280
DECLARE STATEMENT command on 4 – 283
DELETE command on 4 – 286
EXECUTE command on 4 – 332
EXECUTE IMMEDIATE command on 4 – 336
INSERT command on 4 – 361
SELECT command on 4 – 405
UPDATE command on 4 – 460

db_name

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

4 – 283Commands

DECLARE STATEMENT (Embedded SQL)

To declare an identifier for a SQL statement or PL/SQL block to be
used in other embedded SQL statements.

None.

EXEC SQL

block_name

AT

:host_variable

db_name

statement_nameDECLARE STATEMENT STATEMENT

identifies the database on which the SQL statement
or PL/SQL block is declared. The database can be
identified by either:

is a database identifier declared in
a previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name.

If you omit this clause, Oracle7 declares the SQL
statement or PL/SQL block on your default
database.

is the declared identifier for the statement.

You must declare an identifier for a SQL statement or PL/SQL block
with a DECLARE STATEMENT statement only if a DECLARE
CURSOR statement referencing the identifier appears physically (not
logically) in the embedded SQL program before the PREPARE
statement that parses the statement or block and associates it with its
identifier.

The scope of a statement declaration is global within its precompilation
unit, like a cursor declaration. For more information on this command,
see Programmer’s Guide to the Oracle Precompilers.

AT

db_name

:host_variable

statement_name
block_name

Example I

Example II

Related Topics

4 – 284 Oracle7 Server SQL Reference

This example illustrates the use of the DECLARE STATEMENT
statement:

EXEC SQL AT remote_db

DECLARE my_statement STATEMENT

EXEC SQL PREPARE my_statement FROM :my_string

EXEC SQL EXECUTE my_statement

In this example from a Pro*C embedded SQL program, the DECLARE
STATEMENT statement is required because the DECLARE CURSOR
statement precedes the PREPARE statement:

EXEC SQL DECLARE my_statement STATEMENT;

call prepare_my_statement;

EXEC SQL DECLARE emp_cursor CURSOR FOR my_statement;

...

PROCEDURE prepare_my_statement

BEGIN

EXEC SQL PREPARE my_statement FROM :my_string;

END;

CLOSE command on 4 – 139
DECLARE DATABASE command on 4 – 282
FETCH command on 4 – 341
PREPARE command on 4 – 381
OPEN command on 4 – 376

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

4 – 285Commands

DECLARE TABLE (Embedded SQL)

To define the structure of a table or view, including each column’s
datatype, default value, and NULL or NOT NULL specification for
semantic checking by the Oracle Precompilers.

None.

EXEC SQL DECLARE table TABLE

NULL

column datatype

NOT NULL

DEFAULT expr

NOT NULL

,

()

WITH DEFAULT

is the name of the declared table.

is a column of the table.

is the datatype of a column. For information on
Oracle7 datatypes, see the section “Datatypes” on
page 2 – 18.

specifies the default value of a column.

specifies that a column can contain nulls.

specifies that a column cannot contain nulls.

is supported for compatibility with IBM’s DB2
database.

For information on using this command, see Programmer’s Guide to the
Oracle Precompilers.

The following statement declares the PARTS table with the PARTNO,
BIN, and QTY columns:

EXEC SQL DECLARE parts TABLE

(partno NUMBER NOT NULL,

 bin NUMBER,

 qty NUMBER)

None.

table

column

datatype

DEFAULT

NULL

NOT NULL

WITH DEFAULT

Purpose

Prerequisites

Syntax

4 – 286 Oracle7 Server SQL Reference

DELETE

To remove rows from a table or from a view’s base table.

For you to delete rows from a table, the table must be in your own
schema or you must have DELETE privilege on the table.

For you to delete rows from the base table of a view, the owner of the
schema containing the view must have DELETE privilege on the base
table. Also, if the view is in a schema other than your own, you must be
granted DELETE privilege on the view.

The DELETE ANY TABLE system privilege also allows you to delete
rows from any table or any view’s base table.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must dominate the creation label of the table or view or you must
meet one of the following criteria:

• If the creation label of the table or view is higher than your
DBMS label, you must have READUP and WRITEUP system
privileges.

• If the creation label of your table or view is not comparable to
your DBMS label, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

In addition, for each row to be deleted, your DBMS label must match
the row’s label or you must meet one of the following criteria:

• If the row’s label is higher than your DBMS label, you must have
READUP and WRITEUP system privileges.

• If the row’s label is lower than your DBMS label, you must have
WRITEDOWN system privilege.

• If the row’s label is not comparable to your DBMS label, you
must have READUP, WRITEUP, and WRITEDOWN system
privileges.

DELETE table

FROM schema.

WHERE condition

view @dblink alias

(subquery)

Keywords and
Parameters

4 – 287Commands

is the schema containing the table or view. If you
omit schema, Oracle7 assumes the table or view is
in your own schema.

is the name of a table from which the rows are to
be deleted. If you specify view, Oracle7 deletes
rows from the view’s base table.

is the complete or partial name of a database link
to a remote database where the table or view is
located. For information on referring to database
links, see the section “Referring to Objects in
Remote Databases” on page 2 – 11. You can only
delete rows from a remote table or view if you are
using Oracle7 with the distributed option.

If you omit dblink, Oracle7 assumes that the table
or view is located on the local database.

is a subquery from which data is selected for
deletion. For the syntax of subquery, see
page 4 – 431. Oracle executes the subquery and
then uses the resulting rows as a table in the FROM
clause. The subquery cannot query a table that
appears in the same FROM clause as the subquery.

is an alias assigned to the table, view or subquery.
Aliases are generally used in DELETE statements
with correlated queries.

deletes only rows that satisfy the condition. The
condition can reference the table and can contain a
subquery. See the syntax description of condition on
page 2 – 11. You can only delete rows from a
remote table or view if you are using Oracle7 with
the distributed option.

If you omit dblink, Oracle7 assumes that the table
or view is located on the local database.

schema

table
view

dblink

subquery

alias

WHERE

Usage Notes

Example I

Example II

Example III

Example IV

Related Topics

4 – 288 Oracle7 Server SQL Reference

All table and index space released by the deleted rows is retained by
the table and index. You cannot delete from a view if the view’s
defining query contains one of the following constructs:

• join

• set operator

• GROUP BY clause

• group function

• DISTINCT operator

Issuing a DELETE statement against a table fires any DELETE triggers
defined on the table.

The following statement deletes all rows from a table named
TEMP_ASSIGN.

DELETE FROM temp_assign

The following statement deletes from the employee table all sales staff
who made less than $100 commission last month:

DELETE FROM emp

WHERE JOB = ’SALESMAN’

 AND COMM < 100

The following statement has the same effect as in Example II:

DELETE FROM (select * from emp)

WHERE JOB = ’SALESMAN’

 AND COMM < 100

The following statement deletes all rows from the bank account table
owned by the user BLAKE on a database accessible by the database
link DALLAS:

DELETE FROM blake.accounts@dallas

UPDATE command on 4 – 460

Purpose

Prerequisites

4 – 289Commands

DELETE (Embedded SQL)

To remove rows from a table or from a view’s base table.

For you to delete rows from a table, the table must be in your own
schema or you must have DELETE privilege on the table.

For you to delete rows from the base table of a view, the owner of the
schema containing the view must have DELETE privilege on the base
table. Also, if the view is in a schema other than your own, you must be
granted DELETE privilege on the view.

The DELETE ANY TABLE system privilege also allows you to delete
rows from any table or any view’s base table.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must dominate the creation label of the table or view or you must
meet one of the following criteria:

• If the creation label of the table or view is higher than your
DBMS label, you must have READUP and WRITEUP system
privileges.

• If the creation label of your table or view is not comparable to
your DBMS label, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

In addition, for each row to be deleted, your DBMS label must match
the row’s label or you must meet one of the following criteria:

• If the row’s label is higher than your DBMS label, you must have
READUP and WRITEUP system privileges.

• If the row’s label is lower than your DBMS label, you must have
WRITEDOWN system privilege.

• If the row’s label is not comparable to your DBMS label, you
must have READUP, WRITEUP, and WRITEDOWN system
privileges.

Syntax

Keywords and
Parameters

4 – 290 Oracle7 Server SQL Reference

EXEC SQL

,

WHERE

AT ,FOR :host_integerdb_name

DELETE table

FROM schema. view @dblink alias

:host_variable

condition

CURRENT OF cursor

(subquery)

identifies the database to which the DELETE
statement is issued. The database can be identified
by either:

is a database identifier declared in
a previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name.

If you omit this clause, the DELETE statement is
issued to your default database.

limits the number of times the statement is
executed if the WHERE clause contains array host
variables. If you omit this clause, Oracle7 executes
the statement once for each component of the
smallest array.

is the schema containing the table or view. If you
omit schema, Oracle7 assumes the table or view is
in your own schema.

is the name of a table from which the rows are to
be deleted. If you specify view, Oracle7 deletes
rows from the view’s base table.

is the complete or partial name of a database link
to a remote database where the table or view is
located. For information on referring to database
links, see the section “Referring to Objects in
Remote Databases” on page 2 – 11. You can only
delete rows from a remote table or view if you are
using Oracle7 with the distributed option.

AT

db_name

FOR :host_integer

schema

table
view

dblink

Usage Notes

4 – 291Commands

If you omit dblink, Oracle7 assumes that the table
or view is located on the local database.

is a subquery from which data is selected for
deletion. For the syntax of subquery, see
page 4 – 431. Oracle executes the subquery and
then uses the resulting rows as a table in the FROM
clause. The subquery cannot query a table that
appears in the same FROM clause as the subquery.

is an alias assigned to the table. Aliases are
generally used in DELETE statements with
correlated queries.

specifies which rows are deleted:

deletes only rows that satisfy the
condition. This condition can
contain host variables and optional
indicator variables. See the syntax
description of condition on
page 3 – 78.

deletes only the row most recently
fetched by the cursor. The cursor
cannot be associated with a
SELECT statement that performs a
join, unless its FOR UPDATE
clause specifically locks only one
table.

If you omit this clause entirely, Oracle7 deletes all
rows from the table or view.

 The host variables in the WHERE clause must be either all scalars or
all arrays. If they are scalars, Oracle7 executes the DELETE statement
only once. If they are arrays, Oracle7 executes the statement once for
each set of array components. Each execution may delete zero, one, or
multiple rows.

Array host variables in the WHERE clause can have different sizes. In
this case, the number of times Oracle7 executes the statement is
determined by the smaller of the following values:

• the size of the smallest array

• the value of the :host_integer in the optional FOR clause

subquery

alias

WHERE

condition

CURRENT OF

Example

Related Topics

4 – 292 Oracle7 Server SQL Reference

If no rows satisfy the condition, no rows are deleted and the SQLCODE
returns a NOT_FOUND condition.

The cumulative number of rows deleted is returned through the
SQLCA. If the WHERE clause contains array host variables, this value
reflects the total number of rows deleted for all components of the
array processed by the DELETE statement.

If no rows satisfy the condition, Oracle7 returns an error through the
SQLCODE of the SQLCA. If you omit the WHERE clause, Oracle7
raises a warning flag in the 5th component of SQLWARN in the
SQLCA. For more information on this command and the SQLCA, see
Programmer’s Guide to the Oracle Precompilers.

You can use comments in a DELETE statement to pass instructions, or
hints, to the Oracle7 optimizer. The optimizer uses hints to choose an
execution plan for the statement. For more information on hints, see
Oracle7 Server Tuning.

This example illustrates the use of the DELETE statement within a
Pro*C embedded SQL program:

EXEC SQL DELETE FROM emp

WHERE deptno = :deptno

AND job = :job; ...

EXEC SQL DECLARE emp_cursor CURSOR

FOR SELECT empno, comm

FROM emp;

EXEC SQL OPEN emp_cursor;

EXEC SQL FETCH c1

INTO :emp_number, :commission;

EXEC SQL DELETE FROM emp

WHERE CURRENT OF emp_cursor;

DECLARE DATABASE command on 4 – 282
DECLARE STATEMENT command on 4 – 283
TRUNCATE command on 4 – 455

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

4 – 293Commands

DESCRIBE (Embedded SQL)

To initialize a descriptor to hold descriptions of host variables for a
dynamic SQL statement or PL/SQL block.

You must have prepared the SQL statement or PL/SQL block in a
previous embedded SQL PREPARE statement.

EXEC SQL DESCRIBE

BIND VARIABLES FOR

block_name

SELECT LIST FOR

statement_name INTO descriptor

BIND VARIABLES
initializes the descriptor to hold information about
the input variables for the SQL statement or
PL/SQL block.

initializes the descriptor to hold information about
the select list of a SELECT statement.

The default is SELECT LIST FOR.

identifies a SQL statement or PL/SQL block
previously prepared with a PREPARE statement.

is the name of the descriptor to be initialized.

You must issue a DESCRIBE statement before manipulating the bind or
select descriptor within an embedded SQL program.

You cannot describe both input variables and output variables into the
same descriptor.

The number of variables found by a DESCRIBE statement is the total
number of placeholders in the prepare SQL statement or PL/SQL
block, rather than the total number of uniquely named placeholders.
For more information on this command, see Programmer’s Guide to the
Oracle Precompilers.

SELECT LIST

statement_name
block_name

descriptor

Example

Related Topics

4 – 294 Oracle7 Server SQL Reference

This example illustrates the use of the DESCRIBE statement in a Pro*C
embedded SQL program:

EXEC SQL PREPARE my_statement FROM :my_string;

EXEC SQL DECLARE emp_cursor

FOR SELECT empno, ename, sal, comm

FROM emp

WHERE deptno = :dept_number

EXEC SQL DESCRIBE BIND VARIABLES FOR my_statement

INTO bind_descriptor;

EXEC SQL OPEN emp_cursor

USING bind_descriptor;

EXEC SQL DESCRIBE SELECT LIST FOR my_statement

INTO select_descriptor;

EXEC SQL FETCH emp_cursor

INTO select_descriptor;

PREPARE command on 4 – 381

Purpose

Prerequisites

Syntax

4 – 295Commands

DISABLE clause

To disable an integrity constraint or all triggers associated with a table:

• If you disable an integrity constraint, Oracle7 does not enforce it.
However, disabled integrity constraints appear in the data
dictionary along with enabled integrity constraints.

• If you disable a trigger, Oracle7 does not fire it if its triggering
condition is satisfied.

A DISABLE clause that disables an integrity constraint can appear in
either a CREATE TABLE or ALTER TABLE command. To disable an
integrity constraint, you must have the privileges necessary to issue
one of these commands. For information on these privileges, see the
CREATE TABLE command on page 4 – 245 and the ALTER TABLE
command on page 4 – 89.

For an integrity constraint to appear in a DISABLE clause, one of the
following conditions must be true:

• the integrity constraint must be defined in the containing
statement

• the integrity constraint must already have been defined and
enabled in previously issued statements

A DISABLE clause that disables triggers can only appear in an ALTER
TABLE statement. To disable triggers with a DISABLE clause, you must
have the privileges necessary to issue this statement. For information
on these privileges, see the ALTER TABLE command on page 4 – 89.
Also, the triggers must be in your own schema or you must have
ALTER ANY TRIGGER system privilege.

DISABLE

PRIMARY KEY

UNIQUE (

CONSTRAINT constraint

CASCADE

column)

,

ALL TRIGGERS

Keywords and
Parameters

Usage Notes

How to Disable Integrity
Constraints

4 – 296 Oracle7 Server SQL Reference

disables the UNIQUE constraint defined on the
specified column or combination of columns.

disables the table’s PRIMARY KEY constraint.

disables the integrity constraint with the name
constraint.

disables any integrity constraints that depend on
the specified integrity constraint. To disable a
primary or unique key that is part of a referential
integrity constraint, you must specify this option.

disables all triggers associated with the table. This
option can only appear in a DISABLE clause in an
ALTER TABLE statement, not a CREATE TABLE
statement.

 You can use the DISABLE clause to disable:

• a single integrity constraint

• all triggers associated with a table

To disable a single trigger, use the DISABLE option of the ALTER
TRIGGER command.

You can disable an integrity constraint by naming it in a DISABLE
clause of either a CREATE TABLE or ALTER TABLE statement. You
can define an integrity constraint with a CONSTRAINT clause and
disable it with a DISABLE clause together in the same statement. You
can also define an integrity constraint in one statement and
subsequently disable it in another.

You can also disable an integrity constraint with the DISABLE keyword
in the CONSTRAINT clause that defines the integrity constraint. For
information on this keyword, see the CONSTRAINT clause on
page 4 – 152.

How Oracle7 Disables Integrity Constraints If you disable an integrity
constraint, Oracle7 does not enforce it. If you define an integrity
constraint and disable it, Oracle7 does not apply it to existing rows of
the table, although Oracle7 does store it in the data dictionary along
with enabled integrity constraints. Also, Oracle7 can execute Data
Manipulation Language statements that change table data and violate a
disabled integrity constraint.

If you disable a UNIQUE or PRIMARY KEY constraint that was
previously enabled, Oracle7 drops the index that enforces the constraint.

You can enable a disabled integrity constraint with the ENABLE clause.

UNIQUE

PRIMARY KEY

CONSTRAINT

CASCADE

ALL TRIGGERS

Example I

Example II

Example III

4 – 297Commands

Disabling Referenced Keys in Referential Integrity Constraints To
disable a UNIQUE or PRIMARY KEY constraint that identifies the
referenced key of a referential integrity constraint, you must also
disable the foreign key. To disable a constraint and all its dependent
constraints, use the CASCADE option of the DISABLE clause.

You cannot enable a foreign key that references a unique or primary
key that is disabled.

The following statement creates the DEPT table and defines a disabled
PRIMARY KEY constraint:

CREATE TABLE dept

(deptno NUMBER(2) PRIMARY KEY,

 dname VARCHAR2(10),

 loc VARCHAR2(9))

DISABLE PRIMARY KEY

Since the primary key is disabled, you can add rows to the table that
violate the primary key. You can add departments with null
department numbers or multiple departments with the same
department number.

The following statement defines and disables a CHECK constraint on
the EMP table:

ALTER TABLE emp

ADD (CONSTRAINT check_comp CHECK (sal + comm <= 5000))

 DISABLE CONSTRAINT check_comp

The constraint CHECK_COMP ensures that no employee’s total
compensation exceeds $5000. Since the constraint is disabled, you can
increase an employee’s compensation above this limit.

Consider a referential integrity constraint involving a foreign key on
the combination of the AREACO and PHONENO columns of the
PHONE_CALLS table. The foreign key references a unique key on the
combination of the AREACO and PHONENO columns of the
CUSTOMERS table. The following statement disables the unique key
on the combination of the AREACO and PHONENO columns of the
CUSTOMERS table:

ALTER TABLE customers

DISABLE UNIQUE (areaco, phoneno) CASCADE

How to Disable Triggers

Example IV

Related Topics

4 – 298 Oracle7 Server SQL Reference

Since the unique key in the CUSTOMERS table is referenced by the
foreign key in the PHONE_CALLS table, you must use the CASCADE
option to disable the unique key. This option disables the foreign key as
well.

You can disable all triggers associated with the table by using the ALL
TRIGGERS option in a DISABLE clause of an ALTER TABLE
statement. After you disable a trigger, Oracle7 does not fire the trigger
when a triggering statement meets the condition of the trigger
restriction.

The following statement disables all triggers associated with the EMP
table:

ALTER TABLE emp

DISABLE ALL TRIGGERS

ALTER TABLE command on 4 – 89
ALTER TRIGGER command on 4 – 105
CONSTRAINT clause on 4 – 149
CREATE TABLE command on 4 – 245
CREATE TRIGGER command on 4 – 257
ENABLE clause on 4 – 326

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

4 – 299Commands

DROP clause

To remove an integrity constraint from the database.

The DROP clause can appear in an ALTER TABLE statement. To drop
an integrity constraint, you must have the privileges necessary to issue
an ALTER TABLE statement. For information on these privileges, see
the ALTER TABLE command on page 4 – 89.

DROP PRIMARY

UNIQUE

CASCADE

column)

,

C0NSTRAINT constraint

(

drops the table’s PRIMARY KEY constraint.

drops the UNIQUE constraint on the specified
columns.

drops the integrity constraint named constraint.

drops all other integrity constraints that depend on
the dropped integrity constraint.

You can drop an integrity constraint by naming it in a DROP clause of
an ALTER TABLE statement. When you drop an integrity constraint,
Oracle7 stops enforcing the integrity constraint and removes it from the
data dictionary.

You cannot drop a unique or primary key that is part of a referential
integrity constraint without also dropping the foreign key. You can
drop the referenced key and the foreign key together by specifying the
referenced key with the CASCADE option in the DROP clause.

PRIMARY KEY

UNIQUE

CONSTRAINT

CASCADE

Example I

Example II

Related Topics

4 – 300 Oracle7 Server SQL Reference

The following statement drops the primary key of the DEPT table:

ALTER TABLE dept

DROP PRIMARY KEY CASCADE

If you know that the name of the PRIMARY KEY constraint is
PK_DEPT, you could also drop it with the following statement:

ALTER TABLE dept

DROP CONSTRAINT pk_dept CASCADE

The CASCADE option drops any foreign keys that reference the
primary key.

The following statement drops the unique key on the DNAME column
of the DEPT table:

ALTER TABLE dept

DROP UNIQUE (dname)

Note that the DROP clause in this example omits the CASCADE
option. Because of this omission, Oracle7 does not drop the unique key
if any foreign key references it.

ALTER TABLE command on 4 – 89
CONSTRAINT clause on 4 – 149

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 301Commands

DROP CLUSTER

To remove a cluster from the database.

The cluster must be in your own schema or you must have DROP ANY
CLUSTER system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the cluster’s creation label or you must satisfy one of
the following criteria:

• If the cluster’s creation label is higher than your DBMS label, you
must have READUP and WRITEUP system privileges

• If the cluster’s creation label is lower than your DBMS label, you
must have WRITEDOWN system privilege.

• If the cluster’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

DROP CLUSTER

schema.

INCLUDING TABLES

cluster

CASCADE CONSTRAINTS

is the schema containing the cluster. If you omit
schema, Oracle7 assumes the cluster is in your own
schema.

is the name of the cluster to be dropped.

INCLUDING TABLES
drops all tables that belong to the cluster. If you
omit this clause, and the cluster still contains
tables, Oracle7 returns an error and does not drop
the cluster.

CASCADE CONSTRAINTS
drops all referential integrity constraints from
tables outside the cluster that refer to primary and
unique keys in the tables of the cluster. If you omit
this option and such referential integrity
constraints exist, Oracle7 returns an error message
and does not drop the cluster.

schema

cluster

Usage Notes

Example

Related Topic

4 – 302 Oracle7 Server SQL Reference

Dropping a cluster also drops the cluster index and returns all cluster
space, including data blocks for the index, to the appropriate
tablespace(s).

You cannot un–cluster an individual table. To create an un–clustered
table identical to an existing clustered table, follow the following steps:

1. Create a new table with the same structure and contents as the old
one but with no CLUSTER option.

2. Drop the old table.

3. Use the RENAME command to give the new table the name of the
old one.

Grants on the old clustered table do not apply to the new un–clustered
table and must be regranted.

This command drops a cluster named GEOGRAPHY, all its tables, and
any referential integrity constraints that refer to primary or unique keys
in those tables:

DROP CLUSTER geography

INCLUDING TABLES

CASCADE CONSTRAINTS

DROP TABLE command on 4 – 318

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

4 – 303Commands

DROP DATABASE LINK

To remove a database link from the database.

To drop a private database link, the database link must be in your own
schema. To drop a PUBLIC database link, you must have DROP
PUBLIC DATABASE LINK system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the database link’s creation label or you must satisfy
one of the following criteria:

• If the database link’s creation label is higher than your DBMS
label, you must have READUP and WRITEUP system privileges

• If the database link’s creation label is lower than your DBMS
label, you must have WRITEDOWN system privilege.

• If the database link’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

DROP DATABASE LINK dblink

PUBLIC

must be specified to drop a PUBLIC database link.

specifies the database link to be dropped.

You cannot drop a database link in another user’s schema and you
cannot qualify dblink with the name of a schema. Since periods are
permitted in names of database links, Oracle7 interprets the entire
name, such as RALPH.LINKTOSALES, as the name of a database link
in your schema rather than as a database link named LINKTOSALES in
the schema RALPH.

The following statement drops a private database link named
BOSTON:

DROP DATABASE LINK boston

CREATE DATABASE LINK command on 4 – 185

PUBLIC

dblink

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 304 Oracle7 Server SQL Reference

DROP FUNCTION

To remove a stand–alone stored function from the database.

The function must be in your own schema or you must have DROP
ANY PROCEDURE system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the function’s creation label or you must satisfy one
of the following criteria:

• If the function’s creation label is higher than your DBMS label,
you must have READUP and WRITEUP system privileges

• If the function’s creation label is lower than your DBMS label,
you must have WRITEDOWN system privilege.

• If the function’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

DROP FUNCTION function

schema.

is the schema containing the function. If you omit
schema, Oracle7 assumes the function is in your
own schema.

is the name of the function to be dropped.

schema

function

Usage Notes

Example

Related Topics

4 – 305Commands

When you drop a function, Oracle7 invalidates any local objects that
depend on, or call, the dropped function. If you subsequently reference
one of these objects, Oracle7 tries to recompile the object and returns an
error message if you have not recreated the dropped function. For more
information on how Oracle7 maintains dependencies among schema
objects, including remote objects, see the “Dependencies Among
Schema Objects” chapter of Oracle7 Server Concepts.

You can only use this command to drop a stand–alone function. To
remove a function that is part of a package, use one of the following
methods:

• Drop the entire package using the DROP PACKAGE command.

• Redefine the package without the function using the CREATE
PACKAGE command with the OR REPLACE option.

The following statement drops the function NEW_ACCT in the schema
RIDDLEY:

DROP FUNCTION riddley.new_acct

When you drop the NEW_ACCT function, Oracle7 invalidates all
objects that depend upon NEW_ACCT.

CREATE FUNCTION command on 4 – 188

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

4 – 306 Oracle7 Server SQL Reference

DROP INDEX

To remove an index from the database.

The index must be in your own schema or you must have DROP ANY
INDEX system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the index’s creation label or you must satisfy one of
the following criteria:

• If the index’s creation label is higher than your DBMS label, you
must have READUP and WRITEUP system privileges

• If the index’s creation label is lower than your DBMS label, you
must have WRITEDOWN system privilege.

• If the index’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

DROP INDEX index

schema.

is the schema containing the index. If you omit
schema, Oracle7 assumes the index is in your own
schema.

is the name of the index to be dropped.

When the index is dropped all data blocks allocated to the index are
returned to the index’s tablespace.

This command drops an index named MONOLITH:

DROP INDEX monolith

ALTER INDEX command on 4 – 33

CREATE INDEX command on 4 – 192

CREATE TABLE command on 4 – 245

schema

index

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 307Commands

DROP PACKAGE

To remove a stored package from the database.

The package must be in your own schema or you must have DROP
ANY PROCEDURE system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the cluster’s creation label or you must satisfy one of
the following criteria:

• If the package’s creation label is higher than your DBMS label,
you must have READUP and WRITEUP system privileges

• If the package’s creation label is lower than your DBMS label,
you must have WRITEDOWN system privilege.

• If the package’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

DROP PACKAGE package

BODY schema.

drops only the body of the package. If you omit
this option, Oracle7 drops both the body and
specification of the package.

is the schema containing the package. If you omit
schema, Oracle7 assumes the package is in your
own schema.

is the name of the package to be dropped.

BODY

schema

package

Usage Notes

Example

Related Topics

4 – 308 Oracle7 Server SQL Reference

When you drop the body and specification of a package, Oracle7
invalidates any local objects that depend on the package specification.
If you subsequently reference one of these objects, Oracle7 tries to
recompile the object and returns an error if you have not recreated the
dropped package. For information on how Oracle7 maintains
dependencies among schema objects, including remote objects, see the
“Dependencies Among Schema Objects” chapter of Oracle7 Server
Concepts.

When you drop only the body of a package but not its specification,
Oracle7 does not invalidate dependent objects. However, you cannot
call one of the procedures or stored functions declared in the package
specification until you recreate the package body.

The DROP PACKAGE command drops the package and all its objects
together. To remove a single object from a package, you can recreate the
package without the object using the CREATE PACKAGE and CREATE
PACKAGE BODY commands with the OR REPLACE option.

The following statement drops the specification and body of the
BANKING package, invalidating all objects that depend on the
specification:

DROP PACKAGE banking

CREATE PACKAGE command on 4 – 198

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 309Commands

DROP PROCEDURE

To remove a stand–alone stored procedure from the database.

The procedure must be in your own schema or you must have DROP
ANY PROCEDURE system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the cluster’s creation label or you must satisfy one of
the following criteria:

• If the procedure’s creation label is higher than your DBMS label,
you must have READUP and WRITEUP system privileges

• If the procedure’s creation label is lower than your DBMS label,
you must have WRITEDOWN system privilege.

• If the procedure’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

DROP PROCEDURE procedure

schema.

is the schema containing the procedure. If you omit
schema, Oracle7 assumes the procedure is in your
own schema.

is the name of the procedure to be dropped.

schema

procedure

Usage Notes

Example

Related Topics

4 – 310 Oracle7 Server SQL Reference

When you drop a procedure, Oracle7 invalidates any local objects that
depend upon the dropped procedure. If you subsequently reference
one of these objects, Oracle7 tries to recompile the object and returns an
error message if you have not recreated the dropped procedure.

For information on how Oracle7 maintains dependencies among
schema objects, including remote objects, see the “Dependencies
Among Schema Objects” chapter of Oracle7 Server Concepts.

You can only use this command to drop a stand–alone procedure. To
remove a procedure that is part of a package, use one of the following
methods:

• Drop the entire package using the DROP PACKAGE command.

• Redefine the package without the procedure using the CREATE
PACKAGE command with the OR REPLACE option.

The following statement drops the procedure TRANSFER owned by
the user KERNER:

DROP PROCEDURE kerner.transfer

When you drop the TRANSFER procedure, Oracle7 invalidates all
objects that depend upon TRANSFER.

CREATE PROCEDURE command on 4 – 206

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

4 – 311Commands

DROP PROFILE

To remove a profile from the database.

You must have DROP PROFILE system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the profile’s creation label or you must satisfy one of
the following criteria:

• If the profile’s creation label is higher than your DBMS label, you
must have READUP and WRITEUP system privileges

• If the profile’s creation label is lower than your DBMS label, you
must have WRITEDOWN system privilege.

• If the profile’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

DROP PROFILE profile

CASCADE

is the name of the profile to be dropped.

de–assigns the profile from any users to whom it is
assigned. Oracle7 automatically assigns the
DEFAULT profile to such users. You must specify
this option to drop a profile that is currently
assigned to users.

 You cannot drop the DEFAULT profile.

The following statement drops the profile ENGINEER:

DROP PROFILE engineer

CASCADE

Oracle7 assigns the DEFAULT profile to any users currently assigned
the ENGINEER profile.

CREATE PROFILE command on 4 – 210

profile

CASCADE

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

4 – 312 Oracle7 Server SQL Reference

DROP ROLE

To remove a role from the database.

You must have been granted the role with the ADMIN OPTION or
have DROP ANY ROLE system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the role’s creation label or you must satisfy one of the
following criteria:

• If the role’s creation label is higher than your DBMS label, you
must have READUP and WRITEUP system privileges

• If the role’s creation label is lower than your DBMS label, you
must have WRITEDOWN system privilege.

If the role’s creation label and your DBMS label are not comparable,
you must have READUP, WRITEUP, and WRITEDOWN system
privileges.

DROP ROLE role

is the role to be dropped.

When you drop a role, Oracle7 revokes it from all users and roles to
whom it has been granted and removes it from the database.

To drop the role FLORIST, issue the following statement:

DROP ROLE florist

CREATE ROLE command on 4 – 215
SET ROLE command on 4 – 442

role

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

4 – 313Commands

DROP ROLLBACK SEGMENT

To remove a rollback segment from the database.

You must have DROP ROLLBACK SEGMENT system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the rollback segment’s creation label or you must
satisfy one of the following criteria:

• If the rollback segment’s creation label is higher than your DBMS
label, you must have READUP and WRITEUP system privileges

• If the rollback segment’s creation label is lower than your DBMS
label, you must have WRITEDOWN system privilege.

• If the rollback segment’s creation label and your DBMS label are
not comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

DROP ROLLBACK SEGMENT rollback_segment

is the name the rollback segment to be dropped.

When you drop a rollback segment, all space allocated to the rollback
segment returns to the tablespace.

You can only drop a rollback segment that is offline. To determine
whether a rollback segment is offline, query the data dictionary view
DBA_ROLLBACK_SEGS. Offline rollback segments have the value
’AVAILABLE’ in the STATUS column. You can take a rollback segment
offline with the OFFLINE option of the ALTER ROLLBACK SEGMENT
command.

You cannot drop the SYSTEM rollback segment.

The following statement drops the rollback segment ACCOUNTING:

DROP ROLLBACK SEGMENT accounting

ALTER ROLLBACK SEGMENT command on 4 – 50
CREATE ROLLBACK SEGMENT command on 4 – 218
CREATE TABLESPACE command on 4 – 254

rollback_segment

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

4 – 314 Oracle7 Server SQL Reference

DROP SEQUENCE

To remove a sequence from the database.

The sequence must be in your own schema or you must have DROP
ANY SEQUENCE system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the sequence’s creation label or you must satisfy one
of the following criteria:

• If the sequence’s creation label is higher than your DBMS label,
you must have READUP and WRITEUP system privileges

• If the sequence’s creation label is lower than your DBMS label,
you must have WRITEDOWN system privilege.

• If the sequence’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

DROP SEQUENCE sequence

schema.

is the schema containing the sequence. If you omit
schema, Oracle7 assumes the sequence is in your
own schema.

is the name of the sequence to be dropped.

One method for restarting a sequence is to drop and recreate it. For
example, if you have a sequence with a current value of 150 and you
would like to restart the sequence with a value of 27, you would:

1. Drop the sequence.

2. Create it with the same name and a START WITH value of 27.

The following statement drops the sequence ESEQ owned by the user
ELLY:

DROP SEQUENCE elly.eseq

To issue the above statement, you must either be connected as the user
ELLY or have DROP ANY SEQUENCE system privilege.

ALTER SEQUENCE command on 4 – 53
CREATE SEQUENCE command on 4 – 224

schema

sequence

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

4 – 315Commands

DROP SNAPSHOT

To remove a snapshot from the database.

The snapshot must be in your own schema or you must have DROP
ANY SNAPSHOT system privilege. You must also have the privileges
to drop the internal table, views, and index that Oracle7 uses to
maintain the snapshot’s data. For information on these privileges, see
the DROP TABLE command on page 4 – 318 the DROP VIEW
command on page 4 – 325, and the DROP INDEX command on page
4 – 306.

DROP SNAPSHOT snapshot

schema.

is the schema containing the snapshot. If you omit
schema, Oracle7 assumes the snapshot is in your
own schema.

is the name of the snapshot to be dropped.

When you drop a simple snapshot, if it is the least recently refreshed
snapshot of a master table, Oracle7 automatically purges the master
table’s snapshot log of the rows needed only to refresh the dropped
snapshot.

When you drop a master table, Oracle7 does not automatically drop
snapshots based on the table. However, Oracle7 returns an error
message when it tries to refresh a snapshot based on a master table that
has been dropped.

The following statement drops the snapshot PARTS owned by the user
HQ:

DROP SNAPSHOT hq.parts

CREATE SNAPSHOT command on 4 – 230

schema

snapshot

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

4 – 316 Oracle7 Server SQL Reference

DROP SNAPSHOT LOG

To remove a snapshot log from the database.

Since a snapshot log consists of a table and a trigger, the privileges that
authorize operations on it are the same as for a table. To drop a
snapshot log, you must have the privileges listed for the DROP TABLE
command later in this chapter. You must also have the privileges to
drop a trigger from the snapshot log’s master table. For information on
these privileges, see the DROP TRIGGER command on page 4 – 322.

DROP SNAPSHOT LOG ON table

schema.

is the schema containing the snapshot log and its
master table. If you omit schema, Oracle7 assumes
the snapshot log and master table are in your own
schema.

is the name of the master table associated with the
snapshot log to be dropped.

After you drop a snapshot log, snapshots based on the snapshot log’s
master table can no longer be refreshed fast. They must be refreshed
completely. For more information on refreshing snapshots, see the
CREATE SNAPSHOT command on page 4 – 230.

The following statement drops the snapshot log on the PARTS master
table:

DROP SNAPSHOT LOG ON parts

CREATE SNAPSHOT LOG command on 4 – 238

schema

table

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topic

4 – 317Commands

DROP SYNONYM

To remove a synonym from the database.

If you want to drop a private synonym, either the synonym must be in
your own schema or you must have DROP ANY SYNONYM system
privilege. If you want to drop a PUBLIC synonym, either the synonym
must be in your own schema or you must have DROP ANY PUBLIC
SYNONYM system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the synonym’s creation label or you must satisfy one
of the following criteria:

• If the synonym’s creation label is higher than your DBMS label,
you must have READUP and WRITEUP system privileges

• If the synonym’s creation label is lower than your DBMS label,
you must have WRITEDOWN system privilege.

• If the synonym’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

DROP synonym

PUBLIC

SYNONYM

schema.

must be specified to drop a public synonym. You
cannot specify schema if you have specified
PUBLIC.

is the schema containing the synonym. If you omit
schema, Oracle7 assumes the synonym is in your
own schema.

is the name of the synonym to be dropped.

You can change the definition of a synonym by dropping and recreating
it.

To drop a synonym named MARKET, issue the following statement:

DROP SYNONYM market

CREATE SYNONYM command on 4 – 241

PUBLIC

schema

synonym

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 318 Oracle7 Server SQL Reference

DROP TABLE

To remove a table and all its data from the database.

The table must be in your own schema or you must have DROP ANY
TABLE system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the table’s creation label or you must satisfy one of
the following criteria:

• If the table’s creation label is higher than your DBMS label, you
must have READUP and WRITEUP system privileges

• If the table’s creation label is lower than your DBMS label, you
must have WRITEDOWN system privilege.

• If the table’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

DROP TABLE

CASCADE CONSTRAINTS

table

schema.

is the schema containing the table. If you omit
schema, Oracle7 assumes the table is in your own
schema.

is the name of the table to be dropped.

CASCADE CONSTRAINTS

drops all referential integrity constraints that refer
to primary and unique keys in the dropped table. If
you omit this option, and such referential integrity
constraints exist, Oracle7 returns an error message
and does not drop the table.

schema

table

Usage Notes

Example

Related Topics

4 – 319Commands

When you drop a table, Oracle7 also automatically performs the
following operations:

• Oracle7 removes all rows from the table (as if the rows were
deleted).

• Oracle7 drops all the table’s indexes, regardless of who created
them or whose schema contains them.

• If the table is not part of a cluster, Oracle7 returns all data blocks
allocated to the table and its indexes to the tablespaces
containing the table and indexes.

• If the table is a base table for views or if it is referenced in stored
procedures, functions, or packages, Oracle7 invalidates these
objects but does not drop them. You cannot use these objects
unless you recreate the table or drop and recreate the objects so
that they no longer depend on the table.

If you choose to recreate the table, it must contain all the
columns selected by the queries originally used to define the
views and all the columns referenced in the stored procedures,
functions, or packages. Note that any users previously granted
object privileges on the views, synonyms, stored procedures,
functions, or packages need not be regranted these privileges.

• If the table is a master table for snapshots, Oracle7 does not drop
the snapshots. Such a snapshot can still be queried, but it cannot
be refreshed unless the table is recreated so that it contains all the
columns selected by the snapshot’s query.

If you choose to recreate the table, it must contain all the
columns selected by the queries originally used to define the
snapshots.

• If the table has a snapshot log, Oracle7 drops the snapshot log.

You can drop a cluster and all of its tables using the DROP CLUSTER
command with the INCLUDING TABLES clause and avoid dropping
each table individually.

The following statement drops the TEST_DATA table:

DROP TABLE test_data

DROP CLUSTER command on 4 – 301
ALTER TABLE command on 4 – 89
CREATE INDEX command on 4 – 192
CREATE TABLE command on 4 – 245

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 320 Oracle7 Server SQL Reference

DROP TABLESPACE

To remove a tablespace from the database.

You must have DROP TABLESPACE system privilege. No rollback
segments in the tablespace can be assigned active transactions.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the tablespace’s creation label or you must satisfy one
of the following criteria:

• If the tablespace’s creation label is higher than your DBMS label,
you must have READUP and WRITEUP system privileges

• If the tablespace’s creation label is lower than your DBMS label,
you must have WRITEDOWN system privilege.

• If the tablespace’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

DROP TABLESPACE tablespace

INCLUDING CONTENTS

CASCADE CONSTRAINTS

is the name of the tablespace to be dropped.

INCLUDING CONTENTS
drops all the contents of the tablespace. You must
specify this clause to drop a tablespace that
contains any database objects. If you omit this
clause, and the tablespace is not empty, Oracle7
returns an error message and does not drop the
tablespace.

CASCADE CONSTRAINTS
drops all referential integrity constraints from
tables outside the tablespace that refer to primary
and unique keys in the tables of the tablespace. If
you omit this option and such referential integrity
constraints exist, Oracle7 returns an error message
and does not drop the tablespace.

tablespace

Usage Notes

Example

Related Topics

4 – 321Commands

You can drop a tablespace regardless of whether it is online or offline. It
is recommended that you take the tablespace offline before dropping it
to ensure that no SQL statements in currently running transactions
access any of the objects in the tablespace.

You may want to alter any users who have been assigned the
tablespace as either a default or temporary tablespace. After the
tablespace has been dropped, these users cannot allocate space for
objects or sort areas in the tablespace. You can reassign users new
default and temporary tablespaces with the ALTER USER command.

You cannot drop the SYSTEM tablespace.

The following statement drops the MFRG tablespace and all its
contents:

DROP TABLESPACE mfrg

INCLUDING CONTENTS

CASCADE CONSTRAINTS

ALTER TABLESPACE command on 4 – 98
CREATE DATABASE command on 4 – 178
CREATE TABLESPACE command on 4 – 254

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

4 – 322 Oracle7 Server SQL Reference

DROP TRIGGER

To remove a database trigger from the database.

The trigger must be in your own schema or you must have DROP ANY
TRIGGER system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the trigger’s creation label or you must satisfy one of
the following criteria:

• If the trigger’s creation label is higher than your DBMS label, you
must have READUP and WRITEUP system privileges

• If the trigger’s creation label is lower than your DBMS label, you
must have WRITEDOWN system privilege.

• If the trigger’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

DROP TRIGGER trigger

schema.

is the schema containing the trigger. If you omit
schema, Oracle7 assumes the trigger is in your own
schema.

is the name of the trigger to be dropped.

When you drop a database trigger, Oracle7 removes it from the
database and does not fire it again.

The following statement drops the REORDER trigger in the schema
RUTH:

DROP TRIGGER ruth.reorder

CREATE TRIGGER command on 4 – 257

schema

trigger

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 323Commands

DROP USER

To remove a database user and optionally remove the user’s objects.

You must have DROP USER system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the user’s creation label or you must satisfy one of the
following criteria:

• If the user’s creation label is higher than your DBMS label, you
must have READUP and WRITEUP system privileges

• If the user’s creation label is lower than your DBMS label, you
must have WRITEDOWN system privilege.

• If the user’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

DROP USER user

CASCADE

is the user to be dropped.

drops all objects in the user’s schema before
dropping the user. You must specify this option to
drop a user whose schema contains any objects.

user

 CASCADE

Usage Notes

Example I

Example II

Related Topics

4 – 324 Oracle7 Server SQL Reference

Oracle7 does not drop users whose schemas contain objects. To drop
such a user, you must perform one of the following actions:

• explicitly drop the user’s objects before dropping the user

• drop the user and objects together using the CASCADE option

If you specify the CASCADE option and drop tables in the user’s
schema, Oracle7 also automatically drops any referential integrity
constraints on tables in other schemas that refer to primary and unique
keys on these tables. The CASCADE option causes Oracle7 to
invalidate, but not drop, the following objects in other schemas:

• views or synonyms for objects in the dropped user’s schema

• stored procedures, functions, or packages that query objects in
the dropped user’s schema

Oracle7 does not drop snapshots on tables or views in the user’s
schema or roles created by the user.

If BRADLEY’s schema contains no objects, you can drop BRADLEY by
issuing the statement:

DROP USER bradley

If BRADLEY’s schema contains objects, you must use the CASCADE
option to drop BRADLEY and the objects:

DROP USER bradley CASCADE

CREATE USER command on 4 – 267
DROP TABLE command on 4 – 318
DROP TABLESPACE command on 4 – 320
DROP TRIGGER command on 4 – 322
DROP VIEW command on 4 – 325

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

4 – 325Commands

DROP VIEW

To remove a view from the database.

The view must be in your own schema or you must have DROP ANY
VIEW system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the view’s creation label or you must satisfy one of
the following criteria:

• If the view’s creation label is higher than your DBMS label, you
must have READUP and WRITEUP system privileges

• If the view’s creation label is lower than your DBMS label, you
must have WRITEDOWN system privilege.

• If the view’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

DROP VIEW view

schema.

is the schema containing the view. If you omit
schema, Oracle7 assumes the view is in your own
schema.

is the name of the view to be dropped.

 When you drop a view, views and synonyms that refer to the view are
not dropped, but become invalid. Drop them or redefine them, or
define other views in such a way that the invalid views and synonyms
become valid again.

You can change the definition of a view by dropping and recreating it.

The following statement drops the VIEW_DATA view:

DROP VIEW view_data

CREATE TABLE command on 4 – 245
CREATE VIEW command on 4 – 271
CREATE SYNONYM command on 4 – 241

schema

view

Purpose

Prerequisites

4 – 326 Oracle7 Server SQL Reference

ENABLE clause

To enable an integrity constraint or all triggers associated with a table:

• If you enable a constraint, Oracle7 enforces it by applying it to all
data in the table. All table data must satisfy an enabled
constraint.

• If you enable a trigger, Oracle7 fires the trigger whenever its
triggering condition is satisfied.

An ENABLE clause that enables an integrity constraint can appear in
either a CREATE TABLE or ALTER TABLE statement. To enable a
constraint in this manner, you must have the privileges necessary to
issue one of these statements. For information on these privileges, see
the CREATE TABLE command on page 4 – 245 or the ALTER TABLE
command on page 4 – 89.

If you enable a UNIQUE or PRIMARY KEY constraint, Oracle7 creates
an index on the columns of the unique or primary key in the schema
containing the table. To enable such a constraint, you must have the
privileges necessary to create the index. For information on these
privileges, see the CREATE INDEX command on page 4 – 192.

If you enable a referential integrity constraint, the referenced UNIQUE
or PRIMARY KEY constraint must already be enabled.

For an integrity constraint to appear in an ENABLE clause, one of the
following conditions must be true:

• the integrity constraint must be defined in the containing
statement

• the integrity constraint must already have been defined and
disabled in a previously issued statement

An ENABLE clause that enables triggers can appear in an ALTER
TABLE statement. To enable triggers with the ENABLE clause, you
must have the privileges necessary to issue this statement. For
information on these privileges, see the ALTER TABLE command on
page 4 – 89. Also, the triggers must be in your own schema or you must
have ALTER ANY TRIGGER system privilege.

Syntax

Keywords and
Parameters

4 – 327Commands

ENABLE

INITRANS integer

MAXTRANS integer

TABLESPACE tablespace

STORAGE storage_clause

PCTFREE integer

EXCEPTIONS INTO

schema.

ALL TRIGGERS

table

UNIQUE (column

,

)

PRIMARY KEY

CONSTRAINT constraint

USING INDEX

enables the UNIQUE constraint defined on the
specified column or combination of columns.

enables the table’s PRIMARY KEY constraint.

enables the integrity constraint named constraint.

specifies parameters for the index Oracle7 creates
to enforce a UNIQUE or PRIMARY KEY constraint.
Oracle7 gives the index the same name as the
constraint. You can choose the values of the
INITRANS, MAXTRANS, TABLESPACE,
STORAGE, and PCTFREE parameters for the
index. For information on these parameters, see the
CREATE TABLE command on page 4 – 245.

Only use these parameters when enabling
UNIQUE and PRIMARY KEY constraints.

EXCEPTIONS INTO
identifies a table into which Oracle7 places
information about rows that violate the integrity
constraint. The table must exist before you use this
option. If you omit schema, Oracle7 assumes the
exception table is in your own schema. The
exception table must be on your local database.

enables all triggers associated with the table. You
can only use this option in an ENABLE clause in an
ALTER TABLE statement, not a CREATE TABLE
statement.

UNIQUE

PRIMARY KEY

CONSTRAINT

USING INDEX

ALL TRIGGERS

Usage Notes

How to Enable Integrity
Constraints

4 – 328 Oracle7 Server SQL Reference

 You can use the ENABLE clause to enable either:

• a single integrity constraint

• all triggers associated with a table

To enable a single trigger, use the ENABLE option of the ALTER
TRIGGER command.

You can enable an integrity constraint by including an ENABLE clause
in either a CREATE TABLE or ALTER TABLE statement. You can
define an integrity constraint with a CONSTRAINT clause and enable
it with an ENABLE clause together in the same statement. You can also
define an integrity constraint in one statement and subsequently enable
it in another.

You can also enable an integrity constraint by including the ENABLE
keyword in CONSTRAINT clause that defines the integrity constraint.
For information on this keyword, see the CONSTRAINT clause on
page 4 – 149.

If you define an integrity constraint and do not explicitly enable or
disable it, Oracle7 enables it by default.

How Oracle7 Enforces Integrity Constraints When you attempt to
enable an integrity constraint, Oracle7 applies the integrity constraint
to any existing rows in the table:

• If all rows in the table satisfy the integrity constraint, then
Oracle7 enables the integrity constraint.

• If any row in the table violates the integrity constraint, the
integrity constraint remains disabled. Oracle7 returns an error
message indicating the integrity constraint is still disabled.

Once an integrity constraint is enabled, Oracle7 applies the integrity
constraint whenever an INSERT, UPDATE, or DELETE statement tries
to change table data:

• If the new data satisfies the integrity constraint, then Oracle7
executes the statement.

