/* * Copyright (C) 2016 Rob Clark * Copyright © 2018 Google, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Rob Clark */ #include "pipe/p_state.h" #include "util/u_string.h" #include "util/u_memory.h" #include "util/u_helpers.h" #include "util/u_format.h" #include "util/u_viewport.h" #include "freedreno_resource.h" #include "freedreno_query_hw.h" #include "fd6_emit.h" #include "fd6_blend.h" #include "fd6_context.h" #include "fd6_image.h" #include "fd6_program.h" #include "fd6_rasterizer.h" #include "fd6_texture.h" #include "fd6_format.h" #include "fd6_zsa.h" static uint32_t shader_t_to_opcode(gl_shader_stage type) { switch (type) { case MESA_SHADER_VERTEX: case MESA_SHADER_TESS_CTRL: case MESA_SHADER_TESS_EVAL: case MESA_SHADER_GEOMETRY: return CP_LOAD_STATE6_GEOM; case MESA_SHADER_FRAGMENT: case MESA_SHADER_COMPUTE: case MESA_SHADER_KERNEL: return CP_LOAD_STATE6_FRAG; default: unreachable("bad shader type"); } } /* regid: base const register * prsc or dwords: buffer containing constant values * sizedwords: size of const value buffer */ static void fd6_emit_const(struct fd_ringbuffer *ring, gl_shader_stage type, uint32_t regid, uint32_t offset, uint32_t sizedwords, const uint32_t *dwords, struct pipe_resource *prsc) { uint32_t i, sz, align_sz; enum a6xx_state_src src; debug_assert((regid % 4) == 0); if (prsc) { sz = 0; src = SS6_INDIRECT; } else { sz = sizedwords; src = SS6_DIRECT; } align_sz = align(sz, 4); OUT_PKT7(ring, shader_t_to_opcode(type), 3 + align_sz); OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(regid/4) | CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) | CP_LOAD_STATE6_0_STATE_SRC(src) | CP_LOAD_STATE6_0_STATE_BLOCK(fd6_stage2shadersb(type)) | CP_LOAD_STATE6_0_NUM_UNIT(DIV_ROUND_UP(sizedwords, 4))); if (prsc) { struct fd_bo *bo = fd_resource(prsc)->bo; OUT_RELOC(ring, bo, offset, 0, 0); } else { OUT_RING(ring, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0)); OUT_RING(ring, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0)); dwords = (uint32_t *)&((uint8_t *)dwords)[offset]; } for (i = 0; i < sz; i++) { OUT_RING(ring, dwords[i]); } /* Zero-pad to multiple of 4 dwords */ for (i = sz; i < align_sz; i++) { OUT_RING(ring, 0); } } static void fd6_emit_const_bo(struct fd_ringbuffer *ring, gl_shader_stage type, boolean write, uint32_t regid, uint32_t num, struct pipe_resource **prscs, uint32_t *offsets) { uint32_t anum = align(num, 2); uint32_t i; debug_assert((regid % 4) == 0); OUT_PKT7(ring, shader_t_to_opcode(type), 3 + (2 * anum)); OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(regid/4) | CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS)| CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) | CP_LOAD_STATE6_0_STATE_BLOCK(fd6_stage2shadersb(type)) | CP_LOAD_STATE6_0_NUM_UNIT(anum/2)); OUT_RING(ring, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0)); OUT_RING(ring, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0)); for (i = 0; i < num; i++) { if (prscs[i]) { if (write) { OUT_RELOCW(ring, fd_resource(prscs[i])->bo, offsets[i], 0, 0); } else { OUT_RELOC(ring, fd_resource(prscs[i])->bo, offsets[i], 0, 0); } } else { OUT_RING(ring, 0xbad00000 | (i << 16)); OUT_RING(ring, 0xbad00000 | (i << 16)); } } for (; i < anum; i++) { OUT_RING(ring, 0xffffffff); OUT_RING(ring, 0xffffffff); } } /* Border color layout is diff from a4xx/a5xx.. if it turns out to be * the same as a6xx then move this somewhere common ;-) * * Entry layout looks like (total size, 0x60 bytes): */ struct PACKED bcolor_entry { uint32_t fp32[4]; uint16_t ui16[4]; int16_t si16[4]; uint16_t fp16[4]; uint16_t rgb565; uint16_t rgb5a1; uint16_t rgba4; uint8_t __pad0[2]; uint8_t ui8[4]; int8_t si8[4]; uint32_t rgb10a2; uint32_t z24; /* also s8? */ uint16_t srgb[4]; /* appears to duplicate fp16[], but clamped, used for srgb */ uint8_t __pad1[56]; }; #define FD6_BORDER_COLOR_SIZE sizeof(struct bcolor_entry) #define FD6_BORDER_COLOR_UPLOAD_SIZE (2 * PIPE_MAX_SAMPLERS * FD6_BORDER_COLOR_SIZE) static void setup_border_colors(struct fd_texture_stateobj *tex, struct bcolor_entry *entries) { unsigned i, j; STATIC_ASSERT(sizeof(struct bcolor_entry) == FD6_BORDER_COLOR_SIZE); for (i = 0; i < tex->num_samplers; i++) { struct bcolor_entry *e = &entries[i]; struct pipe_sampler_state *sampler = tex->samplers[i]; union pipe_color_union *bc; if (!sampler) continue; bc = &sampler->border_color; /* * XXX HACK ALERT XXX * * The border colors need to be swizzled in a particular * format-dependent order. Even though samplers don't know about * formats, we can assume that with a GL state tracker, there's a * 1:1 correspondence between sampler and texture. Take advantage * of that knowledge. */ if ((i >= tex->num_textures) || !tex->textures[i]) continue; struct pipe_sampler_view *view = tex->textures[i]; enum pipe_format format = view->format; const struct util_format_description *desc = util_format_description(format); e->rgb565 = 0; e->rgb5a1 = 0; e->rgba4 = 0; e->rgb10a2 = 0; e->z24 = 0; unsigned char swiz[4]; fd6_tex_swiz(format, swiz, view->swizzle_r, view->swizzle_g, view->swizzle_b, view->swizzle_a); for (j = 0; j < 4; j++) { int c = swiz[j]; int cd = c; /* * HACK: for PIPE_FORMAT_X24S8_UINT we end up w/ the * stencil border color value in bc->ui[0] but according * to desc->swizzle and desc->channel, the .x/.w component * is NONE and the stencil value is in the y component. * Meanwhile the hardware wants this in the .w component * for x24s8 and the .x component for x32_s8x24. */ if ((format == PIPE_FORMAT_X24S8_UINT) || (format == PIPE_FORMAT_X32_S8X24_UINT)) { if (j == 0) { c = 1; cd = (format == PIPE_FORMAT_X32_S8X24_UINT) ? 