C Utilities Documentation

Eric Vought
QLUE Consulting, Inc.

August 22, 1998

Contents

1

Introduction 4
1.1 Library and Source Code Organization 5
1.2 Test Framework. 6
1.3 Conventions oo i it e 7
1.4 Licensing 7
141 Preamble 7
1.4.2 Definitions oo 8
143 License e 8

System Call and Standard Library Replacement Functions 11

2.1
2.2
2.3

2.4

Description L 11
Interface Summary oL oL oL 12
Member Descriptions L oo 13
231 bzero() ... 13
232 mememp() 13
233 Awsleep().o 13
234 snprintf() Lo 14
23,5 wsnprintf() Lo Lo 15
236 asprintf() L 15
23.7 wasprintf() oL Lo 15
2.3.8 strecasecmp() Lo 16
239 strncasecmp()o 16
2310 strdup() Lo 16
2311 Strspn() . ..o e e 16
2.3.12 strespn() ... L oo 16
2313 strstr() 17
Notes 17
2.4.1 Future Additions oL 17

CONTENTS

3 Hash Table
3.1 Description

3.2 Imterface Summary

3.3 Member Descriptions 0.

3.3.1 new()

332 clear()
333 delete()

3.34 add()
3.3.5 set()

33.6 remove(). . ..o
337 exists()
338 fetch()
339 resize()

3.3.10 info()

3.3.11 checkinvariants().o
3.3.12 Hash.Table
3.3.13 DEFAULT_INITIALSIZE

3.4 Notes . ..

341 General
3.4.2 Hash Algorithm 0 L.
3.4.3 Lookup Caching

4 Net Utils
4.1 Description

4.2 Interface Summary oo

4.3 Member Descriptions oL oL
431 =xsocket()
432 xbind()
433 xlisten()
434 xaccept()

5 String Utils
5.1 Description

18
18
18
19
19
19
20
20
20
20
21
21
21
21
22
22
23
23
23
23
23

24
24
24
25
25
25
25
25

26

CONTENTS 3
5.2 Interface Summary oo 26
5.3 Member Descriptions 27

5.3.1 xsoprintf() L 27
5.3.2 xstrnepy() - - - .- oo 28
533 xstrdup() 28
5.3.4 xstrcasecmp() . . . o .o e e 28
5.3.5 xstrncasecmp()o Lo 28
536 SPUHE() . o o ot 29
53.7 rspn() 29
5.3.8 respn() ... e 29
539 triml() 29
5310 trimr() 30
5311 trim() 30
5312 glue() 30
5.3.13 toupper 30

6 Utilities 31
6.1 Interface Summary 32
6.2 Member Descriptions oL 33

6.2.1 bool 33
6.2.2 fatalerror() 33
6.2.3 daemonize() 33
6.24 xfork() 34
6.2.5 xmalloc() 34
6.2.6 xcalloc() L 34
6.2.7 xrealloc() 34
6.2.8 xmemdup() 34
6.29 scalloc() 35
6.2.10 mdamalloc() Lo 35
6.2.11 xgetlogin() 35
6.2.12 isdaemon proco 35
6.2.13 fatalerrorloglevel 35

1. Introduction

This document describes how to use and extend the QCI C Language Utilities
Library.

This library is an in-house utilities package used by QCI for internal and ex-
ternal software development. The library contains standard data structures,
wrappers over standard /ibc functions and POSIX system calls, and collections
of commonly used but difficult to implement algorithms.

The C Utilities library was constructed to provide a solid, portable, consistent,
and well tested foundation for rapid deployment of quality software products.
The library is intended to be used in three overlapping roles:

1. The library provides a portability layer, providing or replacing useful sys-
tem/library calls that are not present or do not function correctly on most
platforms. On platforms where the system/library routines are present
and work correctly, the native routine is used directly with no additional
overhead.

2. The library provides a set of high quality, pre-tested components that
can shorten development/testing time and raise the overall quality of the
deployed code.

3. The library provides a set of generic, general purpose, structured com-
ponents that can be used during rapid prototyping or in the early de-
velopmental stages of a project in order to test and finalize the internal
interfaces before substituting optimized, special-purpose code.

Some of the system call replacements were borrowed from public domain sources.
In particular, this product includes software developed by the Apache Group
for use in the Apache HTTP server project (http://www.apache.org/). Only
software that would not limit the redistributability of this library was considered
for inclusion, and all included software has been examined and modified as
necessary to meet QCI standards.