• If the new data violates the integrity constraint, then Oracle7
does not execute the statement. Instead, Oracle7 generates an
error message indicating the integrity constraint violation.

Example I

4 – 329Commands

How to Identify Exceptions An exception is a row in a table that violates
an integrity constraint. You can request that Oracle7 identify exceptions
to an integrity constraint. If you specify an exception table in your
ENABLE clause, Oracle7 inserts a row into the exception table for each
exception. A row of the exception table contains the following
information:

• the ROWID of the exception

• the name of the integrity constraint

• the schema and name of the table

A definition of a sample exception table named EXCEPTIONS appears
in a SQL script available on your distribution media. Your exception
table must have the same column datatypes and lengths as the sample.
The common name of this script is UTLEXCPT.SQL, although its exact
name and location may vary depending on your operating system. You
can request that Oracle7 send exceptions from multiple enabled
integrity constraints to the same exception table.

To specify an exception table in an ENABLE clause, you must have the
privileges necessary to insert rows into the table. For information on
these privileges, see the INSERT command on page 4 – 361. To examine
the identified exceptions, you must have the privileges necessary to
query the exceptions table. For information on these privileges, see the
SELECT command on page 4 – 405.

If a CREATE TABLE statement contains both the AS clause and an
ENABLE clause with the EXCEPTIONS option, Oracle7 ignores the
EXCEPTIONS option. If there are any exceptions, Oracle7 does not
create the table and returns an error message.

The following statement creates the DEPT table and defines and
enables a PRIMARY KEY constraint:

CREATE TABLE dept

(deptno NUMBER(2) PRIMARY KEY,

 dname VARCHAR2(10),

 loc VARCHAR2(9))

TABLESPACE user_a

ENABLE PRIMARY KEY USING INDEX INITRANS 3

 STORAGE (INITIAL 10K NEXT 10K

 MINEXTENTS 2 MAXEXTENTS 10)

 TABLESPACE user_b

 PCTFREE 5

Oracle7 enforces the PRIMARY KEY constraint with an index. The
ENABLE clause specifies INITRANS, STORAGE parameters,
TABLESPACE, and PCTFREE values for the data blocks of the index.

Example II

Example III

4 – 330 Oracle7 Server SQL Reference

The following statement enables an integrity constraint named
FK_DEPTNO in the EMP table:

ALTER TABLE emp

ENABLE CONSTRAINT fk_deptno

EXCEPTIONS INTO except_table

Each row of the EMP table must satisfy the constraint for Oracle7 to
enable the constraint. If any row violates the constraint, the constraint
remains disabled. Oracle7 lists any exceptions in the table
EXCEPT_TABLE. You can query this table with the following
statement:

SELECT *

FROM except_table

The output of this query might look like this:

ROW_ID OWNER TABLE_NAME CONSTRAINT

–––––––––––––––––– ––––– –––––––––– ––––––––––

0000346A.0001.0003 SCOTT EMP FK_DEPTNO

You can also identify the exceptions in the EMP table with the
following statement:

SELECT emp.*

FROM emp, except_table

WHERE emp.row_id except_table.row_id

 AND except_table.table_name = ’EMP’

 AND except_table.constraint = ’FK_DEPTNO’

If there are exceptions to the FK_DEPTNO constraint, the output of this
query might look like this:

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

–––– –––––––– –––––– –––––––– –––––––––– –––––––– –––––––– –––––––

8001 JACK CLERK 7788 25–AUG–92 1100 70

The following statement tries to enable two constraints on the EMP
table:

ALTER TABLE emp

ENABLE UNIQUE (ename)

 ENABLE CONSTRAINT nn_ename

The preceding statement has two ENABLE clauses:

• The first enables a UNIQUE constraint on the ENAME column.

• The second enables the constraint named NN_ENAME.

In this case, Oracle7 only enables the constraints if both are satisfied by
each row in the table. If any row violates either constraint, Oracle7
returns an error message and both constraints remain disabled.

How to Enable Triggers

Example IV

Related Topics

4 – 331Commands

You can enable all triggers associated with the table by including the
ALL TRIGGERS option in an ENABLE clause of an ALTER TABLE
statement. After you enable a trigger, Oracle7 fires the trigger
whenever a triggering statement is issued that meets the condition of
the trigger restriction. When you create a trigger, Oracle7 enables it
automatically.

The following statement enables all triggers associated with the EMP
table:

ALTER TABLE emp

ENABLE ALL TRIGGERS

ALTER TABLE command on 4 – 89
ALTER TRIGGER command on 4 – 105
CONSTRAINT clause on 4 – 149
CREATE TABLE command on 4 – 245
CREATE TRIGGER command on 4 – 257
DISABLE clause on 4 – 295
STORAGE clause on 4 – 449

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 332 Oracle7 Server SQL Reference

EXECUTE (Prepared SQL Statements and PL/SQL Blocks) (Embedded SQL)

To execute a DELETE, INSERT, or UPDATE statement or a PL/SQL
block that has been previously prepared with an embedded SQL
PREPARE statement.

You must first prepare the SQL statement or PL/SQL block with an
embedded SQL PREPARE statement.

EXEC SQL

USING

DESCRIPTOR descriptor

:indicator_variable

INDICATOR

EXECUTE

:host_variable

FOR :host_integer

,

block_name

statement_name

limits the number of times the statement is
executed when the USING clause contains array
host variables If you omit this clause, Oracle7
executes the statement once for each component of
the smallest array.

identifies the SQL statement or PL/SQL block to be
executed. The SQL statement can only be a
DELETE, INSERT, or UPDATE statement. You
must use the embedded SQL PREPARE command
to associate this identifier with the statement.

specifies a list of host variables with optional
indicator variables that Oracle7 substitutes as input
variables into the statement to be executed. The
host and indicator variables must be either all
scalars or all arrays.

FOR :host_integer

statement_name
block_name

USING

Usage Notes

Example

Related Topics

4 – 333Commands

For more information on this command, see the Programmer’s Guide to
the Oracle Precompilers.

This example illustrates the use of the EXECUTE statement in a Pro*C
embedded SQL program:

EXEC SQL PREPARE my_statement

FROM :my_string;

EXEC SQL EXECUTE my_statement

 USING :my_var;

DECLARE DATABASE command on 4 – 282
PREPARE command on 4 – 381

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 334 Oracle7 Server SQL Reference

EXECUTE (Anonymous PL/SQL Blocks) (Embedded SQL)

To embed an anonymous PL/SQL block into an Oracle Precompiler
program.

None.

EXEC SQL

AT

:host_variable

EXECUTE pl/sql_block END–EXEC

db_name

identifies the database on which the PL/SQL block
is executed. The database can be identified by
either:

is a database identifier declared in
a previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name.

If you omit this clause, the PL/SQL block is
executed on your default database.

For information on PL/SQL, including how to
write PL/SQL blocks, see PL/SQL User’s Guide and
Reference.

must appear after the embedded PL/SQL block,
regardless of which programming language your
Oracle Precompiler program uses. Of course, the
keyword END–EXEC must be followed by the
embedded SQL statement terminator for the
specific language.

AT

db_name

:host_variable

pl/sql_block

END–EXEC

Usage Notes

Example

Related Topics

4 – 335Commands

Since the Oracle Precompilers treat an embedded PL/SQL block like a
single embedded SQL statement, you can embed a PL/SQL block
anywhere in an Oracle Precompiler program that you can embed a SQL
statement. For more information on embedding PL/SQL blocks in
Oracle Precompiler programs, see Programmer’s Guide to the Oracle
Precompilers.

Placing this EXECUTE statement in an Oracle Precompiler program
embeds a PL/SQL block in the program:

EXEC SQL EXECUTE

BEGIN

SELECT ename, job, sal

INTO :emp_name:ind_name, :job_title, :salary

FROM emp

WHERE empno = :emp_number;

IF :emp_name:ind_name IS NULL

 THEN RAISE name_missing;

END IF;

END;

END–EXEC

EXECUTE command on 4 – 332
EXECUTE IMMEDIATE embedded SQL command on 4 – 336

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 336 Oracle7 Server SQL Reference

EXECUTE IMMEDIATE (Embedded SQL)

To prepare and execute a DELETE, INSERT, or UPDATE statement or a
PL/SQL block containing no host variables.

None.

EXEC SQL

EXECUTE IMMEDIATE

:host_variable

:host_string

AT db_name

’text’

identifies the database on which the SQL statement
or PL/SQL block is executed. The database can be
identified by either:

is a database identifier declared in
a previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name.

If you omit this clause, the statement or block is
executed on your default database.

is a host variable whose value is the SQL statement
or PL/SQL block to be executed.

is a quoted text literal containing the SQL
statement or PL/SQL block to be executed.

The SQL statement can only be a DELETE,
INSERT, or UPDATE statement.

AT

db_name

:host_variable

:host_string

’text’

Usage Notes

Example

Related Topics

4 – 337Commands

When you issue an EXECUTE IMMEDIATE statement, Oracle7 parses
the specified SQL statement or PL/SQL block, checking for errors, and
executes it. If any errors are encountered, they are returned in the
SQLCODE component of the SQLCA.

For more information on this command, see Programmer’s Guide to the
Oracle Precompilers.

This example illustrates the use of the EXECUTE IMMEDIATE
statement:

EXEC SQL EXECUTE IMMEDIATE ’DELETE FROM emp WHERE empno = 9460’

PREPARE command on 4 – 381
EXECUTE command on 4 – 332

Purpose

Prerequisites

Syntax

4 – 338 Oracle7 Server SQL Reference

EXPLAIN PLAN

To determine the execution plan Oracle7 follows to execute a specified
SQL statement. This command inserts a row describing each step of the
execution plan into a specified table. If you are using cost–based
optimization, this command also determines the cost of executing the
statement.

To issue an EXPLAIN PLAN statement, you must have the privileges
necessary to insert rows into an existing output table that you specify
to hold the execution plan. For information on these privileges, see the
INSERT command on page 4 – 361.

You must also have the privileges necessary to execute the SQL
statement for which you are determining the execution plan. If the SQL
statement accesses a view, you must have privileges to access any
tables and views on which the view is based. If the view is based on
another view that is based on a table, you must have privileges to
access both the other view and its underlying table.

To examine the execution plan produced by an EXPLAIN PLAN
statement, you must have the privileges necessary to query the output
table. For more information on these privileges, see the SELECT
command on page 4 – 405.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must dominate the output table’s creation label or you must
satisfy one of the following criteria:

• If the output table’s creation label is higher than your DBMS
label, you must have READUP and WRITEUP system privileges.

• If the output table’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

EXPLAIN PLAN

FOR statement

SET STATEMENT_ID = ’text’

INTO table

schema. @dblink

Keywords and
Parameters

Usage Notes

4 – 339Commands

specifies the value of the STATEMENT_ID column
for the rows of the execution plan in the output
table. If you omit this clause, the STATEMENT_ID
value defaults to null.

specifies the schema, name, and database
containing the output table. This table must exist
before you use the EXPLAIN PLAN command. If
you omit schema, Oracle7 assumes the table is in
your own schema.

The dblink can be a complete or partial name of a
database link to a remote Oracle7 database where
the output table is located. For information on
referring to database links, see the section,
“Referring to Objects in Remote Objects,” on
page 2 – 11. You can only specify a remote output
table if you are using Oracle7 with the distributed
option. If you omit dblink, Oracle7 assumes the
table is on your local database.

If you omit the INTO clause altogether, Oracle7
assumes an output table named PLAN_TABLE in
your own schema on your local database.

specifies a SELECT, INSERT, UPDATE, or DELETE
statement for which the execution plan is
generated.

The definition of a sample output table PLAN_TABLE is available in
SQL script on your distribution media. Your output table must have the
same column names and datatypes as this table. The common name of
this script is UTLXPLAN.SQL, although the exact name and location
may vary depending on your operating system.

The value you specify in the SET clause appears in the
STATEMENT_ID column in the rows of the execution plan. You can
then use this value to identify these rows among others in the output
table. Be sure to specify a STATEMENT_ID value if your output table
contains rows from many execution plans.

Since the EXPLAIN PLAN command is a Data Manipulation Language
command, rather than a Data Definition Language command, Oracle7
does not implicitly commit the changes made by an EXPLAIN PLAN
statement. If you want to keep the rows generated by an EXPLAIN
PLAN statement in the output table, you must commit the transaction
containing the statement.

SET

INTO

FOR

Example

Related Topics

4 – 340 Oracle7 Server SQL Reference

You should not use the EXPLAIN PLAN command to determine the
execution plans of SQL statements that access data dictionary views or
dynamic performance tables.

You can also issue the EXPLAIN PLAN command as part of the SQL
trace facility. For information on how to use the SQL trace facility and
how to interpret execution plans, see Appendix A “Performance
Diagnostic Tools” of Oracle7 Server Tuning.

This EXPLAIN PLAN statement determines the execution plan and
cost for an UPDATE statement and inserts rows describing the
execution plan into the specified OUTPUT table with the
STATEMENT_ID value of ’Raise in Chicago’:

EXPLAIN PLAN

SET STATEMENT_ID = ’Raise in Chicago’

INTO output

FOR UPDATE emp

SET sal = sal * 1.10

WHERE deptno = (SELECT deptno

FROM dept

WHERE loc = ’CHICAGO’)

This SELECT statement queries the OUTPUT table and returns the
execution plan and the cost:

SELECT LPAD(’ ’,2*(LEVEL–1))||operation operation, options,

object_name, position

FROM output

START WITH id = 0 AND statement_id = ’Raise in Chicago’

 CONNECT BY PRIOR id = parent_id AND

statement_id = ’Raise in Chicago’

The query returns this execution plan:

OPERATION OPTIONS OBJECT_NAME POSITION

––

UPDATE STATEMENT 1

 FILTER 0

 TABLE ACCESS FULL EMP 1

 TABLE ACCESS FULL DEPT 2

The value in the POSITION column of the first row shows that the
statement has a cost of 1.

Appendix A of Oracle7 Server Tuning.

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

4 – 341Commands

FETCH (Embedded SQL)

To retrieve one or more rows returned by a query, assigning the select
list values to host variables.

You must first open the cursor with an the OPEN statement.

EXEC SQL

INTO

FOR :host_integer

FETCH cursor

:host_variable

USING DESCRIPTOR descriptor

,

INDICATOR

:indicator_variable

limits the number of rows fetched if you are using
array host variables. If you omit this clause,
Oracle7 fetches enough rows to fill the smallest
array.

is a cursor that has been declared by a DECLARE
CURSOR statement. The FETCH statement returns
one of the rows selected by the query associated
with the cursor.

specifies a list of host variables and optional
indicator variables into which data is fetched.
These host variables and indicator variables must
be declared within the program.

specifies the descriptor referenced in a previous
DESCRIBE statement. Only use this clause with
dynamic embedded SQL, method 4.

 The FETCH statement reads the rows of the active set and names the
output variables which contain the results. Indicator values are set to
–1 if their associated host variable is null. The first FETCH statement
for a cursor also sorts the rows of the active set, if necessary.

The number of rows retrieved is specified by the size of the output host
variables and the value specified in the FOR clause. The host variables
to receive the data must be either all scalars or all arrays. If they are
scalars, Oracle7 fetches only one row. If they are arrays, Oracle7 fetches
enough rows to fill the arrays.

FOR :host_integer

cursor

INTO

USING

Example

Related Topics

4 – 342 Oracle7 Server SQL Reference

Array host variables can have different sizes. In this case, the number of
rows Oracle7 fetches is determined by the smaller of the following values:

• the size of the smallest array

• the value of the :host_integer in the optional FOR clause

Of course, the number of rows fetched can be further limited by the
number of rows that actually satisfy the query.

If a FETCH statement does not retrieve all rows returned by the query, the
cursor is positioned on the next returned row. When the last row returned
by the query has been retrieved, the next FETCH statement results in an
error code returned in the SQLCODE element of the SQLCA.

Note that the FETCH command does not contain an AT clause. You
must specify the database accessed by the cursor in the DECLARE
CURSOR statement.

You can only move forward through the active set with FETCH
statements. If you want to revisit any of the previously fetched rows,
you must reopen the cursor and fetch each row in turn. If you want to
change the active set, you must assign new values to the input host
variables in the cursor’s query and reopen the cursor.

This example illustrates the FETCH command in a pseudo–code
embedded SQL program:

EXEC SQL DECLARE emp_cursor CURSOR FOR

SELECT job, sal FROM emp WHERE deptno = 30;

...

EXEC SQL WHENEVER NOT FOUND GOTO ...

LOOP

EXEC SQL FETCH emp_cursor INTO :job_title1, :salary1;

EXEC SQL FETCH emp_cursor INTO :job_title2, :salary2;

...

END LOOP;

...

PREPARE command on 4 – 381
DECLARE CURSOR command on 4 – 280
OPEN command on 4 – 376
CLOSE command on 4 – 139

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 343Commands

Filespec

To either specify a file as a data file or specify a group of one or more
files as a redo log file group.

A filespec can appear in either CREATE DATABASE,
ALTER DATABASE, CREATE TABLESPACE, or ALTER TABLESPACE
commands. You must have the privileges necessary to issue one of
these commands. For information on these privileges, see the CREATE
DATABASE command on page 4 – 178, the ALTER DATABASE
command on page 4 – 16, the CREATE TABLESPACE command on
page 4 – 254, and the ALTER TABLESPACE command on page 4 – 98.

’filename’

SIZE integer REUSE

K

M

filespec (Data Files) ::=

’filename’

SIZE integer REUSE

K

M

filespec (Redo Log File Groups) ::=

filename()

,

is the name of either a data file or a redo log file
member. A redo log file group can have one or
more members, or copies. Each ’filename’ must be
fully specified according to the conventions for
your operating system.

specifies the size of the file. If you omit this
parameter, the file must already exist. Note that the
tablespace size must be one block greater than the
sum of the sizes of the objects contained in it.

specifies the size in kilobytes.

specifies the size in megabytes.

If you omit K and M, the size is specified in bytes.

’filename’

SIZE

K

M

Example I

4 – 344 Oracle7 Server SQL Reference

allows Oracle7 to reuse an existing file. If the file
already exists, Oracle7 verifies that its size matches
the value of the SIZE parameter. If the file does not
exist, Oracle7 creates it. If you omit this option, the
file must not already exist and Oracle7 creates the
file.

The REUSE option is only significant when used
with the SIZE option. If you omit the SIZE option,
Oracle7 expects the file to exist already. Note that
whenever Oracle7 uses an existing file, the file’s
previous contents are lost.

The following statement creates a database named PAYABLE that has
two redo log file groups, each with two members, and one data file:

CREATE DATABASE payable

LOGFILE GROUP 1 (’diska:log1.log’, ’diskb:log1.log’) SIZE 50K,

 GROUP 2 (’diska:log2.log’, ’diskb:log2.log’) SIZE 50K

DATAFILE ’diskc:dbone.dat’ SIZE 30M

The first filespec in the LOGFILE clause specifies a redo log file group
with the GROUP value 1. This group has members named
’DISKA:LOG1.LOG’ and ’DISKB:LOG1.LOG’ each with size 50
kilobytes.

The second filespec in the LOGFILE clause specifies a redo log file group
with the GROUP value 2. This group has members named
’DISKA:LOG2.LOG’ and ’DISKB:LOG2.LOG’, also with sizes of 50
kilobytes.

The filespec in the DATAFILE clause specifies a data file named
’DISKC:DBONE.DAT’ of size 30 megabytes.

Since all of these filespecs specify a value for the SIZE parameter and
omit the REUSE option, these files must not already exist. Oracle7 must
create them.

REUSE

Example II

Example III

Example IV

Related Topics

4 – 345Commands

The following statement adds another redo log file group with two
members to the PAYABLE database:

ALTER DATABASE payable

ADD LOGFILE GROUP 3 (’diska:log3.log’, ’diskb:log3.log’)

SIZE 50K REUSE

The filespec in the ADD LOGFILE clause specifies a new redo log file
group with the GROUP value 3. This new group has members named
’DISKA:LOG3.LOG’ and ’DISKB:LOG3.LOG’ with sizes of 50 kilobytes
each. Since the filespec specifies the REUSE option, each member can
already exist. If a member exists, it must have a size of 50 kilobytes. If it
does not exist, Oracle7 creates it with that size.

The following statement creates a tablespace named STOCKS that has
three data files:

CREATE TABLESPACE stocks

DATAFILE ’diskc:stock1.dat’,

 ’diskc:stock2.dat’,

 ’diskc:stock3.dat’

The filespecs for the data files specifies files named
’DISKC:STOCK1.DAT’, ’DISKC:STOCK2.DAT’, ’DISKC:STOCK3.DAT’.
Since each filespec omits the SIZE parameter, each file must already
exist.

The following statement alters the STOCKS tablespace and adds a new
data file:

ALTER TABLESPACE stocks

ADD DATAFILE ’diskc:stock4.dat’ REUSE

The filespec specifies a data file named ’DISKC:STOCK4.DAT’. Since the
filespec omits the SIZE parameter, the file must already exist and the
REUSE option is not significant.

CREATE DATABASE command on 4 – 178
ALTER DATABASE command on 4 – 16
CREATE TABLESPACE command on 4 – 254
ALTER TABLESPACE command on 4 – 98

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 346 Oracle7 Server SQL Reference

GRANT (System Privileges and Roles)

To grant system privileges and roles to users and roles. To grant object
privileges, use the GRANT command (Object Privileges) described in
the next section of this chapter.

To grant a system privilege, you must either have been granted the
system privilege with the ADMIN OPTION or have been granted
GRANT ANY PRIVILEGE system privilege.

To grant a role, you must either have been granted the role with the
ADMIN OPTION or have been granted GRANT ANY ROLE system
privilege or have created the role.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must dominate both the label at which the system privilege or role
was granted to you and the creation label of the grantee user or role.

GRANT TO

WITH ADMIN OPTION

role

,

system_priv

role

,

user

PUBLIC

is a system privilege to be granted.

is a role to be granted.

identifies users or roles to which system privileges
and roles are granted.

grants system privileges or roles to
all users.

WITH ADMIN OPTION
allows the grantee to grant the system privilege or
role to other users or roles. If you grant a role with
ADMIN OPTION, the grantee can also alter or
drop the role.

system_priv

role

TO

PUBLIC

Usage Notes

4 – 347Commands

You can use this form of the GRANT command to grant both system
privileges and roles to users, roles, and PUBLIC:

If you grant a privilege to a user: Oracle7 adds the privilege to the
user’s privilege domain. The user can immediately exercise the
privilege.

If you grant a privilege to a role: Oracle7 adds the privilege to the
role’s privilege domain. Users who have been granted and have
enabled the role can immediately exercise the privilege. Other users
who have been granted the role can enable the role and exercise the
privilege.

If you grant a privilege to PUBLIC: Oracle7 adds the privilege to the
privilege domains of each user. All users can immediately perform
operations authorized by the privilege.

If you grant a role to a user: Oracle7 makes the role available to the
user. The user can immediately enable the role and exercise the
privileges in the role’s privilege domain.

If you grant a role to another role: Oracle7 adds the granted role’s
privilege domain to the grantee role’s privilege domain. Users who
have been granted the grantee role can enable it and exercise the
privileges in the granted role’s privilege domain.

If you grant a role to PUBLIC: Oracle7 makes the role available to all
users. All users can immediately enable the role and exercise the
privileges in the roles privilege domain.

A privilege or role cannot appear more than once in the list of
privileges and roles to be granted. A user, role, or PUBLIC cannot
appear more than once in the TO clause.

You cannot grant roles circularly. For example, if you grant the role
BANKER to the role TELLER, you cannot subsequently grant TELLER
to BANKER. Also, you cannot grant a role to itself.

System Privileges

4 – 348 Oracle7 Server SQL Reference

Table 4 – 11 lists system privileges and the operations that they
authorize. You can grant any of these system privileges with the
GRANT command.

System Privilege Operations Authorized

ALTER ANY CLUSTER Allows grantee to alter any cluster in any schema.

ALTER ANY INDEX Allows grantee to alter any index in any schema

ALTER ANY PROCEDURE Allows grantee to alter any stored procedure, function, or
package in any schema.

ALTER ANY ROLE Allows grantee to alter any role in the database.

ALTER ANY SEQUENCE Allows grantee to alter any sequence in the database.

ALTER ANY SNAPSHOT Allows grantee to alter any snapshot in the database.

ALTER ANY TABLE Allows grantee to alter any table or view in the schema.

ALTER ANY TRIGGER Allows grantee to enable, disable, or compile any database
trigger in any schema.

ALTER DATABASE Allows grantee to alter the database.

ALTER PROFILE Allows grantee to alter profiles.

ALTER RESOURCE COST Allows grantee to set costs for session resources.

ALTER ROLLBACK SEGMENT Allows grantee to alter rollback segments.

ALTER SESSION Allows grantee to issue ALTER SESSION statements.

ALTER SYSTEM Allows grantee to issue ALTER SYSTEM statements.

ALTER TABLESPACE Allows grantee to alter tablespaces.

ALTER USER Allows grantee to alter any user. This privilege authorizes
the grantee to change another user’s password or
authentication method, assign quotas on any tablespace,
set default and temporary tablespaces, and assign a profile
and default roles.

ANALYZE ANY Allows grantee to analyze any table, cluster, or index in any
schema.

AUDIT ANY Allows grantee to audit any object in any schema using
AUDIT (Schema Objects) statements.

AUDIT SYSTEM Allows grantee to issue AUDIT (SQL Statements)
statements.

BACKUP ANY TABLE Allows grantee to use the Export utility to incrementally
export objects from the schema of other users.

BECOME USER Allows grantee to become another user. (Required by any
user performing a full database import.)

Table 4 – 11 System Privileges

4 – 349Commands

System Privilege Operations Authorized

COMMENT ANY TABLE Allows grantee to comment on any table, view, or column
in any schema.

CREATE ANY CLUSTER Allows grantee to create a cluster in any schema. Behaves
similarly to CREATE ANY TABLE.

CREATE ANY INDEX Allows grantee to create an index in any schema on any
table in any schema.

CREATE ANY PROCEDURE Allows grantee to create stored procedures, functions, and
packages in any schema.

CREATE ANY SEQUENCE Allows grantee to create a sequence in any schema.

CREATE ANY SNAPSHOT Allows grantee to create snapshots in any schema.

CREATE ANY SYNONYM Allows grantee to create private synonyms in any schema.

CREATE ANY TABLE Allows grantee to create tables in any schema. The owner
of the schema containing the table must have space quota
on the tablespace to contain the table.

CREATE ANY TRIGGER Allows grantee to create a database trigger in any schema
associated with a table in any schema.

CREATE ANY VIEW Allows grantee to create views in any schema.

CREATE CLUSTER Allows grantee to create clusters in own schema.

CREATE DATABASE LINK Allows grantee to create private database links in own
schema.

CREATE PROCEDURE Allows grantee to create stored procedures, functions, and
packages in own schema.

CREATE PROFILE Allows grantee to create profiles.

CREATE PUBLIC DATABASE LINK Allows grantee to create public database links.

CREATE PUBLIC SYNONYM Allows grantee to create public synonyms.

CREATE ROLE Allows grantee to create roles.

CREATE ROLLBACK SEGMENT Allows grantee to create rollback segments.

CREATE SEQUENCE Allows grantee to create sequences in own schema.

CREATE SESSION Allows grantee to connect to the database.

CREATE SNAPSHOT Allows grantee to create snapshots in own schema.

CREATE SYNONYM Allows grantee to create synonyms in own schema.

CREATE TABLE Allows grantee to create tables in own schema. To create a
table, the grantee must also have space quota on the
tablespace to contain the table.

Table 4 – 11 (continued) System Privileges

4 – 350 Oracle7 Server SQL Reference

System Privilege Operations Authorized

CREATE TABLESPACE Allows grantee to create tablespaces.

CREATE TRIGGER Allows grantee to create a database trigger in own schema.

CREATE USER Allows grantee to create users. This privilege also allows
the creator to assign quotas on any tablespace, set default
and temporary tablespaces, and assign a profile as part of a
CREATE USER statement.

CREATE VIEW Allows grantee to create views in own schema.

DELETE ANY TABLE Allows grantee to delete rows from tables or views in any
schema or truncate tables in any schema.

DROP ANY CLUSTER Allows grantee to drop clusters in any schema.

DROP ANY INDEX Allows grantee to drop indexes in any schema.

DROP ANY PROCEDURE Allows grantee to drop stored procedures, functions, or
packages in any schema.

DROP ANY ROLE Allows grantee to drop roles.

DROP ANY SEQUENCE Allows grantee to drop sequences in any schema.

DROP ANY SNAPSHOT Allows grantee to drop snapshots in any schema.

DROP ANY SYNONYM Allows grantee to drop private synonyms in any schema.

DROP ANY TABLE Allows grantee to drop tables in any schema.

DROP ANY TRIGGER Allows grantee to drop database triggers in any schema.

DROP ANY VIEW Allows grantee to drop views in any schema

DROP PROFILE Allows grantee to drop profiles.

DROP PUBLIC DATABASE LINK Allows grantee to drop public database links.

DROP PUBLIC SYNONYM Allows grantee to drop public synonyms.

DROP ROLLBACK SEGMENT Allows grantee to drop rollback segments.

DROP TABLESPACE Allows grantee to drop tablespaces.

DROP USER Allows grantee to drop users.

EXECUTE ANY PROCEDURE Allows grantee to execute procedures or functions
(stand–alone or packaged) or reference public package
variables in any schema.

FORCE ANY TRANSACTION Allows grantee to for the commit or rollback of any
in–doubt distributed transaction in the local database. Also
allows the grantee to induce the failure of a distributed
transaction.

Table 4 – 11 (continued) System Privileges

4 – 351Commands

System Privilege Operations Authorized

FORCE TRANSACTION Allows grantee to force the commit or rollback of own
in–doubt distributed transactions in the local database.

GRANT ANY PRIVILEGE Allows grantee to grant any system privilege.

GRANT ANY ROLE Allows grantee to grant any role in the database.

INSERT ANY TABLE Allows grantee to insert rows into tables and views in any
schema.

LOCK ANY TABLE Allows grantee to lock tables and views in any schema.

MANAGE TABLESPACE Allows grantee to take tablespaces offline and online and
begin and end tablespace backups.

READUP Allows grantee to query data having an access class higher
than the grantee’s session label. This privilege is only
available in Trusted Oracle7.

RESTRICTED SESSION Allows grantee to logon after the instance is started using
the Server Manager STARTUP RESTRICT command.

SELECT ANY SEQUENCE Allows grantee to reference sequences in any schema.

SELECT ANY TABLE Allows grantee to query tables, views, or snapshots in any
schema.

UNLIMITED TABLESPACE Allows grantee to use an unlimited amount of any
tablespace. This privilege overrides any specific quotas
assigned. If you revoke this privilege from a user, the
grantee’s schema objects remain but further tablespace
allocation is denied unless authorized by specific
tablespace quotas. You cannot grant this system privilege
to roles.

UPDATE ANY TABLE Allows grantee to update rows in tables and views in any
schema.

WRITEDOWN Allows grantee to create, alter, and drop schema objects
and to insert, update, and delete rows having access classes
lower than the grantee’s session label. This privilege is only
available in Trusted Oracle7.

WRITEUP Allows grantee to create, alter, and drop schema objects
and to insert, update, and delete rows having access classes
higher than the grantee’s session label. This privilege is
only available in Trusted Oracle7.

Table 4 – 11 (continued) System Privileges

Roles Defined by
Oracle7

4 – 352 Oracle7 Server SQL Reference

Some roles are created automatically by Oracle7. When you create a
database, Oracle7 creates these roles and grants them certain system
privileges. Table 4 – 12 lists each predefined role and its system
privileges.

Role System Privileges and Roles Granted

CONNECT ALTER SESSION
CREATE CLUSTER
CREATE DATABASE LINK
CREATE SEQUENCE
CREATE SESSION
CREATE SYNONYM
CREATE TABLE
CREATE VIEW

RESOURCE CREATE CLUSTER
CREATE PROCEDURE
CREATE SEQUENCE
CREATE TABLE
CREATE TRIGGER

DBA All systems privileges
WITH ADMIN OPTION

EXP_FULL_DATABASE role
IMP_FULL_DATABASE role

EXP_FULL_DATABASE SELECT ANY TABLE
BACKUP ANY TABLE
INSERT, UPDATE, DELETE

ON sys.incexp
sys.incvid
sys.incfil

IMP_FULL_DATABASE BECOME USER
WRITEDOWN (in Trusted Oracle7)

Table 4 – 12 Roles defined by Oracle7

Note: If you grant or revoke the RESOURCE or DBA role to or
from a user, Oracle7 implicitly grants or revokes the
UNLIMITED TABLESPACE system privilege to or from the
user.

The CONNECT, RESOURCE, and DBA are provided for compatibility
with previous versions of Oracle7. The SQL script SQL.BSQ creates
these roles, grants privileges to them, and grants the DBA role with
ADMIN OPTION to the users SYS and SYSTEM. This script is available
on your distribution media, although its exact name and location may
vary depending on your operating system. It is recommended that you
to design your own roles for database security, rather than rely on these
roles. These roles may not be automatically created by future versions
of Oracle7.

DBA Role

ADMIN OPTION

Granting Roles
Through Your
Operating System

Example I

Example II

4 – 353Commands

The EXP_FULL_DATABASE and IMP_FULL_DATABASE roles are
provided for convenience in using the Import and Export utilities. The
SQL script CATEXP.SQL creates these roles, grants privileges to them,
and grants them to the DBA role. This script is available on your
distribution media, although its exact name and location may vary
depending on your operating system.

Because the DBA role has all system privileges, a common
misperception is that no other privileges are required to administer
privileges on objects in the database. Although this is generally true,
you may still need to grant object privileges to a user granted the DBA
role. For example, for USER1 granted the DBA role to create a foreign
key constraint against USER2’s tables, USER2 must grant the
REFERENCES object privilege on the tables to USER1.

A grant with the ADMIN OPTION supersedes a previous identical
grant without the ADMIN OPTION. If you grant a system privilege or
role to user without the ADMIN OPTION, and then subsequently grant
the privilege or role to the user with the ADMIN OPTION, the user has
the ADMIN OPTION on the privilege or role.

A grant without the ADMIN OPTION does not supersede a previous
grant with the ADMIN OPTION. To revoke the ADMIN OPTION on a
system privilege or role from a user, you must revoke the privilege or
role from the user altogether and then grant the privilege or role to the
user without the ADMIN OPTION.

Some operating systems have facilities that grant operating system
privileges to operating system users. You can use such facilities to grant
roles to Oracle7 users with the initialization parameter OS_ROLES. If
you choose to grant roles to users through operating system facilities,
you cannot also grant roles to users with the GRANT command,
although you can use the GRANT command to grant system privileges
to users and system privileges and roles to other roles.

To grant the CREATE SESSION system privilege to RICHARD,
allowing RICHARD to logon to Oracle7, issue the following statement:

GRANT CREATE SESSION

TO richard

To grant the CREATE TABLE system privilege to the role
TRAVEL_AGENT, issue the following statement:

GRANT CREATE TABLE

TO travel_agent

Related Topics

4 – 354 Oracle7 Server SQL Reference

TRAVEL_AGENT’s privilege domain now contains the CREATE
TABLE system privilege.

The following statement grants the TRAVEL_AGENT role to the
EXECUTIVE role:

GRANT travel_agent

TO executive

TRAVEL_AGENT is now granted to EXECUTIVE. EXECUTIVE’s
privilege domain contains the CREATE TABLE system privilege.

To grant the EXECUTIVE role with the ADMIN OPTION to THOMAS,
issue the following statement:

GRANT executive

TO thomas

WITH ADMIN OPTION

THOMAS can now perform the following operations with the
EXECUTIVE role:

• enable the role and exercise any privileges in the role’s privilege
domain, including the CREATE TABLE system privilege

• grant and revoke the role to and from other users

• drop the role

ALTER USER command on 4 – 108
CREATE USER command on 4 – 267
GRANT (Object Privileges) command on 4 – 355
REVOKE (System Privileges and Roles) command on 4 – 388

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 355Commands

GRANT (Object Privileges)

To grant privileges for a particular object to users and roles. To grant
system privileges and roles, use the GRANT command (System
Privileges and Roles) described in the previous section of this chapter.

You must own the object or the owner of the object granted you the
object privileges with the GRANT OPTION. This rule applies to users
with the DBA role.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must dominate the label at which the object privilege was granted
to you and the creation label of the grantee user or role.

GRANT

ALL

,

role

PUBLIC

schema.

object_priv

PRIVILEGES

,

column()

ON object TO user

WITH GRANT OPTION

is an object privilege to be granted. You can
substitute any of the following values:

• ALTER

• DELETE

• EXECUTE

• INDEX

• INSERT

• REFERENCES

• SELECT

• UPDATE

object_priv

4 – 356 Oracle7 Server SQL Reference

grants all the privileges for the object that you have
been granted with the GRANT OPTION. The user
who owns the schema containing an object
automatically has all privileges on the object with
the GRANT OPTION.

specifies a table or view column on which
privileges are granted. You can only specify
columns when granting the INSERT,
REFERENCES, or UPDATE privilege. If you do not
list columns, the grantee has the specified privilege
on all columns in the table or view.

identifies the object on which the privileges are
granted. If you do not qualify object with schema,
Oracle7 assumes the object is in your own schema.
The object can be one of the following types:

• table

• view

• sequence

• procedure, function, or package

• snapshots

• synonym for a table, view, sequence, snapshot,
procedure, function, or package

identifies users or roles to which the object
privilege is granted.

grants object privileges to all users.

allows the grantee to grant the object privileges to
other users and roles. The grantee must be a user
or PUBLIC, rather than a role.

ALL PRIVILEGES

column

ON

TO

PUBLIC

WITH GRANT
OPTION

Usage Notes

Object Privileges

4 – 357Commands

You can use this form of the GRANT statement to grant object
privileges to users, roles, and PUBLIC:

If you grant a privilege to a user: Oracle7 adds the privilege to the
user’s privilege domain. The user can immediately exercise the
privilege.

If you grant a privilege to a role: Oracle7 adds the privilege to the
role’s privilege domain. Users who have been granted and have
enabled the role can immediately exercise the privilege. Other users
who have been granted the role can enable the role and exercise the
privilege.

If you grant a privilege to PUBLIC: Oracle7 adds the privilege to the
privilege domain of each user. All users can immediately exercise the
privilege.

A privilege cannot appear more than once in the list of privileges to be
granted. A user or role cannot appear more than once in the TO clause.

Each object privilege that you grant authorizes the grantee to perform
some operation on the object. Table 4 – 13 summarizes the object
privileges that you can grant on each type of object.

Object Privilege Tables Views Sequences Procedure
Functions
Packages

Snapshots

ALTER 3 3

DELETE 3 3

EXECUTE 3

INDEX 3

INSERT 3 3

REFERENCES 3

SELECT 3 3 3 3

UPDATE 3 3

Table 4 – 13 Object Privileges

Table Privileges

View Privileges

4 – 358 Oracle7 Server SQL Reference

The following object privileges authorize operations on a table:

allows the grantee to change the table definition
with the ALTER TABLE command.

allows the grantee to remove rows from the table
with the DELETE command.

allows the grantee to create an index on the table
with the CREATE INDEX command.

allows the grantee to add new rows to the table
with the INSERT command.

allows the grantee to create a constraint that refers
to the table. You cannot grant this privilege to a
role.

allows the grantee to query the table with the
SELECT command.

allows the grantee to change data in the table with
the UPDATE command.

Any one of above object privileges allows the grantee to lock the table
in any lock mode with the LOCK TABLE command.

The following object privileges authorize operations on a view:

allows the grantee to remove rows from the view
with the DELETE command.

allows the grantee to add new rows to the view
with the INSERT command.

allows the grantee to query the view with the
SELECT command.

allows the grantee to change data in the view with
the UPDATE command.

Any one of the above object privileges allows the grantee to lock the
view in any lock mode with the LOCK TABLE command.

To grant a privilege on a view, you must have that privilege with the
GRANT OPTION on all of the view’s base tables.

ALTER

DELETE

INDEX

INSERT

REFERENCES

SELECT

UPDATE

DELETE

INSERT

SELECT

UPDATE

Sequence Privileges

Procedure, Function, and
Package Privileges

Snapshot Privileges

Synonym Privileges

Example I

4 – 359Commands

The following object privileges authorize operations on a sequence:

allows the grantee to change the sequence
definition with the ALTER SEQUENCE command.

allows the grantee to examine and increment
values of the sequence with the CURRVAL and
NEXTVAL pseudocolumns.

This object privilege authorizes operations on a procedure, function, or
package:

allows the grantee to execute the procedure or
function or to access any program object declared
in the specification of a package.

This object privilege authorizes operations on a snapshot:

allows the grantee to query the snapshot with the
SELECT command.

The object privileges available for a synonym are the same as the
privileges for the synonym’s base object. Granting a privilege on a
synonym is equivalent to granting the privilege on the base object.
Similarly, granting a privilege on a base object is equivalent to granting
the privilege on all synonyms for the object. If you grant a user a
privilege on a synonym, the user can use either the synonym name or
the base object name in the SQL statement that exercises the privilege.

To grant all privileges on the table BONUS to the user JONES with the
GRANT OPTION, issue the following statement:

GRANT ALL

ON bonus

TO jones

WITH GRANT OPTION

JONES can subsequently perform the following operations:

• exercise any privilege on the BONUS table

• grant any privilege on the BONUS table to another user or role

ALTER

SELECT

EXECUTE

SELECT

Example II

Example III

Example IV

Related Topics

4 – 360 Oracle7 Server SQL Reference

To grant SELECT and UPDATE privileges on the view
GOLF_HANDICAP to all users, issue the following statement:

GRANT SELECT, UPDATE

ON golf_handicap

TO PUBLIC

All users can subsequently query and update the view of golf
handicaps.

To grant SELECT privilege on the ESEQ sequence in the schema ELLY
to the user BLAKE, issue the following statement:

GRANT SELECT

ON elly.eseq

TO blake

BLAKE can subsequently generate the next value of the sequence with
the following statement:

SELECT elly.eseq.NEXTVAL

FROM DUAL

To grant BLAKE the REFERENCES privilege on the EMPNO column
and the UPDATE privilege on the EMPNO, SAL, and COMM columns
of the EMP table in the schema SCOTT, issue the following statement:

GRANT REFERENCES (empno), UPDATE (empno, sal, comm)

ON scott.emp

 TO blake

BLAKE can subsequently update values of the EMPNO, SAL, and
COMM columns. BLAKE can also define referential integrity
constraints that refer to the EMPNO column. However, since the
GRANT statement lists only these columns, BLAKE cannot perform
operations on any of the other columns of the EMP table.

For example, BLAKE can create a table with a constraint:

CREATE TABLE dependent

 (dependno NUMBER,

 dependname VARCHAR2(10),

 employee NUMBER

 CONSTRAINT in_emp REFERENCES scott.emp(empno))

The constraint IN_EMP ensures that all dependents in the
DEPENDENT table correspond to an employee in the EMP table in the
schema SCOTT.

GRANT (System Privileges and Roles) command on 4 – 346
REVOKE (Object Privileges) command on 4 – 391

Purpose

Prerequisites

Syntax

4 – 361Commands

INSERT

To add rows to a table or to a view’s base table.

For you to insert rows into a table, the table must be in your own
schema or you must have INSERT privilege on the table.

For you to insert rows into the base table of a view, the owner of the
schema containing the view must have INSERT privilege on the base
table. Also, if the view is in a schema other than your own, you must
have INSERT privilege on the view.

The INSERT ANY TABLE system privilege also allows you to insert
rows into any table or any view’s base table.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the creation label of the table or view:

• If the creation label of the table or view is higher than your
DBMS label, you must have WRITEUP system privileges.

• If the creation label of the table or view is lower than your DBMS
label, you must have WRITEDOWN system privilege.

• If the creation label of your table or view is noncomparable to
your DBMS label, you must have WRITEUP and WRITEDOWN
system privileges.

INSERT INTO

schema.

table

VALUES (expr

view @dblink

)

subquery_2,

column()

(subquery_1)

Keywords and
Parameters

4 – 362 Oracle7 Server SQL Reference

is the schema containing the table or view. If you
omit schema, Oracle7 assumes the table or view is
in your own schema.

is the name of the table into which rows are to be
inserted. If you specify view, Oracle7 inserts rows
into the view’s base table.

is a complete or partial name of a database link to a
remote database where the table or view is located.
For information on referring to database links, see
the section “Referring to Objects” on page 2 – 11.
You can only insert rows into a remote table or
view if you are using Oracle7 with the distributed
option.

If you omit dblink, Oracle7 assumes that the table
or view is on the local database.

is a subquery that Oracle treats in the same manner
as a view. For the syntax of subquery, see
page 4 – 431.

is a column of the table or view. In the inserted
row, each column in this list is assigned a value
from the VALUES clause or the subquery.

If you omit one of the table’s columns from this list,
the column’s value for the inserted row is the
column’s default value as specified when the table
was created. If you omit the column list altogether,
the VALUES clause or query must specify values
for all columns in the table.

specifies a row of values to be inserted into the
table or view. See the syntax description of expr on
page 3 – 73. You must specify a value in the
VALUES clause for each column in the column list.

is a subquery that returns rows that are inserted
into the table. The select list of this subquery must
have the same number of columns as the column
list of the INSERT statement. For the syntax
description of subquery, see page 4 – 436.

schema

table
view

dblink

subquery_1

column

VALUES

subquery_2

Usage Notes

Inserting Into Views

4 – 363Commands

An INSERT statement with a VALUES clause adds a single row to the
table. This row contains the values specified in the VALUES clause.

An INSERT statement with a subquery instead of a VALUES clause
adds to the table all rows returned by the subquery. Oracle7 processes
the subquery and inserts each returned row into the table. If the
subquery selects no rows, Oracle7 inserts no rows into the table. The
subquery can refer to any table, view, or snapshot, including the target
table of the INSERT statement.

The number of columns in the column list of the INSERT statement
must be the same as the number of values in the VALUES clause or the
number of columns selected by the subquery. If you omit the column
list, then the VALUES clause or the subquery must provide values for
every column in the table. If you are using Trusted Oracle7 in DBMS
MAC mode and you omit a value for the ROWLABEL column, the new
row is automatically labeled with your DBMS label.

Oracle7 assigns values to fields in new rows based on the internal
position of the columns in the table and the order of the values in the
VALUES clause or in the select list of the query. You can determine the
position of each column in the table by examining the data dictionary.
See the “Data Dictionary” chapter in Oracle7 Server Reference.

If you omit any columns from the column list, Oracle7 assigns them
their default values as specified when the table was created. For more
information on the default column values, see the CREATE TABLE
command on page 4 – 245. If any of these columns has a NOT NULL
constraint, then Oracle7 returns an error indicating that the constraint
has been violated and rolls back the INSERT statement.

Issuing an INSERT statement against a table fires any INSERT triggers
defined on the table.

If a view was created using the WITH CHECK OPTION, then you can
only insert rows into the view that satisfy the view’s defining query.

You cannot insert rows into a view if the view’s defining query contains
one of the following constructs:

• join

• set operator

• GROUP BY clause

• group function

• DISTINCT operator

Example I

Example II

Example III

Example IV

Example V

Example VI

Related Topics

4 – 364 Oracle7 Server SQL Reference

The following statement inserts a row into the DEPT table:

INSERT INTO dept

VALUES (50, ’PRODUCTION’, ’SAN FRANCISCO’)

The following statement inserts a row with six columns into the EMP
table. One of these columns is assigned NULL and another is assigned
a number in scientific notation:

INSERT INTO emp (empno, ename, job, sal, comm, deptno)

VALUES (7890, ’JINKS’, ’CLERK’, 1.2E3, NULL, 40)

The following statement has the same effect as Example II:

INSERT INTO (select empno, job, sal, comm, deptno from emp)

VALUES (7890, ’JINKS’, ’CLERK’, 1.2E3, NULL, 40)

The following statement copies managers and presidents or employees
whose commission exceeds 25% of their salary into the BONUS table:

INSERT INTO bonus

SELECT ename, job, sal, comm

FROM emp

WHERE comm > 0.25 * sal

 OR job IN (’PRESIDENT’, ’MANAGER’)

The following statement inserts a row into the ACCOUNTS table
owned by the user SCOTT on the database accessible by the database
link SALES:

INSERT INTO scott.accounts@sales (acc_no, acc_name)

VALUES (5001, ’BOWER’)

Assuming that the ACCOUNTS table has a BALANCE column, the
newly inserted row is assigned the default value for this column
because this INSERT statement does not specify a BALANCE value.

The following statement inserts a new row containing the next value of
the employee sequence into the EMP table:

INSERT INTO emp

VALUES (empseq.nextval, ’LEWIS’, ’CLERK’,

 7902, SYSDATE, 1200, NULL, 20)

DELETE command on 4 – 286
UPDATE command on 4 – 460

Purpose

Prerequisites

Syntax

4 – 365Commands

INSERT (Embedded SQL)

To add rows to a table or to a view’s base table.

For you to insert rows into a table, the table must be in your own
schema or you must have INSERT privilege on the table.

For you to insert rows into the base table of a view, the owner of the
schema containing the view must have INSERT privilege on the base
table. Also, if the view is in a schema other than your own, you must
have INSERT privilege on the view.

The INSERT ANY TABLE system privilege also allows you to insert
rows into any table or any view’s base table.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the creation label of the table or view:

• If the creation label of the table or view is higher than your
DBMS label, you must have WRITEUP system privileges.

• If the creation label of the table or view is lower than your DBMS
label, you must have WRITEDOWN system privilege.

• If the creation label of your table or view is noncomparable to
your DBMS label, you must have WRITEUP and WRITEDOWN
system privileges.