0 : 3; } else { continue; } } if (c >= 4) continue; if (desc->channel[c].pure_integer) { uint16_t clamped; switch (desc->channel[c].size) { case 2: assert(desc->channel[c].type == UTIL_FORMAT_TYPE_UNSIGNED); clamped = CLAMP(bc->ui[j], 0, 0x3); break; case 8: if (desc->channel[c].type == UTIL_FORMAT_TYPE_SIGNED) clamped = CLAMP(bc->i[j], -128, 127); else clamped = CLAMP(bc->ui[j], 0, 255); break; case 10: assert(desc->channel[c].type == UTIL_FORMAT_TYPE_UNSIGNED); clamped = CLAMP(bc->ui[j], 0, 0x3ff); break; case 16: if (desc->channel[c].type == UTIL_FORMAT_TYPE_SIGNED) clamped = CLAMP(bc->i[j], -32768, 32767); else clamped = CLAMP(bc->ui[j], 0, 65535); break; default: assert(!"Unexpected bit size"); case 32: clamped = 0; break; } e->fp32[cd] = bc->ui[j]; e->fp16[cd] = clamped; } else { float f = bc->f[j]; float f_u = CLAMP(f, 0, 1); float f_s = CLAMP(f, -1, 1); e->fp32[c] = fui(f); e->fp16[c] = util_float_to_half(f); e->srgb[c] = util_float_to_half(f_u); e->ui16[c] = f_u * 0xffff; e->si16[c] = f_s * 0x7fff; e->ui8[c] = f_u * 0xff; e->si8[c] = f_s * 0x7f; if (c == 1) e->rgb565 |= (int)(f_u * 0x3f) << 5; else if (c < 3) e->rgb565 |= (int)(f_u * 0x1f) << (c ? 11 : 0); if (c == 3) e->rgb5a1 |= (f_u > 0.5) ? 0x8000 : 0; else e->rgb5a1 |= (int)(f_u * 0x1f) << (c * 5); if (c == 3) e->rgb10a2 |= (int)(f_u * 0x3) << 30; else e->rgb10a2 |= (int)(f_u * 0x3ff) << (c * 10); e->rgba4 |= (int)(f_u * 0xf) << (c * 4); if (c == 0) e->z24 = f_u * 0xffffff; } } #ifdef DEBUG memset(&e->__pad0, 0, sizeof(e->__pad0)); memset(&e->__pad1, 0, sizeof(e->__pad1)); #endif } } static void emit_border_color(struct fd_context *ctx, struct fd_ringbuffer *ring) { struct fd6_context *fd6_ctx = fd6_context(ctx); struct bcolor_entry *entries; unsigned off; void *ptr; STATIC_ASSERT(sizeof(struct bcolor_entry) == FD6_BORDER_COLOR_SIZE); u_upload_alloc(fd6_ctx->border_color_uploader, 0, FD6_BORDER_COLOR_UPLOAD_SIZE, FD6_BORDER_COLOR_UPLOAD_SIZE, &off, &fd6_ctx->border_color_buf, &ptr); entries = ptr; setup_border_colors(&ctx->tex[PIPE_SHADER_VERTEX], &entries[0]); setup_border_colors(&ctx->tex[PIPE_SHADER_FRAGMENT], &entries[ctx->tex[PIPE_SHADER_VERTEX].num_samplers]); OUT_PKT4(ring, REG_A6XX_SP_TP_BORDER_COLOR_BASE_ADDR_LO, 2); OUT_RELOC(ring, fd_resource(fd6_ctx->border_color_buf)->bo, off, 0, 0); u_upload_unmap(fd6_ctx->border_color_uploader); } static void fd6_emit_fb_tex(struct fd_ringbuffer *state, struct fd_context *ctx) { struct pipe_framebuffer_state *pfb = &ctx->batch->framebuffer; struct pipe_surface *psurf = pfb->cbufs[0]; struct fd_resource *rsc = fd_resource(psurf->texture); uint32_t texconst0 = fd6_tex_const_0(psurf->texture, psurf->u.tex.level, psurf->format, PIPE_SWIZZLE_X, PIPE_SWIZZLE_Y, PIPE_SWIZZLE_Z, PIPE_SWIZZLE_W); /* always TILE6_2 mode in GMEM.. which also means no swap: */ texconst0 &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK); texconst0 |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2); OUT_RING(state, texconst0); OUT_RING(state, A6XX_TEX_CONST_1_WIDTH(pfb->width) | A6XX_TEX_CONST_1_HEIGHT(pfb->height)); OUT_RINGP(state, A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) | A6XX_TEX_CONST_2_FETCHSIZE(TFETCH6_2_BYTE), &ctx->batch->fb_read_patches); OUT_RING(state, A6XX_TEX_CONST_3_ARRAY_PITCH(rsc->layer_size)); OUT_RING(state, A6XX_TEX_CONST_4_BASE_LO(ctx->screen->gmem_base)); OUT_RING(state, A6XX_TEX_CONST_5_BASE_HI(ctx->screen->gmem_base >> 32) | A6XX_TEX_CONST_5_DEPTH(1)); OUT_RING(state, 0); /* texconst6 */ OUT_RING(state, 0); /* texconst7 */ OUT_RING(state, 0); /* texconst8 */ OUT_RING(state, 0); /* texconst9 */ OUT_RING(state, 0); /* texconst10 */ OUT_RING(state, 0); /* texconst11 */ OUT_RING(state, 0); OUT_RING(state, 0); OUT_RING(state, 0); OUT_RING(state, 0); } bool fd6_emit_textures(struct fd_pipe *pipe, struct fd_ringbuffer *ring, enum pipe_shader_type type, struct fd_texture_stateobj *tex, unsigned bcolor_offset, /* can be NULL if no image/SSBO/fb state to merge in: */ const struct ir3_shader_variant *v, struct fd_context *ctx) { bool needs_border = false; unsigned opcode, tex_samp_reg, tex_const_reg, tex_count_reg; enum a6xx_state_block sb; switch (type) { case PIPE_SHADER_VERTEX: sb = SB6_VS_TEX; opcode = CP_LOAD_STATE6_GEOM; tex_samp_reg = REG_A6XX_SP_VS_TEX_SAMP_LO; tex_const_reg = REG_A6XX_SP_VS_TEX_CONST_LO; tex_count_reg = REG_A6XX_SP_VS_TEX_COUNT; break; case PIPE_SHADER_FRAGMENT: sb = SB6_FS_TEX; opcode = CP_LOAD_STATE6_FRAG; tex_samp_reg = REG_A6XX_SP_FS_TEX_SAMP_LO; tex_const_reg = REG_A6XX_SP_FS_TEX_CONST_LO; tex_count_reg = REG_A6XX_SP_FS_TEX_COUNT; break; case PIPE_SHADER_COMPUTE: sb = SB6_CS_TEX; opcode = CP_LOAD_STATE6_FRAG; tex_samp_reg = REG_A6XX_SP_CS_TEX_SAMP_LO; tex_const_reg = REG_A6XX_SP_CS_TEX_CONST_LO; tex_count_reg = REG_A6XX_SP_CS_TEX_COUNT; break; default: unreachable("bad state block"); } if (tex->num_samplers > 0) { struct fd_ringbuffer *state = fd_ringbuffer_new_object(pipe, tex->num_samplers * 4 * 4); for (unsigned i = 0; i < tex->num_samplers; i++) { static const struct fd6_sampler_stateobj dummy_sampler = {}; const struct fd6_sampler_stateobj *sampler = tex->samplers[i] ? fd6_sampler_stateobj(tex->samplers[i]) : &dummy_sampler; OUT_RING(state, sampler->texsamp0); OUT_RING(state, sampler->texsamp1); OUT_RING(state, sampler->texsamp2 | A6XX_TEX_SAMP_2_BCOLOR_OFFSET((i + bcolor_offset) * sizeof(struct bcolor_entry))); OUT_RING(state, sampler->texsamp3); needs_border |= sampler->needs_border; } /* output sampler state: */ OUT_PKT7(ring, opcode, 3); OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(0) | CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) | CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) | CP_LOAD_STATE6_0_STATE_BLOCK(sb) | CP_LOAD_STATE6_0_NUM_UNIT(tex->num_samplers)); OUT_RB(ring, state); /* SRC_ADDR_LO/HI */ OUT_PKT4(ring, tex_samp_reg, 2); OUT_RB(ring, state); /* SRC_ADDR_LO/HI */ fd_ringbuffer_del(state); } unsigned num_merged_textures = tex->num_textures; unsigned num_textures = tex->num_textures; if (v) { num_merged_textures += v->image_mapping.num_tex; if (v->fb_read) num_merged_textures++; /* There could be more bound textures than what the shader uses. * Which isn't known at shader compile time. So in the case we * are merging tex state, only emit the textures that the shader * uses (since the image/SSBO related tex state comes immediately * after) */ num_textures = v->image_mapping.tex_base; } if (num_merged_textures > 0) { struct fd_ringbuffer *state = fd_ringbuffer_new_object(pipe, num_merged_textures * 16 * 4); for (unsigned i = 0; i < num_textures; i++) { static const struct fd6_pipe_sampler_view dummy_view = {}; const struct fd6_pipe_sampler_view *view = tex->textures[i] ? fd6_pipe_sampler_view(tex->textures[i]) : &dummy_view; struct fd_resource *rsc = NULL; if (view->base.texture) rsc = fd_resource(view->base.texture); OUT_RING(state, view->texconst0); OUT_RING(state, view->texconst1); OUT_RING(state, view->texconst2); OUT_RING(state, view->texconst3); if (rsc) { if (view->base.format == PIPE_FORMAT_X32_S8X24_UINT) rsc = rsc->stencil; OUT_RELOC(state, rsc->bo, view->offset, (uint64_t)view->texconst5 << 32, 0); } else { OUT_RING(state, 0x00000000); OUT_RING(state, view->texconst5); } OUT_RING(state, view->texconst6); if (rsc && view->ubwc_enabled) { OUT_RELOC(state, rsc->bo, view->ubwc_offset, 0, 0); } else { OUT_RING(state, 0); OUT_RING(state, 0); } OUT_RING(state, view->texconst9); OUT_RING(state, view->texconst10); OUT_RING(state, view->texconst11); OUT_RING(state, 0); OUT_RING(state, 0); OUT_RING(state, 0); OUT_RING(state, 0); } if (v) { const struct ir3_ibo_mapping *mapping = &v->image_mapping; struct fd_shaderbuf_stateobj *buf = &ctx->shaderbuf[type]; struct fd_shaderimg_stateobj *img = &ctx->shaderimg[type]; for (unsigned i = 0; i < mapping->num_tex; i++) { unsigned idx = mapping->tex_to_image[i]; if (idx & IBO_SSBO) { fd6_emit_ssbo_tex(state, &buf->sb[idx & ~IBO_SSBO]); } else { fd6_emit_image_tex(state, &img->si[idx]); } } if (v->fb_read) { fd6_emit_fb_tex(state, ctx); } } /* emit texture state: */ OUT_PKT7(ring, opcode, 3); OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(0) | CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) | CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) | CP_LOAD_STATE6_0_STATE_BLOCK(sb) | CP_LOAD_STATE6_0_NUM_UNIT(num_merged_textures)); OUT_RB(ring, state); /* SRC_ADDR_LO/HI */ OUT_PKT4(ring, tex_const_reg, 2); OUT_RB(ring, state); /* SRC_ADDR_LO/HI */ fd_ringbuffer_del(state); } OUT_PKT4(ring, tex_count_reg, 1); OUT_RING(ring, num_merged_textures); return needs_border; } /* Emits combined texture state, which also includes any Image/SSBO * related texture state merged in (because we must have all texture * state for a given stage in a single buffer). In the fast-path, if * we don't need to merge in any image/ssbo related texture state, we * just use cached texture stateobj. Otherwise we generate a single- * use stateobj. * * TODO Is there some sane way we can still use cached texture stateobj * with image/ssbo in use? * * returns whether border_color is required: */ static bool fd6_emit_combined_textures(struct fd_ringbuffer *ring, struct fd6_emit *emit, enum pipe_shader_type type, const struct ir3_shader_variant *v) { struct fd_context *ctx = emit->ctx; bool