Each of the modules in this package is written to stringent coding standards
and exhaustively tested, both using standard black box testing frameworks and
white box code analysis tools. The white box analysis tool (currently X/Open’s
CI-Report) is used to locate potentially dangerous or ill-advised practices which
can and do work when tested under controlled conditions but may behave un-
predictably under unusual circumstances or as the surrounding code is modified.
Additionally, the white box testing tool is used to verify that all of the code in
the utilties library is standards conformant and readily portable.

CHAPTER 1. INTRODUCTION)

Studies with SmallTalk have shown that a faster development process using well-
designed, pre-packaged, and pre-tested tools in an interpreted language allows
more time for careful profiling and often results in faster performance than code
written in tool-poor compiled environments (e.g.: C/C++).! This library is an
attempt to apply a similar approach to development in C.

As compilers and optimization techniques improve it has been found that re-
moval of function overhead, elimination of subexpressions and other fine tuning
techniques are best left to a good compiler given appropriate hints (use of const,
defining utility functions inline, etc.). In most cases in an application, the per-
formance overhead of using library defined functions over hand-coded routines
is negligible. The overhead of a function call scarcely matters when the next
call blocks on an I/O request or if the utility function adds a small constant
overhead to an already time consuming internal process.

Even within critical sections of code, like internal processing loops and lengthy
non-interactive calculations, the utilities library routines can still be appropriate
during the development phase. After the code is complete, tested, and func-
tional, a profiler can be used to point out the most critical sections of code
which can then be re-implemented— leaving most of the library calls in place.

1.1 Library and Source Code Organization

The library is organized in a highly modular/structured manner— as nearly
object oriented as can be cleanly accomplished in C. Modules that represent
ADTs are organized as a single central structure definition with a collection of
functions that act on that definition. All functions which are not involved in
actually allocating the structure take a handle type as their first argument. All
exported symbols begin with either the full name of the module or a module
specific abbreviation 2. As much of the underlying structure as is possible is
masked from the caller by the module’s functions. All operations which modify
the structure and most operations that read the structure are hidden behind
macros or functions. No global variables (other than constants) are used.

The library makes no attempt to be fully object-oriented. We believe that
a clean structured design is more important than an attempt to twist the C
language in a direction that it was not intended to go. In particular, there
is no attempt to simulate operator overloading, inheritance, or virtual meth-
ods. Modules (e.g.: UTILITY) which do not operate on a central structure are
presented as a collection of related functions.

For optimization purposes, for code clarity, and in order to maximize the amount
of source code checking that the compiler can perform, compatibility with Com-
mon C (K&R C) has not been retained. This code is strictly ANSI C compliant

1T need to find citations for some of these studies.
2Except for functions that wrap system or standard library routines

CHAPTER 1. INTRODUCTION 6

and uses several ANSI C specific features:

The ANSI const keyword is used to flag function arguments that are not modified
in the function body. This may be used by the compiler to eliminate subexpres-
sions and avoid parameter passing overhead. The const keyword is also used for
global constants in preference to #defines. Unlike macros, constant identifiers
can be type checked by the compiler at no additional performance penalty. For
compatibility with K&R C, const may be #defined to an empty token.

ANSI prototypes are used throughout the system. All functions, including in-
ternal routines, are declared at the top of the file in which they appear. This
makes browsing, understanding, and maintaining the source code easier.

ANSI-style function pointer typedefs are used in several modules. ANSI allows
function pointer typedefs to contain type information that can be checked by
the compiler and argument names that inform the reader as to the intended
purpose of the arguments.

All header files are protected from multiple inclusion by conditional compilation
statements. Every module that directly uses declarations from another header
file will include that header even if it is already included indirectly from a
common header. This is intended to make it easier for maintainers to pick out
symbol dependencies.

1.2 Test Framework

A unit test framework based on the OpenGroup®’s Test Environment Toolkit
(TET) is used. TET provides a simple, standard, and portable harness for
executing tests and recording the results. The tests are provided in such a way
that they can be run either under the TET or as standalone executables when
the library is distributed in binary form. Compiling the tests requires the TET
libraries and header files which are freely available from The OpenGroup.

All testing information is stored under the testing directory of the distribution.
Each module has a separate directory underneath testing that contain tests for
that unit. Makefiles inside the individual test directories will build one or more
executable programs. Configuration files under testing tell TET how to run
individual tests or pre-defined sets of tests. See the TET documentation for
more information.

Simply executing the generated programs manually will run the tests in stan-
dalone mode and dump the results in a file called tet_xres. When interpreting
the results, care must be taken to interpret the results of the exception tests
included with each module. Many of these tests are designed to verify that the
unit will detect critical error conditions and abort smoothly. TET will register
such (correct) behavior as a failure. When this is a case, the test case will place

3Formerly X/Open

CHAPTER 1. INTRODUCTION 7

a comment in the result file just before it aborts describing the error expected.
These tests are always in a separate file called exception_tests.