EXEC SQL

AT

:host_variable

db_name FOR :host_integer

INSERT INTO

schema.

table

VALUES (expr

view @dblink

)

subquery_2,

column()

(subquery_1)

Keywords and
Parameters

4 – 366 Oracle7 Server SQL Reference

identifies the database on which the INSERT
statement is executed. The database can be
identified by either:

is a database identifier declared in
a previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name

If you omit this clause, the INSERT statement is
executed on your default database.

limits the number of times the statement is
executed if the VALUES clause contains array host
variables. If you omit this clause, Oracle7 executes
the statement once for each component in the
smallest array.

is the schema containing the table or view. If you
omit schema, Oracle7 assumes the table or view is
in your own schema.

is the name of the table into which rows are to be
inserted. If you specify view, Oracle7 inserts rows
into the view’s base table.

is a complete or partial name of a database link to a
remote database where the table or view is located.
For information on referring to database links, see
the section, “Referring to Objects in Remote
Databases,” on page 2 – 11. You can only insert
rows into a remote table or view if you are using
Oracle7 with the distributed option.

If you omit dblink, Oracle7 assumes that the table
or view is on the local database.

is a subquery that Oracle treats in the same manner
as a view. For the syntax of subquery, see
page 4 – 431.

AT

db_name

:host_variable

FOR :host_integer

schema

table
view

dblink

subquery_1

Usage Notes

4 – 367Commands

is a column of the table or view. In the inserted
row, each column in this list is assigned a value
from the VALUES clause or the query.

If you omit one of the table’s columns from this list,
the column’s value for the inserted row is the
column’s default value as specified when the table
was created. If you omit the column list altogether,
the VALUES clause or query must specify values
for all columns in the table.

specifies a row of values to be inserted into the
table or view. See the syntax description of expr on
page 3 – 73. Note that the expressions can be host
variables with optional indicator variables. You
must specify an expression in the VALUES clause
for each column in the column list.

is a subquery that returns rows that are inserted
into the table. The select list of this subquery must
have the same number of columns as the column
list of the INSERT statement. For the syntax
description of subquery, see page 4 – 436.

Any host variables that appear in the WHERE clause must be either all
scalars or all arrays. If they are scalars, Oracle7 executes the INSERT
statement once. If they are arrays, Oracle7 executes the INSERT
statement once for each set of array components, inserting one row
each time.

Array host variables in the WHERE clause can have different sizes. In
this case, the number of times Oracle7 executes the statement is
determined by the smaller of the following values:

• size of the smallest array

• the value of the :host_integer in the optional FOR clause.

For more information on this command, see Programmer’s Guide to the
Oracle Precompilers.

column

VALUES

subquery_2

Example I

Example II

Related Topics

4 – 368 Oracle7 Server SQL Reference

This example illustrates the use of the embedded SQL INSERT
command:

EXEC SQL INSERT INTO emp (ename, empno, sal)

 VALUES (:ename, :empno, :sal);

This example shows an embedded SQL INSERT command with a
subquery:

EXEC SQL INSERT INTO new_emp (ename, empno, sal)

SELECT ename, empno, sal FROM emp

 WHERE deptno = :deptno;

DECLARE DATABASE command on 4 – 282
INSERT command on 4 – 361

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 369Commands

LOCK TABLE

To lock one or more tables in a specified mode. This lock manually
overrides automatic locking and permits or denies access to a table or
view by other users for the duration of your operation.

The table or view must be in your own schema or you must have
LOCK ANY TABLE system privilege or you must have any object
privilege on the table or view.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must dominate the creation label of the table or view or you must
have READUP system privilege.

LOCK TABLE

schema.

table

view @dblink

NOWAIT

,

IN lockmode MODE

is the schema containing the table or view. If you
omit schema, Oracle7 assumes the table or view is
in your own schema.

is the name of the table to be locked. If you specify
view, Oracle7 locks the view’s base tables.

is a database link to a remote Oracle7 database
where the table or view is located. For information
on specifying database links, see the section,
“Referring to Objects in Remote Databases,” on
page 2 – 11. You can only lock tables and views on
a remote database if you are using Oracle7 with the
distributed option. All tables locked by a LOCK
TABLE statement must be on the same database.

If you omit dblink, Oracle7 assumes the table or
view is on the local database.

schema

table
view

dblink

Usage Notes

4 – 370 Oracle7 Server SQL Reference

is one of the following:

• ROW SHARE

• ROW EXCLUSIVE

• SHARE UPDATE

• SHARE

• SHARE ROW EXCLUSIVE

• EXCLUSIVE

specifies that Oracle7 returns control to you
immediately if the specified table is already locked
by another user. In this case, Oracle7 returns a
message indicating that the table is already locked
by another user.

If you omit this clause, Oracle7 waits until the table
is available, locks it, and returns control to you.

Exclusive locks allow queries on the locked table but prohibit any other
activity on it.

Share locks allow concurrent queries but prohibit updates to the locked
table.

Row Share locks allow concurrent access to the locked table. They
prohibit users from locking the entire table for exclusive access. ROW
SHARE is synonymous with SHARE UPDATE.

Row Exclusive locks are the same as ROW SHARE locks, but also
prohibit locking in SHARE mode. Row Exclusive locks are
automatically obtained when updating, inserting, or deleting.

Share Row Exclusive locks are used to look at a whole table and to
allow others to look at rows in the table but to prohibit others from
locking the table in SHARE mode or updating rows.

Share Update locks are synonymous with ROW SHARE and included
for compatibility with earlier versions of the Oracle7 RDBMS.

Some forms of locks can be placed on the same table at the same time,
other locks only allow one lock per table. For example, multiple users
can place SHARE locks on the same table at the same time, but only
one user can place an EXCLUSIVE lock on a table at a time. For a
complete description of the interaction of lock modes, see the “Data
Concurrency” chapter of Oracle7 Server Concepts.

lockmode

NOWAIT

Example I

Example II

Related Topics

4 – 371Commands

When you lock a table, you choose how other users can access it. A
locked table remains locked until you either commit your transaction
or roll it back entirely or to a savepoint before you locked the table.

A lock never prevents other users from querying the table. A query
never places a lock on a table. Readers never block writers and writers
never block readers.

The following statement locks the EMP table in exclusive mode, but
does not wait if another user already has locked the table:

LOCK TABLE emp

IN EXCLUSIVE MODE

NOWAIT

The following statement locks the remote ACCOUNTS table that is
accessible through the database link BOSTON:

LOCK TABLE accounts@boston

IN SHARE MODE

DELETE command on 4 – 286
INSERT command on 4 – 361
UPDATE command on 4 – 460
COMMIT command on 4 – 141
ROLLBACK command on 4 – 397
SAVEPOINT command on 4 – 404

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 372 Oracle7 Server SQL Reference

NOAUDIT (SQL Statements)

To stop auditing chosen by the AUDIT command (SQL Statements). To
stop auditing chosen by the AUDIT command (Schema Objects), use
the NOAUDIT command (Schema Objects) described in the next
section of this chapter.

You must have AUDIT SYSTEM system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the label at which the auditing option was set or you
must satisfy one of the following criteria:

• If the auditing option was set at a label higher than your DBMS
label, you must have READUP and WRITEUP system privileges.

• If the auditing option was set at a label lower than your DBMS
label, you must have WRITEDOWN system privilege.

• If the auditing option was set at a label not comparable to your
DBMS label, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

NOAUDIT

system_priv

,

statement_opt

,

userBY

WITH GRANT OPTION SUCCESSFUL

NOT

is a statement option for which auditing is stopped.
For a list of the statement options and the SQL
statements they audit, see Table 4 – 7 beginning on
page 4 – 130 and Table 4 – 8 on page 4 – 132.

is a system privilege for which auditing is stopped.
For a list of the system privileges and the
statements they authorize, see Table 4 – 7 on
page 4 – 130.

stops auditing only for SQL statements issued by
specified users in their subsequent sessions. If you
omit this clause, Oracle7 stops auditing for all
users’ statements, except for the situation
described in the section that follows.

statement_opt

system_priv

BY

Usage Notes

Example I

Example II

Example III

Related Topics

4 – 373Commands

WHENEVER SUCCESSFUL
stops auditing only for SQL statements that
complete successfully.

stops auditing only for statements that result in
Oracle7 errors.

If you omit the WHENEVER clause entirely,
Oracle7 stops auditing for all statements,
regardless of success or failure.

A NOAUDIT statement (SQL Statements) reverses the effect of a
previous AUDIT statement (SQL Statements). Note that the NOAUDIT
statement must have the same syntax as the previous AUDIT statement
and that it only reverses the effects of that particular statement.
Therefore, if one AUDIT statement (statement A) enables auditing for a
specific user, and a second (statement B) enables auditing for all users,
then a NOAUDIT statement to disable auditing for all users (statement
C) reverses statement B, but leaves statement A in effect and continues
to audit the user that statement A specified. For information on
auditing specific SQL commands, see the AUDIT command (SQL
Statements) command on page 4 – 127.

If you have chosen auditing for every SQL statement that creates or
drops a role, you can stop auditing of such statements by issuing the
following statement:

NOAUDIT ROLE

If you have chosen auditing for any statement that queries or updates
any table issued by the users SCOTT and BLAKE, you can stop
auditing for SCOTT’s queries by issuing the following statement:

NOAUDIT SELECT TABLE

BY scott

Since the above statement only stops auditing SCOTT’s queries,
Oracle7 continues to audit BLAKE’s queries and updates and SCOTT’s
updates.

To stop auditing on all statements that are authorized by DELETE ANY
TABLE system privileges chosen for auditing, issue the following
statement:

NOAUDIT ALL

AUDIT (SQL Statements) command on 4 – 127
NOAUDIT (Schema Objects) command on 4 – 374

NOT

Purpose

Prerequisites

Syntax

4 – 374 Oracle7 Server SQL Reference

NOAUDIT (Schema Objects)

To stop auditing chosen by the AUDIT command (Schema Objects). To
stop auditing chosen by the AUDIT command (SQL Statements), use
the NOAUDIT command (SQL Statements) described in the previous
section of this chapter.

The object on which you stop auditing must be in your own schema or
you must have AUDIT ANY system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the label at which the auditing option was set or you
must satisfy one of the following criteria:

• If the auditing option was set at a label higher than your DBMS
label, you must have READUP and WRITEUP system privileges.

• If the auditing option was set at a label lower than your DBMS
label, you must have WRITEDOWN system privilege.

• If the auditing option was set at a label not comparable to your
DBMS label, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

NOAUDIT

,

object_opt

WHENEVER SUCCESSFUL

NOT

ON

schema.

object

Keywords and
Parameters

Usage Notes

Example

Related Topics

4 – 375Commands

stops auditing for particular operations on the
object. For a list of these options, see Table 4 – 9 on
page 4 – 136.

identifies the object on which auditing is stopped.
If you do not qualify object with schema, Oracle7
assumes the object is in your own schema.

WHENEVER SUCCESSFUL
stops auditing only for SQL statements that
complete successfully.

option stops auditing only for statements that
result in Oracle7 errors.

If you omit the WHENEVER clause entirely,
Oracle7 stops auditing for all statements,
regardless of success or failure.

For information on auditing specific schema objects, see the AUDIT
command (Schema Objects) on page 4 – 134.

If you have chosen auditing for every SQL statement that queries the
EMP table in the schema SCOTT, you can stop auditing for such
queries by issuing the following statement:

NOAUDIT SELECT

ON scott.emp

You can stop auditing for such queries that complete successfully by
issuing the following statement:

NOAUDIT SELECT

ON scott.emp

 WHENEVER SUCCESSFUL

Since you only stopped auditing for successful queries, Oracle7
continues to audit queries resulting in Oracle7 errors.

AUDIT (Schema Objects) command on 4 – 134
NOAUDIT (SQL Statements) command on 4 – 372

object_opt

ON

NOT

Purpose

Prerequisites

Syntax

Syntax

Keywords and
Parameters

4 – 376 Oracle7 Server SQL Reference

OPEN (Embedded SQL)

To open a cursor, evaluating the associated query and substituting the
host variable names supplied by the USING clause into the WHERE
clause of the query.

You must declare the cursor with a DECLARE CURSOR embedded
SQL statement before opening it.

EXEC SQL OPEN cursor

USING

DESCRIPTOR descriptor

,

:host_variable

:indicator_variable

INDICATOR

is the cursor to be opened.

specifies the host variables to be substituted into
the WHERE clause of the associated query.

specifies a host variable with an optional indicator
variable to be substituted into the statement
associated with the cursor.

specifies a descriptor that describes the host
variables to be substituted into the WHERE clause
of the associated query. The descriptor must be
initialized in a previous DESCRIBE statement.

The substitution is based on position. The host
variable names specified in this statement can be
different from the variable names in the associated
query.

cursor

USING

:host_variable

DESCRIPTOR

Usage Notes

Example

Related Topics

4 – 377Commands

The OPEN command defines the active set of rows and initializes the
cursor just before the first row of the active set. The values of the host
variables at the time of the OPEN are substituted in the statement. This
command does not actually retrieve rows; rows are retrieved by the
FETCH command.

Once you have opened a cursor, its input host variables are not
reexamined until you reopen the cursor. To change any input host
variables and therefore the active set, you must reopen the cursor.

All cursors in a program are in a closed state when the program is
initiated or when they have been explicitly closed using the CLOSE
command.

You can reopen a cursor without first closing it. For more information
on this command, see Programmer’s Guide to the Oracle Precompilers.

This example illustrates the use of the OPEN command in a Pro*C
embedded SQL program:

EXEC SQL DECLARE emp_cursor CURSOR FOR

SELECT ename, empno, job, sal

FROM emp

WHERE deptno = :deptno;

EXEC SQL OPEN emp_cursor;

PREPARE command on 4 – 381
DECLARE CURSOR command on 4 – 280
FETCH command on 4 – 341
CLOSE command on 4 – 139

Prerequisites

Syntax

Keywords and
Parameters

4 – 378 Oracle7 Server SQL Reference

PARALLEL clause

This clause can only be used in the following commands:

• ALTER CLUSTER

• ALTER DATABASE ... RECOVER

• ALTER INDEX ... REBUILD

• ALTER TABLE

• CREATE CLUSTER

• CREATE INDEX

• CREATE TABLE

)PARALLEL DEGREE(

DEFAULT

integer

DEFAULT

integerINSTANCES

NOPARALLEL

specifies serial execution of an operation. This is
the default.

specifies parallel execution of an operation.

determines the degree of parallelism for an
operation on a single instance. That is, the number
of query servers used in the parallel operation.

use integer query servers.

the number of query servers used
is calculated from such things as
the number of CPUs and the
number of DEVICES storing tables
to be scanned in parallel..

NOPARALLEL

PARALLEL

DEGREE

integer

DEFAULT

Usage Notes

CREATE SCHEMA

Example I

4 – 379Commands

determines the number of parallel server instances
used in the parallel operation. This keyword is
ignored if you do not have a parallel server.

use integer instances

use all available instances

Note: INSTANCES only applies to an instance
using the Oracle7 Parallel Server.

For more information on parallelized operations, see the “Parallel
Query Option” chapter in Oracle7 Server Tuning.

Used in a CREATE command, the PARALLEL clause causes the
creation of the object to be parallelized; if the CREATE command is
CREATE TABLE, the PARALLEL clause sets the default degree of
parallelism for queries on the table after creation.

Used in a command to alter an object, the PARALLEL clause changes
the default degree of parallelism for queries on the object. In an ALTER
DATABASE RECOVER command, the PARALLEL clause causes the
recovery to be parallelized.

You cannot use the PARALLEL clause in an ALTER INDEX command
unless you specify the REBUILD clause.

Specifying PARALLEL (DEGREE 1 INSTANCES 1) is equivalent to
specifying NOPARALLEL.

A hint in a query can override a default of NOPARALLEL. Likewise, a
hint in a query can override a default of PARALLEL.

Although the PARALLEL clause syntax is allowed when creating a
table, index or cluster in a CREATE SCHEMA statement, parallelism is
not used and no error message is issued.

The following command creates a table using 10 query servers, 5 to
scan scott.emp and another 5 to populate emp_dept:

CREATE TABLE emp_dept

PARALLEL (DEGREE 5)

AS SELECT * FROM scott.emp

WHERE deptno = 10

INSTANCES

integer

DEFAULT

Example II

Example III

Example IV

Example V

Related Topics

4 – 380 Oracle7 Server SQL Reference

The following command creates an index using 10 query servers, 5 to
scan scott.emp and another 5 to populate the emp_idx index:

CREATE INDEX emp_idx

ON scott.emp (ename)

PARALLEL 5

The following command performs tablespace recovery using 5 recovery
processes on 5 instances in a parallel server, for a total of 25 (5 * 5)
query servers:

ALTER DATABASE

RECOVER TABLESPACE binky

PARALLEL (DEGREE 5 INSTANCES 5)

The following command changes the default number of query servers
used to query the EMP table:

ALTER TABLE emp

PARALLEL (DEGREE 9)

The following command causes the index to be rebuilt from the existing
index by using 6 query servers, 3 each to scan the old and to build the
new index:

ALTER INDEX emp_idx

REBUILD

PARALLEL 3

ALTER CLUSTER command on page 4 – 16
ALTER DATABASE command on page 4 – 16
ALTER INDEX command on 4 – 33
ALTER TABLE command on 4 – 89
CREATE CLUSTER command on 4 – 164
CREATE INDEX command on 4 – 192
CREATE TABLE command on 4 – 245
Chapter “Parallel Query Option,” of Oracle7 Server Tuning.

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

4 – 381Commands

PREPARE (Embedded SQL)

To parse a SQL statement or PL/SQL block specified by a host variable
and associate it with an identifier.

None.

EXEC SQL PREPARE

’text’

statement_name

block_name

FROM :host_string

is the identifier to be associated with the prepared
SQL statement or PL/SQL block. If this name has
been previously assigned to another statement or
block, the prior assignment is superseded.

is a host variable whose value is the text of a SQL
statement or PL/SQL block to be prepared.

is a string literal containing a SQL statement or
PL/SQL block to be prepared.

Any variables that appear in the :host_string or ’text’ are placeholders.
The actual host variable names are assigned in the USING clause of the
OPEN command (input host variables) or in the INTO clause of the
FETCH command (output host variables).

A SQL statement is prepared only once, but can be executed any
number of times.

This example illustrates the use of a PREPARE statement in a Pro*C
embedded SQL program:

EXEC SQL PREPARE my_statement FROM :my_string;

EXEC SQL EXECUTE my_statement

DECLARE CURSOR command on 4 – 280
OPEN command on 4 – 376
FETCH command on 4 – 341
CLOSE command on 4 – 139

statement_name
block_name

:host_string

’text’

Purpose

Prerequisites

Syntax

4 – 382 Oracle7 Server SQL Reference

RECOVER clause

To perform media recovery.

The RECOVER clause must appear in an ALTER DATABASE
statement. You must have the privileges necessary to issue this
statement. For information on these privileges, see the ALTER
DATABASE command on page 4 – 16.

You must also have the OSDBA role enabled. You cannot be connected
to Oracle7 through the multi–threaded server architecture. Your
instance must have the database mounted in exclusive mode.

Note: It is recommended that you perform media recovery
using Server Manager rather than using the ALTER
DATABASE command with the RECOVER clause.

RECOVER

AUTOMATIC FROM ’location’

UNTIL CANCEL

UNTIL TIME date

UNTIL CHANGE integer

USING BACKUP CONTROLFILE

TABLESPACE

,

tablespace

DATABASE ’filename’

,

LOGFILE ’filename’

CONTINUE

DEFAULT

CANCEL

PARALLEL parallel_clause

DATABASE

STANDBY

Keywords and
Parameters

4 – 383Commands

automatically generates the names of the redo log
files to apply during media recovery. If you omit
this option, then you must specify the names of
redo log files using the ALTER DATABASE ...
RECOVER command with the LOGFILE clause.

specifies the location from which the archived redo
log file group is read. The value of this parameter
must be a fully–specified file location following the
conventions of your operating system. If you omit
this parameter, Oracle7 assumes the archived redo
log file group is in the location specified by the
initialization parameter LOG_ARCHIVE_DEST.

recovers the standby database using the controlfile
and archived redo log files copied over from the
primary database. For more information, see the
Oracle7 Server Administrator’s Guide.

recovers the entire database. This is the default
option. You can only use this option when the
database is closed.

performs cancel–based recovery. This option
recovers the database until you issue the ALTER
DATABASE RECOVER command with the
CANCEL clause.

performs time–based recovery. This parameter
recovers the database to the time specified by the
date. The date must be a character literal in the
format ’YYYY–MM–DD:HH24:MI:SS’.

performs change–based recovery. This parameter
recovers the database to a transaction consistent
state immediately before the system change
number (SCN) specified by integer.

USING BACKUP CONTROLFILE
specifies that a backup control file is being used
instead of the current control file.

recovers only the specified tablespaces. You can
use this option if the database is open or closed,
provided the tablespaces to be recovered are offline.

AUTOMATIC

FROM

STANDBY

DATABASE

UNTIL CANCEL

UNTIL TIME

UNTIL CHANGE

TABLESPACE

Usage Notes

Example I

4 – 384 Oracle7 Server SQL Reference

recovers the specified data files. You can use this
option when the database is open or closed,
provided the data files to be recovered are offline.

continues media recovery by applying the specified
redo log file.

continues multi–instance recovery after it has been
interrupted to disable a thread.

CONTINUE DEFAULT
continues recovery by applying the redo log file
that Oracle7 has automatically generated.

terminates cancel–based recovery.

specifies degree of parallelism to use when
recovering. See parallel_clause on page 4 – 378.

It is recommended that you use the Server Manager RECOVER
command rather than the ALTER DATABASE command with the
RECOVER clause to perform media recovery.

For most purposes, the RECOVER Server Manager command is easier
to use than the ALTER DATABASE command. For information on this
command, see Oracle Server Manager User’s Guide.

For more information on media recovery, see the “Recovering a
Database” chapter of Oracle7 Server Administrator’s Guide.

You can use the ALTER DATABASE command with the RECOVER
clause if you want to write your own specialized media recovery
application using SQL.

The following statement performs complete recovery of the
entire database:

ALTER DATABASE

RECOVER AUTOMATIC DATABASE

Oracle7 automatically generates the names of redo log files to apply
and prompts you with them. The following statement applies a
suggested file:

ALTER DATABASE

RECOVER CONTINUE DEFAULT

DATAFILE

LOGFILE

CONTINUE

CANCEL

PARALLEL

Example II

Example III

Related Topics

4 – 385Commands

The following statement explicitly names a redo log file for Oracle7
to apply:

ALTER DATABASE

RECOVER LOGFILE ’diska:arch0006.arc’

The following statement performs time–based recovery of the database:

ALTER DATABASE AUTOMATIC

RECOVER UNTIL TIME ’1992–10–27:14:00:00’

Oracle7 recovers the database until 2:00pm on October 27, 1992.

The following statement recovers the tablespace USER5:

ALTER DATABASE

RECOVER TABLESPACE user5

ALTER DATABASE command on 4 – 16

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 386 Oracle7 Server SQL Reference

RENAME

To rename a table, view, sequence, or private synonym.

The object must be in your own schema.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the object’s creation label or you must satisfy one of
the following criteria:

• If the object’s creation label is higher than your DBMS label, you
must have READUP and WRITEUP system privileges

• If the object’s creation label is lower than your DBMS label, you
must have WRITEDOWN system privilege.

• If the object’s creation label and your DBMS label are not
comparable, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

RENAME old TO new

is the current name of an existing table, view,
sequence, or private synonym.

is the new name to be given to the existing object.

old

new

Usage Notes

Example

Related Topics

4 – 387Commands

This command changes the name of a table, view, sequence, or private
synonym for a table, view, or sequence. The new name must not
already be used by another schema object in the same namespace and
must follow the rules for naming schema objects defined in the section
“Object Naming Rules” on page 2 – 3.

Integrity constraints, indexes, and grants on the old object are
automatically transferred to the new object. Oracle7 invalidates all
objects that depend on the renamed object, such as views, synonyms,
and stored procedures and functions that refer to a renamed table.

You cannot use this command to rename public synonyms. To rename a
public synonym, you must first drop it with the DROP SYNONYM
command and then create another public synonym with the new name
using the CREATE SYNONYM command.

You cannot use this command to rename columns. You can rename a
column using the CREATE TABLE command with the AS clause. This
example recreates the table STATIC, renaming a column from
OLDNAME to NEWNAME:

CREATE TABLE temporary (newname, col2, col3)

AS SELECT oldname, col2, col3 FROM static

DROP TABLE static

RENAME temporary TO static

To change the name of table DEPT to EMP_DEPT:

RENAME dept TO emp_dept

CREATE SEQUENCE command on 4 – 224
CREATE SYNONYM command on 4 – 241
CREATE TABLE command on 4 – 245
CREATE VIEW command on 4 – 271

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 388 Oracle7 Server SQL Reference

REVOKE (System Privileges and Roles)

To revoke system privileges and roles from users and roles. To revoke
object privileges from users and roles, use the REVOKE command
(Object Privileges) described in the next section of this chapter.

You must have been granted the system privilege or role with the
ADMIN OPTION. Also, you can revoke any role if you have the
GRANT ANY ROLE system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the label at which the system privilege or role was
granted or you must satisfy one of the following criteria:

• If the label at which the system privilege or role was granted is
higher than your DBMS label, you must have READUP and
WRITEUP system privileges

• If the label at which the system privilege or role was granted is
lower than your DBMS label, you must have WRITEDOWN
system privilege.

• If the label at which the system privilege or role is not
comparable to your DBMS label, you must have READUP,
WRITEUP, and WRITEDOWN system privileges.

It is recommended that you perform media recovery using the Server
Manager RECOVER command rather than the ALTER DATABASE
command with the RECOVER clause.

REVOKE system_priv

role role

FROM

PUBLIC

, ,

user

is a system privilege to be revoked. For a list of the
system privileges, see Table 4 – 11 on page 4 – 351.

is a role to be revoked. For a list of the roles
predefined by Oracle7, see Table 4 – 12 on
page 4 – 352.

identifies users and roles from which the system
privileges or roles are revoked.

system_priv

role

FROM

Usage Notes

4 – 389Commands

revokes the system privilege or
role from all users.

You can use this form of the REVOKE command to revoke both system
privileges and roles from users, roles, and PUBLIC:

If you revoke a privilege from a user: Oracle7 removes the privilege
from the user’s privilege domain. Effective immediately, the user
cannot exercise the privilege.

If you revoke a privilege from a role: Oracle7 removes the privilege
from the role’s privilege domain. Effective immediately, users with the
role enabled cannot exercise the privilege. Also, other users who have
been granted the role and subsequently enable the role cannot exercise
the privilege.

If you revoke a privilege from PUBLIC: Oracle7 removes the privilege
from the privilege domain of each user who has been granted the
privilege through PUBLIC. Effective immediately, such users can no
longer exercise the privilege. Note that the privilege is not revoked
from users who have been granted the privilege directly or through
roles.

If you revoke a role from a user: Oracle7 makes the role unavailable to
the user. If the role is currently enabled for the user, the user can
continue to exercise the privileges in the role’s privilege domain as long
as it remains enabled. However, the user cannot subsequently enable
the role.

If you revoke a role from another role: Oracle7 removes the revoked
role’s privilege domain from the revokee role’s privilege domain. Users
who have been granted and have enabled the revokee role can continue
to exercise the privileges in the revoked role’s privilege domain as long
as the revokee role remains enabled. However, other users who have
been granted the revokee role and subsequently enable it cannot
exercise the privileges in the privilege domain of the revoked role.

If you revoke a role from PUBLIC: Oracle7 makes the role unavailable
to all users who have been granted the role through PUBLIC. Any user
who has enabled the role can continue to exercise the privileges in its
privilege domain as long as it remains enabled. However, users cannot
subsequently enable the role. Note that the role is not revoked from
users who have been granted the privilege directly or through other
roles.

PUBLIC

Example I

Example II

Example III

Example IV

Related Topics

4 – 390 Oracle7 Server SQL Reference

The REVOKE command can only revoke privileges and roles that have
been granted directly with a GRANT statement. The REVOKE
command cannot perform the following operations:

• revoke privileges or roles not granted to the revokee

• revoke roles granted through the operating system

• revoke privileges or roles granted to the revokee through roles

A system privilege or role cannot appear more than once in the list of
privileges and roles to be revoked. A user, a role, or PUBLIC cannot
appear more than once in the FROM clause.

The following statement revokes DROP ANY TABLE system privilege
from the users BILL and MARY:

REVOKE DROP ANY TABLE

FROM bill, mary

BILL and MARY can no longer drop tables in schemas other than their
own.

The following statement revokes the role CONTROLLER from the user
HANSON:

REVOKE controller

FROM hanson

HANSON can no longer enable the CONTROLLER role.

The following statement revokes the CREATE TABLESPACE system
privilege from the CONTROLLER role:

REVOKE CREATE TABLESPACE

FROM controller

Enabling the CONTROLLER role no longer allows users to create
tablespaces.

To revoke the role VP from the role CEO, issue the following statement:

REVOKE vp

 FROM ceo

VP is no longer granted to CEO.

GRANT (System Privileges and Roles) command on 4 – 346
REVOKE (Object Privileges) command on 4 – 391

Purpose

Prerequisites

Syntax

4 – 391Commands

REVOKE (Object Privileges)

To revoke object privileges for a particular object from users and roles.
To revoke system privileges or roles, use the REVOKE command
(System Privileges and Roles) described in the previous section of this
chapter.

You must have previously granted the object privileges to each user
and role.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the label at which you granted the object privilege or
you must satisfy one of the following criteria:

• If the label at which you granted the object privilege is higher
than your DBMS label, you must have READUP and WRITEUP
system privileges.

• If the label at which you granted the object privilege is lower
than your DBMS label, you must have WRITEDOWN system
privilege.

• If the label at which you granted the object privilege is not
comparable to your DBMS label, you must have READUP,
WRITEUP, and WRITEDOWN system privileges.

user

role

PUBLIC

object_privREVOKE

,

ON object

schema.ALL

PRIVILEGES

FROM

,

CASCADE CONSTRAINTS

Keywords and
Parameters

4 – 392 Oracle7 Server SQL Reference

is an object privilege to be revoked. You can
substitute any of the following values:

• ALTER

• DELETE

• EXECUTE

• INDEX

• INSERT

• REFERENCES

• SELECT

• UPDATE

revokes all object privileges that you have granted
to the revokee.

identifies the object on which the object privileges
are revoked. This object can be one of the following
types:

• table

• view

• sequence

• procedure, stored function, or package

• snapshot

• synonym for a table, view, sequence, procedure,
stored function, package, or snapshot

If you do not qualify object with schema, Oracle7
assumes the object is in your own schema.

identifies users and roles from which the object
privileges are revoked.

revokes object privileges from all
users.

object_priv

ALL PRIVILEGES

ON

FROM

PUBLIC

Usage Notes

Object Privileges

4 – 393Commands

CASCADE CONSTRAINTS
drops any referential integrity constraints that the
revokee has defined using REFERENCES privilege
that you are now revoking. You must specify this
option along with the REFERENCES privilege or
the ALL PRIVILEGES option if the revokee has
exercised the REFERENCES privilege to define a
referential integrity constraint.

 You can use this form of the REVOKE command to revoke object
privileges from both users and roles:

If you revoke a privilege from a user: Oracle7 removes the privilege
from the user’s privilege domain. Effective immediately, the user
cannot exercise the privilege.

If you revoke a privilege from a role: Oracle7 removes the privilege
from the role’s privilege domain. Effective immediately, users with the
role enabled cannot exercise the privilege. Other users who have been
granted the role cannot exercise the privilege after enabling the role.

If you revoke a privilege from PUBLIC: Oracle7 removes the privilege
from the privilege domain of each user who has been granted the
privilege through PUBLIC. Effective immediately, all such users are
restricted from exercising the privilege. Note that the privilege is not
revoked from users who have been granted the privilege directly or
through roles.

You can only use the REVOKE command to revoke object privileges
that you previously granted directly to the revokee. You cannot use the
REVOKE command to perform the following operations:

• revoke object privileges that you did not grant to the revokee

• revoke privileges granted through the operating system

• revoke privileges granted to roles granted to the revokee

A privilege cannot appear more than once in the list of privileges to be
revoked. A user, a role, or PUBLIC cannot appear more than once in
the FROM clause.

Each object privilege authorizes some operation on an object. By
revoking an object privilege, you prevent the revokee from performing
that operation. For a summary of the object privileges for each type of
object, see Table 4 – 13 on page 4 – 357.

Revoking Multiple
Identical Grants

Cascading Revokes

Example I

4 – 394 Oracle7 Server SQL Reference

Multiple users may grant the same object privilege to the same user,
role, or PUBLIC. To remove the privilege from the grantee’s privilege
domain, all grantors must revoke the privilege. If even one grantor
does not revoke the privilege, the grantee can still exercise the privilege
by virtue of that grant.

Revoking an object privilege that a user has either granted or exercised
to define an object or a referential integrity constraint has the following
cascading effects:

• If you revoke an object privilege from a user who has granted the
privilege to other users or roles, Oracle7 also revokes the
privilege from the grantees.

• If you revoke an object privilege from a user whose schema
contains a procedure, function, or package that contains SQL
statements that exercise the privilege, the procedure, function, or
package can no longer be executed.

• If you revoke an object privilege on an object from a user whose
schema contains a view on that object, Oracle7 invalidates the
view.

• If you revoke REFERENCES privilege from a user who has
exercised the privilege to define referential integrity constraints,
you must specify the CASCADE CONSTRAINTS option.
Oracle7 then revokes the privilege and drops the constraints.

You can grant DELETE, INSERT, SELECT, and UPDATE privileges on
the table BONUS to the user PEDRO with the following statement:

GRANT ALL

ON bonus

TO pedro

To revoke DELETE privilege on BONUS from PEDRO, issue the
following statement:

REVOKE DELETE

ON bonus

FROM pedro

To revoke the remaining privileges on BONUS that you granted to
PEDRO, issue the following statement:

REVOKE ALL

ON bonus

FROM pedro

Example II

Example III

4 – 395Commands

You can grant SELECT and UPDATE privileges on the view REPORTS
to all users by granting the privileges to the role PUBLIC:

GRANT SELECT, UPDATE

ON reports

TO public

The following statement revokes UPDATE privilege on REPORTS from
all users:

REVOKE UPDATE

ON reports

FROM public

Users can no longer update the REPORTS view, although users can still
query it. However, if you have also granted UPDATE privilege on
REPORTS to any users (either directly or through roles), these users
retain the privilege.

You can grant the user BLAKE SELECT privilege on the ESEQ
sequence in the schema ELLY with the following statement:

GRANT SELECT

ON elly.eseq

 TO blake

To revoke SELECT privilege on ESEQ from BLAKE, issue the following
statement:

REVOKE SELECT

ON elly.eseq

 FROM blake

However, if the user ELLY has also granted SELECT privilege on ESEQ
to BLAKE, BLAKE can still use ESEQ by virtue of ELLY’s grant.

Example IV

Related Topics

4 – 396 Oracle7 Server SQL Reference

You can grant BLAKE the privileges REFERENCES and UPDATE on
the EMP table in the schema SCOTT with the following statement:

GRANT REFERENCES, UPDATE

ON scott.emp

 TO blake

BLAKE can exercise the REFERENCES privilege to define a constraint
in his own DEPENDENT table that refers to the EMP table in the
schema SCOTT:

CREATE TABLE dependent

(dependno NUMBER,

 dependname VARCHAR2(10),

 employee NUMBER

 CONSTRAINT in_emp REFERENCES scott.emp(ename))

You can revoke REFERENCES privilege on SCOTT.EMP from BLAKE,
by issuing the following statement that contains the CASCADE
CONSTRAINTS option:

REVOKE REFERENCES

ON scott.emp

FROM blake

CASCADE CONSTRAINTS

Revoking BLAKE’s REFERENCES privilege on SCOTT.EMP causes
Oracle7 to drop the IN_EMP constraint because BLAKE required the
privilege to define the constraint.

However, if BLAKE has also been granted REFERENCES privilege on
SCOTT.EMP by a user other than you, Oracle7 does not drop the
constraint. BLAKE still has the privilege necessary for the constraint by
virtue of the other user’s grant.

GRANT (Object Privileges) command on 4 – 355
REVOKE (System Privileges and Roles) command on 4 – 388

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 397Commands

ROLLBACK

To undo work done in the current transaction.

You can also use this command to manually undo the work done by an
in–doubt distributed transaction.

To roll back your current transaction, no privileges are necessary.

To manually roll back an in–doubt distributed transaction that you
originally committed, you must have FORCE TRANSACTION system
privilege. To manually roll back an in–doubt distributed transaction
originally committed by another user, you must have FORCE ANY
TRANSACTION system privilege.

ROLLBACK

WORK TO

SAVEPOINT

savepoint

FORCE ’text’

is optional and is provided for ANSI compatibility.

rolls back the current transaction to the specified
savepoint. If you omit this clause, the ROLLBACK
statement rolls back the entire transaction.

manually rolls back an in–doubt distributed
transaction. The transaction is identified by the
’text’ containing its local or global transaction ID.
To find the IDs of such transactions, query the data
dictionary view DBA_2PC_PENDING.

ROLLBACK statements with the FORCE clause are
not supported in PL/SQL.

WORK

TO

FORCE

Usage Notes

4 – 398 Oracle7 Server SQL Reference

A transaction (or a logical unit of work) is a sequence of SQL
statements that Oracle7 treats as a single unit. A transaction begins
with the first executable SQL statement after a COMMIT, ROLLBACK
or connection to the database. A transaction ends with a COMMIT
statement, a ROLLBACK statement, or disconnection (intentional or
unintentional) from the database. Note that Oracle7 issues an implicit
COMMIT statement before and after processing any Data Definition
Language statement.

Using the ROLLBACK command without the TO SAVEPOINT clause
performs the following operations:

• ends the transaction

• undoes all changes in the current transaction

• erases all savepoints in the transaction

• releases the transaction’s locks

Using the ROLLBACK command with the TO SAVEPOINT clause
performs the following operations:

• rolls back just the portion of the transaction after the savepoint.

• loses all savepoints created after that savepoint. Note that the
named savepoint is retained, so you can roll back to the same
savepoint multiple times. Prior savepoints are also retained.

• releases all table and row locks acquired since the savepoint.
Note that other transactions that have requested access to rows
locked after the savepoint must continue to wait until the
transaction is committed or rolled back. Other transactions that
have not already requested the rows can request and access the
rows immediately.

It is recommended that you explicitly end transactions in application
programs using either a COMMIT or ROLLBACK statement. If you do
not explicitly commit the transaction and the program terminates
abnormally, Oracle7 rolls back the last uncommitted transaction.

Example I

Example II

Distributed Transactions

Example III

Related Topics

4 – 399Commands

The following statement rolls back your entire current transaction:

ROLLBACK

The following statement rolls back your current transaction to
savepoint SP5:

ROLLBACK TO SAVEPOINT sp5

Oracle7 with the distributed option allows you to perform distributed
transactions, or transactions that modify data on multiple databases. To
commit or roll back a distributed transaction, you need only issue a
COMMIT or ROLLBACK statement as you would any other
transaction.

If there is a network failure during the commit process for a distributed
transaction, the state of the transaction may be unknown, or in–doubt.
After consultation with the administrators of the other databases
involved in the transaction, you may decide to manually commit or roll
back the transaction on your local database. You can manually roll back
the transaction on your local database by issuing a ROLLBACK
statement with the FORCE clause.

For more information on when to roll back in–doubt transactions, see
Oracle7 Server Distributed Systems, Volume I.

You cannot manually roll back an in–doubt transaction to a savepoint.

A ROLLBACK statement with a FORCE clause only rolls back the
specified transaction. Such a statement does not affect your current
transaction.

The following statement manually rolls back an in–doubt distributed
transaction:

ROLLBACK WORK

FORCE ’25.32.87’

COMMIT command on 4 – 141
SAVEPOINT command on 4 – 404
SET TRANSACTION command on 4 – 445

Purpose

Prerequisites

Syntax

4 – 400 Oracle7 Server SQL Reference

ROLLBACK (Embedded SQL)

To end the current transaction, discard all changes in the current
transaction, and release all locks and optionally release resources and
disconnect from the database.

To roll back your current transaction, no privileges are necessary.

To manually roll back an in–doubt distributed transaction that you
originally committed, you must have FORCE TRANSACTION system
privilege. To manually roll back an in–doubt distributed transaction
originally committed by another user, you must have FORCE ANY
TRANSACTION system privilege.

TO

PUBLIC

dbname

EXEC SQL ROLLBACK

WORKAT

:host_variable

RELEASEsavepoint

SAVEPOINT

Keywords and
Parameters

Usage Notes

Example

Related Topics

4 – 401Commands

identifies the database to which the ROLLBACK
statement is issued. The database can be identified
by either:

is a database identifier declared in
a previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name.

If you omit this clause, the statement is issued to
your default database.

is optional and has no effect on ROLLBACK.

rolls back the transaction to a previously declared
savepoint.

releases all resources and disconnects you from the
database.

manually rolls back an in–doubt distributed
transaction. The transaction is identified by the
’text’ containing its local or global transaction ID.
To find the IDs of such transactions, query the data
dictionary view DBA_2PC_PENDING.

Always explicitly commit or rollback the last transaction in a program
using the RELEASE option to disconnect from Oracle.

Oracle7 automatically rolls back your current transaction if the
program terminates abnormally.

The ROLLBACK command has no effect on the contents of the host
variables or on the control flow of the program.

This example illustrates the use of the embedded SQL ROLLBACK
command:

EXEC SQL ROLLBACK TO SAVEPOINT point4

COMMIT command on 4 – 141
DECLARE DATABASE command on 4 – 282
ROLLBACK command on 4 – 397
SAVEPOINT command on 4 – 404
SET TRANSACTION command on 4 – 445

AT

db_name

:host_variable

WORK

TO

RELEASE

FORCE

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Transaction

4 – 402 Oracle7 Server SQL Reference

SAVEPOINT

To identify a point in a transaction to which you can later roll back.

None.

SAVEPOINT savepoint

is the name of the savepoint to be created.

Savepoints are used with the ROLLBACK command to rollback
portions of the current transaction.

Savepoints are useful in interactive programs, because you can create
and name intermediate steps of a program. This allows you more
control over longer, more complex programs. For example, you can use
savepoints throughout a long complex series of updates, so that if you
make an error, you need not resubmit every statement.

Savepoints are useful in application programs in a similar way. If a
program contains several subprograms, you can create a savepoint
before each subprogram begins. If a subprogram fails, it is easy to
return the data to its state before the subprogram began and then
re–execute the subprogram with revised parameters or perform a
recovery action.

Savepoint names must be distinct within a given transaction. If you
create a second savepoint with the same identifier as an earlier
savepoint, the earlier savepoint is erased. After a savepoint has been
created, you can either continue processing, commit your work,
rollback the entire transaction, or rollback to the savepoint.

A transaction (or a logical unit of work) is a sequence of SQL
statements that Oracle7 treats as a single unit. A transaction begins
with the first executable SQL statement after a COMMIT, ROLLBACK
or connection to Oracle. A transaction ends with a COMMIT statement,
a ROLLBACK statement, or disconnection (intentional or
unintentional) from Oracle. Oracle7 issues an implicit COMMIT before
and after any Data Definition Language statement.

savepoint

Example

Related Topics

4 – 403Commands

To update BLAKE’s and CLARK’s salary, check that the total company
salary does not exceed 20,000, then re–enter CLARK’s salary, enter:

UPDATE emp

SET sal = 2000

WHERE ename = ’BLAKE’

SAVEPOINT blake_sal

UPDATE emp

SET sal = 1500

WHERE ename = ’CLARK’

SAVEPOINT clark_sal

SELECT SUM(sal) FROM emp

ROLLBACK TO SAVEPOINT blake_sal

UPDATE emp

SET sal = 1300

WHERE ename = ’CLARK’

COMMIT

COMMIT command on 4 – 141
ROLLBACK command on 4 – 397
SET TRANSACTION command on 4 – 445

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

4 – 404 Oracle7 Server SQL Reference

SAVEPOINT (Embedded SQL)

To identify a point in a transaction to which you can later roll back.

None.

db_name

EXEC SQL SAVEPOINT savepoint

AT

:host_variable

identifies the database on which the savepoint is
created. The database can be identified by either:

is a database identifier declared in
a previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name.

If you omit this clause, the savepoint is created on
your default database.

is the name of the savepoint to be created.

For more information on this command, see Programmer’s Guide to the
Oracle Precompilers.

This example illustrates the use of the embedded SQL SAVEPOINT
command:

EXEC SQL SAVEPOINT save3

COMMIT command on 4 – 141
ROLLBACK command on 4 – 397
SAVEPOINT command on 4 – 404

AT

db_name

:host_variable

savepoint

Purpose

Prerequisites

4 – 405Commands

SELECT

To retrieve data from one or more tables, views, or snapshots.

For you to select data from a table or snapshot, the table or snapshot
must be in your own schema or you must have SELECT privilege on
the table or snapshot.

For you to select rows from the base tables of a view, the owner of the
schema containing the view must have SELECT privilege on the base
tables. Also, if the view is in a schema other than your own, you must
have SELECT privilege on the view.

The SELECT ANY TABLE system privilege also allows you to select
data from any table or any snapshot or any view’s base table.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must dominate the creation label of each queried table, view, or
snapshot or you must have READUP system privileges.

Syntax

4 – 406 Oracle7 Server SQL Reference

SELECT

DISTINCT

*

FROM

,

table

OF

,

column

table.

UNION

UNION ALL

INTERSECT

MINUS

ORDER BY expr

,

ASC

DESC

NOWAIT

FOR UPDATE

ALL

,

.*

schema. view

table

snapshot

expr

c_alias

schema. view

snapshot

@dblink t_alias WHERE condition

SELECT commandCONNECT BY condition

START WITH condition

GROUP BY expr

,

HAVING condition

position

schema. view.

AS

c_alias

(subquery)

Keywords and
Parameters

4 – 407Commands

returns only one copy of each set of duplicate rows
selected. Duplicate rows are those with matching
values for each expression in the select list.

returns all rows selected, including all copies of
duplicates. The default is ALL.

selects all columns from all tables, views, or
snapshots, listed in the FROM clause.

selects all columns from the specified table, view,
or snapshot. You can use the schema qualifier to
select from a table, view, or snapshot in a schema
other than your own.

If you are using Trusted Oracle, the * does not
select the ROWLABEL column. To select this
column, you must explicitly specify it in the select
list.

selects an expression. See the syntax description of
expr on page 3 – 73. A column name in this list can
only be qualified with schema if the table, view, or
snapshot containing the column is qualified with
schema in the FROM clause.

provides a different name for the column
expression and causes the alias to be used in the
column heading. The AS keyword is optional. The
alias effectively renames the select list item for the
duration of the query. The alias can be used in the
ORDER BY clause, but not other clauses in the
query.

is the schema containing the selected table, view, or
snapshot. If you omit schema, Oracle7 assumes the
table, view, or snapshot is in your own schema.

is the name of a table, view, or snapshot from
which data is selected.

is the complete or partial name for a database link
to a remote database where the table, view, or
snapshot is located. For more information on
referring to database links, see the section
“Referring to Objects in Remote Databases” on
page 2 – 11. Note that this database need not be an
Oracle7 database.

DISTINCT

ALL

*

table.*
view.*
snapshot.*

expr

c_alias

schema

table
view
snapshot
dblink

4 – 408 Oracle7 Server SQL Reference

If you omit dblink, Oracle7 assumes that the table,
view, or snapshot is on the local database.

is a subquery that is treated in the same manner as
a view. For the syntax of subquery, see
page 4 – 436. Oracle7 executes the subquery and
then uses the resulting rows as a view in the FROM
clause.

provides a different name for the table, view,
snapshot, or subquery for evaluating the query and
is most often used in a correlated query. Other
references to the table, view, or snapshot
throughout the query must refer to the alias.

restricts the rows selected to those for which the
condition is TRUE. If you omit this clause, Oracle7
returns all rows from the tables, views, or
snapshots in the FROM clause. See the syntax
description of condition on page 3 – 78.

returns rows in a hierarchical order.

groups the selected rows based on the value of expr
for each row and returns a single row of summary
information for each group.

restricts the groups of rows returned to those
groups for which the specified condition is TRUE.
If you omit this clause, Oracle7 returns summary
rows for all groups.

See the syntax description of expr on page 3 – 73
and the syntax description of condition on
page 3 – 78.

combines the rows returned by two SELECT
statement using a set operation. To reference a
column, you must use an alias to name the column.
The FOR UPDATE clause cannot be used with
these set operators.

subquery

t_alias

WHERE

START WITH
CONNECT BY

GROUP BY

HAVING

UNION
UNION ALL
INTERSECT
MINUS

Usage Notes

4 – 409Commands

orders rows returned by the statement.

orders rows based on their value
for expr. The expression is based on
columns in the select list or
columns in the tables, views, or
snapshots in the FROM clause.

orders rows based on their value
for the expression in this position
of the select list.

specifies either ascending or
descending order. ASC is the
default.

locks the selected rows.

Only lock the select rows for a
particular table in a join.

returns control to you if the SELECT statement
attempts to lock a row that is locked by another
user. If you omit this clause, Oracle7 waits until the
row is available and then returns the results of the
SELECT statement.

The list of expressions that appears after the SELECT keyword and
before the FROM clause is called the select list. Each expr becomes the
name of one column in the set of returned rows, and each table.*
becomes a set of columns, one for each column in the table in the order
they were defined when the table was created. The datatype and length
of each expression is determined by the elements of the expression.

If two or more tables have some column names in common, you must
qualify column names with names of tables. Otherwise, fully qualified
column names are optional, although it is always better to explicitly
qualify table and column references. Oracle7 often does less work with
fully qualified table and column names.

You can use a column alias, c_alias, to label the preceding expression in
the select list so that the column is displayed with a new heading. The
alias effectively renames the select list item for the duration of the
query. The alias can be used in the ORDER BY clause, but not other
clauses in the query.

ORDER BY

expr

position

ASC DESC

FOR UPDATE

OF

NOWAIT

Example I

Example II

Example III

4 – 410 Oracle7 Server SQL Reference

If you use the DISTINCT option to return only a single copy of
duplicate rows, the total number of bytes in all select list expressions is
limited to the size of a data block minus some overhead. This size is
specified by the initialization parameter DB_BLOCK_SIZE.

You can use comments in a SELECT statement to pass instructions, or
hints, to the Oracle7 optimizer. The optimizer uses hints to choose an
execution plan for the statement. For more information on hints, see
Oracle7 Server Tuning.