needs_border = false; static const enum fd6_state_id state_id[PIPE_SHADER_TYPES] = { [PIPE_SHADER_VERTEX] = FD6_GROUP_VS_TEX, [PIPE_SHADER_FRAGMENT] = FD6_GROUP_FS_TEX, }; debug_assert(state_id[type]); if (!v->image_mapping.num_tex && !v->fb_read) { /* in the fast-path, when we don't have to mix in any image/SSBO * related texture state, we can just lookup the stateobj and * re-emit that: * * Also, framebuffer-read is a slow-path because an extra * texture needs to be inserted. * * TODO we can probably simmplify things if we also treated * border_color as a slow-path.. this way the tex state key * wouldn't depend on bcolor_offset.. but fb_read might rather * be *somehow* a fast-path if we eventually used it for PLS. * I suppose there would be no harm in just *always* inserting * an fb_read texture? */ if ((ctx->dirty_shader[type] & FD_DIRTY_SHADER_TEX) && ctx->tex[type].num_textures > 0) { struct fd6_texture_state *tex = fd6_texture_state(ctx, type, &ctx->tex[type]); needs_border |= tex->needs_border; fd6_emit_add_group(emit, tex->stateobj, state_id[type], 0x7); } } else { /* In the slow-path, create a one-shot texture state object * if either TEX|PROG|SSBO|IMAGE state is dirty: */ if ((ctx->dirty_shader[type] & (FD_DIRTY_SHADER_TEX | FD_DIRTY_SHADER_PROG | FD_DIRTY_SHADER_IMAGE | FD_DIRTY_SHADER_SSBO)) || v->fb_read) { struct fd_texture_stateobj *tex = &ctx->tex[type]; struct fd_ringbuffer *stateobj = fd_submit_new_ringbuffer(ctx->batch->submit, 0x1000, FD_RINGBUFFER_STREAMING); unsigned bcolor_offset = fd6_border_color_offset(ctx, type, tex); needs_border |= fd6_emit_textures(ctx->pipe, stateobj, type, tex, bcolor_offset, v, ctx); fd6_emit_add_group(emit, stateobj, state_id[type], 0x7); fd_ringbuffer_del(stateobj); } } return needs_border; } static struct fd_ringbuffer * build_vbo_state(struct fd6_emit *emit, const struct ir3_shader_variant *vp) { const struct fd_vertex_state *vtx = emit->vtx; int32_t i, j; struct fd_ringbuffer *ring = fd_submit_new_ringbuffer(emit->ctx->batch->submit, 4 * (10 * vp->inputs_count + 2), FD_RINGBUFFER_STREAMING); for (i = 0, j = 0; i <= vp->inputs_count; i++) { if (vp->inputs[i].sysval) continue; if (vp->inputs[i].compmask) { struct pipe_vertex_element *elem = &vtx->vtx->pipe[i]; const struct pipe_vertex_buffer *vb = &vtx->vertexbuf.vb[elem->vertex_buffer_index]; struct fd_resource *rsc = fd_resource(vb->buffer.resource); enum pipe_format pfmt = elem->src_format; enum a6xx_vtx_fmt fmt = fd6_pipe2vtx(pfmt); bool isint = util_format_is_pure_integer(pfmt); uint32_t off = vb->buffer_offset + elem->src_offset; uint32_t size = fd_bo_size(rsc->bo) - off; debug_assert(fmt != ~0); #ifdef DEBUG /* see dEQP-GLES31.stress.vertex_attribute_binding.buffer_bounds.bind_vertex_buffer_offset_near_wrap_10 */ if (off > fd_bo_size(rsc->bo)) continue; #endif OUT_PKT4(ring, REG_A6XX_VFD_FETCH(j), 4); OUT_RELOC(ring, rsc->bo, off, 0, 0); OUT_RING(ring, size); /* VFD_FETCH[j].SIZE */ OUT_RING(ring, vb->stride); /* VFD_FETCH[j].STRIDE */ OUT_PKT4(ring, REG_A6XX_VFD_DECODE(j), 2); OUT_RING(ring, A6XX_VFD_DECODE_INSTR_IDX(j) | A6XX_VFD_DECODE_INSTR_FORMAT(fmt) | COND(elem->instance_divisor, A6XX_VFD_DECODE_INSTR_INSTANCED) | A6XX_VFD_DECODE_INSTR_SWAP(fd6_pipe2swap(pfmt)) | A6XX_VFD_DECODE_INSTR_UNK30 | COND(!isint, A6XX_VFD_DECODE_INSTR_FLOAT)); OUT_RING(ring, MAX2(1, elem->instance_divisor)); /* VFD_DECODE[j].STEP_RATE */ OUT_PKT4(ring, REG_A6XX_VFD_DEST_CNTL(j), 1); OUT_RING(ring, A6XX_VFD_DEST_CNTL_INSTR_WRITEMASK(vp->inputs[i].compmask) | A6XX_VFD_DEST_CNTL_INSTR_REGID(vp->inputs[i].regid)); j++; } } OUT_PKT4(ring, REG_A6XX_VFD_CONTROL_0, 1); OUT_RING(ring, A6XX_VFD_CONTROL_0_VTXCNT(j) | (j << 8)); return ring; } static struct fd_ringbuffer * build_lrz(struct fd6_emit *emit, bool binning_pass) { struct fd6_zsa_stateobj *zsa = fd6_zsa_stateobj(emit->ctx->zsa); struct pipe_framebuffer_state *pfb = &emit->ctx->batch->framebuffer; struct fd_resource *rsc = fd_resource(pfb->zsbuf->texture); uint32_t gras_lrz_cntl = zsa->gras_lrz_cntl; uint32_t rb_lrz_cntl = zsa->rb_lrz_cntl; struct fd_ringbuffer *ring = fd_submit_new_ringbuffer(emit->ctx->batch->submit, 16, FD_RINGBUFFER_STREAMING); if (emit->no_lrz_write || !rsc->lrz || !rsc->lrz_valid) { gras_lrz_cntl = 0; rb_lrz_cntl = 0; } else if (binning_pass && zsa->lrz_write) { gras_lrz_cntl |= A6XX_GRAS_LRZ_CNTL_LRZ_WRITE; } OUT_PKT4(ring, REG_A6XX_GRAS_LRZ_CNTL, 1); OUT_RING(ring, gras_lrz_cntl); OUT_PKT4(ring, REG_A6XX_RB_LRZ_CNTL, 1); OUT_RING(ring, rb_lrz_cntl); return ring; } static void fd6_emit_streamout(struct fd_ringbuffer *ring, struct fd6_emit *emit, struct ir3_stream_output_info *info) { struct fd_context *ctx = emit->ctx; const struct fd6_program_state *prog = fd6_emit_get_prog(emit); struct fd_streamout_stateobj *so = &ctx->streamout; emit->streamout_mask = 0; for (unsigned i = 0; i < so->num_targets; i++) { struct pipe_stream_output_target *target = so->targets[i]; if (!target) continue; unsigned offset = (so->offsets[i] * info->stride[i] * 4) + target->buffer_offset; OUT_PKT4(ring, REG_A6XX_VPC_SO_BUFFER_BASE_LO(i), 3); /* VPC_SO[i].BUFFER_BASE_LO: */ OUT_RELOCW(ring, fd_resource(target->buffer)->bo, 0, 0, 0); OUT_RING(ring, target->buffer_size + offset); OUT_PKT4(ring, REG_A6XX_VPC_SO_BUFFER_OFFSET(i), 3); OUT_RING(ring, offset); /* VPC_SO[i].FLUSH_BASE_LO/HI: */ // TODO just give hw a dummy addr for now.. we should // be using this an then CP_MEM_TO_REG to set the // VPC_SO[i].BUFFER_OFFSET for the next draw.. OUT_RELOCW(ring, fd6_context(ctx)->blit_mem, 0x100, 0, 0); emit->streamout_mask |= (1 << i); } if (emit->streamout_mask) { const struct fd6_streamout_state *tf = &prog->tf; OUT_PKT7(ring, CP_CONTEXT_REG_BUNCH, 12 + (2 * tf->prog_count)); OUT_RING(ring, REG_A6XX_VPC_SO_BUF_CNTL); OUT_RING(ring, tf->vpc_so_buf_cntl); OUT_RING(ring, REG_A6XX_VPC_SO_NCOMP(0)); OUT_RING(ring, tf->ncomp[0]); OUT_RING(ring, REG_A6XX_VPC_SO_NCOMP(1)); OUT_RING(ring, tf->ncomp[1]); OUT_RING(ring, REG_A6XX_VPC_SO_NCOMP(2)); OUT_RING(ring, tf->ncomp[2]); OUT_RING(ring, REG_A6XX_VPC_SO_NCOMP(3)); OUT_RING(ring, tf->ncomp[3]); OUT_RING(ring, REG_A6XX_VPC_SO_CNTL); OUT_RING(ring, A6XX_VPC_SO_CNTL_ENABLE); for (unsigned i = 0; i < tf->prog_count; i++) { OUT_RING(ring, REG_A6XX_VPC_SO_PROG); OUT_RING(ring, tf->prog[i]); } OUT_PKT4(ring, REG_A6XX_VPC_SO_OVERRIDE, 1); OUT_RING(ring, 0x0); } else { OUT_PKT7(ring, CP_CONTEXT_REG_BUNCH, 4); OUT_RING(ring, REG_A6XX_VPC_SO_CNTL); OUT_RING(ring, 0); OUT_RING(ring, REG_A6XX_VPC_SO_BUF_CNTL); OUT_RING(ring, 0); OUT_PKT4(ring, REG_A6XX_VPC_SO_OVERRIDE, 1); OUT_RING(ring, A6XX_VPC_SO_OVERRIDE_SO_DISABLE); } } void fd6_emit_state(struct fd_ringbuffer *ring, struct fd6_emit *emit) { struct fd_context *ctx = emit->ctx; struct pipe_framebuffer_state *pfb = &ctx->batch->framebuffer; const struct fd6_program_state *prog = fd6_emit_get_prog(emit); const struct ir3_shader_variant *vp = emit->vs; const struct ir3_shader_variant *fp = emit->fs; const enum fd_dirty_3d_state dirty = emit->dirty; bool needs_border = false; emit_marker6(ring, 5); /* NOTE: we track fb_read differently than _BLEND_ENABLED since * we might at some point decide to do sysmem in some cases when * blend is enabled: */ if (fp->fb_read) ctx->batch->gmem_reason |= FD_GMEM_FB_READ; if (emit->dirty & (FD_DIRTY_VTXBUF | FD_DIRTY_VTXSTATE)) { struct fd_ringbuffer *state; state = build_vbo_state(emit, emit->vs); fd6_emit_add_group(emit, state, FD6_GROUP_VBO, 0x6); fd_ringbuffer_del(state); state = build_vbo_state(emit, emit->bs); fd6_emit_add_group(emit, state, FD6_GROUP_VBO_BINNING, 0x1); fd_ringbuffer_del(state); } if (dirty & FD_DIRTY_ZSA) { struct fd6_zsa_stateobj *zsa = fd6_zsa_stateobj(ctx->zsa); if (util_format_is_pure_integer(pipe_surface_format(pfb->cbufs[0]))) fd6_emit_add_group(emit, zsa->stateobj_no_alpha, FD6_GROUP_ZSA, 0x7); else fd6_emit_add_group(emit, zsa->stateobj, FD6_GROUP_ZSA, 0x7); } if ((dirty & (FD_DIRTY_ZSA | FD_DIRTY_PROG)) && pfb->zsbuf) { struct fd_ringbuffer *state; state = build_lrz(emit, false); fd6_emit_add_group(emit, state, FD6_GROUP_LRZ, 0x6); fd_ringbuffer_del(state); state = build_lrz(emit, true); fd6_emit_add_group(emit, state, FD6_GROUP_LRZ_BINNING, 0x1); fd_ringbuffer_del(state); } if (dirty & FD_DIRTY_STENCIL_REF) { struct pipe_stencil_ref *sr = &ctx->stencil_ref; OUT_PKT4(ring, REG_A6XX_RB_STENCILREF, 1); OUT_RING(ring, A6XX_RB_STENCILREF_REF(sr->ref_value[0]) | A6XX_RB_STENCILREF_BFREF(sr->ref_value[1])); } /* NOTE: scissor enabled bit is part of rasterizer state: */ if (dirty & (FD_DIRTY_SCISSOR | FD_DIRTY_RASTERIZER)) { struct pipe_scissor_state *scissor = fd_context_get_scissor(ctx); OUT_PKT4(ring, REG_A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0, 2); OUT_RING(ring, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(scissor->minx) | A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(scissor->miny)); OUT_RING(ring, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(scissor->maxx - 1) | A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(scissor->maxy - 1)); ctx->batch->max_scissor.minx = MIN2(ctx->batch->max_scissor.minx, scissor->minx); ctx->batch->max_scissor.miny = MIN2(ctx->batch->max_scissor.miny, scissor->miny); ctx->batch->max_scissor.maxx = MAX2(ctx->batch->max_scissor.maxx, scissor->maxx); ctx->batch->max_scissor.maxy = MAX2(ctx->batch->max_scissor.maxy, scissor->maxy); } if (dirty & FD_DIRTY_VIEWPORT) { struct pipe_scissor_state *scissor = &ctx->viewport_scissor; OUT_PKT4(ring, REG_A6XX_GRAS_CL_VPORT_XOFFSET_0, 6); OUT_RING(ring, A6XX_GRAS_CL_VPORT_XOFFSET_0(ctx->viewport.translate[0])); OUT_RING(ring, A6XX_GRAS_CL_VPORT_XSCALE_0(ctx->viewport.scale[0])); OUT_RING(ring, A6XX_GRAS_CL_VPORT_YOFFSET_0(ctx->viewport.translate[1])); OUT_RING(ring, A6XX_GRAS_CL_VPORT_YSCALE_0(ctx->viewport.scale[1])); OUT_RING(ring, A6XX_GRAS_CL_VPORT_ZOFFSET_0(ctx->viewport.translate[2])); OUT_RING(ring, A6XX_GRAS_CL_VPORT_ZSCALE_0(ctx->viewport.scale[2])); OUT_PKT4(ring, REG_A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0, 