Functions which are simple wrappers over standard functions, such as xstrdup,
xmalloc, etc., are not tested at this time.

1.3 Conventions

The following comments apply to PostScript or PDF documentation generated
directly from the original ATEX source. Appearance in HTML or other gener-
ated formats may be different.

Module names are printed in small caps, LIKE THIis. Library symbol names
(e.g.: functions, type names, and variables) are printed in sans serif, like_this.
Function names will always have a trailing pair of parentheses, like_this(). Stan-
dard C Library or POSIX symbol names are printed in a sans serif slanted font,
like_this.

Interface synopses are shown in a fixed width font.

Example code is shown in a floating, captioned box in a fixed-width font with
line numbers added at increments for reference purposes.

Notes about probable future changes in the API are marked with a bold-face,
capital delta (A).

When a module symbol is referenced inside the documentation for that module,
the module specific prefix is dropped for brevity. The abbreviations appear at
the top of each module description. All symbols referenced from other modules
or symbols which do not use the standard prefix will appear with the full name
as defined in C.

Because C and UNIX are both case-sensitive, the exact case is always used in
identifiers, even where proper grammar demands that an uppercase character
be used, such as at the beginning of a sentence.

1.4 Licensing

This license agreement is based on the Public Domain ” Artistic License”.

1.4.1 Preamble

The intent of this document is to state the conditions under which a Package
may be copied, such that the Copyright Holder maintains some semblance of
artistic control over the development of the package, while giving the users of the

CHAPTER 1. INTRODUCTION 8

package the right to use and distribute the Package in a more-or-less customary
fashion, plus the right to make reasonable modifications.

1.4.2 Definitions

Package refers to the collection of files distributed by the Copyright Holder,
and derivatives of that collection of files created through textual modifi-
cation.

Standard Version refers to such a Package if it has not been modified, or has
been modified in accordance with the wishes of the Copyright Holder as
specified below.

Copyright Holder is whoever is named in the copyright or copyrights for the
package.

You is you, if you're thinking about copying or distributing this Package.
¥ g g g g

Reasonable Copying Fee is whatever you can justify on the basis of media
cost, duplication charges, time of people involved, and so on. (You will
not be required to justify it to the Copyright Holder, but only to the
computing community at large as a market that must bear the fee.)

Freely Available means that no fee is charged for the item itself, though there
may be fees involved in handling the item. It also means that recipients
of the item may redistribute it under the same conditions they received it.

Template means a generic file which is intended to be tailored for a specific
use through mechanical textual substitution.

Instantiation means the process of mechanical textual substitution which tai-
lors a generic Template for a specific use.

1.4.3 License

1. You may make and give away verbatim copies of the source form of the
Standard Version of this Package without restriction, provided that you
duplicate all of the original copyright notices and associated disclaimers.

2. You may apply bug fixes, portability fixes and other modifications de-
rived from the Public Domain or from the Copyright Holder. A Package
modified in such a way shall still be considered the Standard Version.

3. You may otherwise modify your copy of this Package in any way, provided
that you insert a prominent notice in each changed file stating how and
when you changed that file, and provided that you do at least ONE of the
following;:

CHAPTER 1. INTRODUCTION 9

(a) place your modifications in the Public Domain or otherwise make
them Freely Available, such as by posting said modifications to Usenet
or an equivalent medium, or placing the modifications on a major
archive site such as uunet.uu.net, or by allowing the Copyright Holder
to include your modifications in the Standard Version of the Package.

(b) use the modified Package only within your corporation or organiza-
tion.

(¢) rename any non-standard executables so the names do not conflict
with standard executables, which must also be provided, and provide
a separate manual page for each non-standard executable that clearly
documents how it differs from the Standard Version.

(d) make other distribution arrangements with the Copyright Holder.

4. You may distribute the programs of this Package in object code or exe-
cutable form, provided that you do at least ONE of the following;:

(a) distribute a Standard Version of the executables and library files, to-
gether with instructions (in the manual page or equivalent) on where
to get the Standard Version.

(b) accompany the distribution with the machine-readable source of the
Package with your modifications.

(c) give non-standard executables non-standard names, and clearly doc-
ument the differences in manual pages (or equivalent), together with
instructions on where to get the Standard Version.

(d) make other distribution arrangements with the Copyright Holder.