The following statement selects rows from the employee table with the
department number of 40:

SELECT *

FROM emp

WHERE deptno = 40

The following statement selects the name, job, salary and department
number of all employees except salesmen from department number 30:

SELECT ename, job, sal, deptno

FROM emp

WHERE NOT (job = ’SALESMAN’ AND deptno = 30)

The following statement selects from subqueries in the FROM clause
and gives departments total employees and salaries as a percentage of
all the departments:

SELECT a.deptno ”Department”,

 a.num_emp/b.total_count ”%Employees”,

 a.sal_sum/b.total_sal ”%Salary”

 FROM

 (SELECT deptno, COUNT(*) num_emp, SUM(SAL) sal_sum

 FROM scott.emp

 GROUP BY deptno) a,

 (SELECT COUNT(*) total_count, SUM(sal) total_sal

 FROM scott.emp) b ;

Hierarchical Queries

4 – 411Commands

If a table contains hierarchical data, you can select rows in a
hierarchical order using the following clauses:

You can specify the root row(s) of the hierarchy
using this clause.

You can specify the relationship between parent
rows and child rows of the hierarchy using this
clause.

You can restrict the rows returned by the query
without affecting other rows of the hierarchy using
this clause.

Oracle7 uses the information from the above clause to form the
hierarchy using the following steps:

1. Oracle7 selects the root row(s) of the hierarchy. These are the rows
that satisfy the condition of the START WITH clause.

2. Oracle7 selects the child rows of each root row. Each child row
must satisfy the condition of the CONNECT BY clause with respect
to one of the root rows.

3. Oracle7 selects successive generations of child rows. Oracle7 first
selects the children of the rows returned in step 2, and then the
children of those children, and so on. Oracle7 always selects
children by evaluating the CONNECT BY condition with respect to
a current parent row.

4. If the query contains a WHERE clause, Oracle7 removes all rows
from the hierarchy that do not satisfy the condition of the WHERE
clause. Oracle7 evaluates this condition for each row individually,
rather than removing all the children of a row that does not satisfy
the condition.

5. Oracle7 returns the rows in the order shown in this diagram. In the
diagram children appear below their parents.

START WITH

CONNECT BY

WHERE

START WITH Clause

4 – 412 Oracle7 Server SQL Reference

1

7

8

ROOT

2 9

3 4 10 12

1165

SELECT statements performing hierarchical queries are subject to the
following restrictions:

• A SELECT statement that performs a hierarchical query cannot
also perform a join. A SELECT statement that performs a
hierarchical query cannot select data from a view whose query
performs a join.

• If you use the ORDER BY clause in a hierarchical query, Oracle7
orders rows by the ORDER BY clause, rather than in the order
shown in step 5.

The following sections discuss the START WITH and CONNECT BY
clauses.

The START WITH clause identifies the row(s) to be used as the root(s)
of a hierarchical query. This clause specifies a condition that the roots
must satisfy. If you omit this clause, Oracle7 uses all rows in the table
as root rows. A START WITH condition can contain a subquery.

CONNECT BY Clause

Example IV

Example V

4 – 413Commands

The CONNECT BY clause specifies the relationship between parent
and child rows in a hierarchical query. This clause contains a condition
that defines this relationship. This condition can be any condition as
defined by the syntax description of condition on page 3 – 78; however,
some part of the condition must use the PRIOR operator to refer to the
parent row. The part of the condition containing the PRIOR operator
must have one of the following forms:

PRIOR expr comparison_operator expr

expr comparison_operator PRIOR expr

To find the children of a parent row, Oracle7 evaluates the PRIOR
expression for the parent row and the other expression for each row in
the table. Rows for which the condition is true are the children of the
parent. The CONNECT BY clause can contain other conditions to
further filter the rows selected by the query. The CONNECT BY clause
cannot contain a subquery.

If the CONNECT BY clause results in a loop in the hierarchy, Oracle7
returns an error. A loop occurs if one row is both the parent (or
grandparent or direct ancestor) and a child (or a grandchild or a direct
descendent) of another row.

The following CONNECT BY clause defines a hierarchical relationship
in which the EMPNO value of the parent row is equal to the MGR
value of the child row:

CONNECT BY PRIOR empno = mgr

In the following CONNECT BY clause, the PRIOR operator applies
only to the EMPNO value. To evaluate this condition, Oracle7 evaluates
EMPNO values for the parent row and MGR, SAL, and COMM values
for the child row:

CONNECT BY PRIOR empno = mgr AND sal > comm

To qualify as a child row, a row must have a MGR value equal to the
EMPNO value of the parent row and it must have a SAL value greater
than its COMM value.

The LEVEL
Pseudocolumn

Example VI

4 – 414 Oracle7 Server SQL Reference

SELECT statements that perform hierarchical queries can use the
LEVEL pseudocolumn. LEVEL returns the value 1 for a root node, 2 for
a child node of a root node, 3 for a grandchild, etc. For more
information on LEVEL, see the section “Pseudocolumns” on
page 2 – 38.

The number of levels returned by a hierarchical query may be limited
by available user memory.

The following statement returns all employees in hierarchical order.
The root row is defined to be the employee whose job is ’PRESIDENT’.
The child rows of a parent row are defined to be those who have the
employee number of the parent row as their manager number.

SELECT LPAD(’ ’,2*(LEVEL–1)) || ename org_chart,

empno, mgr, job

FROM emp

START WITH job = ’PRESIDENT’

CONNECT BY PRIOR empno = mgr

ORG_CHART EMPNO MGR JOB

–––––––––––– –––––––––– –––––––––– –––––––––

KING 7839 PRESIDENT

 JONES 7566 7839 MANAGER

 SCOTT 7788 7566 ANALYST

 ADAMS 7876 7788 CLERK

 FORD 7902 7566 ANALYST

 SMITH 7369 7902 CLERK

 BLAKE 7698 7839 MANAGER

 ALLEN 7499 7698 SALESMAN

 WARD 7521 7698 SALESMAN

 MARTIN 7654 7698 SALESMAN

 TURNER 7844 7698 SALESMAN

 JAMES 7900 7698 CLERK

 CLARK 7782 7839 MANAGER

 MILLER 7934 7782 CLERK

4 – 415Commands

The following statement is similar to the previous one, except that it
does not select employees with the job ’ANALYST’.

SELECT LPAD(’ ’,2*(LEVEL–1)) || ename org_chart,

empno, mgr, job

FROM emp

WHERE job != ’ANALYST’

START WITH job = ’PRESIDENT’

CONNECT BY PRIOR empno = mgr

ORG_CHART EMPNO MGR JOB

––––––––––––– –––––––––– –––––––––– –––––––––

KING 7839 PRESIDENT

JONES 7566 7839 MANAGER

ADAMS 7876 7788 CLERK

SMITH 7369 7902 CLERK

BLAKE 7698 7839 MANAGER

ALLEN 7499 7698 SALESMAN

WARD 7521 7698 SALESMAN

MARTIN 7654 7698 SALESMAN

TURNER 7844 7698 SALESMAN

JAMES 7900 7698 CLERK

CLARK 7782 7839 MANAGER

Oracle7 does not return the analysts SCOTT and FORD, although it
does return employees who are managed by SCOTT and FORD.

The following statement is similar to the first one, except that it uses
the LEVEL pseudocolumn to select only the first two levels of the
management hierarchy:

SELECT LPAD(’ ’,2*(LEVEL–1)) || ename org_chart,

empno, mgr, job

FROM emp

START WITH job = ’PRESIDENT’

CONNECT BY PRIOR empno = mgr AND LEVEL <= 2

ORG_CHART EMPNO MGR JOB

–––––––––––– –––––––––– –––––––––– –––––––––

KING 7839 PRESIDENT

 JONES 7566 7839 MANAGER

 BLAKE 7698 7839 MANAGER

 CLARK 7782 7839 MANAGER

GROUP BY Clause

Example VII

4 – 416 Oracle7 Server SQL Reference

You can use the GROUP BY clause to group selected rows and return a
single row of summary information. Oracle7 collects each group of
rows based on the values of the expression(s) specified in the GROUP
BY clause.

If a SELECT statement contains the GROUP BY clause, the select list
can only contain the following types of expressions:

• constants

• group functions

• the functions USER, UID, and SYSDATE

• expressions identical to those in the GROUP BY clause

• expressions involving the above expressions that evaluate to the
same value for all rows in a group

Expressions in the GROUP BY clause can contain any columns in the
tables, views, and snapshots in the FROM clause regardless of whether
the columns appear in the select list.

The total number of bytes in all expressions in the GROUP BY clause is
limited to the size of a data block minus some overhead. This size is
specified by the initialization parameter DB_BLOCK_SIZE.

To return the minimum and maximum salaries for each department in
the employee table, issue the following statement:

SELECT deptno, MIN(sal), MAX(sal)

FROM emp

GROUP BY deptno

 DEPTNO MIN(SAL) MAX(SAL)

–––––––––– –––––––––– ––––––––––

 10 10 5004

 20 804 3004

 30 954 2854

Example VIII

HAVING Clause

Example IX

4 – 417Commands

To return the minimum and maximum salaries for the clerks in each
department, issue the following statement:

SELECT deptno, MIN(sal), MAX(sal)

FROM emp

WHERE job = ’CLERK’

 GROUP BY deptno

 DEPTNO MIN(SAL) MAX(SAL)

–––––––––– –––––––––– ––––––––––

 10 1304 1304

 20 804 1104

 30 954 954

You can use the HAVING clause to restrict which groups of rows
defined by the GROUP BY clause are returned by the query. Oracle7
processes the WHERE, GROUP BY, and HAVING clauses in the
following manner:

1. If the statement contains a WHERE clause, Oracle7 removes all
rows that do not satisfy it.

2. Oracle7 calculates and forms the groups as specified in the GROUP
BY clause.

3. Oracle7 removes all groups that do not satisfy the HAVING clause.

Specify the GROUP BY and HAVING clauses after the WHERE and
CONNECT BY clauses. If both the GROUP BY and HAVING clauses
are specified, they can appear in either order.

To return the minimum and maximum salaries for the clerks in each
department whose lowest salary is below $1,000, issue the following
statement:

SELECT deptno, MIN(sal), MAX(sal)

FROM emp

WHERE job = ’CLERK’

GROUP BY deptno

HAVING MIN(sal) < 1000

 DEPTNO MIN(SAL) MAX(SAL)

–––––––––– –––––––––– ––––––––––

 20 804 1104

 30 954 954

Set Operators

ORDER BY Clause

4 – 418 Oracle7 Server SQL Reference

The UNION, UNION ALL, INTERSECT, and MINUS operators
combine the results of two queries into a single result. The number and
datatypes of the columns selected by each component query must be
the same, but the column lengths can be different. For information on
the use of each set operator, see the section “Set Operators” on
page 3 – 12.

If more than two queries are combined with set operators, adjacent
pairs of queries are evaluated from left to right. You can use
parentheses to specify a different order of evaluation.

The total number of bytes in all select list expressions of a component
query is limited to the size of a data block minus some overhead. The
size of a data block is specified by the initialization parameter
DB_BLOCK_SIZE.

Without an ORDER BY clause, it is not guaranteed that the same query
executed more than once will retrieve rows in the same order. You use
the ORDER BY clause to order the rows selected by a query. The clause
specifies either expressions or positions or aliases of expressions in the
select list of the statement. Oracle7 returns rows based on their values
for these expressions.

You can specify multiple expressions in the ORDER BY clause. Oracle7
first sorts rows based on their values for the first expression. Rows
with the same value for the first expression are then sorted based on
their values for the second expression, and so on. Oracle7 sorts nulls
following all others in ascending order and preceding all others in
descending order.

Sorting by position is useful in the following cases:

• To order by a lengthy select list expression, you can specify its
position, rather than duplicate the entire expression, in the
ORDER BY clause.

• For compound queries (containing set operators UNION,
INTERSECT, MINUS, or UNION ALL), the ORDER BY clause
must use positions, rather than explicit expressions. Also, the
ORDER BY clause can only appear in the last component query.
The ORDER BY clause orders all rows returned by the entire
compound query.

Example X

4 – 419Commands

The mechanism by which Oracle7 sorts values for the ORDER BY
clause is specified either explicitly by the NLS_SORT initialization
parameter or implicitly by the NLS_LANGUAGE initialization
parameter. For information on these parameters, see the “National
Language Support” chapter of Oracle7 Server Reference. You can also
change the sort mechanism dynamically from one linguistic sort
sequence to another using the ALTER SESSION command. You can
also specify a specific sort sequence for a single query by using the
NLSSORT function with the NLS_SORT parameter in the ORDER BY
clause.

The ORDER BY clause is subject to the following restrictions:

• If the ORDER BY clause and the DISTINCT operator both appear
in a SELECT statement, the ORDER BY clause cannot refer to
columns that do not appear in the select list.

• The ORDER BY clause cannot appear in subqueries within other
statements.

• The total number of bytes in all expressions in the ORDER BY
clause is limited to the size of a data block minus some overhead.
The size of a data block is specified by the initialization
parameter DB_BLOCK_SIZE.

If you use the ORDER BY and GROUP BY clauses together, the
expressions that can appear in the ORDER BY clause are subject to the
same restrictions as the expressions in the select list, described in
section “GROUP BY Clause” on page 4 – 416.

If you use the ORDER BY clause in a hierarchical query, Oracle7 uses
the ORDER BY clause rather than the hierarchy to order the rows.

To select all salesmen’s records from EMP, and order the results by
commission in descending order, issue the following statement:

SELECT *

FROM emp

WHERE job = ’SALESMAN’

ORDER BY comm DESC

Example XI

FOR UPDATE Clause

FOR UPDATE OF

4 – 420 Oracle7 Server SQL Reference

To select the employees from EMP ordered first by ascending
department number and then by descending salary, issue the following
statement:

SELECT ename, deptno, sal

FROM emp

ORDER BY deptno ASC, sal DESC

To select the same information as the previous SELECT and use the
positional ORDER BY notation, issue the following statement:

SELECT ename, deptno, sal

FROM emp

ORDER BY 2 ASC, 3 DESC

The FOR UPDATE clause locks the rows selected by the query. Once
you have selected a row for update, other users cannot lock or update
it until you end your transaction. The FOR UPDATE clause signals that
you intend to insert, update, or delete the rows returned by the query,
but does not require that you perform one of these operations. A
SELECT statement with a FOR UPDATE clause is often followed by
one or more UPDATE statements with WHERE clauses.

The FOR UPDATE clause cannot be used with the following other
constructs:

• DISTINCT operator

• GROUP BY clause

• set operators

• group functions

The tables locked by the FOR UPDATE clause must all be located on
the same database. These locked tables must also be on the same
database as any LONG columns and sequences referenced in the same
statement.

If a row selected for update is currently locked by another user, Oracle7
waits until the row is available, locks it, and then returns control to
you. You can use the NOWAIT option to cause Oracle7 to terminate the
statement without waiting if such a row is already locked.

Note that the columns in OF clause only specify which tables’ rows are
locked. The specific columns of the table that you specify are not
significant. If you omit the OF clause, Oracle7 locks the selected rows
from all the tables in the query.

Example XII

Example XIII

Joins

Join Conditions

4 – 421Commands

The following statement locks rows in the EMP table with clerks
located in New York and locks rows in the DEPT table with
departments in New York that have clerks:

SELECT empno, sal, comm

FROM emp, dept

WHERE job = ’CLERK’

 AND emp.deptno = dept.deptno

 AND loc = ’NEW YORK’

FOR UPDATE

The following statement only locks rows in the EMP table with clerks
located in New York; no rows are locked in the DEPT table:

SELECT empno, sal, comm

FROM emp, dept

WHERE job = ’CLERK’

 AND emp.deptno = dept.deptno

 AND loc = ’NEW YORK’

FOR UPDATE OF emp

A join is a query that combines rows from two or more tables, views, or
snapshots. Oracle7 performs a join whenever multiple tables appear in
the query’s FROM clause. The query’s select list can select any columns
from any of these tables. If any two of these tables have a column name
in common, you must qualify all references to these columns
throughout the query with table names to avoid ambiguity.

Most join queries contain WHERE clause conditions that compare two
columns, each from a different table. Such a condition is called a join
condition. To execute a join, Oracle7 combines pairs of rows, each
containing one row from each table, for which the join condition
evaluates to TRUE. The columns in the join conditions need not also
appear in the select list.

To execute a join of three or more tables, Oracle7 first joins two of the
tables based on the join conditions comparing their columns and then
joins the result to another table based on join conditions containing
columns of the joined tables and the new table. Oracle7 continues this
process until all tables are joined into the result. The optimizer
determines the order in which Oracle7 joins tables based on the join
conditions, indexes on the tables, and, in the case of the cost–based
optimization approach, statistics for the tables.

In addition to join conditions, the WHERE clause of a join query can
also contain other conditions that refer to columns of only one table.
These conditions can further restrict the rows returned by the join
query.

Equijoins

Example XIV

4 – 422 Oracle7 Server SQL Reference

An equijoin is a join with a join condition containing an equality
operator. An equijoin combines rows that have equivalent values for
the specified columns. Depending on the internal algorithm the
optimizer chooses to execute the join, the total size of the columns in
the equijoin condition in a single table may be limited to the size of a
data block minus some overhead. The size of a data block is specified
by the initialization parameter DB_BLOCK_SIZE.

This equijoin returns the name and job of each employee and the
number and name of the department in which the employee works:

SELECT ename, job, dept.deptno, dname

FROM emp, dept

WHERE emp.deptno = dept.deptno

ENAME JOB DEPTNO DNAME

–––––––––– ––––––––– –––––––––– ––––––––––––––

KING PRESIDENT 10 ACCOUNTING

BLAKE MANAGER 30 SALES

CLARK MANAGER 10 ACCOUNTING

JONES MANAGER 20 RESEARCH

FORD ANALYST 20 RESEARCH

SMITH CLERK 20 RESEARCH

ALLEN SALESMAN 30 SALES

WARD SALESMAN 30 SALES

MARTIN SALESMAN 30 SALES

SCOTT ANALYST 20 RESEARCH

TURNER SALESMAN 30 SALES

ADAMS CLERK 20 RESEARCH

JAMES CLERK 30 SALES

MILLER CLERK 10 ACCOUNTING

You must use a join to return this data because employee names and
jobs are stored in a different table than department names. Oracle7
combines rows of the two tables according to this join condition:

emp.deptno = dept.deptno

Example XV

Self Joins

4 – 423Commands

The following equijoin returns the name, job, department number, and
department name of all clerks:

SELECT ename, job, dept.deptno, dname

FROM emp, dept

WHERE emp.deptno = dept.deptno

 AND job = ’CLERK’

ENAME JOB DEPTNO DNAME

–––––––––– ––––––––– –––––––––– ––––––––––––––

SMITH CLERK 20 RESEARCH

ADAMS CLERK 20 RESEARCH

JAMES CLERK 30 SALES

MILLER CLERK 10 ACCOUNTING

This query is identical to Example XII except that it uses an additional
WHERE clause condition to return only rows with a JOB value of
’CLERK’:

job = ’CLERK’

A self join is a join of a table to itself. This table appears twice in the
FROM clause and is followed by table aliases that are used to qualify
column names in the join condition. To perform a self join, Oracle7
combines and returns rows of the table that satisfy the join condition.

Example XVI

4 – 424 Oracle7 Server SQL Reference

This query uses a self join to returns the name of each employee along
with the name of the employee’s manager:

SELECT e1.ename||’ works for ’||e2.ename

”Employees and their Managers”

FROM emp e1, emp e2 WHERE e1.mgr = e2.empno

Employees and their Managers

–––––––––––––––––––––––––––––––

BLAKE works for KING

CLARK works for KING

JONES works for KING

FORD works for JONES

SMITH works for FORD

ALLEN works for BLAKE

WARD works for BLAKE

MARTIN works for BLAKE

SCOTT works for JONES

TURNER works for BLAKE

ADAMS works for SCOTT

JAMES works for BLAKE

MILLER works for CLARK

The join condition for this query uses the aliases E1 and E2 for the EMP
table:

e1.mgr = e2.empno

Cartesian Products

Outer Joins

4 – 425Commands

If two tables in a join query have no join condition, Oracle7 returns
their Cartesian product. Oracle7 combines each row of one table with
each row of the other. A Cartesian product always generates many
rows and is rarely useful. For example, the Cartesian product of two
tables each with a hundred rows has ten thousand rows. Always
include a join condition unless you specifically need a Cartesian
product. If a query joins three or more tables and there is no join
condition for a specific pair, the optimizer may choose a join order that
avoids producing an intermediate Cartesian product.

The outer join extends the result of a simple join. An outer join returns
all rows that satisfy the join condition and those rows from one table
for which no rows from the other satisfy the join condition. Such rows
are not returned by a simple join. To write a query that performs an
outer join of tables A and B and returns all rows from A, apply the
outer join operator (+) to all columns of B in the join condition. For all
rows in A that have no matching rows in B, Oracle7 returns NULL for
any select list expressions containing columns of B.

This is the basic syntax of an outer join of two tables:

SELECT

table1.column (+) = table2.column

table

.column

,

WHERE

FROM table1, table2

table1.column = table2.column (+)

Outer join queries are subject to the following rules and restrictions:

• The (+) operator can only appear in the WHERE clause, not in
the select list, and can only be applied to a column of a table or
view.

• If A and B are joined by multiple join conditions, the (+) operator
must be used in all of these conditions.

• The (+) operator can only be applied to a column, rather than to
an arbitrary expression, although an arbitrary expression can
contain a column marked with the (+) operator.

• A condition containing the (+) operator cannot be combined with
another condition using the OR logical operator.

• A condition cannot use the IN comparison operator to compare a
column marked with the (+) operator to another expression.

• A condition cannot compare a column marked with the (+)
operator to a subquery.

Example XVII

4 – 426 Oracle7 Server SQL Reference

If the WHERE clause contains a condition that compares a column from
table B to a constant, the (+) operator must be applied to the column so
that the rows from table A for which Oracle7 has generated NULLs for
this column are returned.

In a query that performs outer joins of more than two pairs of tables, a
single table can only be the NULL–generated table for one other table.
For this reason, you cannot apply the (+) operator to columns of B in
the join condition for A and B and the join condition for B and C.

This query uses an outer join to extend the results of Example XII:

SELECT ename, job, dept.deptno, dname

FROM emp, dept

WHERE emp.deptno (+) = dept.deptno

ENAME JOB DEPTNO DNAME

–––––––––– ––––––––– –––––––––– ––––––––––––––

CLARK MANAGER 10 ACCOUNTING

KING PRESIDENT 10 ACCOUNTING

MILLER CLERK 10 ACCOUNTING

SMITH CLERK 20 RESEARCH

ADAMS CLERK 20 RESEARCH

FORD ANALYST 20 RESEARCH

SCOTT ANALYST 20 RESEARCH

JONES MANAGER 20 RESEARCH

ALLEN SALESMAN 30 SALES

BLAKE MANAGER 30 SALES

MARTIN SALESMAN 30 SALES

JAMES CLERK 30 SALES

TURNER SALESMAN 30 SALES

WARD SALESMAN 30 SALES

 40 OPERATIONS

In this outer join, Oracle7 returns a row containing the OPERATIONS
department even though no employees work in this department.
Oracle7 returns NULL in the ENAME and JOB columns for this row.
The join query in Example X only selects departments that have
employees.

Example XVIII

4 – 427Commands

The following query uses an outer join to extend the results of
Example XV:

SELECT ename, job, dept.deptno, dname

FROM emp, dept

WHERE emp.deptno (+) = dept.deptno

 AND job (+) = ’CLERK’

ENAME JOB DEPTNO DNAME

–––––––––– ––––––––– –––––––––– ––––––––––––––

MILLER CLERK 10 ACCOUNTING

SMITH CLERK 20 RESEARCH

ADAMS CLERK 20 RESEARCH

JAMES CLERK 30 SALES

 40 OPERATIONS

In this outer join, Oracle7 returns a row containing the OPERATIONS
department even though no clerks work in this department. The (+)
operator on the JOB column ensures that rows for which the JOB
column is NULL are also returned. If this (+) were omitted, the row
containing the OPERATIONS department would not be returned
because its JOB value is not ’CLERK’.

This example shows four outer join queries on the CUSTOMERS,
ORDERS, LINEITEMS, and PARTS tables. These tables are shown here:

SELECT custno, custname

FROM customers

CUSTNO CUSTNAME

–––––––––– ––––––––––––––––––––

1 Angelic Co.

2 Believable Co.

3 Cabels R Us

SELECT orderno, custno,

TO_CHAR(orderdate, ’MON–DD–YYYY’) ”ORDERDATE”

FROM orders

ORDERNO CUSTNO ORDERDATE

–––––––––– –––––––––– –––––––––––

9001 1 OCT–13–1993

9002 2 OCT–13–1993

9003 1 OCT–20–1993

9004 1 OCT–27–1993

9005 2 OCT–31–1993

4 – 428 Oracle7 Server SQL Reference

SELECT orderno, lineno, partno, quantity

FROM lineitems

ORDERNO LINENO PARTNO QUANTITY

–––––––––– –––––––––– –––––––––– ––––––––––

 9001 1 101 15

 9001 2 102 10

 9002 1 101 25

 9002 2 103 50

 9003 1 101 15

 9004 1 102 10

 9004 2 103 20

SELECT partno, partname

FROM parts

PARTNO PARTNAME

–––––– ––––––––

 101 X–Ray Screen

 102 Yellow Bag

 103 Zoot Suit

Note that the customer Cables R Us have placed no orders and that
order number 9005 has no line items.

The following outer join returns all customers and the dates they
placed orders. The (+) operator ensures that customers who placed no
orders are also returned:

SELECT custname, TO_CHAR(orderdate, ’MON–DD–YYYY’) ”ORDERDATE”

FROM customers, orders

WHERE customers.custno = orders.custno (+)

CUSTNAME ORDERDATE

–––––––––––––––––––– ––––––––––––––

Angelic Co. OCT–13–1993

Angelic Co. OCT–20–1993

Angelic Co. OCT–27–1993

Believable Co. OCT–13–1993

Believable Co. OCT–31–1993

Cables R Us

4 – 429Commands

The following outer join builds on the result of the previous one by
adding the LINEITEMS table to the FROM clause, columns from this
table to the select list, and a join condition joining this table to the
ORDERS table to the WHERE clause. This query joins the results of the
previous query to the LINEITEMS table and returns all customers, the
dates they placed orders, and the part number and quantity of each
part they ordered. The first (+) operator serves the same purpose as in
the previous query. The second (+) operator ensures that orders with
no line items are also returned:

SELECT custname,

TO_CHAR(orderdate, ’MON–DD–YYYY’) ”ORDERDATE”,

partno,

quantity

FROM customers, orders, lineitems

WHERE customers.custno = orders.custno (+)

 AND orders.orderno = lineitems.orderno (+)

CUSTNAME ORDERDATE PARTNO QUANTITY

–––––––––––––––––––– –––––––––––––– –––––––––– ––––––––––

Angelic Co. OCT–13–1993 101 15

Angelic Co. OCT–13–1993 102 10

Angelic Co. OCT–20–1993 101 15

Angelic Co. OCT–27–1993 102 10

Angelic Co. OCT–27–1993 103 20

Believable Co. OCT–13–1993 101 25

Believable Co. OCT–13–1993 103 50

Believable Co. OCT–31–1993

Cables R Us

4 – 430 Oracle7 Server SQL Reference

The following outer join builds on the result of the previous one by
adding the PARTS table to the FROM clause, the PARTNAME column
from this table to the select list, and a join condition joining this table to
the LINEITEMS table to the WHERE clause. This query joins the results
of the previous query to the PARTS table to return all customers, the
dates they placed orders, and the quantity and name of each part they
ordered. The first two (+) operators serve the same purposes as in the
previous query. The third (+) operator ensures that rows with NULL
part numbers are also returned:

SELECT custname, TO_CHAR(orderdate, ’MON–DD–YYYY’) ”ORDERDATE”,

quantity, partname

FROM customers, orders, lineitems, parts

WHERE customers.custno = orders.custno (+)

 AND orders.orderno = lineitems.orderno (+)

 AND lineitems.partno = parts.partno (+)

CUSTNAME ORDERDATE QUANTITY PARTNAME

–––––––––––––––––––– –––––––––––––– –––––––––– ––––––––––––

Angelic Co. OCT–13–1993 15 X–Ray Screen

Angelic Co. OCT–13–1993 10 Yellow Bag

Angelic Co. OCT–20–1993 15 X–Ray Screen

Angelic Co. OCT–27–1993 10 Yellow Bag

Angelic Co. OCT–27–1993 20 Zoot Suit

Believable Co. OCT–13–1993 25 X–Ray Screen

Believable Co. OCT–13–1993 50 Zoot Suit

Believable Co. OCT–31–1993

Cables R Us

Subqueries

4 – 431Commands

A subquery is a form of the SELECT command that appears inside
another SQL statement. A subquery is sometimes called a nested query.
The statement containing a subquery is called the parent statement. The
rows returned by the subquery are used by the parent statement.

This is the syntax for a subquery:

SELECT

DISTINCT

UNION

table

ALL

,

*

.*

schema. view

snapshot

expr

WHERE condition

CONNECT BY condition

GROUP BY

START WITH condition

,

expr

HAVING condition

subquery

UNION ALL

INTERSECT

MINUS

c_alias

AS

FROM

,

table

schema. view

snapshot

@dblink t_alias

subquery

WITH READ ONLY

WITH CHECK OPTION

Keywords and
Parameters

Usage Notes

4 – 432 Oracle7 Server SQL Reference

specifies that the subquery cannot be updated.

specifies that, if the subquery is used in place of a
table in an INSERT, UPDATE, or DELETE
statement, changes to that table that would
produce rows excluded from the subquery are
prohibited. In other words, the following
statement:

INSERT INTO (SELECT ename, deptno FROM Emp

WHERE deptno < 10)

VALUES (’Taylor’, 20);

would be legal, but

INSERT INTO (SELECT ename, deptno FROM Emp

WHERE deptno < 10

WITH CHECK OPTION)

VALUES (’Taylor’, 20);

would be rejected.

Other keywords and parameters are as outlined after the SELECT
syntax diagram in the beginning of this entry.

Subqueries can be used for the following purposes:

• to define the set of rows to be inserted into the target table of an
INSERT or CREATE TABLE statement

• to define the set of rows to be included in a view or snapshot in a
CREATE VIEW or CREATE SNAPSHOT statement

• to define one or more values to be assigned to existing rows in
an UPDATE statement

• to provide values for conditions in WHERE, HAVING, and
START WITH clauses of SELECT, UPDATE, and DELETE
statements

• to define a table to be operated on by a containing query. You do
this by placing the subquery in the FROM clause of the
containing query as you would a table name. You may use
subqueries in place of tables in this way as well in INSERT,
UDPATE, and DELETE statements. Subqueries so used can

WITH READ
ONLY

WITH CHECK
OPTION

Example XIX

Example XX

Example XXI

4 – 433Commands

employ correlation variables, but only those defined within the
subquery itself, not outer references.

A subquery answers multiple part questions. For example, to
determine who works in Taylor’s department, you can first use a
subquery to determine in which department Taylor works. You can
then answer the original question with the parent SELECT statement.

A subquery is evaluated once for the entire parent statement, in
contrast to a correlated subquery which is evaluated once per row
processed by the parent statement.

A subquery can itself contain a subquery. Oracle7 places no limit on the
level of query nesting.

To determine who works in Taylor’s department, issue the following
statement:

SELECT ename, deptno

FROM emp

WHERE deptno =

(SELECT deptno

FROM emp

WHERE ename = ’TAYLOR’)

To give all employees in the EMP table a ten percent raise if they have
not already been issued a bonus (if they do not appear in the BONUS
table), issue the following statement:

UPDATE emp

SET sal = sal * 1.1

 WHERE empno NOT IN (SELECT empno FROM bonus)

To create a duplicate of the DEPT table named NEWDEPT, issue the
following statement:

CREATE TABLE newdept (deptno, dname, loc)

AS SELECT deptno, dname, loc FROM dept

Correlated Subqueries

4 – 434 Oracle7 Server SQL Reference

A correlated subquery is a subquery that is evaluated once for each row
processed by the parent statement. The parent statement can be a
SELECT, UPDATE, or DELETE statement. The following examples
show the general syntax of a correlated subquery:

SELECT select_list

FROM table1 t_alias1

WHERE expr operator

(SELECT column_list

FROM table2 t_alias2

WHERE t_alias1.column

 operator t_alias2.column)

UPDATE table1 t_alias1

SET column =

(SELECT expr

FROM table2 t_alias2

WHERE t_alias1.column = t_alias2.column)

DELETE FROM table1 t_alias1

WHERE column operator

(SELECT expr

FROM table2 t_alias2

WHERE t_alias1.column = t_alias2.column)

This discussion focuses on correlated subqueries in SELECT
statements, although it also applies to correlated subqueries in
UPDATE and DELETE statements.

You can use a correlated subquery to answer a multi–part question
whose answer depends on the value in each row processed by the
parent statement. For example, a correlated subquery can be used to
determine which employees earn more than the average salaries for
their departments. In this case, the correlated subquery specifically
computes the average salary for each department.

Oracle7 performs a correlated subquery when the subquery references
a column from a table from the parent statement.

Oracle7 resolves unqualified columns in the subquery by looking in the
tables of the subquery, then in the tables of the parent statement, then
in the tables of the next enclosing parent statement, and so on. Oracle7
resolves all unqualified columns in the subquery to the same table. If
the tables in a subquery and parent query contain a column with the
same name, a reference to the column of a table from the parent query
must be prefixed by the table name or alias. To make your statements
easier for you to read, always qualify the columns in a correlated
subquery with the table, view, or snapshot name or alias.

Example XXII

Selecting from the
DUAL Table

4 – 435Commands

In the case of an UPDATE statement, you can use a correlated
subquery to update rows in one table based on rows from another
table. For example, you could use a correlated subquery to roll up four
quarterly sales tables into a yearly sales table.

In the case of a DELETE statement, you can use a correlated query to
delete only those rows that also exist in another table.

The following statement returns data about employees whose salaries
exceed the averages for their departments. The following statement
assigns an alias to EMP, the table containing the salary information, and
then uses the alias in a correlated subquery:

SELECT deptno, ename, sal

FROM emp x

WHERE sal > (SELECT AVG(sal)

FROM emp

WHERE x.deptno = deptno)

ORDER BY deptno

For each row of the EMP table, the parent query uses the correlated
subquery to compute the average salary for members of the same
department. The correlated subquery performs these steps for each row
of the EMP table:

1. The DEPTNO of the row is determined.

2. The DEPTNO is then used to evaluate the parent query.

3. If that row’s salary is greater than the average salary for that row’s
department, then the row is returned.

The subquery is evaluated once for each row of the EMP table.

DUAL is a table automatically created by Oracle7 along with the data
dictionary. DUAL is in the schema of the user SYS, but is accessible by
the name DUAL to all users. It has one column, DUMMY, defined to be
VARCHAR2(1), and contains one row with a value ’X’. Selecting from
the DUAL table is useful for computing a constant expression with the
SELECT command. Because DUAL has only one row, the constant is
only returned once. Alternatively, you can select a constant,
pseudocolumn, or expression from any table.

Example XXIII

Using Sequences

Example XXIV

Distributed Queries

4 – 436 Oracle7 Server SQL Reference

The following statement returns the current date:

SELECT SYSDATE FROM DUAL

You could select SYSDATE from the EMP table, but Oracle7 would
return 14 rows of the same SYSDATE, one for every row of the EMP
table. Selecting from DUAL is more convenient.

The sequence pseudocolumns NEXTVAL and CURRVAL can also
appear in the select list of a SELECT statement. For information on
sequences and their use, see the CREATE SEQUENCE command on
page 4 – 224 and the section “Pseudocolumns” on page 2 – 38.

The following statement increments the ZSEQ sequence and returns the
new value:

SELECT zseq.nextval

FROM dual

The following statement selects the current value of ZSEQ:

SELECT zseq.currval

FROM dual

Oracle’s distributed database management system architecture allows
you to access data in remote databases using SQL*Net and an Oracle7
Server. You can identify a remote table, view, or snapshot by appending
@dblink to the end of its name. The dblink must be a complete or partial
name for a database link to the database containing the remote table,
view, or snapshot. For more information on referring to database links,
see the section “Referring to Objects in Remote Databases” on
page 2 – 11.

Distributed queries are currently subject to this restriction all tables
locked by a FOR UPDATE clause and all tables with LONG columns
selected by the query must be located on the same database. For
example, the following statement will cause an error:

SELECT emp_ny.*

FROM emp_ny@ny, dept

WHERE emp_ny.deptno = dept.deptno

 AND dept.dname = ’ACCOUNTING’

FOR UPDATE OF emp_ny.sal

Example XXV

Related Topics

4 – 437Commands

Also, you cannot issue the above statement because it selects
LONG_COLUMN, a LONG value, from the EMP_REVIEW table on the
NY database and locks the EMP table on the local database:

SELECT emp.empno, review.long_column, emp.sal

FROM emp, emp_review@ny review

WHERE emp.empno = emp_review.empno

FOR UPDATE OF emp.sal

This example shows a query which joins the DEPT table on the local
database with the EMP table on the HOUSTON database:

SELECT ename, dname

FROM emp@houston, dept

WHERE emp.deptno = dept.deptno

DELETE command on 4 – 286
SELECT (Embedded SQL) command on 4 – 405
UPDATE command on 4 – 460

Purpose

Prerequisites

4 – 438 Oracle7 Server SQL Reference

SELECT (Embedded SQL)

To retrieve data from one or more tables, views, or snapshots, assigning
the selected values to host variables.

For you to select data from a table or snapshot, the table or snapshot
must be in your own schema or you must have SELECT privilege on
the table or snapshot.

For you to select rows from the base tables of a view, the owner of the
schema containing the view must have SELECT privilege on the base
tables. Also, if the view is in a schema other than your own, you must
have SELECT privilege on the view.

The SELECT ANY TABLE system privilege also allows you to select
data from any table or any snapshot or any view’s base table.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must dominate the creation label of each queried table, view, or
snapshot or you must have READUP system privileges.

Syntax

4 – 439Commands

EXEC SQL

AT

SELECT select_list

INTO

,

:host_variable

OF

,

column

table.

UNION ALL

INTERSECT

MINUS

ORDER BY expr

,

ASC

DESC

NOWAIT

FOR UPDATE

:host_variable

:indicator_variable

INDICATOR

WHERE condition

START WITH condition

GROUP BY expr

,

HAVING condition

position

schema. view.

dbname

FROM table_list

CONNECT BY condition

UNION SELECT command

Keywords and
Parameters

4 – 440 Oracle7 Server SQL Reference

identifies the database to which the SELECT
statement is issued. The database can be identified
by either:

is a database identifier declared in
a previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name.

If you omit this clause, the SELECT statement is
issued to your default database.

identical to the non–embedded SELECT command
except that host variables can be used in place of
literals.

specifies output host variables and optional
indicator variables to receive the data returned by
the SELECT statement. Note that these variables
must be either all scalars or all arrays, but arrays
need not have the same size.

restricts the rows returned to those for which the
condition is TRUE. See the syntax description of
condition on page 3 – 78. The condition can contain
host variables, but cannot contain indicator
variables. These host variables can be either scalars
or arrays.

All other keywords and parameters are identical to the non–embedded
SQL SELECT command.

AT

db_name

:host_variable

select_list

INTO

WHERE

Usage Notes

Example I

Related Topics

4 – 441Commands

If no rows meet the WHERE clause condition, no rows are retrieved
and Oracle7 returns an error code through the SQLCODE component
of the SQLCA.

You can use comments in a SELECT statement to pass instructions, or
hints, to the Oracle7 optimizer. The optimizer uses hints to choose an
execution plan for the statement. For more information on hints, see
Oracle7 Server Tuning.

This example illustrates the use of the embedded SQL SELECT
command:

EXEC SQL SELECT ename, sal + 100, job

INTO :ename, :sal, :job

FROM emp

WHERE empno = :empno

DECLARE DATABASE command on 4 – 282
DECLARE CURSOR command on 4 – 280
EXECUTE command on 4 – 332
FETCH command on 4 – 341
PREPARE command on 4 – 397

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 442 Oracle7 Server SQL Reference

SET ROLE

To enable and disable roles for your current session.

You also must already have been granted the roles that you name in the
SET ROLE statement.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must dominate the label of roles granted to you.

SET ROLE role

IDENTIFIED BY password

ALL

,

NONE

,

roleEXCEPT

is a role to be enabled for the current session. Any
roles not listed are disabled for the current session.

is the password for a role. If the
role has a password, you must
specify the password to enable the
role.

enables all roles granted to you for the current
session, except those listed in the EXCEPT clause.
Roles listed in the EXCEPT clause must be roles
granted directly to you; they cannot be roles
granted to you through other roles. You cannot use
this option to enable roles with passwords that
have been granted directly to you.

If you list a role in the EXCEPT clause that has
been granted to you both directly and through
another role, the role is still enabled by virtue of
your enabling the role to which it has been granted.

disables all roles for the current session.

role

password

ALL EXCEPT

NONE

Default Privilege
Domain

Changing Your
Privilege Domain

Example I

4 – 443Commands

 At logon Oracle7 establishes your default privilege domain by
enabling your default roles. Your default privilege domain contains all
privileges granted explicitly to you and all privileges in the privilege
domains of your default roles. You can then perform any operations
authorized by the privileges in your default privilege domain.

During your session, you can change your privilege domain with the
SET ROLE command. The SET ROLE command changes the roles
currently enabled for your session. You can change your enabled roles
any number of times during a session. The number of roles that can be
concurrently enabled is limited by the initialization parameter
MAX_ENABLED_ROLES.

You can use the SET ROLE command to enable or disable any of the
following roles:

• roles that have been granted directly to you

• roles granted to you through other roles

You cannot use the SET ROLE command to enable roles that you have
not been granted either directly or through other roles.

Your current privilege domain is also changed in the following cases:

• if you are granted a privilege

• if one of your privileges is revoked

• if one of your enabled roles is revoked

• if the privilege domain of one of your enabled roles is changed

If none of the above conditions occur and you do not issue the SET
ROLE command, your default privilege domain remains in effect for
the duration of your session. In the last two cases, the change in your
privilege domain does not take effect until you logon to Oracle7 again
or issue a SET ROLE statement.

You can determine which roles are in your current privilege domain at
any time by examining the SESSION_ROLES data dictionary view.

To change your default roles, use the ALTER USER command.

To enable the role GARDENER identified by the password
MARIGOLDS for your current session, issue the following statement:

SET ROLE gardener IDENTIFIED BY marigolds

Example II

Example III

Example IV

Related Topics

4 – 444 Oracle7 Server SQL Reference

To enable all roles granted to you for the current session, issue the
following statement:

SET ROLE ALL

To enable all roles granted to you except BANKER, issue the following
statement:

SET ROLE ALL EXCEPT banker

To disable all roles granted to you for the current session, issue the
following statement:

SET ROLE NONE

ALTER USER command on 4 – 108
CREATE ROLE command on 4 – 215

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 445Commands

SET TRANSACTION

For the current transaction:

• establish as a read–only or read–write transaction

• establish the isolation level

• assign the transaction to a specified rollback segment

If you use a SET TRANSACTION statement, it must be the first
statement in your transaction. However, every transaction need not
have a SET TRANSACTION statement.

SET TRANSACTION READ ONLY

READ WRITE

USE ROLLBACK SEGMENT rollback_segment

ISOLATION LEVEL SERIALIZABLE

READ COMMITTED

establishes the current transaction as a read–only
transaction.

establishes the current transaction as a read–write
transaction.

READ ONLY

READ WRITE

Usage Notes

4 – 446 Oracle7 Server SQL Reference

ISOLATION LEVEL
specifies how transactions containing database
modifications are handled.

SERIALIZABLE
use the serializable transaction
isolation mode as specified in
SQL92. That is, if a serializable
transaction attempts to execute a
DML statement that updates any
resource that may have been
updated in an uncommitted
transaction at the start of the
serializable transaction, then the
DML statement fails. The
COMPATIBLE initialization
parameter must be set to 7.3.0 or
higher for SERIALIZABLE mode
to work.

READ COMMITTED
use the default Oracle transaction
behavior. Thus, if the transaction
contains DML that require row
locks held by another transaction,
then the DML statement will wait
until the row locks are released.

USE ROLLBACK SEGMENT
assigns the current transaction to the specified
rollback segment. This option also establishes the
transaction as a read–write transaction.

You cannot use the READ ONLY option and the
USE ROLLBACK SEGMENT clause in a single
SET TRANSACTION statement or in different
statements in the same transaction. Read–only
transactions do not generate rollback information
and therefore are not assigned rollback segments.

The operations performed by a SET TRANSACTION statement affect
only your current transaction, not other users or other transactions.
Your transaction ends whenever you issue a COMMIT or ROLLBACK
statement. Note also that Oracle7 implicitly commits the current
transaction before and after executing a Data Definition Language
statement.

Establishing
Read–only
Transactions

4 – 447Commands

The default state for all transactions is statement level read consistency.
You can explicitly specify this state by issuing a SET TRANSACTION
statement with the READ WRITE option.

You can establish transaction level read consistency by issuing a SET
TRANSACTION statement with the READ ONLY option. After a
transaction has been established as read–only, all subsequent queries in
that transaction only see changes committed before the transaction
began. Read–only transactions are very useful for reports that run
multiple queries against one or more tables while other users update
these same tables.

Only the following statements are permitted in a read–only transaction:

• SELECT (except statements with the FOR UPDATE clause)

• LOCK TABLE

• SET ROLE

• ALTER SESSION

• ALTER SYSTEM

INSERT, UPDATE, and DELETE statements and SELECT statements
with the FOR UPDATE clause are not permitted. Any Data Definition
Language statement implicitly ends the read–only transaction.

The read consistency that read–only transactions provide is
implemented in the same way as statement–level read consistency.
Every statement by default uses a consistent view of the data as of the
time the statement is issued. Read–only transactions present a
consistent view of the data as of the time that the SET TRANSACTION
READ ONLY statement is issued. Read–only transactions provide read
consistency is for all nodes accessed by distributed queries and local
queries.

You cannot toggle between transaction level read consistency and
statement level read consistency in the same transaction. A SET
TRANSACTION statement can only be issued as the first statement of
a transaction.

Example I

Assigning Transactions
to Rollback Segments

Example II

Related Topics

4 – 448 Oracle7 Server SQL Reference

The following statements could be run at midnight of the last day of
every month to count how many ships and containers the company
owns. This report would not be affected by any other user who might
be adding or removing ships and/or containers.

COMMIT

SET TRANSACTION READ ONLY

SELECT COUNT(*) FROM ship

SELECT COUNT(*) FROM container

COMMIT

The last COMMIT statement does not actually make permanent any
changes to the database. It ends the read–only transaction.

If you issue a Data Manipulation Language statement in a transaction,
Oracle7 assigns the transaction to a rollback segment. The rollback
segment holds the information necessary to undo the changes made by
the transaction. You can issue a SET TRANSACTION statement with
the USE ROLLBACK SEGMENT clause to choose a specific rollback
segment for your transaction. If you do not choose a rollback segment,
Oracle7 chooses one randomly and assigns your transaction to it.

SET TRANSACTION allows you to assign transactions of different
types to rollback segments of different sizes:

• Assign OLTP transactions, or small transactions containing only
a few Data Manipulation Language statements that modify only
a few rows, to small rollback segments if there are no
long–running queries concurrently reading the same tables.
Small rollback segments are more likely to remain in memory.

• Assign transactions that modify tables that are concurrently
being read by long–running queries to large rollback segments
so that the rollback information needed for the read consistent
queries is not overwritten.

• Assign transactions with bulk Data Manipulation Language
statements, or statements that insert, update, or delete large
amounts of data, to rollback segments large enough to hold the
rollback information for the transaction.

The following statement assigns your current transaction to the
rollback segment OLTP_5:

SET TRANSACTION USE ROLLBACK SEGMENT oltp_5

COMMIT command on 4 – 141
ROLLBACK command on 4 – 397
SAVEPOINT command on 4 – 404

Purpose

Prerequisites

Syntax

4 – 449Commands

STORAGE clause

To specify storage characteristics for tables, indexes, clusters, and rollback
segments, and the default storage characteristics for tablespaces.

The STORAGE clause can appear in commands that create or alter any
of the following objects:

• clusters

• indexes

• rollback segments

• snapshots

• snapshot logs

• tables

• tablespaces

To change the value of a STORAGE parameter, you must have the
privileges necessary to use the appropriate create or alter command.

STORAGE (INITIAL integer

K

M

)

NEXT integer

K

M

MINEXTENTS integer

MAXEXTENTS

PCTINCREASE integer

FREELISTS integer

FREELIST GROUPS integer

integer

UNLIMITED

OPTIMAL

M

integer

NULL

K

Keywords and
Parameters

4 – 450 Oracle7 Server SQL Reference

specifies the size in bytes of the object’s first extent.
Oracle7 allocates space for this extent when you
create the object. You can also use K or M to specify
this size in kilobytes or megabytes. The default
value is the size of 5 data blocks. The minimum
value is the size of 2 data blocks. The maximum
value varies depending on your operating system.
Oracle7 rounds values up to the next multiple of
the data block size for values less than 5 data
blocks. Oracle7 rounds values up to the next
multiple of 5 data blocks.

specifies the size in bytes of the next extent to be
allocated to the object. You can also use K or M to
specify the size in kilobytes or megabytes. The
default value is the size of 5 data blocks. The
minimum value is the size of 1 data block. The
maximum value varies depending on your
operating system. Oracle7 rounds values up to the
next multiple of the data block size for values less
than 5 data blocks. For values greater than 5 data
blocks, Oracle7 rounds up to a value than
minimizes fragmentation, as described in the
“Data Blocks, Extents, and Segments” chapter of
Oracle7 Server Concepts.

specifies the percent by which each extent after the
second grows over the previous extent. The default
value is 50, meaning that each subsequent extent is
50% larger than the preceding extent. The
minimum value is 0, meaning all extents after the
first are the same size. The maximum value varies
depending on your operating system.