2); OUT_RING(ring, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(scissor->minx) | A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(scissor->miny)); OUT_RING(ring, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(scissor->maxx - 1) | A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(scissor->maxy - 1)); unsigned guardband_x = fd_calc_guardband(scissor->maxx - scissor->minx); unsigned guardband_y = fd_calc_guardband(scissor->maxy - scissor->miny); OUT_PKT4(ring, REG_A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ, 1); OUT_RING(ring, A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_HORZ(guardband_x) | A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_VERT(guardband_y)); } if (dirty & FD_DIRTY_PROG) { fd6_emit_add_group(emit, prog->stateobj, FD6_GROUP_PROG, 0x6); fd6_emit_add_group(emit, prog->binning_stateobj, FD6_GROUP_PROG_BINNING, 0x1); /* emit remaining non-stateobj program state, ie. what depends * on other emit state, so cannot be pre-baked. This could * be moved to a separate stateobj which is dynamically * created. */ fd6_program_emit(ring, emit); } if (dirty & FD_DIRTY_RASTERIZER) { struct fd6_rasterizer_stateobj *rasterizer = fd6_rasterizer_stateobj(ctx->rasterizer); fd6_emit_add_group(emit, rasterizer->stateobj, FD6_GROUP_RASTERIZER, 0x7); } /* Since the primitive restart state is not part of a tracked object, we * re-emit this register every time. */ if (emit->info && ctx->rasterizer) { struct fd6_rasterizer_stateobj *rasterizer = fd6_rasterizer_stateobj(ctx->rasterizer); OUT_PKT4(ring, REG_A6XX_PC_UNKNOWN_9806, 1); OUT_RING(ring, 0); OUT_PKT4(ring, REG_A6XX_PC_UNKNOWN_9990, 1); OUT_RING(ring, 0); OUT_PKT4(ring, REG_A6XX_VFD_UNKNOWN_A008, 1); OUT_RING(ring, 0); OUT_PKT4(ring, REG_A6XX_PC_PRIMITIVE_CNTL_0, 1); OUT_RING(ring, rasterizer->pc_primitive_cntl | COND(emit->info->primitive_restart && emit->info->index_size, A6XX_PC_PRIMITIVE_CNTL_0_PRIMITIVE_RESTART)); } if (dirty & (FD_DIRTY_FRAMEBUFFER | FD_DIRTY_RASTERIZER | FD_DIRTY_PROG)) { unsigned nr = pfb->nr_cbufs; if (ctx->rasterizer->rasterizer_discard) nr = 0; OUT_PKT4(ring, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2); OUT_RING(ring, COND(fp->writes_pos, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z) | COND(fp->writes_smask && pfb->samples > 1, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_SAMPMASK)); OUT_RING(ring, A6XX_RB_FS_OUTPUT_CNTL1_MRT(nr)); OUT_PKT4(ring, REG_A6XX_SP_FS_OUTPUT_CNTL1, 1); OUT_RING(ring, A6XX_SP_FS_OUTPUT_CNTL1_MRT(nr)); } #define DIRTY_CONST (FD_DIRTY_SHADER_PROG | FD_DIRTY_SHADER_CONST | \ FD_DIRTY_SHADER_SSBO | FD_DIRTY_SHADER_IMAGE) if (ctx->dirty_shader[PIPE_SHADER_VERTEX] & DIRTY_CONST) { struct fd_ringbuffer *vsconstobj = fd_submit_new_ringbuffer( ctx->batch->submit, 0x1000, FD_RINGBUFFER_STREAMING); OUT_WFI5(vsconstobj); ir3_emit_vs_consts(vp, vsconstobj, ctx, emit->info); fd6_emit_add_group(emit, vsconstobj, FD6_GROUP_VS_CONST, 0x7); fd_ringbuffer_del(vsconstobj); } if (ctx->dirty_shader[PIPE_SHADER_FRAGMENT] & DIRTY_CONST) { struct fd_ringbuffer *fsconstobj = fd_submit_new_ringbuffer( ctx->batch->submit, 0x1000, FD_RINGBUFFER_STREAMING); OUT_WFI5(fsconstobj); ir3_emit_fs_consts(fp, fsconstobj, ctx); fd6_emit_add_group(emit, fsconstobj, FD6_GROUP_FS_CONST, 0x6); fd_ringbuffer_del(fsconstobj); } struct ir3_stream_output_info *info = &vp->shader->stream_output; if (info->num_outputs) fd6_emit_streamout(ring, emit, info); if (dirty & FD_DIRTY_BLEND) { struct fd6_blend_stateobj *blend = fd6_blend_stateobj(ctx->blend); uint32_t i; for (i = 0; i < pfb->nr_cbufs; i++) { enum pipe_format format = pipe_surface_format(pfb->cbufs[i]); bool is_int = util_format_is_pure_integer(format); bool has_alpha = util_format_has_alpha(format); uint32_t control = blend->rb_mrt[i].control; uint32_t blend_control = blend->rb_mrt[i].blend_control_alpha; if (is_int) { control &= A6XX_RB_MRT_CONTROL_COMPONENT_ENABLE__MASK; control |= A6XX_RB_MRT_CONTROL_ROP_CODE(ROP_COPY); } if (has_alpha) { blend_control |= blend->rb_mrt[i].blend_control_rgb; } else { blend_control |= blend->rb_mrt[i].blend_control_no_alpha_rgb; control &= ~A6XX_RB_MRT_CONTROL_BLEND2; } OUT_PKT4(ring, REG_A6XX_RB_MRT_CONTROL(i), 1); OUT_RING(ring, control); OUT_PKT4(ring, REG_A6XX_RB_MRT_BLEND_CONTROL(i), 1); OUT_RING(ring, blend_control); } OUT_PKT4(ring, REG_A6XX_SP_BLEND_CNTL, 1); OUT_RING(ring, blend->sp_blend_cntl); } if (dirty & (FD_DIRTY_BLEND | FD_DIRTY_SAMPLE_MASK)) { struct fd6_blend_stateobj *blend = fd6_blend_stateobj(ctx->blend); OUT_PKT4(ring, REG_A6XX_RB_BLEND_CNTL, 1); OUT_RING(ring, blend->rb_blend_cntl | A6XX_RB_BLEND_CNTL_SAMPLE_MASK(ctx->sample_mask)); } if (dirty & FD_DIRTY_BLEND_COLOR) { struct pipe_blend_color *bcolor = &ctx->blend_color; OUT_PKT4(ring, REG_A6XX_RB_BLEND_RED_F32, 