5. You may charge a reasonable copying fee for any distribution of this Pack-
age. You may charge any fee you choose for support of this Package. You
may not charge a fee for this Package itself. However, you may distribute
this Package in aggregate with other (possibly commercial) programs as
part of a larger (possibly commercial) software distribution provided that
you do not advertise this Package as a product of your own. You may em-
bed this Package’s object code within an executable of yours (by linking);
this shall be construed as a mere form of aggregation.

6. Source code modules that are created by Instantiating the Template Files
included in this package are considered to be part of this package and are
subject to the copyright of this package.

7. Aggregation of this Package with a commercial distribution is always per-
mitted provided that the use of this Package is embedded; that is, when
no overt attempt is made to make this Package’s interfaces visible to the
end user of the commercial distribution. Such use shall not be construed
as a distribution of this Package.

CHAPTER 1. INTRODUCTION 10

8. The name of the Copyright Holder may not be used to endorse or pro-
mote products derived from this software without specific prior written
permission.

9. THIS PACKAGE IS PROVIDED ”AS IS” AND WITHOUT ANY EX-
PRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIM-
ITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

2. System Call and
Standard Library
Replacement Functions

2.1 Description

This section describes the system calls or standard library functions which are
transparently replaced by this library if the configuration scripts determine that
they vare not present or do not function on a particular system. Replacement
functions come in three categories:

1. Portions of the 1998 Single UNIX Specification (UNIX 1998) that are not
yet implemented by many systems.

2. functions which are part of BSD, SVID4 or other standards that have not
been added to the POSIX standards suite but which are useful to many
application developers.

3. A handful of functions that have been or will be added that represent
non-standard extensions provided by one or more vendors which we feel
should become standardized (e.g.: asprintf, strfry).

Whenever a source file uses a function which could potentially be replaced by
this library, the appropriate QCI utilities header should be included in addition
to the standard system header. For example, if using snprintf, both string.h
and gstring.h should be included. I find that this is often automatic because
e.g. most files that use string functions also use convenience functions from
gstring. At some point, A, files like gstring.h will probably publicly include
the appropriate system headers so that only the QCI utilities headers need be
included for commonly replaced functions.

The replacement routines are documented here for the benefit of developers
on systems that do not have native versions of and documentation for them.
On systems where these functions are documented, the vendor provided docu-
mentation takes precedence over this documentation. Most of the descriptions
provided below are excerpts from the Linux man pages for these routines.

11

CHAPTER 2. SYSTEM CALL AND STANDARD LIBRARY REPLACEMENT FUNCTIONS12

If you are not sure whether or not a particular routine has been replaced by
this library, examine the output of configure as it runs. It will print lines like
“checking for snprintf...”. Alternatively, examine the generated qci_util_config.h.

2.2 Interface Summary

bzero() :

void bzero(void *s, int n);

memcmp() :
int memcmp(const void *sl, const void *s2, size_t n);

Ausleep() :
void usleep(unsigned long usec);
snprintf() :
int snprintf(char *str, size_t n, const char *format, ...);

vsnprintf() :
int vsnprintf(char xbuf, size_t len, const char *format, va_list ap)

asprintf() :

int asprintf (char** buffer, const char* format, ...);

vasprintf() :
int vasprintf(char** buffer, const charx format, va_list ap)

strcasecmp() :
int strcasecmp(const char *sl, const char *s2);

strncasecmp() :
int strncasecmp(const char *sl, const char *s2, size_t n);

strdup() :
charx strdup(const charx s);

strspn() :
size_t strspn(const char* s, const charx accept);

strcspn() :
size_t strcspn(const char* s, const char* reject);

strstr() :
char* strstr(const char *haystack, const char *needle);

CHAPTER 2. SYSTEM CALL AND STANDARD LIBRARY REPLACEMENT FUNCTIONS13

2.3 Member Descriptions

2.3.1 bzero()

void bzero(void *s, int n);

The bzero() function sets the first n bytes of the byte string s to zero.
bzero() conforms to 4.3BSD but is non-POSIX and its use is deprecated.

Using xbzero tends to be less error prone than using memset directly, since it
is relatively easy (and common') to swap the second and third arguments to
memset(). Since the arguments are of a compatible type, compilers will not
catch the error, leading to obscure bugs.

2.3.2 memcmp()

int memcmp(const void *sl, const void *s2, size_t n);

memcmp() is a BSD 4.3, SVID3, and POSIX call that compares the first n
bytes of the memory areas s1 and s2. It returns an integer less than, equal to,
or greater than zero if sl is found, respec- tively, to be less than, to match, or
be greater than s2.