You cannot specify PCTINCREASE for rollback
segments. Rollback segments always have a
PCTINCREASE value of 0.

Oracle7 rounds the calculated size of each new
extent up to the next multiple of the data block
size.

INITIAL

NEXT

PCTINCREASE

4 – 451Commands

specifies the total number of extents to allocate
when the object is created. This parameter allows
you to allocate a large amount of space when you
create an object, even if the space available is not
contiguous. The default and minimum value is 1,
meaning that Oracle7 only allocates the initial
extent, except for rollback segments for which the
default and minimum value is 2. The maximum
value varies depending on your operating system.

If the MINEXTENTS value is greater than 1, then
Oracle7 calculates the size of subsequent extents
based on the values of the INITIAL, NEXT, and
PCTINCREASE parameters.

specifies the total number of extents, including the
first, that Oracle7 can allocate for the object. The
minimum value is 1. The default and maximum
values vary depending your data block size.

specifies that extents should
automatically be allocated as
needed. You should not use this
option for rollback segments.

FREELIST GROUPS
for objects other than tablespaces, specifies the
number of groups of free lists for a table, cluster, or
index. The default and minimum value for this
parameter is 1. Only use this parameter if you are
using Oracle7 with the Parallel Server option in
parallel mode.

for objects other than tablespaces, specifies the
number of free lists for each of the free list groups
for the table, cluster, or index. The default and
minimum value for this parameter is 1, meaning
that each free list group contains one free list. The
maximum value of this parameter depends on the
data block size. If you specify a FREELISTS value
that is too large, Oracle7 returns an error message
indicating the maximum value.

You can only specify the FREELISTS parameter in
CREATE TABLE, CREATE CLUSTER, and
CREATE INDEX statements. You can only specify

MINEXTENTS

MAXEXTENTS

UNLIMITED

FREELISTS

Usage Notes

4 – 452 Oracle7 Server SQL Reference

the FREELIST GROUPS parameter in CREATE
TABLE and CREATE CLUSTER statements.

specifies an optimal size in bytes for a rollback
segment. Not applicable to other kinds of objects.
You can also use K or M to specify this size in
kilobytes or megabytes. Oracle7 tries to maintain
this size for the rollback segment by dynamically
deallocating extents when their data is no longer
needed for active transactions. Oracle7 deallocates
as many extents as possible without reducing the
total size of the rollback segment below the
OPTIMAL value.

specifies no optimal size for the
rollback segment, meaning that
Oracle7 never deallocates the
rollback segment’s extents. This is
the default behavior.

The value of this parameter cannot be less than the
space initially allocated for the rollback segment
specified by the MINEXTENTS, INITIAL, NEXT,
and PCTINCREASE parameters. The maximum
value varies depending on your operating system.
Oracle7 rounds values to the next multiple of the
data block size.

The STORAGE parameters affect both how long it takes to access data
stored in the database and how efficiently space in the database is
used. For a discussion of the effects of these parameters, see the
“Tuning I/O” chapter of Oracle7 Server Tuning.

When you create a tablespace, you can specify values for the STORAGE
parameters. These values serve as default STORAGE parameter values
for segments allocated in the tablespace.

When you create a cluster, index, rollback segments, snapshot,
snapshot log, or table, you can specify values for the STORAGE
parameters for the segments allocated to these objects. If you omit any
STORAGE parameter, Oracle7 uses the value of that parameter
specified for the tablespace.

When you alter a cluster, index, rollback segment, snapshot, snapshot
log, or table, you can change the values of STORAGE parameters.
These new values only affect future extent allocations. For this reason,
you cannot change the values of the INITIAL and MINEXTENTS

OPTIMAL

NULL

ROLLBACK SEGMENTS
and MAXEXTENTS
UNLIMITED

Example I

4 – 453Commands

parameter. If you change the value of the NEXT parameter, the next
allocated extent will have the specified size, regardless of the size of
the most–recently allocated extent and the value of the PCTINCREASE
parameter. If you change the value of the PCTINCREASE parameter,
Oracle7 calculates the size of the next extent using this new value and
the size of the most recently allocated extent.

When you alter a tablespace, you can change the values of STORAGE
parameters. These new values serve as default values only to
subsequently allocated segments (or subsequently created objects).

It is not good practice to create or alter a rollback segment to use
MAXEXTENTS UNLIMITED. Rogue transactions containing inserts,
updates, or deletes, that continue for a long time will continue to create
new extents until a disk is full.

A rollback segment created without specifying the storage option has
the same storage options as the tablespace that the rollback segment is
created in. Thus, if the tablespace is created with MAXEXTENT
UNLIMITED, then the rollback segment would also have the
same default.

The following statement creates a table and provides STORAGE
parameter values:

CREATE TABLE dept

(deptno NUMBER(2),

 dname VARCHAR2(14),

 loc VARCHAR2(13))

STORAGE (INITIAL 100K NEXT 50K

 MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 5)

Oracle7 allocates space for the table based on the STORAGE parameter
values for the following reasons:

• Because the MINEXTENTS value is 1, Oracle7 allocates 1 extent
for the table upon creation.

• Because the INITIAL value is 100K, the first extent’s size is 100
kilobytes.

• If the table data grows to exceed the first extent, Oracle7
allocates a second extent. Because the NEXT value is 50K, the
second extent’s size is 50 kilobytes.

• If the table data subsequently grows to exceed the first two
extents, Oracle7 allocates a third extent. Because the
PCTINCREASE value is 5, the calculated size of the third extent
is 5% larger than the second extent, or 52.5 kilobytes. If the data

Example II

Related Topics

4 – 454 Oracle7 Server SQL Reference

block size is 2 kilobytes, Oracle7 rounds this value to 52
kilobytes.

If the table data continues to grow, Oracle7 allocates more
extents, each 5% larger than the previous one.

• Because the MAXEXTENTS value is 50, Oracle7 can allocate as
many as 50 extents for the table.

The following statement creates a rollback segment and provides
STORAGE parameter values:

CREATE ROLLBACK SEGMENT rsone

STORAGE (INITIAL 10K NEXT 10K

 MINEXTENTS 2 MAXEXTENTS 25

 OPTIMAL 50K)

Oracle7 allocates space for the rollback segment based on the
STORAGE parameter values:

• Because the MINEXTENTS value is 2, Oracle7 allocates 2 extents
for the rollback segment upon creation.

• Because the INITIAL value is 10K, the first extent’s size is 10
kilobytes.

• Because the NEXT value is 10K, the second extent’s size is 10
kilobytes.

• If the rollback data exceeds the first two extents, Oracle7
allocates a third extent. Because the PCTINCREASE value for
rollback segments is always 0, the third extent is the same size
as the second extent, 10 kilobytes.

If the rollback data continues to grow, Oracle7 allocates more
extents, each the same size as the previous one, 10 kilobytes.

• Because the MAXEXTENTS value is 25, Oracle7 can allocate as
many as 25 extents for the rollback segment.

• Because the OPTIMAL value is 50K, Oracle7 deallocates extents
if the rollback segment exceeds 50 kilobytes. Note that Oracle7
only deallocates extents that contain data for transactions that
are no longer active.

CREATE CLUSTER command on 4 – 164
CREATE INDEX command on 4 – 192
CREATE ROLLBACK SEGMENT command on 4 – 218
CREATE TABLE command on 4 – 245
CREATE TABLESPACE command on 4 – 254

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 455Commands

TRUNCATE

To remove all rows from a table or cluster and reset the STORAGE
parameters to the values when the table or cluster was created.

The table or cluster must be in your schema or you must have DELETE
TABLE system privilege.

If you are using Trusted Oracle, your DBMS label must match the
creation label of the table or cluster or you must satisfy one of these
criteria. If the creation label of the table or cluster is not comparable or
higher than your DBMS label, you must have READUP system
privilege.

TRUNCATE

CLUSTER

schema.

TABLE table

schema.

cluster

DROP

REUSE

STORAGE

specifies the schema and name of the table to be
truncated. If you omit schema, Oracle7 assumes the
table is in your own schema. This table cannot be
part of a cluster.

When you truncate a table, Oracle7 also
automatically deletes all data in the table’s indexes.

specifies the schema and name of the cluster to be
truncated. If you omit schema, Oracle7 assumes the
cluster is in your own schema. You can only
truncate an indexed cluster, not a hash cluster.

When you truncate a cluster, Oracle7 also
automatically deletes all data in the cluster’s tables’
indexes.

deallocates the space from the deleted rows from
the table or cluster. This space can subsequently be
used by other objects in the tablespace.

leaves the space from the deleted rows allocated
to the table or cluster. STORAGE values are not
reset to the values when the table or cluster was
created. This space can be subsequently used only
by new data in the table or cluster resulting from
inserts or updates.

TABLE

CLUSTER

DROP STORAGE

REUSE
STORAGE

Usage Notes

4 – 456 Oracle7 Server SQL Reference

The DROP STORAGE or REUSE STORAGE option
that you choose also applies to the space freed by
the data deleted from associated indexes.

If you omit both the REUSE STORAGE and DROP
STORAGE options, Oracle7 uses the DROP
STORAGE option by default.

You can use the TRUNCATE command to quickly remove all rows
from a table or cluster. Removing rows with the TRUNCATE command
is faster than removing them with the DELETE command for the
following reasons:

• The TRUNCATE command is a Data Definition Language
command and generates no rollback information.

• Truncating a table does not fire the table’s DELETE triggers.

• Truncating the master table of a snapshot does not record any
changes in the table’s snapshot log.

The TRUNCATE command allows you to optionally deallocate the
space freed by the deleted rows. The DROP STORAGE option
deallocates all but the space specified by the table’s MINEXTENTS
parameter.

Deleting rows with the TRUNCATE command is also more convenient
than dropping and recreating a table for the following reasons:

• Dropping and recreating invalidates the table’s dependent
objects, while truncating does not.

• Dropping and recreating requires you to regrant object privileges
on the table, while truncating does not.

• Dropping and recreating requires you to recreate the table’s
indexes, integrity constraints, and triggers and respecify its
STORAGE parameters, while truncating does not.

When you truncate a table, NEXT is automatically reset to the last
extent deleted.

You cannot individually truncate a table that is part of a cluster. You
must either truncate the cluster, delete all rows from the table, or drop
and recreate the table.

You cannot truncate the parent table of an enabled referential integrity
constraint. You must disable the constraint before truncating the table.

Example I

Example II

Related Topics

4 – 457Commands

If you truncate the master table of a snapshot, Oracle7 does not record
the removed rows in the snapshot log. For this reason, a fast refresh
does not remove the rows from the snapshot. Snapshots based on a
truncated table must be refreshed completely for Oracle7 to remove
their rows.

You cannot roll back a TRUNCATE statement.

The following statement deletes all rows from the EMP table and
returns the freed space to the tablespace containing EMP:

TRUNCATE TABLE emp

The above statement also deletes all data from all indexes on EMP and
returns the freed space to the tablespaces containing them.

The following statement deletes all rows from all tables in the CUST
cluster, but leaves the freed space allocated to the tables:

TRUNCATE CLUSTER cust

REUSE STORAGE

The above statement also deletes all data from all indexes in the
tables in CUST.

DELETE command on 4 – 286
DROP CLUSTER command on 4 – 301
DROP TABLE command on 4 – 318

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

4 – 458 Oracle7 Server SQL Reference

TYPE (Embedded SQL)

To perform user–defined type equivalencing, or to assign an Oracle7
external datatype to a whole class of host variables by equivalencing
the external datatype to a user–defined datatype.

The user–defined datatype must be previously declared in an
embedded SQL program.

EXEC SQL TYPE type IS datatype

is the user–defined datatype to be equivalenced
with an Oracle7 external datatype.

is an Oracle7 external datatype recognized by the
Oracle Precompilers (not an Oracle7 internal
datatype). The datatype may include a length,
precision, or scale. This external datatype is
equivalenced to the user–defined type and assigned
to all host variables assigned the type. For a list of
external datatypes, see Programmer’s Guide to the
Oracle Precompilers.

User defined type equivalencing is one kind of datatype equivalencing.
You can only perform user–defined type equivalencing with the
embedded SQL TYPE command in a Pro*C or Pro*Pascal Precompiler
program. You may want to use datatype equivalencing for one of the
following purposes:

• to automatically null–terminate a character host variable

• to store program data as binary data in the database

• to override default datatype conversion

For more information on using the TYPE command to perform
user–defined type equivalencing, see Programmer’s Guide to the Oracle
Precompilers.

All Oracle Precompilers also support the embedded SQL VAR
command for host variable equivalencing.

type

datatype

Example I

Example II

Related Topics

4 – 459Commands

This example shows an embedded SQL TYPE statement in a Pro*C
Precompiler program:

struct screen {short len;

 char buff[4002];

 };

typedef struct screen graphics;

EXEC SQL BEGIN DECLARE SECTION;

EXEC SQL TYPE graphics IS VARRAW (4002);

graphics crt; –– host variable of type graphics

...

EXEC SQL END DECLARE SECTION;

This example shows an embedded SQL TYPE statement in a Pro*Pascal
Precompiler program:

Type

OraDate = Record

 Cent, Year, Month, Day, Hour, Min, Sec: Byte

 End;

Var

EXEC SQL BEGIN DECLARE SECTION;

 EXEC SQL TYPE OraDate IS DATE;

 Birthday: OraDate; –– host variable of type OraDate

 ...

EXEC SQL END DECLARE SECTION;

VAR command (Embedded SQL) on 4 – 469

Purpose

Prerequisites

Syntax

4 – 460 Oracle7 Server SQL Reference

UPDATE

To change existing values in a table or in a view’s base table.

For you to update values in a table, the table must be in your own
schema or you must have UPDATE privilege on the table.

For you to update values in the base table of a view, the owner of the
schema containing the view must have UPDATE privilege on the base
table. Also, if the view is in a schema other than your own, you must
have UPDATE privilege on the view.

The UPDATE ANY TABLE system privilege also allows you to update
values in any table or any view’s base table.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the creation label of the table or view:

• If the creation label of the table or view is higher than your
DBMS label, you must have READUP and WRITEUP system
privileges

• If the creation label of the table or view is lower than your DBMS
label, you must have WRITEDOWN system privilege.

• If the creation label of your table or view is not comparable to
your DBMS label, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

SET

column =

WHERE condition

,

(column) = (subquery_2)

(subquery_3)

expr

,

table

schema. view

snapshot

@dblink t_alias

(subquery_1)

UPDATE

Keywords and
Parameters

4 – 461Commands

is the schema containing the table or view. If you
omit schema, Oracle7 assumes the table or view is
in your own schema.

is the name of the table to be updated. If you
specify view, Oracle7 updates the view’s base table.

is a complete or partial name of a database link to a
remote database where the table or view is located.
For information on referring to database links, see
the section, “Referring to Objects in Remote
Databases,“ on page 2 – 11. You can only use a
database link to update a remote table or view if
you are using Oracle7 with the distributed option.

If you omit dblink, Oracle7 assumes the table or
view is on the local database.

provides a different name for the table, view,
or subquery to be referenced elsewhere in
the statement.

is a subquery that Oracle treats in the same
manner as a view. For the syntax of subquery,
see page 4 – 431.

is the name of a column of the table or view that
is to be updated. If you omit a column of the table
from the SET clause, that column’s value
remains unchanged.

is the new value assigned to the corresponding
column. This expression can contain host variables
and optional indicator variables. See the syntax
description of expr on page 3 – 73.

is a subquery that returns new values that are
assigned to the corresponding columns. For the
syntax of subquery, see page 4 – 436.

is a subquery that return a new value that is
assigned to the corresponding column. For the
syntax of subquery, see page 4 – 436.

restricts the rows updated to those for which the
specified condition is TRUE. If you omit this
clause, Oracle7 updates all rows in the table or
view. See the syntax description of condition
on page 3 – 78.

schema

table
view

dblink

alias

subquery_1

column

expr

subquery_2

subquery_3

WHERE

Usage Notes

Updating Views

Subqueries

4 – 462 Oracle7 Server SQL Reference

The SET clause determines which columns are updated and what new
values are stored in them.

The WHERE clause determines the rows in which values are updated.
If the WHERE clause is not specified, all rows are updated. For each
row that satisfies the WHERE clause, the columns to the left of the
equals (=) operator in the SET clause are set to the values of the
corresponding expressions on the right. The expressions are evaluated
as the row is updated.

You can use comments in an UPDATE statement to pass instructions,
or hints, to the Oracle7 optimizer. The optimizer uses hints to choose an
execution plan for the statement. For more information, see Oracle7
Server Tuning.

Issuing an UPDATE statement against a table fires any UPDATE
triggers associated with the table.

If a view was created with the WITH CHECK OPTION, you can only
update the view if the resulting data satisfies the view’s defining query.

You cannot update a view if the view’s defining query contains one of
the following constructs:

• join

• set operator

• GROUP BY clause

• group function

• DISTINCT operator

If the SET clause contains a subquery, it must return exactly one row
for each row updated. Each value in the subquery result is assigned
respectively to the columns in the parenthesized list. If the subquery
returns no rows, then the column is assigned a null. Subqueries may
select from the table being updated.

The SET clause may mix assignments of expressions and subqueries.

Correlated Update

Example I

Example II

Example III

4 – 463Commands

If a subquery refers to columns from the updated table, Oracle7
evaluates the subquery once for each row, rather than once for the
entire update. Such an update is called a correlated update. The
reference to columns from the updated table is usually accomplished
by means of a table alias.

Potentially, each row evaluated by an UPDATE statement could be
updated with a different value as determined by the correlated
subquery. Normal UPDATE statements update each row with the same
value.

The following statement gives null commissions to all employees with
the job TRAINEE:

UPDATE emp

SET comm = NULL

WHERE job = ’TRAINEE’

The following statement promotes JONES to manager of Department
20 with a $1,000 raise (assuming there is only one JONES):

UPDATE emp

SET job = ’MANAGER’, sal = sal + 1000, deptno = 20

WHERE ename = ’JONES’

The following statement increases the balance of bank account number
5001 in the ACCOUNTS table on a remote database accessible through
the database link BOSTON:

UPDATE accounts@boston

SET balance = balance + 500

WHERE acc_no = 5001

Example IV

Related Topics

4 – 464 Oracle7 Server SQL Reference

This example shows the following syntactic constructs of the
UPDATE command:

• both forms of the SET clause together in a single statement

• a correlated subquery

• a WHERE clause to limit the updated rows

UPDATE emp a

SET deptno =

(SELECT deptno

FROM dept

WHERE loc = ’BOSTON’),

(sal, comm) =

(SELECT 1.1*AVG(sal), 1.5*AVG(comm)

FROM emp b

WHERE a.deptno = b.deptno)

WHERE deptno IN

(SELECT deptno

FROM dept

WHERE loc = ’DALLAS’

 OR loc = ’DETROIT’)

The above UPDATE statement performs the following operations:

• updates only those employees who work in Dallas or Detroit

• sets DEPTNO for these employees to the DEPTNO of Boston

• sets each employee’s salary to 1.1 times the average salary of
their department

• sets each employee’s commission to 1.5 times the average
commission of their department

DELETE command on 4 – 286
INSERT command on 4 – 361

Purpose

Prerequisites

Syntax

4 – 465Commands

UPDATE (Embedded SQL)

To change existing values in a table or in a view’s base table.

For you to update values in a table or snapshot, the table must be in
your own schema or you must have UPDATE privilege on the table.

For you to update values in the base table of a view, the owner of the
schema containing the view must have UPDATE privilege on the base
table. Also, if the view is in a schema other than your own, you must
have UPDATE privilege on the view.

The UPDATE ANY TABLE system privilege also allows you to update
values in any table or any view’s base table.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS
label must match the creation label of the table or view:

• If the creation label of the table or view is higher than your
DBMS label, you must have READUP and WRITEUP system
privileges

• If the creation label of the table or view is lower than your DBMS
label, you must have WRITEDOWN system privilege.

• If the creation label of your table or view is not comparable to
your DBMS label, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

EXEC SQL

AT FOR :host_integer

:host_variable

dbname

SET

column =

WHERE condition

,

(column) = (subquery_2)

(subquery_3)

expr

,

table

schema. view

snapshot

@dblink t_alias

(subquery_1)

UPDATE

Keywords and
Parameters

4 – 466 Oracle7 Server SQL Reference

identifies the database to which the UPDATE
statement is issued. The database can be identified
by either:

is a database identifier declared in
a previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name.

If you omit this clause, the UPDATE statement is
issued to your default database.

limits the number of times the UPDATE statement
is executed if the SET and WHERE clauses contain
array host variables. If you omit this clause,
Oracle7 executes the statement once for each
component of the smallest array.

is the schema containing the table or view. If you
omit schema, Oracle7 assumes the table or view is
in your own schema.

is the name of the table to be updated. If you
specify view, Oracle7 updates the view’s base table.

is a complete or partial name of a database link to a
remote database where the table or view is located.
For information on referring to database links, see
the section “Referring to Objects in Remote
Databases,” on page 2 – 11. You can only use a
database link to update a remote table or view if
you are using Oracle7 with the distributed option.

is a subquery that Oracle treats in the same
manner as a view. For the syntax of subquery,
see page 4 – 431.

If you omit dblink, Oracle7 assumes the table or
view is on the local database.

is a name used to reference the table, view, or
subquery elsewhere in the statement.

AT

db_name

:host_variable

FOR :host_integer

schema

table
view

dblink

subquery_1

t_alias

4 – 467Commands

is the name of a column of the table or view that
is to be updated. If you omit a column of the table
from the SET clause, that column’s value
remains unchanged.

is the new value assigned to the corresponding
column. This expression can contain host variables
and optional indicator variables. See the syntax
description of expr on page 3 – 73.

is a subquery that returns new values that are
assigned to the corresponding columns. For the
syntax of subquery, see page 4 – 436.

is a subquery that return a new value that is
assigned to the corresponding column. For the
syntax of subquery, see page 4 – 436.

specifies which rows of the table or view
are updated:

updates only rows for which this
condition is true. This condition
can contain host variables and
optional indicator variables. See
the syntax description of condition
on page 3 – 78.

updates only the row most recently
fetched by the cursor. The cursor
cannot be associated with a
SELECT statement that performs a
join unless its FOR UPDATE clause
explicitly locks only one table.

If you omit this clause entirely, Oracle7 updates
all rows of the table or view.

column

expr

subquery_2

subquery_3

WHERE

condition

CURRENT OF

Usage Notes

Examples

Related Topics

4 – 468 Oracle7 Server SQL Reference

Host variables in the SET and WHERE clauses must be either all
scalars or all arrays. If they are scalars, Oracle7 executes the UPDATE
statement only once. If they are arrays, Oracle7 executes the statement
once for each set of array components. Each execution may update
zero, one, or multiple rows.

Array host variables can have different sizes. In this case, the number
of times Oracle7 executes the statement is determined by the smaller
of the following values:

• the size of the smallest array

• the value of the :host_integer in the optional FOR clause

The cumulative number of rows updated is returned through the third
element of the SQLERRD component of the SQLCA. When arrays are
used as input host variables, this count reflects the total number of
updates for all components of the array processed in the UPDATE
statement. If no rows satisfy the condition, no rows are updated and
Oracle7 returns an error message through the SQLCODE element of
the SQLCA. If you omit the WHERE clause, all rows are updated and
Oracle7 raises a warning flag in the fifth component of the SQLWARN
element of the SQLCA.

You can use comments in an UPDATE statement to pass instructions,
or hints, to the Oracle7 optimizer. The optimizer uses hints to choose an
execution plan for the statement. For more information on hints, see
Oracle7 Server Tuning.

For more information on this command, see Programmer’s Guide to the
Oracle Precompilers.

The following examples illustrate the use of the embedded SQL
UPDATE command:

EXEC SQL UPDATE emp

SET sal = :sal, comm = :comm INDICATOR :comm_ind

WHERE ename = :ename;

EXEC SQL UPDATE emp

SET (sal, comm) =

(SELECT AVG(sal)*1.1, AVG(comm)*1.1

FROM emp)

WHERE ename = ’JONES’;

DECLARE DATABASE command on 4 – 282
UPDATE command on 4 – 460

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

4 – 469Commands

VAR (Embedded SQL)

To perform host variable equivalencing, or to assign a specific Oracle7
external datatype to an individual host variable, overriding the default
datatype assignment.

The host variable must be previously declared in the Declare Section of
the embedded SQL program.

EXEC SQL VAR host_variable IS datatype

is the host variable to be assigned an Oracle7
external datatype.

is an Oracle7 external datatype recognized by the
Oracle Precompilers (not an Oracle7 internal
datatype). The datatype may include a length,
precision, or scale. This external datatype is
assigned to the host_variable. For a list of external
datatypes, see Programmer’s Guide to the Oracle
Precompilers.

Host variable equivalencing is one kind of datatype equivalencing.
You may want to use datatype equivalencing for one of the
following purposes:

• to automatically null–terminate a character host variable

• to store program data as binary data in the database

• to override default datatype conversion

For more information on using the VAR command to perform host
variable equivalencing, see Programmer’s Guide to the Oracle
Precompilers. The Pro*C and Pro*Pascal Precompilers also support the
embedded SQL TYPE command for user–defined type equivalencing.

host_variable

datatype

Example

Related Topics

4 – 470 Oracle7 Server SQL Reference

This example equivalences the host variable DEPT_NAME to
the datatype STRING and the host variable BUFFER to the
datatype RAW(2000):

EXEC SQL BEGIN DECLARE SECTION;

...

dept_name CHARACTER(15); –– default datatype is CHAR

EXEC SQL VAR dept_name IS STRING; –– reset to STRING

...

buffer CHARACTER(200); –– default datatype is CHAR

EXEC SQL VAR buffer IS RAW(200); –– refer to RAW

EXEC SQL END DECLARE SECTION;

TYPE command (Embedded SQL) on 4 – 458

Purpose

Prerequisites

Syntax

Keywords and
Parameters

4 – 471Commands

WHENEVER (Embedded SQL)

To specify the action to be taken when if error an warning results from
executing an embedded SQL program.

None.

EXEC SQL WHENEVER NOT FOUND

SQLERROR

SQLWARNING

CONTINUE

GOTO label_name

STOP

DO routine_call

identifies any exception condition that results in
a return code of +100 in SQLCODE, (or +1403 in
Version 5 compatibility mode).

identifies a condition that results in a negative
return code.

identifies a non–fatal warning condition.

indicates that the program should progress to
the next statement.

indicates that the program should branch to
the statement named by label_name.

stops program execution.

indicates that the program should call a host
language routine. The syntax of routine_call
depends on your host language. See your
language–specific Supplement to the Oracle
Precompilers Guide.

NOT FOUND

SQLERROR

SQLWARNING

CONTINUE

GOTO

STOP

DO

Usage Notes

Example

Related Topics

4 – 472 Oracle7 Server SQL Reference

The WHENEVER command allows your program to transfer control
to an error handling routine in the event an embedded SQL statement
results in an error or warning.

The scope of a WHENEVER statement is positional, rather than logical.
A single WHENEVER statement applies to all embedded SQL
statements that physically follow it in the Precompiler source file,
not in the flow of the program logic. A WHENEVER statement remains
in effect until it is superseded by another WHENEVER statement
checking for the same condition.

For more information on this command, see Programmer’s Guide to the
Oracle Precompilers.

Do not confuse the WHENEVER embedded SQL command with the
WHENEVER SQL*Plus command.

The example illustrates the use of the WHENEVER command in a
Pro*C embedded SQL program:

EXEC SQL WHENEVER NOT FOUND;

...

EXEC SQL WHENEVER SQLERROR GOTO sqlerror:

...

sql_error:

EXEC SQL WHENEVER SQLERROR CONTINUE;

EXEC SQL ROLLBACK RELEASE;

None

A P P E N D I X

A
T

A – 1Differences From Previous Versions

Differences From
Previous Versions

his appendix lists differences between the current and previous
releases of Oracle.

New SQL Functions

ALTER CLUSTER
DEALLOCATE
UNUSED

ALTER DATABASE
CREATE STANDBY
CONTROLFILE AS
<filename>

ALTER DATABASE
MOUNT STANDBY
DATABASE
[EXCLUSIVE,
PARALLEL]

ALTER DATABASE
RECOVER STANDBY
DATABASE

ALTER DATABASE
ACTIVATE STANDBY
DATABASE
ALTER INDEX
ALLOCATE EXTENT

ALTER INDEX
DEALLOCATE
UNUSED

ALTER INDEX
REBUILD

A – 2 Oracle7 Server SQL Reference

Differences Between Oracle7 Release 7.2 and Release 7.3

The following transcendental functions are new:

• acos

• asin

• atan

• atan2

You can deallocate unused space from a cluster and save specified
kilobytes for future use. For example,

ALTER CLUSTER detroit.sales

 DEALLOCATE USUSED KEEP 100K;

You can specify the controlfile for a standby database. For example,

ALTER DATABASE stocks CREATE STANDBY CONTROLFILE AS controlfile;

You can mount a database or its corresponding standby database as
either EXCLUSIVE or as PARALLEL. For example,

ALTER DATABASE stocks MOUNT STANDBY DATABASE EXCLUSIVE;

ALTER DATABASE stocks MOUNT STANDBY DATABASE PARALLEL;

You can recover the standby database. For example,

ALTER DATABASE stocks RECOVER STANDBY DATABASE;

You can activate a standby database. For example,

ALTER DATABASE stocks ACTIVATE STANDBY DATABASE;

You can allocate an extent to an index after creation.

You can deallocate unused space from an index and save specified
kilobytes for future use. For example,

ALTER INDEX april.sales

 DEALLOCATE USUSED KEEP 100K;

You can use an existing index as the data source of a fast re–create
index. This changes the index’s storage characteristics. ALTER INDEX
has the new parameter, REBUILD. For example,

ALTER SESSION
HASH_JOIN_
ENABLED

ALTER SESSION SET

ALTER SYSTEM SET
REMOTE_
DEPENDENCIES_
MODE

ALTER SYSTEM SET

ALTER TABLE
DEALLOCATE
UNUSED

A – 3Differences From Previous Versions

ALTER INDEX salesmen REBUILD UNRECOVERABLE TABLESPACE detroit;

You can use hash–join to improve the performance of join operations.
There are three new parameters:

• HASH_JOIN_ENABLED turns the feature on or off.

• HASH_AREA_SIZE specifies the maximum amount of memory in
bytes to be used for the hash join. If not specified, hash join uses
twice the SORT_AREA_SIZE value.

• HASH_MULTIBLOCK_IO_COUNT determines how many blocks
hash join should read and write at once. If not specified, hash join
uses the value for DB_FILE_MULTIBLOCK_READ_COUNT.

• REMOTE_DEPENDENCIES_MODE specifies how the session
handles dependencies of remote stored procedures, by TIMESTAMP
or by SIGNATURE..

For example,

ALTER SESSION HASH_JOIN_ENABLED = TRUE;

ALTER SESSION HASH_AREA_SIZE = 1000K;

ALTER SESSION HASH_MULTIBLOCK_IO_COUNT = 50;

You can change dynamic initialization parameters while an instance is
running. ALTER SESSION changes the parameter for the duration of
the session, or until you re–execute ALTER SESSION. For example,

ALTER SESSION SET COMMIT_POINT_STRENGTH 100;

You can alter the system so that timestamp mismatches are now
ignored if the user requests that invalidation be based on signatures,
rather than by a timestamp with the
REMOTE_DEPENDENCIES_MODE parameter.

ALTER SYSTEM SET REMOTE_DEPENDENCIES_MODE = SIGNATURE;

ALTER SYSTEM SET REMOTE_DEPENDENCIES_MODE = TIMESTAMP;

You can change global value of a dynamic initialization parameter.
New sessions use the changed value. For example,

ALTER SYSTEM SET COMMIT_POINT_STRENGTH=100;

You can release unused space from a segment and return it to the
database system. For example,

ALTER TABLE emp DEALLOATE UNUSED KEEP 100K;

ALTER TABLESPACE
COALESCE

ALTER TABLESPACE
[PERMANENT,
TEMPORARY]

ALTER TRIGGER
trigger_name
COMPILE

ALTER TRIGGER
trigger_name DEBUG

ANALYZE TABLE

A – 4 Oracle7 Server SQL Reference

You can improve performance by coalescing available free space
(extents) in the tablespace into larger, contiguous extents on a per file
basis. For example,

ALTER TABLESPACE inventory COALESCE;

You can alter a tablespace to be a permanent or temporary to use with
multiple sort operations.

ALTER TABLESPACE inventory PERMANENT;

ALTER TABLESPACE inventory TEMPORARY;

For more information, see CREATE TABLESPACE [PERMANENT,
TEMPORARY] on 4 – 254.

You can now create a compiled trigger that is stored in pcode form,
thereby eliminating the need for recompilation during loads and
removing RPI calls at execution time. COMPILE and DEBUG are new
parameters of the ALTER TRIGGER command. Because triggers now
have remote dependencies, they can become invalid if a depended–on
object changes. The COMPILE option allows a user to manually
recompile an invalid trigger object.

ALTER TRIGGER reorder COMPILE;

The DEBUG option allows PL/SQL information to be generated during
trigger recompilation.

ALTER TRIGGER reorder DEBUG;

You can create histograms on columns that have highly–skewed
database distribution and are frequently used in WHERE clauses of
queries. You create a histogram with the ANALYZE TABLE command.
For example

ANALYZE TABLE emp COMPUTE STATISTICS FOR COLUMNS salary SIZE 50;

The SIZE keyword states the maximum number of buckets for the
histogram.

CREATE
TABLESPACE
[PERMANENT,
TEMPORARY]

CREATE TRIGGER
trigger_name
COMPILE

A – 5Differences From Previous Versions

You can create a permanent or temporary tablespace to use with
multiple sort operations.

A tablespace can be defined as temporary during creation, or it can be
made temporary later. The CREATE TABLESPACE command is
expanded to include the TEMPORARY and PERMANENT options:

Specifying TEMPORARY defines the tablespace as a temporary
tablespace. All sorts in a temporary tablespace share a single sort
segment and allocate space using the sort segment table. However, no
permanent objects can be stored in the temporary tablespace.

Specifying PERMANENT allows the permanent objects to be stored in
the tablespace. However, if this tablespace is used for sorting, no
caching is done, so sort performance may suffer. For example,

CREATE TABLESPACE inventory PERMANENT;

CREATE TABLESPACE inventory TEMPORARY;

You can now create a compiled trigger that is stored in pcode form,
thereby eliminating the need for recompilation during loads and
removing RPI calls at execution time.

ALTER TRIGGER reorder COMPILE;

SET TRANSACTION
READ ONLY

STORAGE Clause

A – 6 Oracle7 Server SQL Reference

In previous releases, you could use the SET TRANSACTION READ
ONLY command to design application transactions that had a
consistent view of their data during query–only application
transactions. The new isolation level provided by serializable
transaction isolation preserves the transaction–consistent view of data
that is provided by SET TRANSACTION READ ONLY. Serializable
transaction isolation now allows transactions to execute DML
statements and to see their own changes while shielding them from
visibility of other transactions’ changes–either in–flight or committed.

SET TRANSACTION ISOLATION_LEVEL SERIALIZABLE;

or

SET TRANSACTION ISOLATION_LEVEL READ COMMITTED;

The SQL command syntax for the ALTER SESSION command is
extended as follows:

ALTER SESSION SET ISOLATION_LEVEL=SERIALIZABLE

or

ALTER SESSION SET ISOLATION_LEVEL=READ COMMITTED

In Release 7.2 and earlier releases of Oracle7, the number of extents that
could be allocated to a single segment was limited by the database
block size. The entire extent map had to fit within half of the segment
header block. For a 2 Kb block, the maximum number of extents per
segment was 121.

The following are changes in space management:

• MAXEXTENTS is no longer limited by the number of extents
that fit into a single database block.

• A new keyword, UNLIMITED, is now supported as a valid
value for MAXEXTENTS. For example,

CREATE TABLESPACE emp MAXEXTENTS UNLIMITED;

ALTER DATABASE
BACKUP
CONTROLFILE
TO TRACE

ALTER DATABASE
CLEAR LOGFILE

ALTER DATABASE
DATAFILE datafile
END BACKUP

ALTER DATABASE
DATAFILE datafile
RESIZE

ALTER ROLLBACK
SEGMENT SHRINK

ALTER SESSION
SET INSTANCE

ALTER SESSION
SET NLS_CALENDAR

ALTER TABLE
... DISABLE
TABLE LOCK

A – 7Differences From Previous Versions

Differences Between Oracle7 Release 7.1 and Release 7.2

It is now possible to write SQL commands to the database’s trace file
that can be used to re–create the database. For example:

ALTER DATABASE BACKUP CONTROLFILE

TO TRACE

NORESETLOGS ;

It is now possible to reinitialize redo log files during recovery. For
example:

ALTER DATABASE CLEAR UNARCHIVED

LOGFILE ’somefile’

UNRECOVERABLE DATAFILE;

It is now possible to avoid unnecessary media recovery (when the
database was closed without finishing an online backup) using the
following command:

ALTER DATABASE DATAFILE ’file’ END BACKUP;

It is now possible to dynamically change the size of a datafile. For
example:

ALTER DATABASE DATAFILE ’file’ RESIZE 10M ;

It is now possible to shrink a rollback segment to an optimum size
using the following command:

ALTER ROLLBACK SEGMENT name SHRINK TO size ;

In a parallel server environment while connected to one instance it is
now possible to mimic that the session is connected to another instance.
For example:

ALTER SESSION SET INSTANCE = 3;

It is now possible to redefine the language calendar for a session. For
example:

ALTER SESSION SET NLS_CALENDAR = gregorian;

It is now possible to allow or disallow users to use a table lock using
the following commands:

ALTER TABLE table_name DISABLE TABLE LOCK;

ALTER TABLE table_name ENABLE TABLE LOCK;

ALTER TABLESPACE
... ADD DATAFILE ...
AUTOEXTEND

CREATE CLUSTER ...
HASH IS

CREATE DATABASE
DATAFILE datafile
AUTOEXTEND

CREATE INDEX ...
UNRECOVERABLE

CREATE TABLE ...
UNRECOVERABLE

CREATE
TABLESPACE
DATAFILE datafile
AUTOEXTEND

expr

INSERT INTO
subquery

A – 8 Oracle7 Server SQL Reference

It is now possible for datafiles to be automatically extended when more
space is required. For example:

ALTER TABLESPACE temp ADD DATAFILE ’file’ AUTOEXTEND ON;

This feature is of most use in a parallel server environment where a
table lock can affect system performance.

It is now possible to use your own PL/SQL functions to calculate the
hash key. For example:

CREATE CLUSTER cloudy (deptno number(2))

HASHKEY 20 HASH IS my_hash(deptno);

It is now possible to create a database with datafiles that will be
automatically extended when more space is required. For example:

CREATE DATABASE

DATAFILE ’file’ 10M AUTOEXTEND ON;

It is now possible to create an index quickly in ARCHIVELOG mode by
avoiding the overhead required to save recovery information. For
example:

CREATE INDEX tmp_idx

ON emp(ename)

UNRECOVERABLE;

It is now possible to create a table quickly in ARCHIVELOG mode by
avoiding the overhead required to save recovery information. For
example:

CREATE TABLE quick_emp

UNRECOVERABLE

AS SELECT * FROM emp WHERE deptno = 10;

It is now possible to create a tablespace with datafiles that will be
automatically extended when more space is required. For example:

CREATE TABLESPACE DATAFILE ’file’ SIZE 10M AUTOEXTEND ON;

It is now possible to use a user defined PL/SQL function in the same
manner as a SQL expression. For example:

SELECT my_fun(ename) FROM emp;

It is now possible to use a subquery in the INTO clause of an insert
statement similar to how views are used. For example:

INSERT INTO (SELECT * FROM dept)

VALUES (50, ’DEVELOPMENT’, ’BELMONT’);

SELECT FROM
subquery

TO_CHAR

UPDATE subquery

A – 9Differences From Previous Versions

It is now possible to use a subquery in the FROM clause of a select
statement similar to how views are used. For example:

SELECT *

FROM (SELECT * FROM dept) a,

emp b

WHERE a.deptno = b.deptno

A number format model using ’9’s now returns a zero for the value
zero. For example:

SELECT TO_CHAR(0,’999’) num FROM DUAL;

NUM

––––

 0

It is now possible to use a subquery in an update statement similar to
how views are used. For example:

UPDATE (SELECT * FROM dept)

SET deptno = 50

WHERE deptno = 60

ALTER CLUSTER

ALTER DATABASE

ALTER SESSION

ALTER TABLE

ALTER TABLESPACE

CREATE CLUSTER

CREATE INDEX

CREATE TABLE

A – 10 Oracle7 Server SQL Reference

Differences Between Oracle7, Release 7.0 and Release 7.1

This command has a PARALLEL clause and a CACHE clause to
support the parallel query option.

This command has a RESET COMPATIBILITY option for compatibility
control.

You must have ALTER DATABASE system privilege and your instance
must have the database open for you to issue this command.

The RECOVER option of this command has changed to include a
PARALLEL clause for use with the parallel recovery feature.

This command has a new SET FLAGGER option to support flagging of
SQL extensions that go beyond the SQL92 standard for SQL. The SET
FLAGGER option has four additional options: entry, intermediate, full,
and off.

This command also has a new option for closing cached cursors used
by PL/SQL. Using the ALTER SESSION command with this option
overrides the initialization parameter
CLOSE_CACHED_OPEN_CURSORS for your current session.

This command also has a new option for specifying the size of the
session cursor cache. The syntax is:

ALTER SESSION SET SESSION_CACHED_CURSORS = integer

The integer specified can be any positive integer, but the maximum
value is operating–system dependent.

This command has a PARALLEL clause and a CACHE clause to
support the parallel query option.

This command has READ ONLY and READ WRITE options to support
read–only tablespaces.

This command has BEGIN BACKUP and END BACKUP options to
support the parallel server option.

This command has a PARALLEL clause and a CACHE clause to
support the parallel query option.

This command has a PARALLEL clause to support the parallel query
option.

This command has a PARALLEL clause and a CACHE clause to
support the parallel query option.

SELECT

SELECT List

ORDER BY Clause

A – 11Differences From Previous Versions

There is new syntax and functionality in the following parts of the
SELECT command:

• SELECT list

• ORDER BY clause

Column aliases in the SELECT list can optionally be separated from
their expressions by the new AS keyword, as in this example:

SELECT empno, ename AS name

FROM emp

The ORDER BY clause can now reference column expression aliases
defined in the SELECT list. These column expression aliases effectively
rename the SELECT list items for the duration of the expression.

A – 12 Oracle7 Server SQL Reference

Differences Between Oracle Version 6 and Oracle7, Release 7.0

This section indicates differences between Oracle Version 6 and
Oracle7, Release 7.0, and contains the following sections:

• terminology introduced in release 7.0

• reserved words

• Oracle datatypes

• commands

• SQL functions

• format elements

• operators

• comments

• namespaces

• system privileges

• optional components of Oracle7

• compatibility modes

Terminology Introduced in Release 7.0

Some new terms have been introduced in Oracle7 that describe features
of Oracle Version 6. These are new terms that better explain old
concepts:

The term initialization parameter now describes
parameters that you use to specify configuration
settings when starting an instance.

In Version 6 manuals, these parameters were
commonly called INIT.ORA parameters.

The term schema now describes the collection of
objects owned by a user. Every user owns a schema
in which objects can be created. The name of that
schema is the same as the name of the user. The
name of an object can be qualified by the schema in
which the object exists. For example, the table EMP
in the schema of the user SCOTT can be identified
by SCOTT.EMP.

In Version 6 manuals, there was no distinction
between a user and the collection of objects owned

initialization
parameters

schema

A – 13Differences From Previous Versions

by the user. The name of an object could be
qualified with the name of the user who owned it.

The term server process now describes a process that
handles requests from user processes. A server
process can be either dedicated to one user process
or shared among many user processes, depending
on the configuration of your instance.

In Version 6 manuals, these processes were called
shadow processes.

The term Session Control commands now describes a
category of SQL commands that manage the
properties of a session. This category includes the
ALTER SESSION command (described in Version 6
manuals as a Data Definition Language command)
and the new SET ROLE command.

The term system change number now describes
values that identify committed transactions.

In Version 6 manuals, these values were called
system commit numbers. The new term is still
abbreviated SCN.

The term System Control commands now describes a
category of SQL commands that manage the
properties of your Oracle instance. This category
includes the new ALTER SYSTEM command.

The term Transaction Control commands now
describes a category of SQL commands that
manage changes made by Data Manipulation
Language commands. This category includes the
COMMIT, ROLLBACK, and SAVEPOINT
commands (described in Version 6 as Data
Manipulation Language commands) and the SET
TRANSACTION command (described in Version 6
manuals as a Data Definition Language command).

server processes

Session Control
commands

system change
number (SCN)

System Control
commands

Transaction
Control
commands

New Reserved Words

Obsolete Reserved
Words

A – 14 Oracle7 Server SQL Reference

Reserved Words

This section lists changes to the SQL reserved words in Oracle7:

• new reserved words in Oracle7

• previously reserved words now obsolete

A complete list of all the SQL reserved words for Oracle7, begins on
page 2 – 4.

Oracle7 has new SQL reserved words:

This reserved word is the name of a column
automatically created by Trusted Oracle7 for all
tables in the database. This column holds the label
for each row in the table. For more information on
ROWLABEL, see Trusted Oracle7 Server
Administrator’s Guide.

In the standard Oracle7 Server, ROWLABEL is also
a reserved word and always evaluates to null.

This reserved word is a datatype for variable
length character strings. For more information on
this datatype, see the section “Oracle Datatypes”
beginning on page A – 15 and the section
“Character Datatypes” on page 2 – 20.

Do not use these words to name objects or their parts in Oracle7.

Previous versions of Oracle contained SQL reserved words that are no
longer reserved in Oracle7:

• GRAPHIC

• IF

• VARGRAPHIC

You can use these words as names of schema objects or object parts in
Oracle7.

ROWLABEL

VARCHAR2

Numeric Datatypes

Character Datatypes

In Oracle Version 6

In Oracle7

A – 15Differences From Previous Versions

Oracle Datatypes

Oracle7 has new datatypes and changes to existing datatypes. This
section discusses how Oracle7 treats these types of data:

• numeric data

• character data

• LONG data

• label data

Oracle7 returns an error if a numeric expression evaluates to a value
greater than or equal to 10126 or less than or equal to –10126. Oracle
Version 6 returned a tilde (~) for a value outside these limits.

This section discusses the differences in Oracle Version 6 and Oracle7
character datatypes. For information on upgrading to Oracle7 with
respect to these differences, see Oracle7 Server Migration.

Oracle Version 6 supported one datatype for character strings:

Values of this datatype were variable length
character strings of maximum length 255
characters. Oracle Version 6 compared CHAR
values using non–padded comparison semantics.

Oracle Version 6 also supported these synonyms for the CHAR
datatype:

• CHARACTER

• VARCHAR

Oracle7 supports two datatypes for character strings:

Values of this datatype are fixed length character
strings of maximum length 255 characters. Oracle7
compares CHAR values using blank–padded
comparison semantics. Note that the Oracle7
CHAR datatype is not equivalent to the Oracle
Version 6 CHAR datatype.

Values of this datatype are variable length
character strings of maximum length 2000. Oracle7
compares VARCHAR2 values using non–padded
comparison semantics. The VARCHAR2 datatype
is equivalent to the Oracle Version 6 CHAR
datatype except for the difference in maximum
lengths.

CHAR

CHAR

VARCHAR2

☞

LONG Datatype

Label Data

A – 16 Oracle7 Server SQL Reference

Attention: Oracle Version 6 only had the CHAR datatype
available. In Version 6, VARCHAR and VARCHAR2 were
synonyms for CHAR. Thus, the default datatype of character
strings was CHAR. In Oracle7, the default character type is
VARCHAR2.

Oracle7 also supports these synonyms for the CHAR and VARCHAR2
datatypes:

This datatype is synonymous with the Oracle7
CHAR datatype.

This datatype is currently synonymous with the
VARCHAR2 datatype. However, Oracle
Corporation recommends that you use
VARCHAR2 rather than VARCHAR. In a future
version of Oracle, VARCHAR may be a separate
datatype used for variable length character strings
compared with different comparison semantics.

For complete information on the Oracle7 datatypes, including the
differences between blank–padded and non–padded comparison
semantics, see the sections, “Character Datatypes,” on page 2 – 20, and
“Datatype Comparison Rules,” on page 2 – 29.

The LONG datatype has new properties and fewer restrictions:

• The maximum length a LONG value is now 2 gigabytes, or 231 –
1 bytes, increased from 65,535 bytes.

• You can now use a distributed query to select a LONG column
from a remote table or view.

For more information on the LONG datatype, see the section “LONG
Datatype” on page 2 – 23.

Labels are used by the Trusted Oracle7 to mediate access to
information. The new MLSLABEL datatype is used to store
representations of labels. For more information on these datatypes, see
Trusted Oracle7 Server Administrator’s Guide.

CHARACTER

VARCHAR

A – 17Differences From Previous Versions

New Commands

These commands are new to the SQL language for Oracle7.

CREATE FUNCTION These commands have been
ALTER FUNCTION added for stored functions.
DROP FUNCTION

CREATE PACKAGE These commands have been
CREATE PACKAGE BODY added for stored packages.
ALTER PACKAGE
DROP PACKAGE

CREATE PROCEDURE These commands have been
ALTER PROCEDURE added for stored procedures.
DROP PROCEDURE

CREATE TRIGGER These commands have been
ALTER TRIGGER added for database triggers.
DROP TRIGGER

ALTER VIEW This command has been added to
recompile views.

CREATE PROFILE These commands have been
ALTER PROFILE added for resource limits.
DROP PROFILE
ALTER RESOURCE COST

CREATE ROLE These commands have been
ALTER ROLE added for security.
DROP ROLE
SET ROLE
CREATE USER
DROP USER

CREATE SNAPSHOT These commands have been
ALTER SNAPSHOT added for. snapshots.
DROP SNAPSHOT
CREATE SNAPSHOT LOG
ALTER SNAPSHOT LOG
DROP SNAPSHOT LOG

ALTER SYSTEM This command has been added to
perform various specialized
operations on an instance.

A – 18 Oracle7 Server SQL Reference

ANALYZE This command has been added to
collect statistics for cost–based
optimization.