4); OUT_RING(ring, A6XX_RB_BLEND_RED_F32(bcolor->color[0])); OUT_RING(ring, A6XX_RB_BLEND_GREEN_F32(bcolor->color[1])); OUT_RING(ring, A6XX_RB_BLEND_BLUE_F32(bcolor->color[2])); OUT_RING(ring, A6XX_RB_BLEND_ALPHA_F32(bcolor->color[3])); } needs_border |= fd6_emit_combined_textures(ring, emit, PIPE_SHADER_VERTEX, vp); needs_border |= fd6_emit_combined_textures(ring, emit, PIPE_SHADER_FRAGMENT, fp); if (needs_border) emit_border_color(ctx, ring); if (ctx->dirty_shader[PIPE_SHADER_FRAGMENT] & (FD_DIRTY_SHADER_SSBO | FD_DIRTY_SHADER_IMAGE)) { struct fd_ringbuffer *state = fd6_build_ibo_state(ctx, fp, PIPE_SHADER_FRAGMENT); struct fd_ringbuffer *obj = fd_submit_new_ringbuffer( ctx->batch->submit, 9 * 4, FD_RINGBUFFER_STREAMING); const struct ir3_ibo_mapping *mapping = &fp->image_mapping; OUT_PKT7(obj, CP_LOAD_STATE6, 3); OUT_RING(obj, CP_LOAD_STATE6_0_DST_OFF(0) | CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) | CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) | CP_LOAD_STATE6_0_STATE_BLOCK(SB6_IBO) | CP_LOAD_STATE6_0_NUM_UNIT(mapping->num_ibo)); OUT_RB(obj, state); OUT_PKT4(obj, REG_A6XX_SP_IBO_LO, 2); OUT_RB(obj, state); OUT_PKT4(obj, REG_A6XX_SP_IBO_COUNT, 1); OUT_RING(obj, mapping->num_ibo); fd6_emit_add_group(emit, obj, FD6_GROUP_IBO, 0x7); fd_ringbuffer_del(obj); fd_ringbuffer_del(state); } if (emit->num_groups > 0) { OUT_PKT7(ring, CP_SET_DRAW_STATE, 3 * emit->num_groups); for (unsigned i = 0; i < emit->num_groups; i++) { struct fd6_state_group *g = &emit->groups[i]; unsigned n = fd_ringbuffer_size(g->stateobj) / 4; if (n == 0) { OUT_RING(ring, CP_SET_DRAW_STATE__0_COUNT(0) | CP_SET_DRAW_STATE__0_DISABLE | CP_SET_DRAW_STATE__0_ENABLE_MASK(g->enable_mask) | CP_SET_DRAW_STATE__0_GROUP_ID(g->group_id)); OUT_RING(ring, 0x00000000); OUT_RING(ring, 0x00000000); } else { OUT_RING(ring, CP_SET_DRAW_STATE__0_COUNT(n) | CP_SET_DRAW_STATE__0_ENABLE_MASK(g->enable_mask) | CP_SET_DRAW_STATE__0_GROUP_ID(g->group_id)); OUT_RB(ring, g->stateobj); } fd_ringbuffer_del(g->stateobj); } emit->num_groups = 0; } } void fd6_emit_cs_state(struct fd_context *ctx, struct fd_ringbuffer *ring, struct ir3_shader_variant *cp) { enum fd_dirty_shader_state dirty = ctx->dirty_shader[PIPE_SHADER_COMPUTE]; if (dirty & (FD_DIRTY_SHADER_TEX | FD_DIRTY_SHADER_PROG | FD_DIRTY_SHADER_IMAGE | FD_DIRTY_SHADER_SSBO)) { struct fd_texture_stateobj *tex = &ctx->tex[PIPE_SHADER_COMPUTE]; unsigned bcolor_offset = fd6_border_color_offset(ctx, PIPE_SHADER_COMPUTE, tex); bool needs_border = fd6_emit_textures(ctx->pipe, ring, PIPE_SHADER_COMPUTE, tex, bcolor_offset, cp, ctx); if (needs_border) emit_border_color(ctx, ring); OUT_PKT4(ring, REG_A6XX_SP_VS_TEX_COUNT, 1); OUT_RING(ring, 0); OUT_PKT4(ring, REG_A6XX_SP_HS_TEX_COUNT, 1); OUT_RING(ring, 0); OUT_PKT4(ring, REG_A6XX_SP_DS_TEX_COUNT, 1); OUT_RING(ring, 0); OUT_PKT4(ring, REG_A6XX_SP_GS_TEX_COUNT, 1); OUT_RING(ring, 0); OUT_PKT4(ring, REG_A6XX_SP_FS_TEX_COUNT, 1); OUT_RING(ring, 0); } if (dirty & (FD_DIRTY_SHADER_SSBO | FD_DIRTY_SHADER_IMAGE)) { struct fd_ringbuffer *state = fd6_build_ibo_state(ctx, cp, PIPE_SHADER_COMPUTE); const struct ir3_ibo_mapping *mapping = &cp->image_mapping; OUT_PKT7(ring, CP_LOAD_STATE6_FRAG, 3); OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(0) | CP_LOAD_STATE6_0_STATE_TYPE(ST6_IBO) | CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) | CP_LOAD_STATE6_0_STATE_BLOCK(SB6_CS_SHADER) | CP_LOAD_STATE6_0_NUM_UNIT(mapping->num_ibo)); OUT_RB(ring, state); OUT_PKT4(ring, REG_A6XX_SP_CS_IBO_LO, 2); OUT_RB(ring, state); OUT_PKT4(ring, REG_A6XX_SP_CS_IBO_COUNT, 1); OUT_RING(ring, mapping->num_ibo); fd_ringbuffer_del(state); } } /* emit setup at begin of new cmdstream buffer (don't rely on previous * state, there could have been a context switch between ioctls): */ void fd6_emit_restore(struct fd_batch *batch, struct fd_ringbuffer *ring) { //struct fd_context *ctx = batch->ctx; fd6_cache_inv(batch, ring); OUT_PKT4(ring, REG_A6XX_HLSQ_UPDATE_CNTL, 1); OUT_RING(ring, 0xfffff); /* t7 opcode: CP_PERFCOUNTER_ACTION (50) (4 dwords) 0000000500024048: 70d08003 00000000 001c5000 00000005 t7 opcode: CP_PERFCOUNTER_ACTION (50) (4 dwords) 0000000500024058: 70d08003 00000010 001c7000 00000005 t7 opcode: CP_WAIT_FOR_IDLE (26) (1 dwords) 0000000500024068: 70268000 */ WRITE(REG_A6XX_RB_CCU_CNTL, 0x7c400004); WRITE(REG_A6XX_RB_UNKNOWN_8E04, 0x00100000); WRITE(REG_A6XX_SP_UNKNOWN_AE04, 0x8); WRITE(REG_A6XX_SP_UNKNOWN_AE00, 0); WRITE(REG_A6XX_SP_UNKNOWN_AE0F, 0x3f); WRITE(REG_A6XX_SP_UNKNOWN_B605, 0x44); WRITE(REG_A6XX_SP_UNKNOWN_B600, 0x100000); WRITE(REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80); WRITE(REG_A6XX_HLSQ_UNKNOWN_BE01, 0); WRITE(REG_A6XX_VPC_UNKNOWN_9600, 0); WRITE(REG_A6XX_GRAS_UNKNOWN_8600, 0x880); WRITE(REG_A6XX_HLSQ_UNKNOWN_BE04, 0x80000); WRITE(REG_A6XX_SP_UNKNOWN_AE03, 0x1430); WRITE(REG_A6XX_SP_IBO_COUNT, 0); WRITE(REG_A6XX_SP_UNKNOWN_B182, 0); WRITE(REG_A6XX_HLSQ_UNKNOWN_BB11, 0); WRITE(REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000); WRITE(REG_A6XX_UCHE_CLIENT_PF, 4); WRITE(REG_A6XX_RB_UNKNOWN_8E01, 0x1); WRITE(REG_A6XX_SP_UNKNOWN_AB00, 