This is a replacement function for the (few) systems that do not have memcmp()
or for which memcmp() is buggy and not 8-bit clean. autoconf will run some
basic tests on the local memcmp() implementation when the library is built.

2.3.3 A usleep()

void usleep(unsigned long usec);

usleep() behaves like sleep() except that the sleep time is measured in microsec-
onds, not seconds. Note that the program will sleep for at least usec microsec-
onds, but may sleep longer depending on system clock granularity, system load,
etc. usleep() is a BSD 4.3 function that is also in the UNIX98 standard.

nanosleep() is a POSIX.1b (POSIX Real-Time Standard) function that is also
available on some systems (notably Solaris 2.6, Linux, and QNX). It theoret-
ically has much finer granularity, though it is severely limited by the system
scheduler granularity on all but dedicated real-time systems. It also has the
ability to easily continue a sleep that has been interupted by a signal. usleep(),
however, has a simpler interface, is (relatively) portable, and should be sufficient
for most uses.

1Stevens - UNIX Network Programming, 2nd Ed.

CHAPTER 2. SYSTEM CALL AND STANDARD LIBRARY REPLACEMENT FUNCTIONS14

There is one major difficulty with using usleep(), however— no one can agree on
the return type. Some vendors use int, some unsigned int, some void?. Addition-
ally, the information conveyed by the returned value differs from implementation
to implementation3.

There were two alternatives to resolving this problem:

1. provide a function returning int, in compliance with the UNIX98 standard,
and use the replacement on all platforms that have incorrect types. Manip-
ulating system headers and macro definitions so that the new prototype,
which conflicts with the system prototype, is accepted is very difficult to
do correctly and consistently.

2. Use the system prototype where available and never use or assign the
return value. If the native function does return something, the value will
be harmlessly ignored. If the native function is void, everything will still
work correctly.

We opted for the second approach. Hopefully, as the UNIX98 standard gains
acceptance, vendors will start moving to the new prototype and this will become
less necessary. In the meantime, this replacement will work. The replacement
function is based on select(), which is portable, reasonably reliable, and efficient.

2.3.4 snprintf()
int snprintf(char *str, size_t n, const char *format, ...);

snprintf() is a safe version of sprintf() included in a recent draft ANSI C standard
and in UNIX98 in order to prevent a class of serious memory errors and security
holes that occur in many programs (e.g.: sendmail). snprintf() takes an extra
argument which is the size of the target buffer. Any characters which do not fit
inside the target buffer will be discarded and the number of characters written
will be returned.

Even though snprintf() is a draft standard, several vendors already include it as
part of their standard C libraries at the time of this writing*.

The replacement snprintf function was adapted from the function used by the
Apache Group in the Apache httpd server. It is a partial reimplementation of
some of the sprintf internals and has several limitations with respect to for-
matting floating point numbers. If full compatibility with sprintf and buffer
overflow safety is needed, a C library with a native implementation of snprintf
should be used instead (e.g: glibc).

2UNIX98 specifies int

3Some implementations use the return value as an error code, others as the number of
microseconds actually slept, still others the number of microseconds remaining in case the
sleep was interupted by a signal.

4Notably the GNU libc and the Solaris 2.6 libc

CHAPTER 2. SYSTEM CALL AND STANDARD LIBRARY REPLACEMENT FUNCTIONS15

2.3.5 vsnprintf()

int vsnprintf (char *buf, size_t len, const char *format, va_list ap)

vsnprintf() is a variation of snprintf that operates on a varargs list rather than a
variable number of arguments. This function is useful when creating printf-like
functions that wrap snprintf.

See the cautions on using snprintf, above.

2.3.6 asprintf()

int asprintf(char** buffer, const char* format, ...);

asprintf() is a printf() variant that dynamically allocates a buffer of the correct
size. This is considerably safer than using sprintf() and more convenient than
using snprintf() at a modest performance penalty for small strings.

The replacement function is implemented on top of snprintf(), therefore the
cautions on using the snprintf() replacement function also apply. This functions
is reasonably efficient for strings less than 64 bytes in length. Performance
decreases linearly as the size of the string increases because the buffer must be
reallocated dynamically. No space is wasted for strings less than 64 bytes.

Note that the string buffer is allocated on the free store and must be passed to
free() at some point.

It is generally recommended that asprintf be used in non-performance critical
sections of the code. It was added to this library primarily for its usefullness
in formatting error messages, particularly on calls to qci_fatal_error(), where,
obviously, performance is not a concern and reclaiming the memory later doesn’t
matter.

A Note: In the current implementation, memory allocation is checked using
xmalloc(), and this function will never return NULL.