CREATE CONTROLFILE This command has been added
for recovery.

CREATE SCHEMA This command has been added to
added to issue multiple Data
Definition Language statements
in the same transaction.

TRUNCATE This command has been added to
added to quickly remove all rows
from a table or cluster.

For complete information on each of these commands, see Chapter 4
“Commands” of this manual.

For a list of new embedded SQL commands for Oracle7, see
Programmer’s Guide to the Oracle Precompilers.

ALTER CLUSTER

ALTER DATABASE

A – 19Differences From Previous Versions

Existing Commands with New Functionality

These commands were part of the SQL language for Oracle Version 6,
but they have new syntax or functionality in Oracle7. For complete
information on these commands, see the section describing the
command in Chapter 4 of this manual. For a list of embedded SQL
commands with new syntax or functionality for Oracle7, see
Programmer’s Guide to the Oracle Precompilers.

This command has a new ALLOCATE EXTENT clause for dynamic
free space management.

The maximum value of the MAXEXTENTS parameter of the STORAGE
clause varies depending on your data block size:

• In Oracle Version 6, if you specified a value that exceeded the
maximum, Oracle stored the specified value in the data
dictionary and generated an error message only if there is an
attempt to allocate more extents than the maximum
MAXEXTENTS value.

• In Oracle7, if you specify a value greater than the maximum,
Oracle generates an error immediately.

For complete information on this parameter, see the section describing
the STORAGE clause on page 4 – 449.

This command now allows you to specify multiple copies of redo log
files and has new clauses to manipulate multiple copies of redo log
files:

• ADD LOGFILE MEMBER

• DROP LOGFILE MEMBER

This command also has these new clauses for managing multiple redo
log files for multiple instances of the Oracle7 Parallel Server in parallel
mode:

• ENABLE THREAD

• DISABLE THREAD

The ADD LOGFILE clause of this command also has a new THREAD
parameter for this purpose.

ALTER INDEX

ALTER ROLLBACK
SEGMENT

A – 20 Oracle7 Server SQL Reference

This command also has a new PARALLEL option that replaces the
SHARED option from Oracle Version 6.

This command also has the new BACKUP CONTROLFILE, CREATE
DATAFILE, and RECOVER clauses for backup and recovery.

This command also has the new RENAME GLOBAL_NAME to change
the database’s global name.

This command also has a new SET clause to change the MAC mode or
to establish the labels DBHIGH and DBLOW with Trusted Oracle7. For
more information on this clause, see Trusted Oracle7 Server
Administrator’s Guide.

The CLOSE and DISMOUNT options of this command that were
supported in previous versions are no longer supported. You should
use the Server Manager SHUTDOWN command instead. For
information on this command, see Oracle Server Manager User’s Guide.

The maximum value of the MAXEXTENTS parameter of the STORAGE
clause varies depending on your data block size:

• In Oracle Version 6, if you specified a value that exceeded the
maximum, Oracle stored the specified value in the data
dictionary and generated an error message only if there is an
attempt to allocate more extents than the maximum
MAXEXTENTS value.

• In Oracle7, if you specify a value greater than the maximum,
Oracle generates an error immediately.

For complete information on this parameter, see the section describing
the STORAGE clause on page 4 – 449.

You need no longer specify the PUBLIC keyword to alter a public
rollback segment, although Oracle still accepts this keyword for
backward compatibility.

The STORAGE clause of this command has new syntax and
functionality. For a summary of these changes, see the CREATE
ROLLBACK SEGMENT command later in this list.

ALTER SESSION

A – 21Differences From Previous Versions

This command has new parameters for National Language Support:

• NLS_LANGUAGE

• NLS_TERRITORY

• NLS_DATE_FORMAT

• NLS_DATE_LANGUAGE

• NLS_NUMERIC_CHARACTERS

• NLS_ISO_CURRENCY

• NLS_CURRENCY

• NLS_SORT

The equal sign (=) following the SQL_TRACE parameter is optional.
Equal signs following all other parameters are mandatory.

This command also has a new GLOBAL_NAMES parameter to enable
and disable global name resolution for remote objects. For more
information on global name resolution, see Chapter “Database
Administration” of Oracle7 Server Distributed Systems, Volume I.

This command also has a new LABEL parameter to change your DBMS
session label and to change your default label format with Trusted
Oracle7. For more information on this command, see Trusted Oracle7
Server Administrator’s Guide.

This command also has a new OPTIMIZER_GOAL parameter to
change:

• the optimization approach between the rule–based approach and
the cost–based approach

• the goal of the cost–based approach between best throughput
and best response time

In future versions of Oracle, the rule–based approach will not be
available and this parameter will only specify the goal of the
cost–based approach.

This command also has a new CLOSE DATABASE LINK clause to
explicitly close an open database link.

This command also has a new ADVISE clause for sending advice for
forcing in–doubt distributed transactions to remote databases.

This command also has a new COMMIT IN PROCEDURE clause for
permitting or prohibiting COMMIT and ROLLBACK commands in
procedures and stored functions.

ALTER TABLE

A – 22 Oracle7 Server SQL Reference

This command has a new ALLOCATE EXTENT clause for dynamic
free space management.

The maximum value of the MAXEXTENTS parameter of the STORAGE
clause varies depending on your data block size:

• In Oracle Version 6, if you specified a value that exceeded the
maximum, Oracle stored the specified value in the data
dictionary and generated an error message only if there is an
attempt to allocate more extents than the maximum
MAXEXTENTS value.

• In Oracle7, if you specify a value greater than the maximum,
Oracle generates an error immediately.

For complete information on this parameter, see the section describing
the STORAGE clause on page 4 – 449.

This command also has these new clauses to enable and disable
integrity constraints and database triggers:

• ENABLE

• DISABLE

The CONSTRAINT clause of the ALTER TABLE command also has
new syntax and functionality. For a summary of these changes, see the
CREATE TABLE command later in this list.

DEFAULT values for columns were not enforced by Oracle Version 6.
Oracle7 does enforce them. Oracle7 also ensures that a column is long
enough to hold its DEFAULT value.

This command also has a new DROP clause for dropping integrity
constraints.

For information on the ENABLE, DISABLE, CONSTRAINT, and DROP
clauses, see the sections describing them in Chapter 4 “Commands” of
this manual.

ALTER TABLESPACE

ALTER USER

AUDIT (SQL
Statements)

AUDIT (Schema
Objects)

COMMIT

A – 23Differences From Previous Versions

This command has a new OFFLINE TEMPORARY option. Also, the
ONLINE option generates an error message if the tablespace requires
media recovery, rather than performing the media recovery
transparently.

The maximum value of the MAXEXTENTS parameter of the STORAGE
clause varies depending on your data block size:

• In Oracle Version 6, if you specified a value that exceeded the
maximum, Oracle stored the specified value in the data
dictionary and returned an error message only if there is an
attempt to allocate more extents than the maximum
MAXEXTENTS value.

• In Oracle7, if you specify a value greater than the maximum,
Oracle returns an error message immediately.

For information on this parameter, see the section describing the
STORAGE clause on page 4 – 449.

This command has new clauses to assign tablespaces, profiles, and
default roles to users:

• QUOTA

• PROFILE

• DEFAULT ROLE

This form of the AUDIT command has many new system auditing
options to support auditing of system operations with finer granularity.

This form of the AUDIT command has new object auditing options to
support auditing of stored procedures, functions, and packages.

This command has new clauses for managing distributed transactions:

• COMMENT

• FORCE

CREATE CLUSTER

CREATE DATABASE

A – 24 Oracle7 Server SQL Reference

This command has these new parameters to create hash clusters:

• HASH

• HASHKEYS

The STORAGE clause of this command has new syntax and
functionality:

• The maximum value of the MAXEXTENTS parameter of the
STORAGE varies depending on your data block size:

– In Oracle Version 6, if you specified a value that exceeded
the maximum, Oracle stored the specified value in the data
dictionary and returns an error message only if there is an
attempt to allocate more extents than the maximum
MAXEXTENTS value.

– In Oracle7, if you specify a value greater than the
maximum, Oracle returns an error message immediately.

• This clause has these new parameters for managing free space:

– FREELIST GROUPS

– FREELISTS

For complete information on these parameters, see the section
describing the STORAGE clause on page 4 – 449.

This command now allows you to specify redo log file groups
containing multiple copies. This command also has these new
parameters:

This parameter specifies the maximum number of
members in a single redo log file group.

This parameter specifies the maximum number of
archived redo log file groups for automatic media
recovery of the Oracle7 Parallel Server.

This parameter specifies the database character set.

MAXLOGMEMBERS

MAXLOGHISTORY

CHARACTER SET

CREATE DATABASE
LINK

A – 25Differences From Previous Versions

The name of a database link must correspond to the name and domain
of the remote database to which it connects. For more information on
naming and referring to database links, see the section “Referring to
Objects in Remote Databases” on page 2 – 11.

The USING clause of this command is now optional. This clause
specifies the connect string to a remote database.

The USING clause also supports the specification of a secondary
database for a read–only mount with Trusted Oracle7. For information
on using this command with read–only mounts, see Trusted Oracle7
Server Administrator’s Guide.

When you issue a SQL statement that contains a database link, Oracle
must determine both of these things before connecting to the remote
database:

• a username and password (specified by the CONNECT TO
clause of a CREATE DATABASE LINK statement)

• a database string (specified by the USING clause of a CREATE
DATABASE LINK statement)

Oracle finds these things by first searching for private database links in
your own schema with the same name as the database link in the
statement, and then, if necessary, searching for a public database link
with the same name.

Oracle always determines the username and password from the first
matching database link (either private or public). If the first matching
database link has an associated username and password, Oracle uses it.
If it does not have an associated username and password, Oracle uses
your current username and password.

If the first matching database link has an associated database string,
Oracle uses it. If not, Oracle searches for the next matching (public)
database link. If there is no matching database link, or if no matching
link has an associated database string, Oracle returns an error message.

CREATE INDEX

CREATE ROLLBACK
SEGMENT

A – 26 Oracle7 Server SQL Reference

Enforcing uniqueness among column values is now performed by
integrity constraints. Oracle Corporation recommends that you use
UNIQUE integrity constraints rather than unique indexes. Unique
indexes may not be supported in future versions of Oracle.

The STORAGE clause of this command has new syntax and
functionality:

• The maximum value of the MAXEXTENTS parameter of the
STORAGE clause varies depending on your data block size:

– In Oracle Version 6, if you specified a value that exceeded
the maximum, Oracle stored the specified value in the data
dictionary and returned an error message only if there is an
attempt to allocate more extents than the maximum
MAXEXTENTS value.

– In Oracle7, if you specify a value greater than the
maximum, Oracle returns an error message immediately.

• This clause has the new FREELISTS parameter for managing free
space.

For complete information on these parameters, see the section
describing the STORAGE clause on page 4 – 449.

This command has these changes to the STORAGE clause parameters:

• The PCTINCREASE parameter can no longer be specified for
rollback segments. Rollback segments automatically have a
PCTINCREASE value of 0.

• The maximum value of the MAXEXTENTS parameter of the
STORAGE clause varies depending on your data block size:

– In Oracle Version 6, if you specified a value that exceeded
the maximum, Oracle stored the specified value in the data
dictionary and returned an error message only if there is an
attempt to allocate more extents than the maximum
MAXEXTENTS value.

– In Oracle7, if you specify a value greater than the
maximum, Oracle returns an error message immediately.

• There is a new parameter OPTIMAL.

For complete information on these parameters, see the section
describing the STORAGE clause on page 4 – 449.

CREATE TABLE

A – 27Differences From Previous Versions

This command has these new clauses to enable and disable integrity
constraints and triggers:

• ENABLE

• DISABLE

The CONSTRAINT clause of the CREATE TABLE command has new
syntax and functionality:

• The optional CONSTRAINT identifier must appear at the
beginning of the CONSTRAINT clause in Oracle7, rather than at
the end as in Oracle Version 6.

• The new ON DELETE CASCADE option allows deletions of
referenced key values from the parent table that have dependent
rows in the child table and causes Oracle to delete the dependent
rows to maintain referential integrity.

• The new DISABLE option allows you to disable an integrity
constraint upon creation.

• The new USING INDEX option allows you to specify parameter
values and storage characteristics for the index that Oracle7 uses
to enforce a UNIQUE or PRIMARY KEY constraint.

• The new EXCEPTIONS INTO clause allows you to identify
existing rows that violate a constraint.

Furthermore, Oracle Version 6 only enforced NOT NULL constraints.
Oracle7 enforces all types of integrity constraints.

DEFAULT values for columns were not enforced by Oracle Version 6.
Oracle7 does enforce them. Oracle7 also ensures columns are long
enough to hold their DEFAULT values.

CREATE
TABLESPACE

A – 28 Oracle7 Server SQL Reference

The STORAGE clause of this command has new syntax and
functionality:

• The maximum value of the MAXEXTENTS parameter of the
STORAGE clause varies depending on your data block size:

– In Oracle Version 6, if you specified a value that exceeded
the maximum, Oracle stored the specified value in the data
dictionary and generated an error only if there is an attempt
to allocate more extents than the maximum MAXEXTENTS
value.

– In Oracle7, if you specify a value greater than the
maximum, Oracle generates an error immediately.

• This clause has these new parameters for managing free space:

– FREELIST GROUPS

– FREELISTS

For complete information on the ENABLE, DISABLE, CONSTRAINT,
and STORAGE clauses, see the sections describing them in Chapter 4
“Commands” of this manual.

The STORAGE clause of this command has new syntax and
functionality:

• The maximum value of the MAXEXTENTS parameter of the
STORAGE clause varies depending on your data block size:

– In Oracle Version 6, if you specified a value that exceeded
the maximum, Oracle stored the specified value in the data
dictionary and returned an error message only if there is an
attempt to allocate more extents than the maximum
MAXEXTENTS value.

– In Oracle7, if you specify a value greater than the
maximum, Oracle returns an error message immediately.

• This clause has these new parameters for managing free space:

– FREELIST GROUPS

– FREELISTS

For complete information on these parameters, see the section
describing the STORAGE clause on page 4 – 449.

CREATE VIEW

DELETE

DROP CLUSTER

DROP ROLLBACK
SEGMENT

DROP TABLE

EXPLAIN PLAN

A – 29Differences From Previous Versions

This command has these new options:

This option allows you to redefine a view without
dropping and recreating it and regranting object
privileges previously granted on it.

This option allows you to create a view even if the
tables, views, and snapshots that it queries do not
exist.

This option prevents you from creating a view if
the tables, views, and snapshots that it queries do
not exist. This is the default option and is
equivalent to the behavior of Version 6.

The authorization of this command is slightly different in Oracle7 than
in Oracle Version 6. In Oracle Version 6, a user granted the DBA system
privilege could create a view based on any table in any schema. In
Oracle7, a user granted the predefined DBA role can only create a view
if the owner of the schema to contain the view is granted privileges to
select, insert, update, or delete rows from the base table. These
privileges must be granted directly, rather than through roles.

This command now allows you to delete rows from a remote table or
view using a database link.

This command has a new CASCADE CONSTRAINTS option to allow
you to drop referential integrity constraints from tables outside the
dropped cluster that refer to primary and unique keys in the tables of
the cluster.

You need no longer specify the PUBLIC keyword to drop a public
rollback segment, although Oracle7 still accepts this keyword for
backward compatibility.

This command has a new CASCADE CONSTRAINTS option to allow
you to drop referential integrity constraints that refer to primary and
unique keys in a dropped table.

The INTO clause of this command can now contain a remote table
qualified by a database link.

The SQL statement in the FOR clause can now contain bind variables.
Oracle assumes these bind variables are of datatype VARCHAR2.

OR REPLACE

FORCE

NOFORCE

GRANT (System
Privileges and Roles)

GRANT (Object
Privileges)

INSERT

LOCK TABLE

NOAUDIT

REVOKE

ROLLBACK

A – 30 Oracle7 Server SQL Reference

In Oracle7, this form of the GRANT command is the same as Form I in
Oracle Version 6. It also has many new system privileges to support
security management with finer granularity. This form of the GRANT
command can also administer roles.

In Oracle Version 6, the GRANT command (Form I) was also used to
create users and change passwords. In Oracle7, you can use the
CREATE USER and ALTER USER commands to perform these tasks.
Oracle Corporation recommends that you use the CREATE USER and
ALTER USER commands rather than the GRANT command. Using the
GRANT command for these purposes may not be supported in future
versions of Oracle. For information on using the GRANT command for
these purposes, see the SQL Language Reference Manual for Oracle
Version 6.

In Oracle Version 6, the GRANT command (Form II) gave users access
to tablespaces. In Oracle7, you can only perform this task with the new
TABLESPACE clause of the CREATE USER and ALTER USER
commands.

In Oracle7, this form of the GRANT command is the same as Form III
in Oracle Version 6. This form of the command grants privileges on
specific objects. In Oracle7, this form has new object privileges for
security management of stored procedures, functions, and packages.

This command now allows you to insert rows into a remote table or
view using a database link.

This command now allows you to lock a remote table or view using a
database link.

Changes to the NOAUDIT command correspond directly to the
changes to the AUDIT command listed earlier in this section.

Changes to the REVOKE command correspond directly to the changes
to the GRANT command listed earlier in this section.

This command has a new FORCE clause for managing distributed
transactions.

SELECT

A – 31Differences From Previous Versions

Oracle7 places fewer restrictions on distributed queries than Oracle
Version 6. For complete information on distributed queries, see the
section, “Distributed Queries,” on page 4 – 436.

In Oracle Version 6, you could specify a column of a remote table in the
select list using this syntax:

table@dblink.column

Since Oracle7 interprets all characters following @ to be the complete
name of a database link, you cannot use this syntax in Oracle7. For
example, you can issue this query in Oracle Version 6, but not in
Oracle7:

SELECT emp@boston.ename

FROM emp@boston

Oracle7 interprets ’boston.ename’ to be the complete name of a
database link. In Oracle7, you can instead issue one of these equivalent
queries also accepted by Oracle Version 6:

SELECT e.ename

FROM emp@boston e

SELECT ename

FROM emp@boston

You can also issue this equivalent query that was not acceptable in
Oracle Version 6:

SELECT emp.ename@boston

FROM emp@boston

Also, in Oracle Version 6, you could qualify a table.column expression
with a schema in the select list regardless of whether the table was
qualified with a schema in the FROM clause. In Oracle7, you can only
qualify a table.column expression with a schema if the table is qualified
with a schema in the FROM clause. For example, you could issue this
query in Oracle Version 6, but not in Oracle7:

SELECT scott.emp.ename

FROM emp

SET TRANSACTION

UPDATE

VALIDATE INDEX

A – 32 Oracle7 Server SQL Reference

Oracle7 places more restrictions on the WHERE clause conditions of
SELECT statements that perform outer joins:

• The OR logical operator cannot combine two conditions if either
contains the outer join operator (+). Also, a condition cannot use
the IN logical operator to compare a column marked with the (+)
operator to another expression. If you have applications that
issue queries with such conditions, replace them with equivalent
queries that use the UNION or UNION ALL set operators
instead.

• If a condition compares a column marked with the (+) operator
to a subquery, Oracle7 returns an error message. Oracle Version 6
ignored the (+) operator in such conditions. If you have
applications that issue queries with such conditions, remove the
(+) operator from them and they will behave in Oracle7 as they
did in Oracle Version 6.

This command has these new options:

This option establishes the current transaction as a
read–write transaction in which data can be both
queried and modified, as opposed to a read–only
transaction in which data can only be queried and
not modified. Oracle establishes a read–write
transaction by default if you do not issue a SET
TRANSACTION statement.

This option allows you to assign your current
transaction to a specific rollback segment.

This command now allows you to update values in remote tables and
views using a database link.

Validating indexes is now also performed by the new ANALYZE
command. Oracle Corporation recommends that you use the
ANALYZE command rather than the VALIDATE INDEX command.
The VALIDATE INDEX command may not be supported in future
versions of Oracle. For information on the VALIDATE INDEX
command, see the SQL Language Reference Manual for Oracle Version 6.

READ WRITE

USE ROLLBACK
SEGMENT

New SQL Functions

A – 33Differences From Previous Versions

SQL Functions

This section lists:

• new SQL functions added for Oracle7

• existing SQL functions with new functionality

These new SQL functions have been added for Oracle7:

• SIN

• COS

• TAN

• SINH

• COSH

• TANH

• EXP

• LN

• LOG

• CONCAT

• INSTRB

• LENGTHB

• SUBSTRB

• NLS_INITCAP

• NLS_LOWER

• NLS_UPPER

• TO_MULTI_BYTE

• TO_SINGLE_BYTE

These new SQL functions have been added for Trusted Oracle7:

• GLB

• LUB

• TO_LABEL

• GREATEST_LB

• LEAST_UB

Existing SQL Functions
with New
Functionality

A – 34 Oracle7 Server SQL Reference

These functions have been enhanced for Oracle7:

• The POWER function now allows non–integral exponents.

• The NLSSORT function now accepts the optional NLS_SORT
parameter for National Language Support.

• The TO_CHAR function now accepts the optional parameters
NLS_DATE_LANGUAGE, NLS_NUMERIC_CHARACTERS,
NLS_CURRENCY, and NLS_ISO_CURRENCY for National
Language Support.

• In Trusted Oracle7, the TO_CHAR function converts values with
the datatypes MLSLABEL or RAW MLSLABEL to values with
the datatype VARCHAR2.

• The TO_DATE function now accepts the optional
NLS_DATE_LANGUAGE parameter for National Language
Support.

• The TO_NUMBER function now accepts the parameters
NLS_NUMERIC_CHARACTERS, NLS_CURRENCY, and
NLS_ISO_CURRENCY for National Language Support.

For complete information on these functions, see the section
“Functions” on page 3 – 17.

A – 35Differences From Previous Versions

Format Models

These new number format elements have been added to SQL for
Oracle7:

• D

• G

• L

• C

• RN

These new date format elements have been added to SQL for Oracle7:

• IYYY, IYY, IY, I

• IW

• RM

• RR

If you used National Language Support in Oracle Version 6, the WW
date format element may behave differently in Oracle7. In Version 6,
depending on the territory component of the value of the LANGAUGE
initialization parameter, WW returned a week number based on either
the ISO standard or the number of days from January 1. In Oracle7,
WW always returns a week number based on the number of days from
January 1, regardless of the value of the NLS_TERRITORY initialization
parameter, and the new IW date format element returns the ISO
standard week number. If your Version 6 application used WW to
return the ISO standard week number, replace WW with IW.

Oracle7 also has a new format model modifier FX and new
functionality for the FM format model modifier. For information on
format models, see the section “Format Models” on page 3 – 59.

New Operators

Existing Operators
with Functional
Changes

A – 36 Oracle7 Server SQL Reference

Operators

This section describes:

• new operators

• existing operators with changes in functionality

These new operators have been added to SQL for Oracle7:

This new comparison operator is synonymous with
the ANY comparison operator.

This new set operator combines two queries and
returns all rows returned by either query, including
all duplicate rows. The UNION ALL operator is
similar to the UNION operator, except the UNION
operator returns only one copy of duplicate rows.

The functionality of these existing operators has changed for Oracle7:

Do not use consecutive minus signs with no
separation in arithmetic expressions to indicate
double negation or the subtraction of a negative
value. The characters –– are used to begin
comments within SQL statements. If you have
applications that issue SQL statements with such
arithmetic expressions, separate the minus signs
with a space or a parenthesis.

The LIKE operator accepts the new ESCAPE
option, which allows you to use the characters %
and _ literally, rather than as special pattern
matching characters, within a pattern.

The outer join operator is subject to new
restrictions listed in the section describing the
SELECT command earlier in this chapter.

Comments

Oracle7 supports comments within SQL statements beginning with ––
as well as comments beginning with /*. For more information on
comments within SQL statements, see the section “Comments”
beginning on page 2 – 43.

SOME

UNION ALL

–

LIKE

(+)

Changes to
Namespaces for
Schema Objects

A – 37Differences From Previous Versions

Namespaces

This section describes:

• changes to namespaces for schema objects

• changes to namespaces for other objects

Figure A – 1 shows the namespaces for schema objects in
Oracle Version 6:

CONSTRAINTS

PRIVATE DATABASE LINKS

TABLES

VIEWS

SEQUENCES

PRIVATE SYNONYMS

CLUSTERS

INDEXES

Figure A – 1 Namespaces for Schema Objects in Oracle Version 6

For Oracle7, changes have been made to these namespaces:

• Stand–alone procedures, stand–alone stored functions, packages,
and snapshots have been added to the namespace containing
tables.

• Indexes have been moved from the namespace containing tables
to a new namespace.

• Clusters have been moved from the namespace containing tables
to a new namespace.

• Database triggers have been added in a new namespace.

These changes are shown in bold in Figure A – 2.

Changes to
Namespaces for Other
Objects

A – 38 Oracle7 Server SQL Reference

INDEXES

CONSTRAINTS

CLUSTERS

DATABASE TRIGGERS

PRIVATE DATABASE LINKS

TABLES

VIEWS

SEQUENCES

PRIVATE SYNONYMS
 STAND–ALONE PROCEDURES
 STAND–ALONE STORED FUNCTIONS

 PACKAGES

 SNAPSHOTS

Figure A – 2 Changes in Namespaces for Schema Objects for Oracle7

Figure A – 3 shows the namespaces for other objects in Oracle
Version 6:

USERS

PUBLIC SYNONYMS

PUBLIC DATABASE LINKS

TABLESPACES

ROLLBACK SEGMENTS

Figure A – 3 Namespaces for Other Objects in Oracle Version 6

For Oracle7, changes have been made to these namespaces:

• Roles have been added to the namespace containing users.

• Profiles have been added to a new namespace.

These changes are shown in bold in Figure A – 4.

A – 39Differences From Previous Versions

USER

PUBLIC SYNONYMS

PUBLIC DATABASE LINKS

TABLESPACES

ROLLBACK SEGMENTS

PROFILES

ROLES

Figure A – 4 Changes in Namespaces for Other Objects in Oracle7

Changes to the Optional Components of Oracle

This section discusses the differences in the optional components
between Oracle Version 6 and Oracle7.

With Oracle Version 6, the transaction processing option was available.
This option included these features:

• row–level locking

• PL/SQL

With Oracle7, the transaction processing option is obsolete. However,
these options are available:

This option includes PL/SQL and allows you to
use anonymous PL/SQL blocks, stored procedures,
stored functions, stored packages, and database
triggers.

This option allows you to issue Data Manipulation
Language (DELETE, EXPLAIN PLAN, LOCK
TABLE, INSERT, and UPDATE) statements that
modify data on remote databases.

This option allows multiple Oracle instances to
mount an Oracle7 database in parallel mode. This
functionality was also available in Oracle Version
6.2.

To use snapshots, you must have both the procedural option and the
distributed option. All other features of Oracle7 (including row–level
locking) are available in all installations and do not require one of these
options.

procedural option

distributed option

Parallel Server
option

A – 40 Oracle7 Server SQL Reference

Compatibility Modes

The compatibility mode controls Oracle7’s behavior in a few areas for
which there are minor differences between Oracle Version 6 and
Oracle7. Oracle7 can operate in these compatibility modes:

In this mode, Oracle interprets SQL exactly as
described in this manual.

In this mode, Oracle interprets SQL as described in
this manual, with some exceptions for
compatibility with Oracle Version 6.

Table 4 – 14 describes the differences between V6 and V7 compatibility
modes:

V6 Compatibility Mode V7 Compatibility Mode

If you define a column of
datatype CHAR, Oracle creates
the column with the Oracle7
VARCHAR2 datatype, which is
equivalent to the Oracle Version 6
CHAR datatype. The column is a
variable–length character string
with non–padded comparison
semantics and a maximum length
of 2000 bytes.

If you define a column of
datatype CHAR, Oracle creates
the column with the Oracle7
CHAR datatype, which is not
equivalent to the Oracle Version 6
CHAR datatype. The column is
fixed–length character string with
blank–padded comparison
semantics and a maximum length
of 255 bytes.

The optimal CONSTRAINT
identifier can only appear at the
end of a CONSTRAINT clause.

The optional CONSTRAINT
identifier can only appear at the
beginning of a CONSTRAINT
clause.

By default, PRIMARY KEY,
UNIQUE, referential integrity,
and CHECK constraints are
disabled upon creation. NOT
NULL constraints are enabled
upon creation by default.

By default, all integrity
constraints are enabled upon
creation.

Table 4 – 14 Differences Between V6 and V7 Compatibility Modes

V7 compatibility
mode

V6 compatibility
mode

Migrating to Oracle7

Establishing and
Switching Between
Compatibility Modes

A – 41Differences From Previous Versions

V6 Compatibility Mode V7 Compatibility Mode

If you specify a PCTINCREASE
value for a rollback segment,
Oracle ignores this value and
uses a value of 0.

If you specify a PCTINCREASE
value for a rollback segment,
Oracle returns an error.

If you specify a MAXEXTENTS
value that exceeds the maximum
possible value based on the data
block size, Oracle ignores the
specified value and uses the
maximum possible value.

If you specify a MAXEXTENTS
value that exceeds the maximum
possible value based on the data
block size, Oracle returns an er-
ror.

Table 4 – 14 Differences Between V6 and V7 Compatibility Modes

There are additional differences between the V6 and V7 compatibility
modes that are specific to the Oracle Precompilers and the Oracle Call
Interfaces (OCIs). For information on these differences, see
Programmer’s Guide to the Oracle Precompilers and Programmer’s Guide to
the Oracle Call Interface.

You may want to establish V6 compatibility mode when you initially
upgrade to Oracle7 in order ease the migration of your existing Oracle
Version 6 applications. Establishing V6 compatibility mode reduces
(but does not eliminate) the number of changes you may have to make
to your applications before running them on Oracle7. Note that there is
some SQL syntax supported by Oracle Version 6 that is not supported
by Oracle7 in either V6 or V7 compatibility mode. If you have existing
applications that you have run on Oracle Version 6, see Oracle7 Server
Migration for a list of the changes that you must make to these
applications before running them on Oracle7.

You should eventually upgrade your applications so that they can be
run in V7 compatibility mode, rather than V6 compatibility mode.

By default, all sessions on Oracle7 initially run in V7 compatibility
mode. Some Oracle application tools allow you to establish and switch
between compatibility modes for your sessions. For information on
how to establish and switch between compatibility modes, see the
manual for the specific tool. For example, to find out how to switch
between compatibility modes with SQL*Plus, see SQL*Plus User’s Guide
and Reference.

A – 42 Oracle7 Server SQL Reference

A P P E N D I X

B
T

B – 1Oracle and Standard SQL

Oracle and
Standard SQL

his appendix discusses the following topics:

• Oracle’s conformance to the SQL standards established by
industry standards governing bodies

• Oracle’s extensions to standard SQL

• locating extensions to standard SQL with the FIPS Flagger

ANSI and ISO
Compliance

B – 2 Oracle7 Server SQL Reference

Conformance with Standard SQL

This section declares Oracle’s conformance to the SQL standards
established by these organizations:

• American National Standards Institute (ANSI)

• International Standards Organization (ISO)

• United States Federal Government

Conformance with these standards is measured by the National
Institute of Standards and Technology (NIST) “SQL Test Suite”. NIST is
an organization of the government of the United States of America.

Oracle7 conforms to Entry level conformance defined in the ANSI
document, X3.135–1992, “Database Language SQL.” You can obtain a
copy of the ANSI standard from this address:

 American National Standards Institute
 1430 Broadway
 New York, NY 10018
 USA

The ANSI and ISO SQL standards require conformance claims to state
the type of conformance and the implemented facilities. The Oracle7
Server, the Oracle Precompilers Version 1.5, and SQL*Module
Version 1.0 provide conformance with the ANSI X3.135–1992/ISO
9075–1992 standard:

• Compliance at Entry Level
 (including both SQL–DDL and SQL–DML)

• Module Language

• Embedded SQL Ada

• Embedded SQL C

• Embedded SQL COBOL

• Embedded SQL FORTRAN

• Embedded SQL Pascal

• Embedded SQL PL/I

• Full implementation of the Integrity Enhancement Feature

FIPS Compliance

B – 3Oracle and Standard SQL

Oracle complies completely with FIPS PUB 127–2 for Entry SQL. In
addition, the following information is provided for Section 16, “Special
Procurement Considerations.” Oracle complies completely with FIPS
PUB 127, providing SQL conformance as described above. In addition,
this information is provided regarding Section 13 “Special Procurement
Considerations” of FIPS PUB 127.

Section 16.2 Programming Language Interfaces
 The Oracle Precompilers support the use of Embedded SQL.
SQL*Module supports the use of Module Language. Support is
provided for Ada, C, COBOL, FORTRAN, and Pascal.

Section 16.3 Style of Language Interface
 Oracle with SQL*Module supports Module Language for Ada, C,
COBOL, FORTRAN, and Pascal. Oracle with the Oracle Precompilers
supports Ada, C, COBOL, FORTRAN, and Pascal. The languages
supported may vary depending on your operating system.

Section 16.5 Interactive Direct SQL
Oracle7 with SQL*Plus Version 3.1 (as well as other Oracle tools)
supports “direct invocation” of the following SQL commands, meeting
the requirements of FIPS PUB 127–2:

• CREATE TABLE command

• CREATE VIEW command

• GRANT command

• INSERT command

• SELECT command, with ORDER BY clause but not INTO clause

• UPDATE command: searched

• DELETE command: searched

• COMMIT WORK command

• ROLLBACK WORK command

Most other SQL commands described in this Manual are also
supported interactively.

B – 4 Oracle7 Server SQL Reference

Section 16.6 Sizing for Database Constructs
Table 4 – 15 lists requirements identified in FIPS PUB 127–1 and how
they are met by Oracle7.

Length of an identifier (in bytes) 18 30

Length of CHARACTER datatype (in bytes) 240 255

Decimal precision of NUMERIC datatype 15 38

Decimal precision of DECIMAL datatype 15 38

Decimal precision of INTEGER datatype 9 38

Decimal precision of SMALLINT datatype 4 38

Binary precision of FLOAT datatype 20 126

Binary precision of REAL datatype 20 63

Binary precision of DOUBLE PRECISION datatype 30 126

Columns in a table 100 254

Values in an INSERT statement 100 254

Set clauses in an UPDATE statement (Note 1) 20 254

Length of a row (Note 2, 3) 2000 2(254)
+ 231

+253(2000)

Columns in a UNIQUE constraint 6 16

Length of a UNIQUE constraint (Note 2) 120 (Note 4)

Length of foreign key column list (Note 2) 120 (Note 4)

Columns in a GROUP BY clause 6 255 (Note 5)

Sort specifications in ORDER BY clause 6 255 (Note 5)

Columns in a referential integrity constraint 6 16

Tables referenced in a SQL statement 10 No limit

Cursors simultaneously open 10 (Note 6)

Items in a SELECT list 100 255

Table 4 – 15 Sizing for Database Constructs

1 The number of set clauses in an UPDATE statement refers to the number items separated
by commas following the SET keyword.

2 The FIPS PUB defines the length of a collection of columns to be the sum of: twice the
number of columns, the length of each character column in bytes, decimal precision plus 1
of each exact numeric column, binary precision divided by 4 plus 1 of each approximate
numeric column.

B – 5Oracle and Standard SQL

3 The Oracle limit for the maximum row length is based on the maximum length of a row
containing a LONG value of length 2 gigabytes and 253 VARCHAR2 values, each of length
2000 bytes.

4 The Oracle limit for a UNIQUE key is half the size of an Oracle data block (specified by
the initialization parameter DB_BLOCK_SIZE) minus some overhead.

5 Oracle places no limit on the number of columns in a GROUP BY clause or the number of
sort specifications in an ORDER BY clause. However, the sum of the sizes of all the
expressions in either a GROUP BY or an ORDER BY clause is limited to the size of an
Oracle data block (specified by the initialization parameter DB_BLOCK_SIZE) minus some
overhead.

6 The Oracle limit for the number of cursors simultaneously opened is specified by the
initialization parameter OPEN_CURSORS. The maximum value of this parameter depends
on the memory available on your operating system and exceeds 100 in all cases.

Section 16.7 Character Set Support
Oracle supports the ASCII character set (FIPS PUB 1–2) on most
computers and the EBCDIC character set on IBM mainframe
computers. Oracle supports both single–byte and multi–byte character
sets.

Extensions to Standard SQL

This section lists the additional features supported by Oracle that
extend beyond standard SQL “Database Language SQL with Integrity
Enhancement”. This section provides information on these parts of the
SQL language:

• commands

• functions

• operators

• pseudocolumns

• datatypes

• names of schema objects

• values

For information on the extensions to standard embedded SQL
“Database Language Embedded SQL” supported by the Oracle
Precompilers, see Programmer’s Guide to the Oracle Precompilers.

Commands

B – 6 Oracle7 Server SQL Reference

This section describes these additional commands and additional
syntax and functionality of standard commands. Oracle supports these
commands that are not part of standard SQL:

ALTER CLUSTER
ALTER DATABASE
ALTER FUNCTION
ALTER INDEX
ALTER PACKAGE
ALTER PROCEDURE
ALTER PROFILE
ALTER RESOURCE COST
ALTER ROLLBACK SEGMENT
ALTER ROLE
ALTER SEQUENCE
ALTER SESSION
ALTER SNAPSHOT
ALTER SNAPSHOT LOG
ALTER SYSTEM
ALTER TABLE
ALTER TABLESPACE
ALTER TRIGGER
ALTER USER
ALTER VIEW

ANALYZE

AUDIT

COMMENT

CREATE CONTROLFILE
CREATE CLUSTER
CREATE DATABASE
CREATE DATABASE LINK
CREATE FUNCTION
CREATE INDEX
CREATE PACKAGE
CREATE PACKAGE BODY
CREATE PROCEDURE
CREATE PROFILE
CREATE ROLLBACK SEGMENT
CREATE ROLE

CREATE SEQUENCE
CREATE SNAPSHOT
CREATE SNAPSHOT LOG
CREATE SYNONYM
CREATE TABLE
CREATE TABLESPACE
CREATE TRIGGER
CREATE USER
CREATE VIEW

DROP CLUSTER
DROP DATABASE LINK
DROP FUNCTION
DROP INDEX
DROP PACKAGE
DROP PROCEDURE
DROP PROFILE
DROP ROLLBACK SEGMENT
DROP ROLE
DROP SEQUENCE
DROP SNAPSHOT
DROP SNAPSHOT LOG
DROP SYNONYM
DROP TABLE
DROP TABLESPACE

EXPLAIN PLAN

NOAUDIT

RENAME

REVOKE

SAVEPOINT

SET TRANSACTION

TRUNCATE

Additional Parts of
Standard Commands

COMMIT

CREATE TABLE

B – 7Oracle and Standard SQL

Oracle supports additional syntax for some commands that are part of
standard SQL.

The COMMIT command supports these additional clauses:

• COMMENT clause

• FORCE clause

Also, standard SQL requires a COMMIT statement to include the
WORK keyword. Oracle allows your COMMIT statements to either
include or omit this keyword. Note that this keyword adds no
functionality to the command.

The CREATE TABLE command supports these additional parameters
and clauses:

• PCTFREE parameter

• PCTUSED parameter

• INITRANS parameter

• MAXTRANS parameter

• TABLESPACE parameter

• STORAGE clause

• CLUSTER clause

• ENABLE clause

• DISABLE clause

• AS clause

CONSTRAINT Clause The CONSTRAINT clause of the CREATE
TABLE command supports these additional options and identifiers:

• ON DELETE CASCADE option

• ENABLE option

• DISABLE option

• CONSTRAINT identifier

CREATE VIEW

DELETE

GRANT

INSERT

ROLLBACK

B – 8 Oracle7 Server SQL Reference

The CREATE VIEW command supports this additional syntax:

• OR REPLACE option

• FORCE and NOFORCE options

• CONSTRAINT identifier with the WITH CHECK OPTION

If you omit column names from a CREATE VIEW statement, the
column aliases that appear in the defining query are used for columns
of the view. Standard SQL does not support column aliases in SELECT
statements.

The DELETE command supports this additional syntax:

• Database links to delete rows from tables and views on remote
databases

• Table aliases for use with correlated queries

Also, standard SQL requires a DELETE statement to include the FROM
keyword. Oracle allows your DELETE statements to either include or
omit this keyword. Note that this keyword adds no functionality to the
command.

The GRANT command (System Privileges and Roles) is an extension to
standard SQL.

The GRANT command (Object Privileges) supports other privileges on
other objects in addition to the DELETE, INSERT, REFERENCES,
SELECT, and UPDATE privileges on tables and views supported by
standard SQL. This command also supports granting object privileges
to roles.

The INSERT command supports the use of database links to insert
rows into tables and views on remote databases.

The INSERT command supports a subquery in the INTO clause, similar
to inserting into a view.

The ROLLBACK command supports these additional clauses:

• TO clause

• FORCE clause

Also, standard SQL requires a ROLLBACK statement to include the
WORK keyword. Oracle allows your ROLLBACK statements to either
include or omit this keyword. Note that this keyword adds no
functionality to the command.

SELECT

B – 9Oracle and Standard SQL

The SELECT command supports these additional clauses and syntax:

• START WITH clause

• CONNECT BY clause

• FOR UPDATE clause

• Database links for querying tables, views, and snapshots on
remote databases

• Outer join operator (+) for performing outer joins

• Column aliases in the select list

• NULL in the select list

GROUP BY Clause The GROUP BY clause of the SELECT command
supports this additional syntax and functionality:

• A SELECT statement that selects from a view whose defining
query contains group functions or a GROUP BY clause can
contain group functions and GROUP BY, HAVING, and WHERE
clauses.

• A SELECT statement can perform a join involving a view whose
defining query contains a GROUP BY clause.

ORDER BY Clause The ORDER BY clause of the SELECT command
supports this additional syntax and functionality:

• This clause can also specify any expression involving any
columns in any tables or views that appear in the FROM clause,
rather than only select list expressions or positions of select list
expressions.

• This clause can qualify a column name with its table or view
name, using the syntax table.column or view.column.

Queries Queries, or forms of the SELECT command that appear inside
other SQL statements, support this additional functionality:

• Queries can contain the GROUP BY clause.

• Queries can select from views whose defining queries contain
the GROUP BY clause.

UPDATE

B – 10 Oracle7 Server SQL Reference

The UPDATE command supports this additional syntax:

• Database links to update data in tables and views on remote
databases

• Table aliases for use with correlated queries

• Parenthesized lists of columns on the left side of the SET clause,
rather than only single columns

• Queries on the right side of the SET clause, rather than only
expressions

The UPDATE command also supports this additional functionality:

• An UPDATE statement that updates a view can contain a query.

• A query within an UPDATE statement can refer to the table or
view being updated.

• If the columns of a view are based on both columns of the base
table and expressions containing columns of the base table, an
UPDATE statement can update values based on columns, but
not values based on expressions. Standard SQL prohibits all
updates to such views.

Functions

Additional Functions

Additional Functionality
of Standard Functions

Operators

Additional Operators

Additional Functionality
of Standard Operators

B – 11Oracle and Standard SQL

This section describes additional functions and additional functionality
of standard functions.

The only standard SQL functions are AVG, COUNT, MAX, MIN, and
SUM. Oracle supports many additional functions that are not part of
standard SQL. See section “Functions” on page 3 – 17.

You can nest group functions in the select list of a SELECT statement,
as in this example:

SELECT MIN(MAX(sal))

FROM emp

GROUP BY deptno

The depth of nesting cannot be more than that shown in the example.

You can also use a group function in a SELECT statement that queries a
view whose defining query contains group functions or a GROUP BY
clause.

This section describes additional operators and additional functionality
of standard operators.

Oracle supports these operators that are not part of standard SQL:

• || character operator (character concatenation)

• !=, ^=, and ¬ = comparison operators (inequality)

• MINUS set operator

• INTERSECT set operator

• (+) operator (outer join)

• PRIOR operator

Oracle supports additional functionality for standard SQL operators:

• The left member of an expression containing the IN operator can
be a parenthesized list of expressions, rather than only a single
expression.

• Any expression, rather than only a column, can be used with the
comparison operators IS NULL and IS NOT NULL.

• The pattern used with the LIKE operator can be any expression
of datatype CHAR or VARCHAR2, rather than only a text literal.

Pseudocolumns

Datatypes

Names of Schema
Objects

Values

B – 12 Oracle7 Server SQL Reference

Pseudocolumns are values that behave like columns of a table but are
not actually stored in the table. Pseudocolumns are supported by
Oracle, but are not part of standard SQL. For a list of pseudocolumns,
see the section “Pseudocolumns” on page 2 – 38.

Oracle supports these additional datatypes that are not part of
standard SQL:

• DATE

• NUMBER

• VARCHAR2

• LONG

• RAW

• LONG RAW

• ROWID

Oracle also supports automatic conversion of values from one datatype
to another that is not part of standard SQL.

Oracle supports additional functionality for names of schema objects:

• Oracle supports names of maximum length 30 bytes, rather than
18 characters.

• Oracle allows you to enter names in either lowercase or
uppercase, rather than only in lowercase. However, note that
names are not case–sensitive unless they are in double quotes.

• Oracle supports names in double quotes. Quoted identifiers
allow you to use:

– names that are reserved words

– names that are case–sensitive

– names that contain spaces

• Oracle supports names that contain the special characters # and
$ and repeated underscores (__).

Oracle allows you to use either uppercase “E” or lowercase “e” for
exponential notation of numeric values, rather than only “E”.

B – 13Oracle and Standard SQL

FIPS Flagger

In your Oracle applications, you can use the extensions listed in the
previous sections just as you can use standard SQL. If you are
concerned with the portability of your applications to other
implementations of SQL, use Oracle’s FIPS Flagger to locate Oracle
extensions to standard SQL in your embedded SQL programs. The
FIPS Flagger is part of the Oracle Precompilers and the SQL*Module
compiler. For information on how to use the FIPS Flagger, see
Programmer’s Guide to the Oracle Precompilers or SQL*Module User’s
Guide and Reference.

B – 14 Oracle7 Server SQL Reference

A P P E N D I X

C

T

C – 1Operating System–Specific Dependencies

Operating
System–Specific
Dependencies

his manual occasionally refers to other Oracle7 manuals that contain
detailed information for using Oracle7 only on a specific operating
system. These Oracle7 manuals are often called installation or user’s
guides, although the exact name may vary among operating systems.

This appendix lists all the references in this manual to operating
system–specific Oracle manuals.

For the information on these topics appropriate for your operating
system, see your Oracle7 installation or user’s guide.