0x5); WRITE(REG_A6XX_VFD_UNKNOWN_A009, 0x00000001); WRITE(REG_A6XX_RB_UNKNOWN_8811, 0x00000010); WRITE(REG_A6XX_PC_MODE_CNTL, 0x1f); OUT_PKT4(ring, REG_A6XX_RB_SRGB_CNTL, 1); OUT_RING(ring, 0); WRITE(REG_A6XX_GRAS_UNKNOWN_8101, 0); WRITE(REG_A6XX_GRAS_SAMPLE_CNTL, 0); WRITE(REG_A6XX_GRAS_UNKNOWN_8110, 0x2); WRITE(REG_A6XX_RB_RENDER_CONTROL0, 0x401); WRITE(REG_A6XX_RB_RENDER_CONTROL1, 0); WRITE(REG_A6XX_RB_FS_OUTPUT_CNTL0, 0); WRITE(REG_A6XX_RB_SAMPLE_CNTL, 0); WRITE(REG_A6XX_RB_UNKNOWN_8818, 0); WRITE(REG_A6XX_RB_UNKNOWN_8819, 0); WRITE(REG_A6XX_RB_UNKNOWN_881A, 0); WRITE(REG_A6XX_RB_UNKNOWN_881B, 0); WRITE(REG_A6XX_RB_UNKNOWN_881C, 0); WRITE(REG_A6XX_RB_UNKNOWN_881D, 0); WRITE(REG_A6XX_RB_UNKNOWN_881E, 0); WRITE(REG_A6XX_RB_UNKNOWN_88F0, 0); WRITE(REG_A6XX_VPC_UNKNOWN_9101, 0xffff00); WRITE(REG_A6XX_VPC_UNKNOWN_9107, 0); WRITE(REG_A6XX_VPC_UNKNOWN_9236, A6XX_VPC_UNKNOWN_9236_POINT_COORD_INVERT(0)); WRITE(REG_A6XX_VPC_UNKNOWN_9300, 0); WRITE(REG_A6XX_VPC_SO_OVERRIDE, A6XX_VPC_SO_OVERRIDE_SO_DISABLE); WRITE(REG_A6XX_PC_UNKNOWN_9801, 0); WRITE(REG_A6XX_PC_UNKNOWN_9806, 0); WRITE(REG_A6XX_PC_UNKNOWN_9980, 0); WRITE(REG_A6XX_PC_UNKNOWN_9B06, 0); WRITE(REG_A6XX_PC_UNKNOWN_9B06, 0); WRITE(REG_A6XX_SP_UNKNOWN_A81B, 0); WRITE(REG_A6XX_SP_UNKNOWN_B183, 0); WRITE(REG_A6XX_GRAS_UNKNOWN_8099, 0); WRITE(REG_A6XX_GRAS_UNKNOWN_809B, 0); WRITE(REG_A6XX_GRAS_UNKNOWN_80A0, 2); WRITE(REG_A6XX_GRAS_UNKNOWN_80AF, 0); WRITE(REG_A6XX_VPC_UNKNOWN_9210, 0); WRITE(REG_A6XX_VPC_UNKNOWN_9211, 0); WRITE(REG_A6XX_VPC_UNKNOWN_9602, 0); WRITE(REG_A6XX_PC_UNKNOWN_9981, 0x3); WRITE(REG_A6XX_PC_UNKNOWN_9E72, 0); WRITE(REG_A6XX_VPC_UNKNOWN_9108, 0x3); WRITE(REG_A6XX_SP_TP_UNKNOWN_B304, 0); /* NOTE blob seems to (mostly?) use 0xb2 for SP_TP_UNKNOWN_B309 * but this seems to kill texture gather offsets. */ WRITE(REG_A6XX_SP_TP_UNKNOWN_B309, 0xa2); WRITE(REG_A6XX_RB_UNKNOWN_8804, 0); WRITE(REG_A6XX_GRAS_UNKNOWN_80A4, 0); WRITE(REG_A6XX_GRAS_UNKNOWN_80A5, 0); WRITE(REG_A6XX_GRAS_UNKNOWN_80A6, 0); WRITE(REG_A6XX_RB_UNKNOWN_8805, 0); WRITE(REG_A6XX_RB_UNKNOWN_8806, 0); WRITE(REG_A6XX_RB_UNKNOWN_8878, 0); WRITE(REG_A6XX_RB_UNKNOWN_8879, 0); WRITE(REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc); emit_marker6(ring, 7); OUT_PKT4(ring, REG_A6XX_VFD_MODE_CNTL, 1); OUT_RING(ring, 0x00000000); /* VFD_MODE_CNTL */ WRITE(REG_A6XX_VFD_UNKNOWN_A008, 0); OUT_PKT4(ring, REG_A6XX_PC_MODE_CNTL, 1); OUT_RING(ring, 0x0000001f); /* PC_MODE_CNTL */ /* we don't use this yet.. probably best to disable.. */ OUT_PKT7(ring, CP_SET_DRAW_STATE, 3); OUT_RING(ring, CP_SET_DRAW_STATE__0_COUNT(0) | CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS | CP_SET_DRAW_STATE__0_GROUP_ID(0)); OUT_RING(ring, CP_SET_DRAW_STATE__1_ADDR_LO(0)); OUT_RING(ring, CP_SET_DRAW_STATE__2_ADDR_HI(0)); OUT_PKT4(ring, REG_A6XX_VPC_SO_BUF_CNTL, 1); OUT_RING(ring, 0x00000000); /* VPC_SO_BUF_CNTL */ OUT_PKT4(ring, REG_A6XX_SP_HS_CTRL_REG0, 1); OUT_RING(ring, 0x00000000); OUT_PKT4(ring, REG_A6XX_SP_GS_CTRL_REG0, 1); OUT_RING(ring, 0x00000000); OUT_PKT4(ring, REG_A6XX_GRAS_LRZ_CNTL, 1); OUT_RING(ring, 0x00000000); OUT_PKT4(ring, REG_A6XX_RB_LRZ_CNTL, 1); OUT_RING(ring, 0x00000000); } static void fd6_mem_to_mem(struct fd_ringbuffer *ring, struct pipe_resource *dst, unsigned dst_off, struct pipe_resource *src, unsigned src_off, unsigned sizedwords) { struct fd_bo *src_bo = fd_resource(src)->bo; struct fd_bo *dst_bo = fd_resource(dst)->bo; unsigned i; for (i = 0; i < sizedwords; i++) { OUT_PKT7(ring, CP_MEM_TO_MEM, 5); OUT_RING(ring, 0x00000000); OUT_RELOCW(ring, dst_bo, dst_off, 0, 0); OUT_RELOC (ring, src_bo, src_off, 0, 0); dst_off += 4; src_off += 4; } } /* this is *almost* the same as fd6_cache_flush().. which I guess * could be re-worked to be something a bit more generic w/ param * indicating what needs to be flushed.. although that would mean * figuring out which events trigger what state to flush.. */ static void fd6_framebuffer_barrier(struct fd_context *ctx) { struct fd6_context *fd6_ctx = fd6_context(ctx); struct fd_batch *batch = ctx->batch; struct fd_ringbuffer *ring = batch->draw; unsigned seqno; seqno = fd6_event_write(batch, ring, CACHE_FLUSH_AND_INV_EVENT, true); OUT_PKT7(ring, CP_WAIT_REG_MEM, 6); OUT_RING(ring, 0x00000013); OUT_RELOC(ring, fd6_ctx->blit_mem, 0, 0, 0); OUT_RING(ring, seqno); OUT_RING(ring, 0xffffffff); OUT_RING(ring, 0x00000010); fd6_event_write(batch, ring, UNK_1D, true); fd6_event_write(batch, ring, UNK_1C, true); seqno = fd6_event_write(batch, ring, CACHE_FLUSH_TS, true); fd6_event_write(batch, ring, 0x31, false); OUT_PKT7(ring, CP_UNK_A6XX_14, 4); OUT_RING(ring, 0x00000000); OUT_RELOC(ring, fd6_ctx->blit_mem, 0, 0, 0); OUT_RING(ring, seqno); } void fd6_emit_init(struct pipe_context *pctx) { struct fd_context *ctx = fd_context(pctx); ctx->emit_const = fd6_emit_const; ctx->emit_const_bo = fd6_emit_const_bo; ctx->emit_ib = fd6_emit_ib; ctx->mem_to_mem = fd6_mem_to_mem; ctx->framebuffer_barrier = fd6_framebuffer_barrier; }