2.3.7 vasprintf()

int vasprintf (char** buffer, const char* format, va_list ap)

vsnprintf() is a variation of asprintf() that operates on a varargs list rather than a
variable number of arguments. This function is useful when creating printf-like
functions that wrap asprintf().

See the cautions on using asprintf, above.

CHAPTER 2. SYSTEM CALL AND STANDARD LIBRARY REPLACEMENT FUNCTIONS16

2.3.8 strcasecmp()

int strcasecmp(const char *sl, const char *s2);

The strcasecmp() function compares the two strings s1 and s2, ignoring the case
of the characters. It returns an integer less than, equal to, or greater than zero
if s1 is found, respectively, to be less than, to match, or be greater than s2.

strcasecmp() is a BSD 4.3 function.

2.3.9 strncasecmp()

int strncasecmp(const char *sl1, const char *s2, size_t n);

The strncasecmp() function is similar to strcasecmp(), except it only compares
the first n characters of sl.

2.3.10 strdup()

char* strdup(const char* s);

The strdup() function copies s into a newly allocated buffer and returns a pointer
to that buffer. The memory is allocated using malloc() and must be freed using
free().

2.3.11 strspn()

size_t strspn(const char* s, const char* accept);

The strspn() function calculates the length of the initial segment of s which
consists entirely of characters in accept.

2.3.12 strcspn()

size_t strcspn(const char* s, const char* reject);

The strcspn() function calculates the length of the initial segment of s which
consists entirely of characters not in reject.

CHAPTER 2. SYSTEM CALL AND STANDARD LIBRARY REPLACEMENT FUNCTIONS17

2.3.13 strstr()

charx strstr(const char *haystack, const char *needle);

This function returns a pointer to the first occurence of the substring needle
that is found in the string haystack.

A The current implementation is a correct but brute force approach that is
inefficient for large needles and/or haystacks. This function will be heavily
optimized in the next release.

2.4 Notes

2.4.1 Future Additions
The following functions are targetted for possible future versions:

1. alloca (a workable, but not as efficient replacement)
2. striry
3. memfrob

4. Any functions that we have problems with while porting our applications.

In addition, optional malloc/free replacements that register allocations for mem-
ory leak tracking will probably be added at some point for testing on systems
not supported by Purify?.

3. Hash Table

Module: HAsH TABLE

Header: hashtable.h

Abbreviation: HASH

Summary: A hashtable ADT using strings as both keys and values.
Dependencies: UTILITIES

Version Documented: 3.0

3.1 Description

This module provides a hashtable abstract data type. Both keys and values are
represented by C strings (char *). Major features of this hashtable type include
automatic resizing and a bulk insert mode.

The hashtable uses separate chaining (linked lists as buckets) for collision de-
tection and a node cache for fast lookups.

3.2 Interface Summary

new() :
Hash_Table HASH_new(int size);

clear() :

void HASH_clear (Hash_Table ht);
delete() :

void HASH_delete(Hash_Table ht);
add() :

void HASH_add(Hash_Table ht, const char* key, const char* value);

set() :
void HASH_set(Hash_Table ht, const charx* key, const char* value) ;

remove() :
void HASH_remove(Hash_Table ht, const char* key);

18

CHAPTER 3. HASH TABLE 19

exists() :
int HASH_exists(Hash_Table ht, const char* key);
fetch() :
const char* HASH_fetch(Hash_Table ht, const char* key);
resize() :
void HASH_resize(Hash_Table ht);
info() :

void HASH_info(Hash_Table ht);

check_invariants() :
void HASH_check_invariants(Hash_Table ht);

Hash_Table :
typedef struct
{

int size;
int count;
int resize_threshold;

/x ... %/
} *Hash_Table;

HASH_DEFAULT_INITIAL_SIZE :
const int HASH_DEFAULT_INITIAL_SIZE;

3.3 Member Descriptions

3.3.1 new()

Hash_Table HASH_new(int size);

new() allocates and returns an empty hashtable of the specified size. If size is
zero, DEFAULT_INITIAL_SIZE will be used.

3.3.2 clear()
void HASH_clear(Hash_Table ht);

clear() deallocates all nodes in the specified hashtable and returns the table to
an empty state.

CHAPTER 3. HASH TABLE 20

3.3.3 delete()

void HASH_delete(Hash_Table ht);

delete() deallocates all nodes in the hashtable and deallocates the hashtable
structure itself.