C – 2 Oracle7 Server SQL Reference

Topic Page

Concatenation operator (usually ||)

CREATE CONTROLFILE
MAXDATAFILES default, maximum
MAXINSTANCES default, maximum
MAXLOGFILES default, minimum, maximum
MAXLOGMEMBERS default, maximum
MAXLOGHISTORY default

4 – 173

CREATE DATABASE
DATAFILE default
LOGFILE default
MAXDATAFILES default, maximum
MAXINSTANCES default, maximum
MAXLOGFILES default, minimum, maximum
MAXLOGMEMBERS default, maximum
MAXLOGHISTORY default
CHARACTERSET supported and default

4 – 178

CREATE TABLESPACE
REUSE and raw devices

4 – 254

CREATE USER
OS_ROLES initialization parameter
IDENTIFIED EXTERNALLY
SET ROLE
database administration roles

4 – 267

CREATE TRIGGER
DBMSTDX.SQL

4 – 257

filenames 4 – 343

C – 3Operating System–Specific Dependencies

Topic Page

SQL scripts
CATEXP.SQL
DBMSSNAP.SQL

DBMSSTDX.SQL

SQL.BSQ
UTLCHAIN.SQL
UTLEXCPT.SQL
UTLSAMPL.SQL
UTLXPLAN.SQL

4 – 353
4 – 230
4 – 238
4 – 188
4 – 198
4 – 202
4 – 206
4 – 257
4 – 352
4 – 339
4 – 329
pref viii
4 – 339

STORAGE clause
INITIAL maximum
NEXT maximum
MINEXTENTS maximum
PCTINCREASE maximum
OPTIMAL maximum

4 – 449

ROWID component lengths 2 – 27

 Index – 1

Index

Symbols
. number format element, 3 – 62
!= comparison operator, 3 – 6
, format element, 3 – 62
” double quotation marks, with object names,

2 – 7
(+) outer join operator, 3 – 17, A – 36
$ format element, 3 – 62
% character, in pattern matching, 3 – 10
^= comparison operator, 3 – 6
= comparison operator, 3 – 6
< comparison operator, 3 – 6
<= comparison operator, 3 – 6
> comparison operator, 3 – 6
>= comparison operator, 3 – 6
_ character, in pattern matching, 3 – 10

Numbers
0 format element, 3 – 62
9 format element, 3 – 62

A
A.D. format element, 3 – 67
A.M. format element, 3 – 67
abnormal termination, automatic rollback,

4 – 146
ABS numeric function, 3 – 19

AD format element, 3 – 67
ADD clause, of ALTER TABLE command,

4 – 91
ADD DATAFILE clause, of ALTER

TABLESPACE command, 4 – 100
ADD LOGFILE clause, of ALTER DATABASE

command, 4 – 21
ADD LOGFILE MEMBER clause, of ALTER

DATABASE command, 4 – 22
ADD_MONTHS date function, 3 – 38
adding

columns to tables, 4 – 89, 4 – 91, 4 – 94
comments to objects, 4 – 140
datafiles, 4 – 100
datafiles to databases, 4 – 178, 4 – 182
datafiles to tablespaces, 4 – 254
integrity constraints to columns, 4 – 91,

4 – 95
integrity constraints to tables, 4 – 91, 4 – 95
members to redo log file groups, 4 – 22
procedures to packages, 4 – 199
redo log file groups to threads, 4 – 21
redo log files to databases, 4 – 178, 4 – 180
resource limits to profiles, 4 – 44, 4 – 210
stored functions to packages, 4 – 199
tables to clusters, 4 – 170, 4 – 249
triggers to tables, 4 – 257

ADMIN OPTION, of GRANT command,
4 – 346, 4 – 353

ADVISE clause, of ALTER SESSION
command, 4 – 62

Index – 2 Oracle7 Server SQL Reference

AFTER option, of CREATE TRIGGER
command, 4 – 258

alias, table, 4 – 463
ALL comparison operator, 3 – 6
ALL option

of ARCHIVE LOG clause, 4 – 125
of DEFAULT ROLE clause, 4 – 111
of SELECT command, 4 – 407
of SET ROLE command, 4 – 442
of SQL group functions, 3 – 54

ALL PRIVILEGES option
of GRANT command, 4 – 356
of REVOKE command, 4 – 392

ALL statement auditing short cut, 4 – 131
ALL TRIGGERS option

of DISABLE clause, 4 – 296
of ENABLE clause, 4 – 327

ALL_INDEXES view, 4 – 118
ALL_TAB_COLUMNS view, 4 – 120
ALL_TABLES view, 4 – 119
ALLOCATE command, 4 – 11
ALLOCATE EXTENT clause

of ALTER CLUSTER command, 4 – 13
of ALTER TABLE command, 4 – 36, 4 – 92

allocating
cursors, 4 – 11
extents for tables, 4 – 89

ALTER CLUSTER command, 4 – 12, A – 19
ALTER DATABASE command, 4 – 16, A – 19

examples, 4 – 29, 4 – 30, 4 – 384
ALTER FUNCTION command, 4 – 31

examples, 4 – 32
ALTER INDEX command, 4 – 33, A – 20

examples, 4 – 38
ALTER object auditing option, 4 – 132
ALTER object privilege

on sequences, 4 – 359
on tables, 4 – 358

ALTER PACKAGE command, 4 – 39
examples, 4 – 41

ALTER PROCEDURE command, 4 – 42
examples, 4 – 43

ALTER PROFILE command, 4 – 44
examples, 4 – 45

ALTER RESOURCE COST command, 4 – 46
examples, 4 – 47

ALTER ROLE command, 4 – 49
examples, 4 – 49

ALTER ROLLBACK SEGMENT command,
4 – 50, A – 20

examples, 4 – 52
ALTER SEQUENCE command, 4 – 53

examples, 4 – 54
ALTER SESSION command, 4 – 55, A – 21

examples, 4 – 63, 4 – 64, 4 – 65, 4 – 66, 4 – 67,
4 – 68, 4 – 69

ALTER SNAPSHOT command, 4 – 71
examples, 4 – 73, 4 – 74

ALTER SNAPSHOT LOG command, 4 – 75
examples, 4 – 75

ALTER SYSTEM command, 4 – 76
examples, 4 – 82, 4 – 84, 4 – 86, 4 – 88

ALTER TABLE command, 4 – 89, A – 22
examples, 4 – 96

ALTER TABLESPACE command, 4 – 98, A – 23
examples, 4 – 103

ALTER TRIGGER command, 4 – 105
examples, 4 – 106

ALTER USER command, 4 – 108, A – 23
examples, 4 – 111
syntax, 4 – 109

ALTER VIEW command, 4 – 112
examples, 4 – 113

altering
costs of resources, 4 – 46
databases, 4 – 16
profiles, 4 – 44
sequences, 4 – 53
snapshot logs, 4 – 75
snapshots, 4 – 71
tables, 4 – 89

AM format element, 3 – 67
American National Standards Committee

(ANSI), 1 – 2
ANALYZE command, 4 – 114

examples, 4 – 120, 4 – 122
AND logical operator, 3 – 12

in a condition, 3 – 82

 Index – 3

 truth table, 3 – 13
ANSI

American National Standards Institute, 1 – 2
datatypes, 2 – 28
X3.135–1992, 1 – 2

ANY comparison operator, 3 – 6
ARCHIVE LOG clause, 4 – 124

examples, 4 – 126
of ALTER SYSTEM command, 4 – 80

ARCHIVELOG option
of ALTER DATABASE command, 4 – 21
of CREATE CONTROLFILE command,

4 – 176
of CREATE DATABASE command, 4 – 181

archiving redo log files
disabling, 4 – 21
enabling, 4 – 21

arithmetic, with DATE values, 2 – 25
arithmetic operator, 3 – 3
AS clause

of CREATE SNAPSHOT command, 4 – 233
of CREATE TABLE command, 4 – 250
of CREATE VIEW command, 4 – 272

ASC option
of CREATE INDEX command, 4 – 193
of ORDER BY clause, 4 – 409

ASCII
and EBCDIC, 3 – 4
character function, 3 – 35
character set, 2 – 32

AT clause
of COMMIT command, 4 – 145
of CONNECT command, 4 – 147
of DECLARE CURSOR command, 4 – 280
of DECLARE STATEMENT command,

4 – 283
of EXECUTE command, 4 – 334
of EXECUTE IMMEDIATE command,

4 – 336
of INSERT command, 4 – 366
of ROLLBACK command, 4 – 401
of SAVEPOINT command, 4 – 404

of SELECT command, 4 – 440
of UPDATE command, 4 – 466

AUDIT command, 4 – 127, 4 – 134, A – 23
examples, 4 – 133, 4 – 137

AUDIT object auditing option, 4 – 132
AUDIT_TRAIL, 4 – 128
AUTOEXTEND, datafile size in tablespace,

4 – 100, 4 – 254
AUTOEXTEND clause

of ALTER DATABASE command, 4 – 28
of CREATE DATABASE command, 4 – 183

AUTOMATIC option, of RECOVER clause,
4 – 383

AVG group function, 3 – 54

B
B format element, 3 – 62
B.C. format element, 3 – 67
BACKUP CONTROLFILE clause, of ALTER

DATABASE command, 4 – 24
BC format element, 3 – 67
BEFORE option, of CREATE TRIGGER

command, 4 – 258
BEGIN BACKUP option, of ALTER

TABLESPACE command, 4 – 102
BETWEEN comparison operator, 3 – 6
blank–padded comparison semantics, 2 – 30
block size, effect on PCTINCREASE, 4 – 450
BODY option

of ALTER PACKAGE command, 4 – 39
of DROP PACKAGE command, 4 – 307

BY ACCESS option, of AUDIT command,
4 – 127, 4 – 135

BY clause
of AUDIT command, 4 – 127
of NOAUDIT command, 4 – 372

BY SESSION option, of AUDIT command,
4 – 127, 4 – 135

Index – 4 Oracle7 Server SQL Reference

C
C format element, 3 – 62
CACHE parameter

of CREATE SEQUENCE command, 4 – 228
of CREATE SEQUENCE command, 4 – 226

CACHE_INSTANCES parameter, of ALTER
SYSTEM command, 4 – 79

CANCEL option, of RECOVER clause, 4 – 384
capitalizing, date format elements, 3 – 70
cartesian product, 4 – 425
CASCADE CONSTRAINTS option

of DROP CLUSTER command, 4 – 301
of DROP TABLE command, 4 – 318
of DROP TABLESPACE command, 4 – 320
of REVOKE command, 4 – 393

CASCADE option
of ANALYZE command, 4 – 117
of DISABLE clause, 4 – 296
of DROP clause, 4 – 299
of DROP USER command, 4 – 323

case sensitivity
in pattern matching, 3 – 10
in SQL statements, 1 – 6

CATEXP.SQL, 4 – 353
CEIL number function, 3 – 21
century, storing, 2 – 25
change display format, format model, 3 – 61
CHANGE parameter, of ARCHIVE LOG

clause, 4 – 125
changing

goal for the cost–based optimization ap-
proach, 4 – 66

optimization approach, 4 – 66
passwords, 4 – 108

CHAR datatype, 2 – 20
comparing values of, 2 – 30

character
character sets, 2 – 32, 2 – 33
comparison rules, 2 – 29
datatypes, 2 – 20
literal, 2 – 14
operator, 3 – 4
SQL functions, 3 – 27

CHARACTER datatype, A – 16
in V6, A – 15

CHARACTER SET parameter, of CREATE
DATABASE command, 4 – 182

CHARTOROWID conversion function, 3 – 43
CHECK constraint, 3 – 41
CHECK constraints, 4 – 160
CHECK DATAFILES clause, of ALTER

SYSTEM command, 4 – 78
CHECK OPTION, of CREATE VIEW

command, 4 – 272
CHECKPOINT clause, of ALTER SYSTEM

command, 4 – 78, 4 – 81
CHR character function, 3 – 27
CLEAR LOGFILE clause, of ALTER

DATABASE command, 4 – 23
CLOSE command, 4 – 139

examples, 4 – 139
CLOSE DATABASE LINK clause, of ALTER

SESSION command, 4 – 62
CLOSE_OPEN_CACHED_CURSORS clause,

of ALTER SESSION command, 4 – 60
closing

cursors, 4 – 139
database links, 4 – 62
database links, 4 – 68

CLUSTER clause
of CREATE SNAPSHOT command, 4 – 232
of CREATE TABLE command, 4 – 249

cluster keys, 4 – 168
distinct values of, 4 – 168

CLUSTER option
of ANALYZE command, 4 – 115
of CREATE INDEX command, 4 – 194
of TRUNCATE command, 4 – 455

clusters, 4 – 164
adding snapshots to, 4 – 232
adding tables to, 4 – 170, 4 – 249
altering, 4 – 12
cluster indexes, 4 – 197
creating, 4 – 164
definition, 4 – 167
dropping, 4 – 301

 Index – 5

indexed clusters, 4 – 168, 4 – 169
order of columns in, 4 – 168
physical storage of tables in, 4 – 167
removing tables from, 4 – 302
size, 4 – 170
specifying tablespaces for, 4 – 166
storage characteristics of, 4 – 12
storage characteristics of, 4 – 165, 4 – 166
truncating, 4 – 455

column constraints, 4 – 149
column_constraint, syntax, 4 – 150
columns

adding comments to, 4 – 140
adding integrity constraints to, 4 – 91, 4 – 95
adding to tables, 4 – 89, 4 – 91, 4 – 94
changing datatypes of, 4 – 91, 4 – 95
changing default values of, 4 – 91, 4 – 95
defining, 4 – 246
maximum number in a table, 4 – 246
maximum number in indexes, 4 – 195
of cluster keys, 4 – 168
order in indexes, 4 – 195
qualifying names with tables and schemas,

4 – 409
redefining, 4 – 89, 4 – 91, 4 – 95
removing integrity constraints from, 4 – 91
removing comments from, 4 – 140
removing integrity constraints from, 4 – 95
renaming, 4 – 387
selecting from tables, 4 – 405
specifying datatypes for, 4 – 246
vs. pseudocolumns, 2 – 38

COMMENT clause, of COMMIT command,
4 – 142, 4 – 145

COMMENT command, 4 – 140
examples, 4 – 140

COMMENT object auditing option, 4 – 132
comments

adding to objects, 4 – 140
examples, 2 – 44
removing from objects, 4 – 140
within SQL statements, 2 – 43

COMMIT command, 4 – 141, 4 – 144, A – 23
ending a transaction, 4 – 398, 4 – 402, 4 – 448
examples, 4 – 143, 4 – 146
summary, 4 – 8

COMMIT option, of ADVISE clause, 4 – 62

committing, transactions, 4 – 141, 4 – 144
comparison operators, 3 – 6
comparison rules, 2 – 29
comparison semantics

blank–padded, 2 – 30
non–padded, 2 – 30

compatibility mode, A – 41
COMPILE option

of ALTER FUNCTION command, 4 – 31,
4 – 39

of ALTER PROCEDURE command, 4 – 42
of ALTER VIEW command, 4 – 112

compiling
packages, 4 – 39
procedures, 4 – 42
stored functions, 4 – 31

COMPLETE option, of REFRESH clause,
4 – 72, 4 – 232

complex snapshots, 4 – 234
COMPOSITE_LIMIT parameter, of CREATE

PROFILE command, 4 – 211
COMPUTE STATISTICS option, of ANALYZE

command, 4 – 116
CONCAT character function, 3 – 4, 3 – 27
condition

example, 3 – 81
multiple, 3 – 82
syntax, 3 – 79

CONNECT BY clause
examples, 4 – 413
of SELECT command, 4 – 408, 4 – 413,

4 – 414
CONNECT command, 4 – 147

examples, 4 – 148
CONNECT role, 4 – 216
CONNECT statement auditing short cut,

4 – 131
CONNECT TO clause, of CREATE

DATABASE LINK command, 4 – 185
CONNECT_TIME parameter

of ALTER RESOURCE COST command,
4 – 46

of CREATE PROFILE command, 4 – 211
constant, literal, 2 – 14

Index – 6 Oracle7 Server SQL Reference

CONSTRAINT clause, A – 27
examples, 4 – 157, 4 – 160
syntax, 4 – 150

CONSTRAINT identifier
of CONSTRAINT clause, 4 – 150
of WITH CHECK OPTION clause, 4 – 272

CONSTRAINT option
of DISABLE clause, 4 – 296
of DROP clause, 4 – 299

constraints, Integrity constraints, 4 – 149
CONTINUE option

of RECOVER clause, 4 – 384
of WHENEVER command, 4 – 471

control files, reusing, 4 – 179
CONTROL_FILES, 4 – 179
controlfile, standby database, 4 – 24
CONTROLFILE REUSE option, of CREATE

DATABASE command, 4 – 179
CONVERT conversion function, 3 – 43
CONVERT option, of ALTER DATABASE

command, 4 – 19
converting values, 2 – 34

explicitly, 2 – 35, 2 – 36
implicitly, 2 – 34, 2 – 36

correlated subqueries, 4 – 408, 4 – 434
examples, 4 – 435

correlated update, 4 – 463
COSH number function, 3 – 21
cost, of executing SQL statements, 4 – 340
COUNT group function, 3 – 55
CPU_PER_CALL parameter, of CREATE

PROFILE command, 4 – 211
CPU_PER_SESSION parameter, of CREATE

PROFILE command, 4 – 211
CREATE CLUSTER command, 4 – 164, A – 24

examples, 4 – 171
CREATE CONTROLFILE command, 4 – 173

examples, 4 – 177
CREATE DATABASE command, 4 – 178,

A – 24
examples, 4 – 184

CREATE DATABASE LINK command, 4 – 185,
A – 25

CREATE DATAFILE clause, of ALTER
DATABASE command, 4 – 27

CREATE FUNCTION command, 4 – 188
CREATE INDEX command, 4 – 192, A – 26
CREATE PACKAGE BODY command, 4 – 202

examples, 4 – 203
CREATE PACKAGE command, 4 – 198

examples, 4 – 201
CREATE PROCEDURE command, 4 – 206
CREATE PROFILE command, 4 – 210

examples, 4 – 213
CREATE ROLE command, 4 – 215

examples, 4 – 217
CREATE ROLLBACK SEGMENT command,

4 – 218, A – 26
examples, 4 – 220

CREATE SCHEMA command, 4 – 221
examples, 4 – 223

CREATE SEQUENCE command, 4 – 224
examples, 4 – 229

CREATE SNAPSHOT command, 4 – 230
examples, 4 – 236

CREATE SNAPSHOT LOG command, 4 – 238
examples, 4 – 240

CREATE SYNONYM command, 4 – 241
examples, 4 – 244

CREATE TABLE command, 4 – 245, A – 27
examples, 4 – 252
part of CREATE SCHEMA command,

4 – 221
CREATE TABLESPACE command, 4 – 254,

A – 28
examples, 4 – 256

CREATE TRIGGER command, 4 – 257
examples, 4 – 264, 4 – 265

CREATE USER command, 4 – 267
examples, 4 – 270

CREATE VIEW command, 4 – 271
examples, 4 – 277
part of CREATE SCHEMA command,

4 – 221

 Index – 7

creating
clusters, 4 – 164
database links, 4 – 185
databases, 4 – 178
dispatcher processes (DISP), 4 – 83
indexes, 4 – 192
packages, 4 – 198, 4 – 202
procedures, 4 – 206
profiles, 4 – 210
roles, 4 – 215
rollback segments, 4 – 218
savepoints, 4 – 402, 4 – 404
schemas, 4 – 221
sequences, 4 – 224
shared server processes, 4 – 83
snapshot logs, 4 – 238
snapshots, 4 – 230
stored functions, 4 – 188
synonyms, 4 – 241
tables, 4 – 245
tablespaces, 4 – 254
triggers, 4 – 257
users, 4 – 267
views, 4 – 271

CURRENT OF clause
of embedded SQL DELETE command,

4 – 291
of embedded SQL UPDATE command,

4 – 467
CURRENT option, of ARCHIVE LOG clause,

4 – 125
CURRVAL pseudocolumn, 2 – 38

examples, 2 – 40, 4 – 436
cursor variable, 4 – 10, 4 – 11
cursors

allocating, 4 – 11
closing, 4 – 139
fetching rows from, 4 – 341
opening, 4 – 376
storing in session cache, 4 – 67

CYCLE option, of CREATE SEQUENCE
command, 4 – 225

D
D format element, 3 – 62
data complexity, hiding with a view, 4 – 273
data definition language (DDL), 4 – 2
data independence, via synonyms, 4 – 243
data manipulation language (DML), 4 – 8
database

deleting rollback segments from, 4 – 313
disconnecting from, embedded SQL, 4 – 400

database links
closing, 4 – 62, 4 – 68
creating, 4 – 185
definition, 4 – 185
dropping, 4 – 303
using in DELETE command, 4 – 287, 4 – 290
using in INSERT command, 4 – 362, 4 – 366
using in LOCK TABLE command, 4 – 369
using in SELECT command, 4 – 407, 4 – 436
using in UPDATE command, 4 – 461, 4 – 466
using with synonyms, 4 – 187

database objects, definition of, 2 – 2
DATABASE option, of RECOVER clause,

4 – 383
DATABASE parameter, of CREATE

CONTROLFILE command, 4 – 174
databases

adding datafiles to, 4 – 178, 4 – 182
adding redo log files to, 4 – 178, 4 – 180
altering, 4 – 16
archiving redo log files, 4 – 21, 4 – 181,

4 – 182
creating, 4 – 178
maximum number

of datafiles, 4 – 178, 4 – 181
of instances, 4 – 181
of redo log files, 4 – 178, 4 – 180

mounting and dismounting, 4 – 19
opening and closing, 4 – 20
renaming, 4 – 26
reusing control files, 4 – 179

DATAFILE clause
of ALTER DATABASE command, 4 – 27
of CREATE CONTROLFILE clause, 4 – 174
of CREATE DATABASE command, 4 – 182
of CREATE TABLESPACE command, 4 – 254

Index – 8 Oracle7 Server SQL Reference

DATAFILE option, of RECOVER clause,
4 – 384

DATAFILE parameter, of ALLOCATE
EXTENT clause, 4 – 13, 4 – 36, 4 – 92

datafiles
adding, 4 – 100
adding to databases, 4 – 178, 4 – 182
adding to tablespaces, 4 – 98, 4 – 254
backing up, 4 – 98, 4 – 102
maximum number, for databases, 4 – 178,

4 – 181
renaming, 4 – 24, 4 – 98, 4 – 101
specifying, 4 – 343

datatypes, 2 – 18, A – 15
ANSI, 2 – 28
changing for columns, 4 – 95
converting between values of different,

2 – 34
converting between with SQL functions,

3 – 43
DB2, 2 – 28
explicit conversion, 2 – 35
implicit conversion, 2 – 34
of conditions, 3 – 81
of expressions, 3 – 78
specifying for columns, 4 – 165, 4 – 246
SQL/DS, 2 – 28
summary, 2 – 18
user–defined type equivalencing, 4 – 458

date
arithmetic, 2 – 25
comparison rules, 2 – 29

DATE datatype, 2 – 25
comparing values of, 2 – 29
julian, 2 – 26

DATE format element, 3 – 62
date format elements, 3 – 65

capitalizing, 3 – 70
date format model, 3 – 65

default, 3 – 65
examples, 3 – 61, 3 – 62, 3 – 73
modifiers, 3 – 70
suffixes, 3 – 70

DAY format element, 3 – 67
DB_FILES, 4 – 181
DB2, datatypes, 2 – 28

DBA role, 4 – 216
DBA statement auditing short cut, 4 – 131
DBA_CLUSTERS view, 4 – 120
DBA_INDEXES view, 4 – 118
DBA_TAB_COLUMNS view, 4 – 120
DBA_TABLES view, 4 – 119
DBHIGH parameter, of ALTER DATABASE

command, 4 – 26
DBHIGH predefined label, 4 – 26
DBLOW parameter, of ALTER DATABASE

command, 4 – 26
DBLOW predefined label, 4 – 26
DBMAC parameter, of ALTER DATABASE

command, 4 – 26
DBMS MAC mode, 4 – 26
DBMS_SNAPSHOT.REFRESH() procedure,

4 – 234
DBMSSNAP.SQL, 4 – 230, 4 – 238
DBMSSTDX.SQL, 4 – 188, 4 – 198, 4 – 202,

4 – 206, 4 – 257
DDL (data definition language), 4 – 2
decimal places, negative, 2 – 22
DECLARE CURSOR command, 4 – 280

examples, 4 – 281
DECLARE DATABASE command, 4 – 282
DECLARE STATEMENT command, 4 – 283

examples, 4 – 284
scope of, 4 – 283

DECLARE TABLE command, 4 – 285
examples, 4 – 285

DECODE expression, 3 – 76
default, cluster key, 4 – 197
DEFAULT option

of ALTER PROFILE command, 4 – 45, 4 – 46
of AUDIT command, 4 – 135
of CREATE PROFILE command, 4 – 212
of CREATE TABLE command, 4 – 247
of RECOVER clause, 4 – 384

default privilege domain, 4 – 443
DEFAULT profile, 4 – 110, 4 – 213, 4 – 268,

4 – 311
DEFAULT ROLE clause, of ALTER USER

command, 4 – 110, 4 – 111

 Index – 9

DEFAULT STORAGE clause
of ALTER TABLESPACE clause, 4 – 101
of CREATE TABLESPACE command, 4 – 255

DEFAULT TABLESPACE clause
of ALTER USER command, 4 – 110
of CREATE USER command, 4 – 268

DELETE command, 4 – 286, 4 – 289, A – 29
embedded SQL examples, 4 – 292
summary, 4 – 8

DELETE object auditing option, 4 – 132
DELETE object privilege

on tables, 4 – 358
on views, 4 – 358

DELETE option, of CREATE TRIGGER
command, 4 – 258, 4 – 261

DELETE STATISTICS option, of ANALYZE
command, 4 – 117

deleting
rows from tables, 4 – 319
rows from tables and views, 4 – 286

delimited names, quoted names, 2 – 7
DESC option

of CREATE INDEX command, 4 – 193
of ORDER BY clause, 4 – 409

DESCRIBE command, 4 – 293
example, 4 – 294
use with PREPARE command, 4 – 293

descriptor, naming, 4 – 293
DISABLE clause, 4 – 295

examples, 4 – 297
of ALTER DATABASE command, 4 – 25
of ALTER TABLE command, 4 – 94
of CREATE TABLE command, 4 – 250

DISABLE COMMIT IN PROCEDURE option,
of ALTER SESSION command, 4 – 62

DISABLE DISTRIBUTED RECOVERY option,
of ALTER SYSTEM command, 4 – 80

DISABLE option
of ALTER TRIGGER command, 4 – 105
of CONSTRAINT clause, 4 – 151

DISABLE RESTRICTED SESSION option, of
ALTER SYSTEM command, 4 – 77

disabling
distributed recovery, 4 – 87
integrity constraints, 4 – 94, 4 – 250, 4 – 295

redo log threads, 4 – 25
resource limits, 4 – 76, 4 – 78, 4 – 82
roles for sessions, 4 – 442
SQL trace facility for sessions, 4 – 57, 4 – 62
table locks, 4 – 93, 4 – 94
triggers, 4 – 106

disconnect from database
ending a transaction, 4 – 402
with the RELEASE option of ROLLBACK,

4 – 400
dispatcher processes (DISP), creating and

terminating, 4 – 83
DISTINCT clause, with ORDER BY clause,

4 – 419
DISTINCT option

of SELECT command, 4 – 407
of SQL group functions, 3 – 54

distributed query, examples, 4 – 437
distributed query, 4 – 436

restrictions on, 4 – 436
distributed recovery

disabling, 4 – 76, 4 – 87
enabling in a single–process environment,

4 – 76, 4 – 80
enabling in single–process environments,

4 – 87
distributed transactions, 4 – 143, 4 – 399
DML (data manipulation language), 4 – 8
DO option, of WHENEVER command, 4 – 471
DROP clause, 4 – 299

examples, 4 – 300
of ALTER TABLE command, 4 – 92

DROP CLUSTER command, 4 – 301
examples, 4 – 302

DROP DATABASE LINK command, 4 – 303
examples, 4 – 303

DROP FUNCTION command, 4 – 304
examples, 4 – 305

DROP INDEX command, 4 – 306
examples, 4 – 306

DROP LOGFILE clause, of ALTER DATABASE
command, 4 – 22

DROP LOGFILE MEMBER clause, of ALTER
DATABASE command, 4 – 23

Index – 10 Oracle7 Server SQL Reference

DROP PACKAGE command, 4 – 307
DROP PROCEDURE command, 4 – 309

examples, 4 – 308, 4 – 310
DROP PROFILE command, 4 – 311

examples, 4 – 311
DROP ROLE command, 4 – 312

examples, 4 – 312
DROP ROLLBACK SEGMENT command,

4 – 313, A – 29
examples, 4 – 313

DROP SEQUENCE command, 4 – 314
examples, 4 – 314

DROP SNAPSHOT command, 4 – 315
examples, 4 – 315

DROP SNAPSHOT LOG command, 4 – 316
examples, 4 – 316

DROP STORAGE option, of TRUNCATE
command, 4 – 455

DROP SYNONYM command, 4 – 317
examples, 4 – 317

DROP TABLE command, 4 – 318, A – 29
examples, 4 – 319

DROP TABLESPACE command, 4 – 320
examples, 4 – 321

DROP TRIGGER command, 4 – 322
examples, 4 – 322

DROP USER command, 4 – 323
examples, 4 – 324

DROP VIEW command, examples, 4 – 325
dropping

clusters, 4 – 301
database links, 4 – 303
indexes, 4 – 306
integrity constraints from tables, 4 – 92,

4 – 299
members from redo log file groups, 4 – 23
objects contained in tablespaces, 4 – 320
objects owned by users, 4 – 323
package bodies, 4 – 307
packages, 4 – 307
procedures, 4 – 309
profiles, 4 – 311
redo log file groups, 4 – 22
roles, 4 – 312
sequences, 4 – 314
snapshots, 4 – 315

snapshots logs, 4 – 316
stored functions, 4 – 304
synonyms, 4 – 317
tables, 4 – 318
tablespaces, 4 – 320, 4 – 321
triggers from tables, 4 – 322
users, 4 – 323
views, 4 – 325

DUAL data dictionary table
definition, 4 – 435
example of selecting from, 4 – 436

DUMMY column, of DUAL table, 4 – 435
DUMP function, 3 – 49
DY format element, 3 – 67
dynamic performance tables

V$LOG, 4 – 22, 4 – 180
V$NLS_PARAMETERS, 4 – 63

E
EBCDIC

and ASCII, 3 – 4
character set, 2 – 33

EEEE format element, 3 – 62
embedded SQL

DECLARE CURSOR command, 4 – 280
DECLARE DATABASE command, 4 – 282
DECLARE TABLE command, 4 – 285
EXECUTE command, 4 – 334

embedded SQL, 1 – 4
ALLOCATE command, 4 – 11
CLOSE command, 4 – 139
COMMIT command, 4 – 144
CONNECT command, 4 – 147
DECLARE STATEMENT command, 4 – 283
DELETE command, 4 – 289
DESCRIBE command, 4 – 293
EXECUTE command, 4 – 332
EXECUTE IMMEDIATE command, 4 – 336
FETCH command, 4 – 341
INSERT command, 4 – 365
OPEN command, 4 – 376
PREPARE command, 4 – 381
ROLLBACK command, 4 – 400
SAVEPOINT command, 4 – 404
SELECT command, 4 – 438

 Index – 11

terms, 1 – 5
TYPE command, 4 – 458
UPDATE command, 4 – 465
VAR command, 4 – 469
WHENEVER command, 4 – 471

embedding, PL/SQL blocks in Oracle7
precompiler programs, 4 – 334

ENABLE clause, 4 – 326
examples, 4 – 329
of ALTER DATABASE command, 4 – 25
of ALTER TABLE command, 4 – 93
of CREATE TABLE command, 4 – 250

ENABLE COMMIT IN PROCEDURE option,
of ALTER SESSION command, 4 – 62

ENABLE DISTRIBUTED RECOVERY option
of ALTER SYSTEM command, 4 – 87
of ALTER SYSTEM command, 4 – 80

ENABLE option, of ALTER TRIGGER
command, 4 – 105

ENABLE RESTRICTED SESSION option, of
ALTER SYSTEM command, 4 – 77

ENABLE TABLE LOCK clause, of ALTER
TABLE command, 4 – 93, 4 – 94

enabling
distributed recovery, 4 – 76, 4 – 80, 4 – 87
integrity constraints, 4 – 93, 4 – 250, 4 – 326
redo log threads, 4 – 25
resource limits, 4 – 76, 4 – 78, 4 – 82, 4 – 213
roles for sessions, 4 – 442
SQL trace facility for sessions, 4 – 57
SQL trace facility for sessions, 4 – 62
triggers, 4 – 106

END BACKUP, of ALTER DATABASE
command, 4 – 28

END BACKUP option, of ALTER
TABLESPACE command, 4 – 102

ending, transactions, 4 – 141, 4 – 400
ENTRYID option, of USERENV function,

3 – 53
equijoins, 4 – 422
equivalencing

host variable equivalencing, 4 – 469
user–defined type equivalencing, 4 – 458

error detection, error reporting, 4 – 472

error reporting, WHENEVER command,
4 – 472

ESCAPE character, of LIKE operator, 3 – 9
ESTIMATE STATISTICS option, of ANALYZE

command, 4 – 116
examples, of comments, 2 – 44
EXCEPT clause

of ALTER USER command, 4 – 111
of SET ROLE command, 4 – 442

EXCEPTIONS option, of ENABLE clause,
4 – 327

exclusive lock, 4 – 370
EXCLUSIVE option

of ALTER DATABASE command, 4 – 19
of CREATE DATABASE command, 4 – 182

EXECUTE command, 4 – 332, 4 – 334
examples, 4 – 333, 4 – 335

EXECUTE IMMEDIATE command, 4 – 336
examples, 4 – 337

EXECUTE object auditing option, 4 – 132
EXECUTE object privilege, on procedures,

functions, and packages, 4 – 359
executing, triggers, 4 – 260
EXISTS comparison operator, 3 – 6
EXP number function, 3 – 21
EXPLAIN PLAN command, 4 – 338

examples, 4 – 340
summary, 4 – 8
syntax, 4 – 339

explicit commit or rollback, 4 – 401
expression, 3 – 74

examples, 3 – 78
use in condition, 3 – 79

extents
allocating for tables, 4 – 89
deallocating space, 4 – 278
INITIAL size, 4 – 450
MAXEXTENTS limit, 4 – 451

EXTERNALLY option
of IDENTIFIED clause, 4 – 216
of IDENTIFIED clause, 4 – 109, 4 – 268,

4 – 269

Index – 12 Oracle7 Server SQL Reference

F
FALSE, result of a condition, 3 – 79
FALSE option, of SET RESOURCE_LIMIT

clause, 4 – 78
FAST option, of REFRESH clause, 4 – 72,

4 – 232
Federal Information Processing Standard

(FIPS), 1 – 2
FETCH command, 4 – 341

examples, 4 – 342
used after OPEN command, 4 – 377

fetching, rows from cursors, 4 – 341
filespec, 4 – 343

examples, 4 – 344
fill mode, trims trailing blanks, 3 – 71
FIPS, 4 – 60

Federal Information Processing Standard,
1 – 2

flagging, 4 – 67
PUB 127–2, 1 – 2

FIPS Flagger, B – 13
firing, triggers, 4 – 260
FLAGGER clause, of ALTER SESSION

command, 4 – 60
FLOAT, ANSI datatype, 2 – 23
FLOOR number function, 3 – 22
FLUSH SHARED_POOL option, of ALTER

SYSTEM command, 4 – 77
FM date format element prefix, examples,

3 – 72
FM format model modifier, 3 – 71
FOR clause

of embedded SQL EXECUTE command,
4 – 332

of embedded SQL INSERT command,
4 – 366

of EXPLAIN PLAN command, 4 – 339
FOR EACH ROW option, of CREATE

TRIGGER command, 4 – 259
FOR UPDATE clause, of SELECT command,

4 – 409, 4 – 420
FOR UPDATE OF, example, 4 – 421
FORCE clause

of COMMIT command, 4 – 142, 4 – 145

of ROLLBACK command, 4 – 397, 4 – 401
FORCE option

of CREATE VIEW command, 4 – 271
of REFRESH clause, 4 – 73, 4 – 232

foreign key constraints. See Referential
integrity constraints

format model
date, 3 – 65
definition, 3 – 60
examples, 3 – 61, 3 – 62, 3 – 72, 3 – 73
number, 3 – 62

formatting
date values, 3 – 65
number values, 3 – 62

FREELIST GROUPS parameter, of STORAGE
clause, 4 – 451

FREELISTS parameter, of STORAGE clause,
4 – 451

FROM clause, of REVOKE command, 4 – 388,
4 – 392

FROM parameter, of RECOVER clause, 4 – 383
functions

PL/SQL, 3 – 58
SQL, 3 – 18
stored functions, 4 – 188
user, 3 – 58

FX format model modifier, 3 – 71

G
G format element, 3 – 62
GLB group function, 3 – 55
GLOBAL option

of CHECK DATAFILES clause, 4 – 78
of CHECKPOINT clause, 4 – 78

GLOBAL_NAMES, 4 – 82
GLOBAL_NAMES parameter, of ALTER

SYSTEM command, 4 – 79
GOTO option, of WHENEVER command,

4 – 471
GRANT command, 4 – 346, 4 – 355, A – 30

examples, 4 – 353, 4 – 359
part of CREATE SCHEMA command,

4 – 221

 Index – 13

GRANT object auditing option, 4 – 132
GRANT OPTION, of GRANT command,

4 – 356
granting

object privileges to users and roles, 4 – 355
roles, 4 – 346
system privileges and roles to users, roles,

4 – 346
GRAPHIC datatype, 2 – 29
GREATEST function, 3 – 50
GREATEST_LB function, 3 – 50
group, SQL functions, 3 – 54
GROUP BY clause

group SQL functions and, 3 – 18
of SELECT command, 4 – 408, 4 – 416

GROUP parameter
of ADD LOGFILE MEMBER clause, 4 – 22
of DROP LOGFILE clause, 4 – 22

H
HASH parameter, of CREATE CLUSTER

command, 4 – 166
HAVING clause, of SELECT command,

4 – 408, 4 – 417
HEXTORAW conversion function, 3 – 44
hints, 2 – 44

in DELETE statements, 4 – 292
in SELECT statements, 4 – 410, 4 – 441
in UPDATE statements, 4 – 462, 4 – 468

HOLD_CURSOR option, of ORACLE
Precompilers, 4 – 139

host variables, 1 – 5
host variable equivalencing, 4 – 469
in EXECUTE command, 4 – 332
in OPEN command, 4 – 376

I
I date format element, 3 – 68
IDENTIFIED clause

of ALTER USER command, 4 – 109
of CREATE ROLE command, 4 – 215
of CREATE USER command, 4 – 268

identifiers, names, 2 – 3
IDLE_TIME parameter, of CREATE PROFILE

command, 4 – 211
IEC (International Electrotechnical

Commission), 1 – 2
IMMEDIATE option, of ALTER TABLESPACE

command, 4 – 102
IN comparison operator, 3 – 6

definition, 3 – 6
INCLUDING CONTENTS option, of DROP

TABLESPACE command, 4 – 320
INCLUDING TABLES option, of DROP

CLUSTER command, 4 – 301
INCREMENT BY clause, of CREATE

SEQUENCE command, 4 – 225
incrementing, sequence values, 2 – 38, 4 – 436
INDEX object auditing option, 4 – 132
INDEX object privilege, on tables, 4 – 358
INDEX option

of ANALYZE command, 4 – 115
of CREATE CLUSTER command, 4 – 166

INDEX_STATS view, 4 – 121
indexed clusters, 4 – 168, 4 – 169
indexes

altering, 4 – 33
and LIKE operator, 3 – 10
cluster indexes, 4 – 197
creating, 4 – 192
definition, 4 – 192
dropping, 4 – 306, 4 – 319
LONG RAW datatypes prohibit, 2 – 26
multiple per table, 4 – 196
storage characteristics of, 4 – 33, 4 – 194

indexing, specifying tablespaces for, 4 – 194
INIT.ORA parameters, initialization

parameters, A – 12
INITCAP character function, 3 – 28

Index – 14 Oracle7 Server SQL Reference

INITIAL parameter, of STORAGE clause,
4 – 450, 4 – 452

initialization parameters, NLS_TERRITORY,
3 – 65

initialization parameters
AUDIT_TRAIL, 4 – 128
CONTROL_FILES, 4 – 179
DB_FILES, 4 – 181
GLOBAL_NAMES, 4 – 82
INSTANCES, 4 – 181
LOG_FILES, 4 – 180
MAX_ENABLED_ROLES, 4 – 443
MTS_DISPATCHERS, 4 – 83
MTS_MAX_DISPATCHERS, 4 – 83
MTS_MAX_SERVERS, 4 – 83
MTS_SERVERS, 4 – 83
NLS_DATE_FORMAT, 3 – 65
NLS_DATE_LANGUAGE, 3 – 68
NLS_LANGUAGE, 3 – 68
NLS_TERRITORY, 3 – 65, 3 – 68
OPEN_LINKS, 4 – 68, 4 – 186
OPTIMIZER_MODE, 4 – 66
OS_AUTHENT_PREFIX, 4 – 270
OS_ROLES, 4 – 353
ROLLBACK_SEGMENTS, 4 – 51
SNAPSHOT_REFRESH_INTERVAL, 4 – 236
SNAPSHOT_REFRESH_KEEP_

CONNECTIONS, 4 – 236
SNAPSHOT_REFRESH_PROCESSES,

4 – 236
SQL_TRACE, 4 – 62
THREAD, 4 – 25

INITRANS parameter
of ALTER CLUSTER command, 4 – 13
of ALTER INDEX command, 4 – 35
of ALTER SNAPSHOT command, 4 – 71
of ALTER TABLE command, 4 – 91
of CREATE CLUSTER command, 4 – 165
of CREATE INDEX command, 4 – 194
of CREATE SNAPSHOT command, 4 – 231,

4 – 239
of CREATE TABLE command, 4 – 248

INSERT command, 2 – 23, 4 – 361, 4 – 365,
A – 30

embedded SQL examples, 4 – 368
examples, 2 – 40, 4 – 364
summary, 4 – 8

INSERT object auditing option, 4 – 132

INSERT object privilege
on tables, 4 – 358
on views, 4 – 358

INSERT option, of CREATE TRIGGER
command, 4 – 258, 4 – 261

inserting, rows into tables and views, 4 – 361,
4 – 365

INSTANCE clause, of ALTER SESSION
command, 4 – 60

INSTANCE parameter, of ALLOCATE
EXTENT clause, 4 – 14, 4 – 36, 4 – 92

INSTANCES, 4 – 181
instances, maximum number, for databases,

4 – 181
INSTR character function, 3 – 36
INSTRB character function, 3 – 36
INTEGER datatype, 2 – 16
integrity constraints

adding to columns, 4 – 91, 4 – 95
adding to tables, 4 – 91, 4 – 95
CHECK, 4 – 151, 4 – 160
column definition, 4 – 149
creating as parts of tables, 4 – 247
defining, 4 – 149
definition, 4 – 149
disabling, 4 – 94, 4 – 151, 4 – 250, 4 – 295
dropping from tables, 4 – 92
enabling, 4 – 93, 4 – 250, 4 – 326
NOT NULL, 4 – 152
PRIMARY KEY, 4 – 151, 4 – 154
referential, 4 – 151, 4 – 156
removing from columns, 4 – 91, 4 – 95
table definition, 4 – 91, 4 – 149, 4 – 152,

4 – 247
UNIQUE, 4 – 151, 4 – 153

International Electrotechnical Commission
(IEC), 1 – 2

International Standards Organization (ISO),
1 – 2

INTERSECT set operator, 4 – 408
examples, 3 – 16

INTO clause
of ANALYZE command, 4 – 117
of EXPLAIN PLAN command, 4 – 339
of FETCH command, 4 – 341
of SELECT command, 4 – 440

 Index – 15

IS NOT NULL comparison operator, 3 – 6
IS NULL comparison operator, 3 – 6
ISDBA option, of USERENV function, 3 – 52
ISO

International Standards Organization, 1 – 2
ISO/IEC 9075:1992, 1 – 2

IW date format element, 3 – 68
IY date format element, 3 – 68
IYY date format element, 3 – 68
IYYY date format element, 3 – 68

J
join view, 4 – 274
joins

and clusters, 4 – 168
examples, 4 – 422, 4 – 426
simple, 4 – 421

julian dates, 2 – 26

K
KILL SESSION clause, of ALTER SYSTEM

command, 4 – 80

L
L format element, 3 – 62
LABEL option, of USERENV function, 3 – 52
LABEL parameter, of ALTER SESSION

command, 4 – 59
LANGUAGE option, of USERENV function,

3 – 53
LAST_DAY date function, 3 – 38
LEAST function, 3 – 51
LEAST_UB function, 3 – 51
LENGTH character function, 3 – 37
LENGTHB character function, 3 – 37
LEVEL pseudocolumn, 2 – 41

in SELECT command, 4 – 414

lexical conventions, SQL, 1 – 6
LICENSE_MAX_SESSION parameter, of

ALTER SYSTEM command, 4 – 79
LICENSE_MAX_USERS parameter, of ALTER

SYSTEM command, 4 – 80
LICENSE_SESSIONS_WARNING parameter,

of ALTER SYSTEM command, 4 – 79
LIKE comparison operator, 3 – 6, A – 36

definition, 3 – 9
links, database links, 4 – 185
LIST option, of ANALYZE command, 4 – 117
literal

character, 2 – 14
definition of, 2 – 14
numeric, 2 – 14

LN number function, 3 – 22
LOCAL option

of CHECK DATAFILES clause, 4 – 78
of CHECKPOINT clause, 4 – 78

location transparency, via synonyms, 4 – 243
lock

and queries, 4 – 371
exclusive, 4 – 370
multiple, 4 – 370
released by ROLLBACK statement, 4 – 398
releasing with COMMIT command, 4 – 141
table, 4 – 370
types of, 4 – 370

LOCK object auditing option, 4 – 132
LOCK TABLE command, 4 – 369, A – 30

examples, 4 – 371
summary, 4 – 8

locking, tables and views, 4 – 369
LOG number function, 3 – 22
LOG_FILES, 4 – 180
logarithms

LN number function, 3 – 22
LOG number function, 3 – 22

LOGFILE clause
of CREATE CONTROLFILE command,

4 – 174
of CREATE DATABASE command, 4 – 180

Index – 16 Oracle7 Server SQL Reference

LOGFILE parameter
of ARCHIVE LOG clause, 4 – 125
of RECOVER clause, 4 – 384

logical operator
definition, 3 – 12
use in condition, 3 – 79

logical Unit of Work, 4 – 402
LOGICAL_READS_PER_CALL parameter, of

CREATE PROFILE command, 4 – 211
LOGICAL_READS_PER_SESSION parameter

of CREATE PROFILE command, 4 – 211
of ALTER RESOURCE COST command,

4 – 46
LONG datatype, 2 – 23

maximum length, 2 – 23
restrictions on, 2 – 23

LONG RAW datatype, 2 – 26
indexing prohibited on, 2 – 26
similarity to LONG datatype, 2 – 26

LONG VARGRAPHIC datatype, 2 – 29
LOWER character function, 3 – 28
lowercase, significance in SQL statements,

1 – 6
lowercase and uppercase

of object names, 2 – 3
significance in pattern matching, 3 – 10

LPAD character function, 3 – 28
LTRIM character function, 3 – 29
LUB group function, 3 – 55

M
MAC mode, 4 – 26
MAX group function, 3 – 56
MAX_ENABLE_ROLES, 4 – 443
MAXDATAFILES parameter

of CREATE CONTROLFILE command,
4 – 175

of CREATE DATABASE command, 4 – 181
MAXEXTENTS parameter, of STORAGE

clause, 4 – 451, 4 – 452
MAXINSTANCES parameter

of CREATE CONTROLFILE command,
4 – 176

of CREATE DATABASE command, 4 – 181
MAXLOGFILES parameter

of CREATE CONTROLFILE command,
4 – 175

of CREATE DATABASE command, 4 – 180
MAXLOGHISTORY parameter

of CREATE CONTROLFILE command,
4 – 175

of CREATE DATABASE command, 4 – 181
MAXLOGMEMBERS parameter

of CREATE DATABASE command, 4 – 180
of CREATE CONTROLFILE command,

4 – 175
MAXSIZE clause, of ALTER DATABASE

command, 4 – 28
MAXTRANS parameter

of ALTER CLUSTER command, 4 – 13
of ALTER INDEX command, 4 – 35
of ALTER SNAPSHOT command, 4 – 71
of ALTER TABLE command, 4 – 91
of CREATE CLUSTER command, 4 – 165
of CREATE INDEX command, 4 – 194
of CREATE SNAPSHOT command, 4 – 231,

4 – 239
of CREATE TABLE command, 4 – 248

MAXVALUE parameter, of CREATE
SEQUENCE command, 4 – 225

MI format element, 3 – 62
MIN group function, 3 – 56
MINEXTENTS parameter, of STORAGE

clause, 4 – 451
MINUS set operator, 4 – 408

examples, 3 – 17
MINVALUE parameter, of CREATE

SEQUENCE command, 4 – 225
miscellaneous operators, 3 – 17
MLS_LABEL_FORMAT parameter, of ALTER

SESSION command, 4 – 59
MLSLABEL datatype, 2 – 27
MOD number function, 3 – 23
MODIFY clause, of ALTER TABLE command,

4 – 91
modifying

column definitions, 4 – 89, 4 – 91, 4 – 95
resource limits, 4 – 44

 Index – 17

MON format element, 3 – 67
MONTH format element, 3 – 67
MONTHS_BETWEEN date function, 3 – 39
MOUNT option, of ALTER DATABASE

command, 4 – 19
mounting, databases, 4 – 19
MTS_DISPATCHERS, 4 – 83
MTS_DISPATCHERS parameter, of ALTER

SYSTEM command, 4 – 79, 4 – 83
MTS_MAX_DISPATCHERS, 4 – 83
MTS_MAX_SERVERS, 4 – 83
MTS_SERVERS, 4 – 83
MTS_SERVERS parameter

of ALTER SYSTEM command, 4 – 83
of ALTER SYSTEM command, 4 – 79

multi–threaded server, managing processes
for, 4 – 79

multi–threaded server, managing processes for,
4 – 79, 4 – 83

N
names

for objects, 2 – 3
lowercase and uppercase, 2 – 3
quoted, 2 – 7

namespaces, for objects, 2 – 6
naming objects, 2 – 3
National Institute for Standards and

Technology (NIST), 1 – 2
National Language Support (NLS), session

settings, 4 – 57, 4 – 63
natural logarithms. See LN number function
navigation, automatic, 1 – 3
negative scale, 2 – 22
NEW_TIME date function, 3 – 40
NEXT clause, of ALTER DATABASE

command, 4 – 28
NEXT option, of ARCHIVE LOG clause,

4 – 125
NEXT parameter

of REFRESH clause, 4 – 73, 4 – 233
of STORAGE clause, 4 – 450

NEXT_DAY date function, 3 – 40
NEXTVAL pseudocolumn, 2 – 38

examples, 2 – 40, 4 – 364, 4 – 436
NIST, National Institute for Standards and

Technology, 1 – 2
NLS_CALENDAR parameter, of ALTER

SESSION command, 4 – 59
NLS_CURRENCY parameter, of ALTER

SESSION command, 4 – 58
NLS_DATE_FORMAT parameter, of ALTER

SESSION command, 4 – 58
NLS_DATE_LANGUAGE parameter, of

ALTER SESSION command, 4 – 58
NLS_INITCAP character function, 3 – 29
NLS_ISO_CURRENCY parameter, of ALTER

SESSION command, 4 – 58
NLS_LANGUAGE parameter, of ALTER

SESSION command, 4 – 57
NLS_LOWER character function, 3 – 30
NLS_NUMERIC_CHARACTERS parameter,

of ALTER SESSION command, 4 – 58
NLS_SORT parameter, of ALTER SESSION

command, 4 – 59
NLS_TERRITORY parameter, of ALTER

SESSION command, 4 – 57
NLS_UPPER character function, 3 – 30
NLSSORT character function, 3 – 37, A – 34
NOARCHIVELOG option

of ALTER DATABASE command, 4 – 21
of CREATE CONTROLFILE command,

4 – 176
of CREATE DATABASE command, 4 – 182

NOAUDIT command, 4 – 372, 4 – 374
examples, 4 – 373, 4 – 375

NOCACHE option, of CREATE SEQUENCE
command, 4 – 226

NOCYCLE option, of CREATE SEQUENCE
command, 4 – 226

NOFORCE option, of CREATE VIEW
command, 4 – 271

NOMAXVALUE option, of CREATE
SEQUENCE command, 4 – 225

NOMINVALUE option, of CREATE
SEQUENCE command, 4 – 225

Index – 18 Oracle7 Server SQL Reference

non–padded comparison semantics, 2 – 30
NONE option

of DEFAULT ROLE clause, 4 – 111
of SET ROLE command, 4 – 442

NOORDER option, of CREATE SEQUENCE
command, 4 – 226

NORESETLOGS option
of ALTER DATABASE command, 4 – 20
of CREATE CONTROLFILE command,