3.3.4 add()

void HASH_add(Hash_Table ht, const char* key, const char* value);

Add a new node to the table. This call is optimized for bulk insertions. add()
will not force a resize if the resize_threshold is overshot. add() will simply chain
the new node, not checking for duplicate entries.

add() is significantly more efficient for bulk inserts than set() because no lookups
are performed and because resizing is postponed until the final size is known. If,
for instance, a hashtable is allocated with 64 buckets and 300 keys are inserted,
set would perform 300 lookups and resize the table twice, ending up with 256
buckets. Using add() followed by an immediate resize would resize once from
64 to 300 buckets and would only check for duplicate entries when there is a
collison during the resize operation.

Because add() is an optimization, it can cause strange behaviors when used
improperly. A series of calls to add() should be followed immediately by a call
to resize(). If it is not, duplicate values will not be properly dealt with. add()
is guaranteed to preserve the last value for any given key entered, but a call
to remove() without a resize may inadvertantly ressurect a previously entered
value.

3.3.5 set()

void HASH_set(Hash_Table ht, const char* key, const char* value);

Associate a new value with key. If the key does not exist, it will be created. If
the key does exist, it will be overwritten and the previous value will be freed.

If the count of nodes is over resize_threshold, a resize will occur before the new
value is inserted.

3.3.6 remove()

void HASH_remove(Hash_Table ht, const char* key);

CHAPTER 3. HASH TABLE 21

Remove a key from the table and free its value. See add(), above, for additional
considerations.

remove will silently fail if given a non-existant key.

3.3.7 exists()

int HASH_ exists(Hash_Table ht, const charx key);

Returns one if the specified key is stored in the table, zero otherwise. If the
count of nodes is over resize_threshold, a resize will occur.

3.3.8 fetch()

const char* HASH_fetch(Hash_Table ht, const char* key);

Returns the value associated with key in the hashtable. If key is not stored in
the table, fetch() returns NULL. Note that NULLwill also be returned if a null
string was associated with the key. Use exists() to determine whether or not the
key was explicitly set and see the notes on node caching, below.

If the count of nodes is over resize_threshold, a resize will occur.

3.3.9 resize()

void HASH_resize(Hash_Table ht);

Force an immediate resize of the table. resize will reallocate the hash internal
structure to a size which is optimal for the number of entries currently stored.
This may cause the table to shrink if the hash is underfilled. In general, the
number of buckets will be set to the number of entries and the threshold will be
set to twice the number of entries.

If resize() is called on an empty hash, the size will be set to DEFAULT _INITIAL_SIZE.
3.3.10 info()
void HASH_info(Hash_Table ht);

info() prints out a breakdown of the current number of buckets and distribution
of nodes.

CHAPTER 3. HASH TABLE 22

3.3.11 check_invariants()

void HASH_check_invariants(Hash_Table ht);

check_invariants() will perform a series of integrity checks on the hashtable. If
any of these checks fail, check_invariants() will abort with a failed assertion.

Invariants checked include:

e The hashtable is not NULL.

e The bucket array is not NULL.

e The bucket cache is a number within the range of the bucket array.
e The resize_threshold is larger than the current size.

e The node cache is either NULL or points to an existing and accessible
node.

e The number of nodes equals the value of the count field.

These integrity checks are expensive in terms of performance, particularly with
large tables, and are intended to be used only inside a test suite.

3.3.12 Hash Table

typedef struct
{

int size;
int count;
int resize_threshold;

/x ... x/
} *Hash_Table;

The fields of *Hash _Table documented here are reasonably safe for read-only
access. These fields should never be written to, nor should any other field of
*Hash_Table be accessed in any manner.

size The current number of buckets allocated.

count The number of nodes (keys) stored in the table.

resize_threshold The number of nodes which will trigger the next automatic
resize.

CHAPTER 3. HASH TABLE 23

3.3.13 DEFAULT_INITIAL SIZE

const int HASH_DEFAULT_INITIAL_SIZE;

The number of buckets that will be allocated if new() is called with a non-
positive integer or a forced resize is requested on an empty hashtable. This is
intended as a way of responding gracefully to an error condition and should not
be treated as a feature.

3.4 Notes

3.4.1 General

If a null hashtable is passed to any HASH TABLE function, the call will abort
on a failed assertion.

If a null key is a passed to any function, the call will abort on a failed assertion.

3.4.2 Hash Algorithm

The hashtable currently uses the hashpjw algorithm®, a decent algorithm for
hashing strings. The hashpjw algorithm is reasonably quick and will provide
good distribution for well-mixed strings. The number of collisions will probably
become unacceptable if many similar strings (such as pathnames with a common
directory prefix) are hashed.