4 – 174
normal exit from Oracle7, 4 – 142
NORMAL option, of ALTER TABLESPACE

command, 4 – 101
NOSORT option, of CREATE INDEX

command, 4 – 194, 4 – 196
NOT FOUND condition, of WHENEVER

command, 4 – 471
NOT IN comparison operator, 3 – 6

examples, 3 – 8
NOT LIKE comparison operator, 3 – 6
NOT logical operator, 3 – 9

truth table, 3 – 12
NOT NULL clause, ALTER TABLE command,

4 – 95
NOT NULL constraints, 4 – 152
NOT option, of WHENEVER clause, 4 – 128,

4 – 135, 4 – 136, 4 – 373, 4 – 375
NOWAIT option

of FOR UPDATE clause, 4 – 409
of LOCK TABLE command, 4 – 370

NULL
constraint, example, 4 – 152
in a condition, 3 – 80

null, 2 – 36
in an index, 4 – 197

NULL value, of OPTIMAL parameter, 4 – 219,
4 – 452

number
comparison rules, 2 – 29
literal, 2 – 14

NUMBER datatype, 2 – 21
comparing values of, 2 – 29

number format elements, 3 – 62

number format models, 3 – 62
examples, 3 – 61

numeric, literal, 2 – 14
NVL function, 2 – 36, 3 – 51

O
object

naming, 2 – 8
naming rules, 2 – 3

object auditing options, 4 – 132, 4 – 136
object auditing short cuts, 4 – 136
object name, qualifiers, 2 – 3
object naming, 2 – 3
object privileges, 4 – 357

granting to users and roles, 4 – 355
on procedures, functions, and packages,

4 – 359
on sequences, 4 – 359
on snapshots, 4 – 359
on synonyms, 4 – 359
on tables, 4 – 358
on views, 4 – 358
revoking from users and roles, 4 – 391

OF clause, of CREATE TRIGGER command,
4 – 259

OFFLINE option
of ALTER ROLLBACK SEGMENT

command, 4 – 50
of ALTER TABLESPACE command, 4 – 101
of CREATE TABLESPACE command, 4 – 255
of DATAFILE clause, 4 – 27, 4 – 28

ON clause
of CREATE TRIGGER command, 4 – 259,

4 – 261
of GRANT command, 4 – 356
of NOAUDIT command, 4 – 375
of REVOKE command, 4 – 392

ONLINE option
of ALTER ROLLBACK SEGMENT com-

mand, 4 – 50
of ALTER TABLESPACE command, 4 – 101
of CREATE TABLESPACE command, 4 – 255
of DATAFILE clause, 4 – 27

 Index – 19

OPEN command, 4 – 376
examples, 4 – 11, 4 – 377

OPEN option, of ALTER DATABASE
command, 4 – 20

OPEN_LINKS, 4 – 186
opening

cursors, 4 – 376
databases, 4 – 20

operator
arithmetic, 3 – 3
character, 3 – 4
definition, 3 – 2
logical, 3 – 6, 3 – 12
miscellaneous, 3 – 17
NOT IN, 3 – 8
set, 3 – 13
use in expression, 3 – 78

optimal size, of rollback segments, 4 – 219,
4 – 452

optimizer
hints, 2 – 44
SQL, 1 – 3

OPTIMIZER_GOAL parameter, of ALTER
SESSION command, 4 – 59

OPTIMIZER_MODE, 4 – 66
OR logical operator, truth table, 3 – 13
OR REPLACE option

of CREATE PACKAGE command, 4 – 198
of CREATE FUNCTION command, 4 – 189
of CREATE PACKAGE BODY command,

4 – 202
of CREATE PROCEDURE command, 4 – 206
of CREATE TRIGGER command, 4 – 258
of CREATE VIEW command, 4 – 271

Oracle7 precompilers, embedded SQL, 1 – 4
ORDER BY clause

and ROWNUM pseudocolumn, 2 – 43
of SELECT command, 4 – 409, 4 – 418

ORDER option, of CREATE SEQUENCE
command, 4 – 226

OS MAC mode, 4 – 26
OS_AUTHENT_PREFIX, initialization

parameter, 4 – 270
OS_ROLES, 4 – 353
outer join, 3 – 17, 4 – 425, A – 36

outer joins, examples, 4 – 426
overloading, procedures and stored functions,

2 – 7, 4 – 199

P
P.M. format element, 3 – 67
package bodies, dropping, 4 – 307
PACKAGE option, of ALTER PACKAGE

command, 4 – 39
package specifications, 4 – 198
packages, 4 – 198, 4 – 199, 4 – 202, 4 – 203

adding procedures to, 4 – 199
adding stored functions to, 4 – 199
auditing, 4 – 135
creating, 4 – 198, 4 – 202
creating package bodies for, 4 – 202
creating package specifications for, 4 – 198
creating synonyms for, 4 – 242
dropping, 4 – 307
granting object privileges on, 4 – 356, 4 – 359
recompiling, 4 – 39
redefining, 4 – 198, 4 – 202
removing procedures from, 4 – 310
removing stored functions from, 4 – 305
revoking object privileges on, 4 – 392

packages bodies, 4 – 202
PARALLEL clause, 4 – 378

of RECOVER clause, 4 – 384
PARALLEL option, of ALTER DATABASE

command, 4 – 19
parallel query clause, 4 – 14

of ALTER TABLE command, 4 – 94
of CREATE TABLE command, 4 – 250

parallel server, setting the instance, 4 – 68
PARALLEL_DEFAULT_SCANSIZE parameter,

4 – 378
parentheses

around expressions, 3 – 77
overriding operator precedence, 3 – 3

parsing dynamic statements, PREPARE
command, 4 – 381

partition views, 4 – 275 to 4 – 276

Index – 20 Oracle7 Server SQL Reference

passwords
changing, 4 – 108
establishing for users, 4 – 215, 4 – 268

pattern matching, definition, 3 – 9
PCTFREE parameter

of ALTER CLUSTER command, 4 – 13
of ALTER SNAPSHOT command, 4 – 71
of ALTER TABLE command, 4 – 91
of CREATE CLUSTER command, 4 – 165
of CREATE INDEX command, 4 – 194
of CREATE SNAPSHOT command, 4 – 231,

4 – 239
of CREATE TABLE command, 4 – 247

PCTINCREASE parameter, of STORAGE
clause, 4 – 450

PCTUSED parameter
of ALTER CLUSTER command, 4 – 13
of ALTER SNAPSHOT command, 4 – 71
of ALTER TABLE command, 4 – 91
of CREATE CLUSTER command, 4 – 165
of CREATE SNAPSHOT command, 4 – 231,

4 – 239
of CREATE TABLE command, 4 – 247

PL/SQL, functions, 3 – 58
PL/SQL blocks, embedded in Oracle7

precompiler programs, 4 – 334
PM format element, 3 – 67
POWER number function, 3 – 23, A – 34
PR format element, 3 – 62
precedence, definition, 3 – 2
precision, of NUMBER columns, 2 – 21
precompilers, embedded SQL, 1 – 4
PREPARE command, 4 – 381

examples, 4 – 381
PRIMARY KEY option

of DISABLE clause, 4 – 296
of DROP clause, 4 – 299
of ENABLE clause, 4 – 327

primary keys, 4 – 151, 4 – 154
PRIOR operator, 3 – 17
PRIVATE_SGA parameter

of ALTER RESOURCE COST command,
4 – 46

of CREATE PROFILE command, 4 – 211

privilege domain, changing, 4 – 443
privileges. See Object privileges; System

privileges
procedures

adding to packages, 4 – 199
auditing, 4 – 135
creating, 4 – 206
creating synonyms for, 4 – 242
definition, 4 – 206, 4 – 208
dropping, 4 – 309
granting object privileges on, 4 – 359
granting privileges on, 4 – 356
overloading, 2 – 7, 4 – 199
recompiling, 4 – 42
redefining, 4 – 206
removing from packages, 4 – 310
revoking object privileges on, 4 – 392

PROFILE clause
of ALTER USER command, 4 – 110
of CREATE USER command, 4 – 268

Profiles, PUBLIC_DEFAULT profile, 4 – 46
profiles

adding resource limits to, 4 – 44, 4 – 210
altering, 4 – 44
assigning to users, 4 – 108, 4 – 110, 4 – 268
creating, 4 – 210
DEFAULT profile, 4 – 213, 4 – 268, 4 – 311
definition, 4 – 210, 4 – 212
dropping, 4 – 311
modifying resource limits in, 4 – 44
PUBLIC_DEFAULT profile, 4 – 45, 4 – 46,

4 – 110
removing resource limits from, 4 – 44

pseudocolumns, 2 – 38
PUBLIC option

of CREATE DATABASE LINK command,
4 – 185

of CREATE ROLLBACK SEGMENT
command, 4 – 218

of CREATE SYNONYM command, 4 – 241
of DROP DATABASE LINK command,

4 – 303
of DROP SYNONYM command, 4 – 317
of ENABLE clause, 4 – 25
of FROM clause, 4 – 389, 4 – 392
of TO clause, 4 – 346, 4 – 356

 Index – 21

public rollback segments, 4 – 218
PUBLIC_DEFAULT profile, 4 – 45, 4 – 46
punctuation, in date format models, 3 – 72

Q
queries

examples, 4 – 433, 4 – 435
SELECT, 4 – 405
See also Subqueries

QUOTA clause
multiple in CREATE USER statement,

4 – 269
of ALTER USER command, 4 – 110
of CREATE USER command, 4 – 268, 4 – 269

quote marks, using in text literals, 2 – 15
quoted names, 2 – 7

R
RAW datatype, 2 – 26
RAWTOHEX conversion function, 3 – 44
RDBMS (relational database management

system), 1 – 2
read consistency, default, 4 – 447
READ ONLY option

of CREATE VIEW command, 4 – 272
of SET TRANSACTION command, 4 – 445

READ WRITE option, of SET TRANSACTION
command, 4 – 445

read–only mounts, 4 – 186
recompiling

packages, 4 – 39
procedures, 4 – 42
stored functions, 4 – 31

RECOVER clause, 4 – 382
examples, 4 – 384
of ALTER DATABASE command, 4 – 21

recoverability, of tables, 4 – 249
RECOVERABLE clause, of CREATE TABLE

command, 4 – 249
RECOVERABLE keyword, 4 – 194
recovery

disabling for distributed transactions, 4 – 76

disabling for distributed transactions, 4 – 87
enabling for distributed transactions, 4 – 80
enabling for distributed transactions, 4 – 76,

4 – 87
redefining

columns, 4 – 91
packages, 4 – 198, 4 – 202
procedures, 4 – 206
stored functions, 4 – 189

redo log file members, maximum number, for
redo log files, 4 – 178

redo log file groups
adding members to, 4 – 22
adding to threads, 4 – 21
assigning to redo log threads, 4 – 174
assigning to redo log threads, 4 – 174
dropping, 4 – 22
dropping members from, 4 – 23
maximum number, of members, 4 – 180

redo log file members
adding to redo log file groups, 4 – 22
dropping from redo log file groups, 4 – 23
maximum number, for redo log file groups,

4 – 180
renaming, 4 – 24
specifying, 4 – 343

redo log files
adding to databases, 4 – 178, 4 – 180
archiving, 4 – 21, 4 – 178, 4 – 181, 4 – 182
maximum number

for databases, 4 – 178, 4 – 180
of members, 4 – 178

specifying, 4 – 343
switching, 4 – 76, 4 – 80, 4 – 86

redo log threads
adding redo log file groups to, 4 – 21
assigning redo log file groups to, 4 – 174
assigning redo log file groups to, 4 – 174
disabling, 4 – 25
dropping redo log file groups from, 4 – 22
enabling, 4 – 25

REFERENCES object privilege, on tables,
4 – 358

REFERENCING clause, of CREATE TRIGGER
command, 4 – 259

referential integrity constraints, 4 – 151, 4 – 156

Index – 22 Oracle7 Server SQL Reference

REFRESH clause
of ALTER SNAPSHOT command, 4 – 72
of CREATE SNAPSHOT command, 4 – 232

refresh modes, for snapshots, 4 – 235
refresh times, for snapshots, 4 – 236
refreshing

snapshots, 4 – 72, 4 – 232, 4 – 234
snapshots with snapshot logs, 4 – 240

RELEASE_CURSOR option, of ORACLE
Precompilers, 4 – 139

remote database, declaration of, 4 – 282
remote query, 4 – 436
remote table, identifying, 4 – 436
removing

comments from objects, 4 – 140
integrity constraints from columns, 4 – 91,

4 – 95
procedures from packages, 4 – 310
resource limits from profiles, 4 – 44
stored functions from packages, 4 – 305

RENAME command, 4 – 386
examples, 4 – 387

RENAME DATAFILE clause, of ALTER
TABLESPACE command, 4 – 101

RENAME FILE clause, of ALTER DATABASE
command, 4 – 24

RENAME GLOBAL_NAME clause, of ALTER
DATABASE command, 4 – 26

RENAME object auditing option, 4 – 132
renaming

databases, 4 – 26
datafiles, 4 – 24, 4 – 98, 4 – 101
objects, 4 – 386
redo log file members, 4 – 24

REPLACE character function, 3 – 30
RESETLOGS option

of ALTER DATABASE command, 4 – 20
of CREATE CONTROLFILE command,

4 – 174
RESIZE clause, of ALTER DATABASE

command, 4 – 28
resource limits

adding to profiles, 4 – 44, 4 – 210
assigning to users, 4 – 108, 4 – 110
costs of resources, 4 – 46

disabling, 4 – 76, 4 – 78, 4 – 82
enabling, 4 – 76, 4 – 78, 4 – 82, 4 – 213
exceeding, 4 – 212
modifying, 4 – 44
removing profiles from, 4 – 44

RESOURCE on tablespaces, QUOTA clause,
4 – 110

RESOURCE role, 4 – 216
RESOURCE statement auditing short cut,

4 – 131
RESOURCE_LIMIT option, of ALTER SYSTEM

command, 4 – 78, 4 – 82
retrieving rows from a table, embedded SQL,

4– 438
REUSE option

of BACKUP CONTROLFILE clause, 4 – 24
of CREATE CONTROLFILE command,

4 – 174
of filespec, 4 – 344

REUSE STORAGE option, of TRUNCATE
command, 4 – 455

REVOKE command, 4 – 388, 4 – 391, A – 30
examples, 4 – 390, 4 – 394

revoking
object privileges from users and roles,

4 – 391
system privileges and roles from users, roles,

4 – 388
RN format element, 3 – 62
roles

CONNECT role, 4 – 216
creating, 4 – 215
DBA role, 4 – 216
defined by ORACLE, 4 – 352
defined by Oracle7, 4 – 216
definition, 4 – 215
dropping, 4 – 312
enabling or disabling for sessions, 4 – 442
establishing default roles for users, 4 – 108,

4 – 110, 4 – 111
granting to users and roles, 4 – 346
granting object privileges to, 4 – 355
granting system privileges and roles to,

4 – 346
RESOURCE role, 4 – 216
revoking from users and roles, 4 – 388

 Index – 23

revoking object privileges from, 4 – 391
revoking system privileges and roles from,

4 – 388
roll back

to a savepoint, 4 – 404
to the same savepoint multiple times,

4 – 398
ROLLBACK command, ending a transaction,

4 – 402
ROLLBACK command, 4 – 397, 4 – 400, A – 30

ending a transaction, 4 – 398
examples, 4 – 399, 4 – 401
summary, 4 – 8

ROLLBACK option, of ADVISE clause, 4 – 62
rollback segments

altering, 4 – 50
creating, 4 – 218
definition, 4 – 218
dropping, 4 – 313
optimal size of, 4 – 219, 4 – 452
shrinking size, 4 – 51, 4 – 219, 4 – 452
specifying tablespaces for, 4 – 218, 4 – 219
storage characteristics of, 4 – 218
SYSTEM rollback segment, 4 – 254
taking online and offline, 4 – 50, 4 – 51,

4 – 313
ROLLBACK_SEGMENTS, 4 – 51
rolling back, transactions, 4 – 397, 4 – 400
ROUND date function, 3 – 41, 3 – 42

format models for, 3 – 42
ROUND number function, 3 – 24
rounding numeric data, 2 – 22

by using scale, 2 – 22
row address, ROWID, 2 – 27
row exclusive locks, 4 – 370
row share locks, 4 – 370
ROWID

description of, 2 – 27
pseudocolumn, 2 – 41

ROWIDTOCHAR conversion function, 3 – 45
ROWLABEL, A – 14

column, 3 – 74
ROWLABEL column, 4 – 407
ROWNUM pseudocolumn, 2 – 42

and ORDER BY clause, 2 – 43

rows
accessing via ROWID, 2 – 42
deleting from tables and views, 4 – 286
fetching from cursors, 4 – 341
identifying with ROWID values, 2 – 42
inserting into tables and views, 4 – 361,

4 – 365
ordering, 4 – 418
selecting from tables, 4 – 405
updating, 4 – 460, 4 – 465

RPAD character function, 3 – 31
RR date format element, 3 – 68
RTRIM character function, 3 – 31
RX locks, 4 – 370

S
S format element, 3 – 62
SAMPLE parameter, of ANALYZE command,

4 – 116
SAVEPOINT command, 4 – 402, 4 – 404

examples, 4 – 403, 4 – 404
summary, 4 – 8

savepoints
creating, 4 – 402, 4 – 404
erasing with COMMIT command, 4 – 141

scale
negative, 2 – 22
of NUMBER columns, 2 – 21

SCAN_INSTANCES parameter, of ALTER
SYSTEM command, 4 – 79

schema objects
definition of, 2 – 2
namespaces for, 2 – 6

schemas, creating, 4 – 221
scope, of DECLARE STATEMENT command,

4 – 283
searching, for rows with an index, 4 – 195
security, provided by views, 4 – 273
SELECT clause

INSERT command, 4 – 363
UPDATE command, 4 – 462, 4 – 464

Index – 24 Oracle7 Server SQL Reference

SELECT command, 4 – 405, 4 – 438, A – 31
embedded SQL examples, 4 – 441
examples, 2 – 40, 4 – 410, 4 – 414, 4 – 416,

4 – 419, 4 – 420, 4 – 421, 4 – 422, 4 – 433,
4 – 435, 4 – 437

summary, 4 – 8
select list, 4 – 409
SELECT object auditing option, 4 – 132
SELECT object privilege

on sequences, 4 – 359
on tables, 4 – 358
on views, 4 – 358

self joins, 4 – 423
SEQ parameter, of ARCHIVE LOG clause,

4 – 124
SEQUEL (Structured English Query

Language), 1 – 2
sequences, 4 – 224

accessing values of, 2 – 38, 4 – 436
altering, 4 – 53
auditing, 4 – 135
creating, 4 – 224
creating synonyms for, 4 – 242
cycling values of, 4 – 228
dropping, 4 – 314
granting object privileges on, 4 – 356, 4 – 359
increment between values, 4 – 53, 4 – 225
incrementing values of, 2 – 38, 4 – 436
limiting values of, 4 – 228
losing values of, 4 – 228
performance benefits of, 4 – 227
renaming, 4 – 386
restarting, 4 – 314
revoking object privileges on, 4 – 392
skipping values of, 4 – 227

session control commands, 4 – 9
session cursors, 4 – 67
SESSION_CACHED_CURSORS, 4 – 67
SESSION_CACHED_CURSORS clause, of

ALTER SESSION command, 4 – 60
SESSIONID option, of USERENV function,

3 – 53
sessions

altering, 4 – 55
beginning, 4 – 147
closing database links for, 4 – 62, 4 – 68

enabling and disabling roles for, 4 – 442
enabling and disabling SQL trace facility for,

4 – 57, 4 – 62
National Language Support (NLS) settings

for, 4 – 57, 4 – 63
terminating, 4 – 80, 4 – 87

SESSIONS_PER_USER parameter, of CREATE
PROFILE command, 4 – 211

SET clause
of UPDATE command, 4 – 462
of EXPLAIN PLAN command, 4 – 339

SET DATABASE parameter, of CREATE
CONTROLFILE command, 4 – 174

set operators. See UNION, UNION ALL,
INTERSECT, MINUS

SET ROLE command, 4 – 442
examples, 4 – 443

SET TRANSACTION command, 4 – 445,
A – 32

examples, 4 – 448
summary, 4 – 8

shadow processes, server processes, A – 13
share locks, 4 – 370
share row exclusive locks, 4 – 370
share update locks, 4 – 370
shared pool, clearing, 4 – 81
shared server processes, creating and

terminating, 4 – 83
shared SQL area, session cursors, 4 – 67
SHRINK clause, of ALTER ROLLBACK

SEGMENT command, 4 – 50, 4 – 51
shrinking, rollback segments, 4 – 219, 4 – 452
SIGN number function, 3 – 24
simple join, example, 4 – 422
simple snapshots, 4 – 234
simultaneous update and query on tables,

4 – 447
SIN number function, 3 – 24
SINH number function, 3 – 25
SIZE parameter

of CREATE CLUSTER command, 4 – 170
of ALLOCATE EXTENT clause, 4 – 13,

4 – 36, 4 – 92
of ALTER CLUSTER command, 4 – 13

 Index – 25

of CREATE CLUSTER command, 4 – 166
of filespec, 4 – 343

snapshot logs
altering, 4 – 75
creating, 4 – 238
definition, 4 – 238
dropping, 4 – 316
storage characteristics of, 4 – 75, 4 – 239

snapshot refresh processes, 4 – 236
SNAPSHOT_REFRESH_INTERVAL, 4 – 236
SNAPSHOT_REFRESH_KEEP_

CONNECTIONS, 4 – 236
SNAPSHOT_REFRESH_PROCESSES, 4 – 236
snapshots

adding comments to, 4 – 140
adding to clusters, 4 – 232
altering, 4 – 71
complex, 4 – 234
creating, 4 – 230
creating synonyms for, 4 – 242
definition, 4 – 230, 4 – 233
dropping, 4 – 315
granting object privileges on, 4 – 356, 4 – 359
refresh modes, 4 – 235
refresh times, 4 – 236
refreshing, 4 – 72, 4 – 232, 4 – 234
refreshing with snapshot logs, 4 – 240
removing comments from, 4 – 140
revoking object privileges on, 4 – 392
simple, 4 – 234
storage characteristics of, 4 – 71
storage characteristics of, 4 – 71, 4 – 231,

4 – 232
types of, 4 – 234

SOME comparison operator, 3 – 6
SOUNDEX character function, 3 – 32
space, deallocating, 4 – 278
SQL

benefits of, 1 – 3
compliance with standards, 1 – 2
conversion functions, 3 – 43
embedded, 1 – 4
embedded terms, 1 – 5
functions, 3 – 18, 3 – 78
history of, 1 – 2

lexical conventions, 1 – 6
optimizer, 1 – 3
standards, 1 – 2
standards compliance, 1 – 2
summary of commands, 4 – 2
unified language, 1 – 3

SQL (Structured Query Language), 1 – 2
SQL functions, A – 33

character, 3 – 27
group, 3 – 54

SQL trace facility, enabling and disabling for
sessions, 4 – 57, 4 – 62

SQL.BSQ, 4 – 352
SQL–92, 1 – 2
SQL/DS, datatypes, 2 – 28
SQL_CURSOR, 4 – 11
SQL_TRACE, 4 – 62
SQL2, 1 – 2
SQLERROR, WHENEVER command

condition, 4 – 471
SQLWARNING, WHENEVER command

condition, 4 – 471
SQRT number function, 3 – 25
SRX locks, 4 – 370
standard deviation, 3 – 56
standards, compliance, 1 – 2
standby database

ALTER DATABASE command, 4 – 19
controlfile, 4 – 24
RECOVER clause, 4 – 383

START WITH clause
of CREATE SEQUENCE command, 4 – 225
of SELECT command, 4 – 408, 4 – 412,

4 – 414
START WITH parameter, of REFRESH clause,

4 – 73, 4 – 233
statement auditing options, 4 – 129
statement auditing short cuts, 4 – 131
STDDEV group function, 3 – 56
STOP option, of WHENEVER command,

4 – 471
storage, ALTER TABLESPACE, 4 – 98

Index – 26 Oracle7 Server SQL Reference

storage characteristics
of snapshot logs, 4 – 75
of clusters, 4 – 12, 4 – 165, 4 – 166
of indexes, 4 – 33, 4 – 194
of rollback segments, 4 – 50, 4 – 218
of snapshot logs, 4 – 75, 4 – 239
of snapshots, 4 – 71, 4 – 231, 4 – 232
of tables, 4 – 247, 4 – 248, 4 – 249
of tablespaces, 4 – 101, 4 – 255

STORAGE clause, 4 – 449, A – 24, A – 26,
A – 28

examples, 4 – 453
of ALTER CLUSTER command, 4 – 13
of ALTER INDEX command, 4 – 35, 4 – 36
of ALTER SNAPSHOT command, 4 – 71
of ALTER TABLE command, 4 – 92
of CREATE CLUSTER command, 4 – 166
of CREATE INDEX command, 4 – 194
of CREATE ROLLBACK SEGMENT

command, 4 – 218
of CREATE SNAPSHOT command, 4 – 232,

4 – 239
of CREATE TABLE command, 4 – 249

stored functions
adding to packages, 4 – 199
auditing, 4 – 135
creating, 4 – 188
creating synonyms for, 4 – 242
definition, 4 – 188
dropping, 4 – 304
granting object privileges on, 4 – 356, 4 – 359
overloading, 2 – 7, 4 – 199
PL/SQL, 3 – 58
recompiling, 4 – 31
redefining, 4 – 189
removing from packages, 4 – 305
revoking object privileges on, 4 – 392

stored procedures, procedures, 4 – 206
subqueries, 4 – 431

correlated, 4 – 434
SUBSTR character function, 3 – 33
SUM group function, 3 – 57
suppressing blank padding, in date format

models, 3 – 71
SWITCH LOGFILE option, of ALTER SYSTEM

command, 4 – 80, 4 – 86

switching
redo log files, 4 – 76
redo log files, 4 – 80, 4 – 86

SYEAR date format element, 3 – 68
synonyms

auditing, 4 – 135
creating, 4 – 241
creating synonyms for, 4 – 242
definition, 4 – 241
dropping, 4 – 317
granting object privileges on, 4 – 356, 4 – 359
renaming, 4 – 386
revoking object privileges on, 4 – 392
scope of, 4 – 244
using with database links, 4 – 187

SYSDATE date function, 3 – 41
system change numbers, specifying for forced

transactions, 4 – 142
system commit numbers, system change

numbers, A – 13
system control commands, 4 – 9
system privileges, 4 – 348

granting to users and roles, 4 – 346
revoking from users and roles, 4 – 388

SYSTEM rollback segment, 4 – 254
SYSTEM tablespace, 4 – 254, 4 – 256

T
table alias, 4 – 463
table constraints, 4 – 149

example, 4 – 162
table locks, disabling, 4 – 93, 4 – 94
TABLE option

of ANALYZE command, 4 – 115
of TRUNCATE command, 4 – 455

tables
adding columns to, 4 – 89, 4 – 91, 4 – 94
adding comments to, 4 – 140
adding integrity constraints to, 4 – 91, 4 – 95
adding to clusters, 4 – 249
adding triggers to, 4 – 257
aliases for, 4 – 408
allocating extents for, 4 – 89

 Index – 27

allowing writes, 4 – 89
altering, 4 – 89
auditing, 4 – 135
creating, 4 – 245
creating snapshot logs for, 4 – 238
creating synonyms for, 4 – 242
creating views on, 4 – 271
definition, 4 – 245
deleting rows from, 4 – 286, 4 – 319, 4 – 455
disallowing writes, 4 – 89
dropping, 4 – 318
dropping integrity constraints from, 4 – 299
dropping triggers from, 4 – 322
granting object privileges on, 4 – 356, 4 – 358
inserting rows into, 4 – 361, 4 – 365
locking, 4 – 369
recoverability, 4 – 249
redefining columns of, 4 – 89
removing comments from, 4 – 140
removing from clusters, 4 – 302
renaming, 4 – 386
revoking object privileges on, 4 – 392
selecting data from, 4 – 405
specifying tablespaces for, 4 – 249
storage characteristics of, 4 – 245
storage characteristics of, 4 – 89, 4 – 92,

4 – 247, 4 – 248, 4 – 249
truncating, 4 – 455
unrecoverable, 4 – 249
updating rows in, 4 – 460, 4 – 465

TABLESPACE option
of CREATE CLUSTER command, 4 – 166
of CREATE INDEX command, 4 – 194
of CREATE ROLLBACK SEGMENT

command, 4 – 218
of CREATE SNAPSHOT command, 4 – 232,

4 – 239
of CREATE TABLE command, 4 – 249
of RECOVER clause, 4 – 383

tablespaces, 4 – 254
altering, 4 – 98
assigning to users, 4 – 108
backing up, 4 – 102
backing up, 4 – 98, 4 – 102
changing future storage allocations, 4 – 98
creating, 4 – 254, 4 – 256
creating clusters in, 4 – 166

creating indexes in, 4 – 194
creating rollback segments in, 4 – 218, 4 – 219
datafiles of, 4 – 98, 4 – 100, 4 – 101, 4 – 254
dropping, 4 – 320, 4 – 321
establishing default tablespaces for users,

4 – 108, 4 – 110, 4 – 268
establishing tablespace quotas for users,

4 – 110, 4 – 268, 4 – 269
establishing temporary tablespaces for users,

4 – 108, 4 – 110, 4 – 268
specifying for tables, 4 – 249
storage characteristics of, 4 – 101
storage characteristics of, 4 – 255
SYSTEM tablespace, 4 – 254, 4 – 256
taking online and offline, 4 – 98, 4 – 101,

4 – 255
TAN number function, 3 – 25
TANH number function, 3 – 26
TEMPORARY option, of ALTER TABLESPACE

command, 4 – 101
TEMPORARY TABLESPACE clause

of ALTER USER command, 4 – 110
of CREATE USER command, 4 – 268

TERMINAL option, of USERENV function,
3 – 53

terminating
dispatcher processes (DISP), 4 – 83
sessions, 4 – 80, 4 – 87
shared shadow processes, 4 – 83

text, definition of, 2 – 15
THREAD parameter

of ADD LOGFILE clause, 4 – 21
of ARCHIVE LOG clause, 4 – 124

threads, redo log threads, 4 – 180
TO clause

of GRANT command, 4 – 346, 4 – 356
of ROLLBACK command, 4 – 397, 4 – 401

TO parameter, of ARCHIVE LOG clause,
4 – 126

TO_CHAR conversion function, 3 – 45, 3 – 46,
A – 34

examples, 3 – 61, 3 – 72, 3 – 73
TO_DATE conversion function, 3 – 47, A – 34

examples, 3 – 62

Index – 28 Oracle7 Server SQL Reference

TO_LABEL conversion function, 3 – 47
TO_MULTI_BYTE conversion function, 3 – 48
TO_NUMBER conversion function, 3 – 48,

A – 34
TO_SINGLE_BYTE conversion function, 3 – 48
transaction control commands, 4 – 8
transactions, 4 – 142, 4 – 402

committing, 4 – 141, 4 – 144
distributed, 4 – 143, 4 – 399
establishing as read–only, 4 – 445
read consistency, 4 – 447
read only, 4 – 447
rolling back, 4 – 397, 4 – 400

TRANSLATE character function, 3 – 34
triggered action, 4 – 261
triggers

creating, 4 – 257
definition, 4 – 257, 4 – 260
dropping from tables, 4 – 322
enabling and disabling, 4 – 106
executing, 4 – 260
firing, 4 – 260
LONG datatype, 2 – 24

TRUE, result of a condition, 3 – 79
TRUE option, of SET RESOURCE_LIMIT

clause, 4 – 78
TRUNC date function, 3 – 41, 3 – 42

format models for, 3 – 42
TRUNC number function, 3 – 26
TRUNCATE command, 4 – 455

examples, 4 – 457
truncating

clusters, 4 – 455
tables, 4 – 455

truth tables, 3 – 12, 3 – 13
TYPE command, 4 – 458

examples, 4 – 459

U
UID function, 3 – 52
UNARCHIVED option, of CLEAR LOGFILE

clause, 4 – 23
undo a transaction, 4 – 397
UNION ALL set operator, 4 – 408

examples, 3 – 16
UNION set operator, 4 – 408

examples, 3 – 15
unique keys, 4 – 151, 4 – 153
UNIQUE option

of DISABLE clause, 4 – 296
of ENABLE clause, 4 – 327

UNLIMITED clause, of ALTER DATABASE
command, 4 – 28

UNLIMITED option
of ALTER PROFILE command, 4 – 44
of CREATE PROFILE command, 4 – 212
of QUOTA clause, 4 – 110, 4 – 268

unrecoverability, of tables, 4 – 249
UNRECOVERABLE, 4 – 197
UNRECOVERABLE clause, of CREATE

TABLE command, 4 – 249
UNRECOVERABLE keyword, 4 – 194
UNTIL CANCEL option, of RECOVER clause,

4 – 383
UNTIL CHANGE parameter, of RECOVER

clause, 4 – 383
UNTIL TIME parameter, of RECOVER clause,

4 – 383
UPDATE command, 4 – 460, 4 – 464, 4 – 465,

A – 32
embedded SQL examples, 4 – 468
examples, 4 – 463
subquery, 4 – 462

UPDATE object auditing options, 4 – 132
UPDATE object privilege

on tables, 4 – 358
on views, 4 – 358

UPDATE option, of CREATE TRIGGER
command, 4 – 259, 4 – 261

 Index – 29

updating
rows in tables and views, 4 – 465
rows in tables and views, 4 – 460

UPPER character function, 3 – 35
uppercase, significance in SQL statements, 1 – 6
uppercase and lowercase, significance in

pattern matching, 3 – 10
USE ROLLBACK SEGMENT option, of SET

TRANSACTION command, 4 – 446
USER function, 3 – 52
user function, 4 – 188

expression syntax, 3 – 75
user functions, 3 – 58
user–defined type equivalencing, 4 – 458
USER_CLUSTERS view, 4 – 120
USER_INDEXES view, 4 – 118
USER_TAB_COLUMNS view, 4 – 120
USER_TABLES view, 4 – 119
USERENV function, 3 – 52
users

altering, 4 – 108
assigning profiles to, 4 – 108, 4 – 110, 4 – 268
assigning resource limits to, 4 – 108, 4 – 110
assigning tablespaces to, 4 – 108
changing passwords, 4 – 108
creating, 4 – 267
definition, 4 – 267
dropping, 4 – 323
establishing default roles for, 4 – 108, 4 – 110,

4 – 111
establishing default tablespaces for, 4 – 108,

4 – 110, 4 – 268
establishing passwords for, 4 – 215, 4 – 268
establishing tablespace quotas for, 4 – 110
establishing tablespace quotas for, 4 – 268, 4

– 269
establishing temporary tablespaces for,

4 – 108, 4 – 110, 4 – 268
granting object privileges to, 4 – 355
granting system privileges and roles to,

4 – 346
revoking object privileges from, 4 – 391
revoking system privileges and roles from,

4 – 388
USING BACKUP CONTROLFILE parameter,

of RECOVER clause, 4 – 383

USING clause
of CREATE DATABASE LINK command,

4 – 186
of FETCH command, 4 – 341
of OPEN command, 4 – 376

using dbstring, SQL*Net database id
specification, 4 – 148

USING INDEX option
of ALTER SNAPSHOT command, 4 – 72
of CONSTRAINT clause, 4 – 151
of CREATE SNAPSHOT command, 4 – 232
of ENABLE clause, 4 – 327

UTLEXCPT.SQL, 4 – 329
UTLSAMPL.SQL, viii
UTLXPLAN.SQL, 4 – 339

V
V format element, 3 – 62
V$LOG table, 4 – 22, 4 – 180
V$NLS_PARAMETERS table, 4 – 63
VALIDATE INDEX command, A – 32
VALIDATE STRUCTURE option, of

ANALYZE command, 4 – 117
value, use in expression, 3 – 78
VALUES clause

of embedded SQL INSERT command,
4 – 362, 4 – 367

of INSERT command, 4 – 362, 4 – 363, 4 – 367
VAR command, 4 – 469

examples, 4 – 470
VARCHAR datatype, 2 – 21

in V6, A – 15
VARCHAR2, A – 14
VARCHAR2 datatype, 2 – 20

comparing values of, 2 – 30
similarity to RAW datatype, 2 – 26

VARGRAPHIC datatype, 2 – 29
variable length, date format models, 3 – 71
views

adding comments to, 4 – 140
and DML commands, 4 – 274
auditing, 4 – 135
creating, 4 – 271

Index – 30 Oracle7 Server SQL Reference

views continued
creating synonym for, 4 – 242
definition, 4 – 271
deleting rows from, 4 – 286
dropping, 4 – 325
granting object privileges on, 4 – 356, 4 – 358
inserting rows into, 4 – 361, 4 – 365
join views, 4 – 274

updatable, 4 – 274
locking, 4 – 369
partition, 4 – 275 to 4 – 276
redefining, 4 – 325
removing comments from, 4 – 140
renaming, 4 – 386
revoking object privileges on, 4 – 392
updating rows in, 4 – 460, 4 – 465
uses of, 4 – 273

VSIZE function, 3 – 54

W
WHEN clause, of CREATE TRIGGER

command, 4 – 259
WHENEVER clause

of AUDIT command, 4 – 128, 4 – 135
of NOAUDIT command, 4 – 373, 4 – 375

WHENEVER command, 4 – 471
examples, 4 – 472

WHERE clause
of DELETE command, 4 – 291
of SELECT command, 4 – 408
of UPDATE command, 4 – 461, 4 – 462,

4 – 467
wildcard characters

in pattern matching, 3 – 10
pattern matching, 3 – 9

WITH ADMIN OPTION. See ADMIN
OPTION

WITH CHECK OPTION. See CHECK
OPTION

WITH GRANT OPTION. See GRANT
OPTION

WITH READ ONLY, CREATE VIEW. See
CHECK OPTION

WORK option
 of ROLLBACK command, 4 – 397
of COMMIT command, 4 – 141, 4 – 145
of ROLLBACK command, 4 – 401

WW date format element, A – 35

Y
year, storing, 2 – 25
YEAR date format element, 3 – 68

Reader’s Comment Form

Oracle7� Server SQL Reference
Part No. A32538–1

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness
of this publication. Your input is an important part of the information used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the topic, chapter,
and page number below:

Please send your comments to:

Oracle7 Server Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood City, CA 94065 U.S.A.
Fax: (415) 506–7200

If you would like a reply, please give your name, address, and telephone number below:

Thank you for helping us improve our documentation.

	Oracle Library-Top Level
	Title
	Preface
	Audience
	How this Manual is Organized
	Conventions Used in this Manual
	Your Comments Are Welcome

	Table of Contents
	1: Introduction
	History of SQL
	SQL Standards
	How SQL Works
	Common Language for All Relational Databases

	Embedded SQL
	Embedded SQL Terms

	Lexical Conventions
	Tools Support

	2: Elements of Oracle7 SQL
	Database Objects
	Schema Objects
	Non–Schema Objects
	Parts of Objects

	Object Names and Qualifiers
	Object Naming Rules
	Object Naming Guidelines

	Referring to Objects and Parts
	How Oracle7 Resolves Object References
	Referring to Objects in Other Schemas
	Referring to Objects in Remote Databases

	Literals
	Text
	Purpose
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	Integer
	Purpose
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	Number
	Purpose
	Syntax
	Usage Notes
	Related Topics

	Datatypes
	Character Datatypes
	NUMBER Datatype
	LONG Datatype
	DATE Datatype
	RAW and LONG RAW Datatypes
	ROWID Datatype
	MLSLABEL Datatype
	ANSI, DB2, and SQL/DS Datatypes
	Datatype Comparison Rules
	ASCII Character Set
	EBCDIC Character Set
	Data Conversion

	Nulls
	Nulls in SQL Functions
	Nulls with Comparison Operators
	Nulls in Conditions

	Pseudocolumns
	CURRVAL and NEXTVAL
	LEVEL
	ROWID
	ROWNUM

	Comments
	Comments Within SQL Statements
	Comments on Schema Objects

	3: Operators, Functions, Expressions, Conditions
	Operators
	Unary and Binary Operators
	Precedence
	Arithmetic Operators
	Character Operators
	Comparison Operators
	Logical Operators
	Set Operators
	Other Operators

	SQL Functions
	Single Row Functions
	Number Functions
	Character Functions
	Date Functions
	Conversion Functions
	Other Functions
	Group Functions

	User Functions
	Prequisites
	Privileges Required
	Restrictions on User Functions
	Name Precedence

	Format Models
	Changing the Return Format
	Supplying the Correct Format
	Number Format Models
	Date Format Models
	Format Model Modifiers

	Expr
	Purpose
	Syntax
	Usage Notes
	Related Topics

	Condition
	Purpose
	Syntax
	Usage Notes
	Related Topics

	4: Commands
	Summary of SQL Commands
	Data Definition Language Commands
	Data Manipulation Language Commands
	Transaction Control Commands
	Session Control Commands
	System Control Command
	Embedded SQL Commands

	ALLOCATE (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	ALTER CLUSTER
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	ALTER DATABASE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	ALTER FUNCTION
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	ALTER INDEX
	Purpose
	Prerequisites
	Syntax
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	ALTER PACKAGE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	ALTER PROCEDURE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	ALTER PROFILE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	ALTER RESOURCE COST
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	ALTER ROLE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Related Topics

	ALTER ROLLBACK SEGMENT
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	ALTER SEQUENCE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	ALTER SESSION
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Enabling and Disabling the SQL Trace Facility
	Using NLS Parameters
	Changing the Optimization Approach and Goal
	FIPS Flagging
	Caching Session Cursors
	Accessing the Database as if Connected to Another Instance in a Parallel Server
	Closing Database Links
	Offering Advice for Forcing In–doubt Distributed Transactions
	Enabling and Disabling Transaction Control in Procedures and Stored Functions
	Related Topics

	ALTER SNAPSHOT
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	ALTER SNAPSHOT LOG
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	ALTER SYSTEM
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Restricting Logons
	Clearing the Shared Pool
	Performing a Checkpoint
	Checking Data Files
	Using Resource Limits
	Enabling and Disabling Global Name Resolution
	Managing Processes for the Multi–Threaded Server
	Using Licensing Limits
	Switching Redo Log File Groups
	Enabling Distributed Recovery
	Disabling Distributed Recovery
	Terminating a Session
	Related Topics

	ALTER TABLE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Adding Columns
	Modifying Column Definitions
	Related Topics

	ALTER TABLESPACE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	ALTER TRIGGER
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Enabling and Disabling Triggers
	Related Topics

	ALTER USER
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Establishing Default Roles
	Related Topics

	ALTER VIEW
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	ANALYZE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Collecting Statistics
	Deleting Statistics
	Validating Structures
	Listing Chained Rows
	Related Topics

	ARCHIVE LOG clause
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	AUDIT (SQL Statements)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Auditing
	How to Audit
	Statement Options
	Short Cuts for System Privileges and Statement Options
	Additional Statement Options
	Related Topics

	AUDIT (Schema Objects)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Auditing
	Object Options
	Default Auditing
	Related Topics

	CLOSE (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	COMMENT
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	COMMIT
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Transactions
	Related Topics

	COMMIT (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Keyword and Parameters
	Usage Notes
	Related Topics

	CONNECT (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Keyword and Parameters
	Usage Notes
	Related Topics

	CONSTRAINT clause
	Purpose
	Prerequisites
	Syntax
	Syntax
	Keywords and Parameters
	Defining Integrity Constraints
	NOT NULL Constraints
	UNIQUE Constraints
	PRIMARY KEY Constraints
	Referential Integrity Constraints
	CHECK Constraints
	Related Topics

	CREATE CLUSTER
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Cluster Keys
	Types of Clusters
	Cluster Size
	Adding Tables to a Cluster
	Related Topics

	CREATE CONTROLFILE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	CREATE DATABASE
	Purpose
	Prerequisites
	Syntax
	Keyword and Parameters
	Usage Notes
	Related Topics

	CREATE DATABASE LINK
	Purpose
	Prerequisites
	Syntax
	Keyword and Parameters
	Usage Notes
	Related Topics

	CREATE FUNCTION
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	CREATE INDEX
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Index Columns
	Multiple Indexes Per Table
	The NOSORT Option
	UNRECOVERABLE
	Nulls
	Creating Cluster Indexes
	Related Topics

	CREATE PACKAGE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Packages
	How to Create Packages
	Related Topics

	CREATE PACKAGE BODY
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Packages
	Related Topics

	CREATE PROCEDURE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	CREATE PROFILE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	CREATE ROLE
	Purpose
	Prerequisites
	Syntax
	Usage Notes
	Related Topics

	CREATE ROLLBACK SEGMENT
	Purpose
	Prerequisites
	Syntax
	Keyword and Parameters
	Usage Notes
	Related Topics

	CREATE SCHEMA
	Purpose
	Prerequisites
	Syntax
	Keyword and Parameters
	Usage Notes
	Related Topics

	CREATE SEQUENCE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	CREATE SNAPSHOT
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Types of Snapshots
	Refreshing Snapshots
	Related Topics

	CREATE SNAPSHOT LOG
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	CREATE SYNONYM
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Scope of Synonyms
	Related Topics

	CREATE TABLE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	UNRECOVERABLE
	Related Topics

	CREATE TABLESPACE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	CREATE TRIGGER
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Triggers
	Parts of a Trigger
	Types of Triggers
	Enabling and Disabling Triggers
	Snapshot Log Triggers
	Related Topics

	CREATE USER
	Purpose
	Prerequisites
	Syntax
	Usage Notes
	Related Topics

	CREATE VIEW
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	The View Query
	Join Views
	Partition Views
	Related Topics

	DEALLOCATE clause
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DECLARE CURSOR (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DECLARE DATABASE (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DECLARE STATEMENT (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DECLARE TABLE (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DELETE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DELETE (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Usage Notes
	Related Topics

	DESCRIBE (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DISABLE clause
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DROP clause
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DROP CLUSTER
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topic

	DROP DATABASE LINK
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DROP FUNCTION
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DROP INDEX
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DROP PACKAGE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DROP PROCEDURE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DROP PROFILE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DROP ROLE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DROP ROLLBACK SEGMENT
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DROP SEQUENCE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DROP SNAPSHOT
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DROP SNAPSHOT LOG
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DROP SYNONYM
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topic

	DROP TABLE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DROP TABLESPACE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DROP TRIGGER
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DROP USER
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	DROP VIEW
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	ENABLE clause
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	EXECUTE (Prepared SQL Statements and PL/SQL Blocks) (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	EXECUTE (Anonymous PL/SQL Blocks) (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	EXECUTE IMMEDIATE (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	EXPLAIN PLAN
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	FETCH (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	Filespec
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Related Topics

	GRANT (System Privileges and Roles)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	System Privileges
	Roles Defined by Oracle7
	ADMIN OPTION
	Granting Roles Through Your Operating System
	Related Topics

	GRANT (Object Privileges)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Object Privileges
	Related Topics

	INSERT
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Inserting Into Views
	Related Topics

	INSERT (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	LOCK TABLE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	NOAUDIT (SQL Statements)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	NOAUDIT (Schema Objects)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	OPEN (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	PARALLEL clause
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	PREPARE (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	RECOVER clause
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	RENAME
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	REVOKE (System Privileges and Roles)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	REVOKE (Object Privileges)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Object Privileges
	Revoking Multiple Identical Grants
	Cascading Revokes
	Related Topics

	ROLLBACK
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	ROLLBACK (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	SAVEPOINT
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	SAVEPOINT (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	SELECT
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Hierarchical Queries
	GROUP BY Clause
	HAVING Clause
	Set Operators
	ORDER BY Clause
	FOR UPDATE Clause
	Joins
	Subqueries
	Keywords and Parameters
	Usage Notes
	Correlated Subqueries
	Selecting from the DUAL Table
	Using Sequences
	Distributed Queries
	Related Topics

	SELECT (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	SET ROLE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Default Privilege Domain
	Changing Your Privilege Domain
	Related Topics

	SET TRANSACTION
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Establishing Read–only Transactions
	Assigning Transactions to Rollback Segments
	Related Topics

	STORAGE clause
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	TRUNCATE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	TYPE (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	UPDATE
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Updating Views
	Subqueries
	Correlated Update
	Related Topics

	UPDATE (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	VAR (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	WHENEVER (Embedded SQL)
	Purpose
	Prerequisites
	Syntax
	Keywords and Parameters
	Usage Notes
	Related Topics

	Ap A: Differences From Previous Versions
	Differences Between Oracle7 Release 7.2 and Release 7.3
	Differences Between Oracle7 Release 7.1 and Release 7.2
	Differences Between Oracle7, Release 7.0 and Release 7.1
	Differences Between Oracle Version 6 and Oracle7, Release 7.0
	Reserved Words
	New Reserved Words
	Obsolete Reserved Words

	Oracle Datatypes
	Numeric Datatypes
	Character Datatypes
	LONG Datatype
	Label Data

	New Commands
	Existing Commands with New Functionality
	ALTER CLUSTER
	ALTER DATABASE
	ALTER INDEX
	ALTER ROLLBACK SEGMENT
	ALTER SESSION
	ALTER TABLE
	ALTER TABLESPACE
	ALTER USER
	AUDIT (SQL Statements)
	AUDIT (Schema Objects)
	COMMIT
	CREATE CLUSTER
	CREATE DATABASE
	CREATE DATABASE LINK
	CREATE INDEX
	CREATE ROLLBACK SEGMENT
	CREATE TABLE
	CREATE TABLESPACE
	CREATE VIEW
	DELETE
	DROP CLUSTER
	DROP ROLLBACK SEGMENT
	DROP TABLE
	EXPLAIN PLAN
	GRANT (System Privileges and Roles)
	GRANT (Object Privileges)
	INSERT
	LOCK TABLE
	NOAUDIT
	REVOKE
	ROLLBACK
	SELECT
	SET TRANSACTION
	UPDATE
	VALIDATE INDEX

	SQL Functions
	New SQL Functions
	Existing SQL Functions with New Functionality

	Format Models
	Operators
	New Operators
	Existing Operators with Functional Changes

	Comments
	Namespaces
	Changes to Namespaces for Schema Objects
	Changes to Namespaces for Other Objects

	Changes to the Optional Components of Oracle
	Compatibility Modes
	Migrating to Oracle7
	Establishing and Switching Between Compatibility Modes

	Ap B: Oracle and Standard SQL
	Conformance with Standard SQL
	ANSI and ISO Compliance
	FIPS Compliance

	Extensions to Standard SQL
	Commands
	Functions
	Operators
	Pseudocolumns
	Datatypes
	Names of Schema Objects
	Values

	FIPS Flagger

	Ap C: Operating System–Specific Dependencies
	Index
	Reader's Comment Form