3.4.3 Lookup Caching

Because this table allows null values to be associated with keys, it is not possible
to determine whether a key was associated with a null value or was not present
in the table from the result of fetch(). Additionally, set() will always create a
new node if one doesn’t already exist and overwrite the existing node if already
present with no additional feedback. It is common practice, therefore, to call
exists() to determine if a key is present just before calling one of set(), fetch(),
etc. If the table is crowded, a search for an existing node may have to walk the
length of a long bucket list before it fails.

Any call resulting in a table lookup (e.g.: exists) will cache the bucket and node
(if any) found. If the next call is searching for the same key, the cached values
will be used without performing another search.

1Dragon Book, p 436

4. Net Utils

Module: NET UTILS
Header: net_util.h
Abbreviation: NUTIL

Summary: A collection of wrappers around standard network communication
routines.

Dependencies: UTILITIES

4.1 Description

This module is a place to store common routines and declarations used in net-
work communications (socket, XTI, etc.). At the moment, it mainly contains
wrapper functions that perform additional error checking over the standard li-
brary calls.

Some of the wrapper functions below (e.g.: xsocket() will exit when an error
occurs). In many cases, especially during the early stages of a project, this
is exactly what is required and is considerably safer than ignoring the result
of the call. It is expected that these wrappers would be slowly replaced with
specialized error handling code over the lifetime of a project.

If a particular system does not define the POSIX socklen_t type, this module
will supply an appropriate typedef.

4.2 Interface Summary

xsocket() :
int xsocket(int family, int type, int protocol);

xbind() :

void xbind(int fd, const struct sockaddr *addr, socklen_t addr_len);

xlisten() :
void xlisten(int fd, int queue_length);

xaccept() :
int xaccept(int fd, struct sockaddr *addr, socklen_t *addr_len);

24

CHAPTER 4. NET UTILS 25

4.3 Member Descriptions
4.3.1 xsocket()
int xsocket(int family, int type, int protocol);

xsocket() calls socket(), checks the result, and calls QCl_fatal_error() with a mes-
sage if the socket cannot be created.

4.3.2 xbind()

void xbind(int fd, const struct sockaddr *addr, socklen_t addr_len);

xbind() calls bind(), checks the result, and calls QCl_fatal_error() with a message
if the port cannot be bound.

4.3.3 xlisten()

void xlisten(int fd, int queue_length);

xlisten() calls listen(), checks the result, and calls QCl _fatal_error() with a message
if the call fails.

4.3.4 xaccept()

int xaccept(int fd, struct sockaddr *addr, socklen_t *addr_len);

xaccept() calls accept(), and checks the result. If the error is transient and
recoverable, then the call is retried, otherwise QCl_fatal_error() is called with an
error message.

5. String Utils

Module: STRING UTILS
Header: gstring.h
Abbreviation: QSTR

Summary: Simple string manipulation routines and wrappers over standard
library string functions.

Dependencies: UTILITIES

5.1 Description

This module is a collection of relatively simple string manipulation routines
and safe wrappers over string manipulation routines included in the standard
C library. Also included are routines which appear in the standard libraries on
some platforms but are not standard.

All of the routines below depend on the QCI versions of the standard memory
allocation routines and will exit with a fatal error when memory allocation fails.

Two routines, rspn() and rcspn() complement the standard functions, spn() and
cspn(). triml(), trimr(), and trim() provide a set of routines for removing whites-
pace or other padding characters from the ends of strings.

5.2 Interface Summary
xstrncpy() :
charx xstrncpy(char* dest, const char* src, size_t n);

xstrdup() :
charx xstrdup(const char* s);

xstrcasecmp() :
int xstrcasecmp(const charx sl1, const charx s2);

xstrncasecmp() :
int xstrncasecmp(const char* sl1, const char* s2, size_t n);

split() :
int QSTR_split(const char* string, int delim, char***x list);

26

CHAPTER 5. STRING UTILS 27

rspn() :

size_t QSTR_rspn(const char* string, const char* accept);

rcspn() :
size_t QSTR_rcspn(const char* string, const char* reject);

triml() :
char* QSTR_triml(const char* string, const char* trimchars);

trimr() :
char* QSTR_trimr(const char* string, const char* trimchars);

trim() :
char* QSTR_trim(const char* string, const char* trimchars);

glue() :
char* QSTR_glue(int num, ...);

toupper() :
char* QSTR_toupper (const char* string);

5.3 Member Descriptions

5.3.1 xsnprintf()

int xsnprintf(char* str, size_t n, const char* format, ...);

snprintf() is a safe version of sprintf() included in a recent draft ANSI C standard
in order to prevent a class of serious memory errors and security holes that occur
in many programs (e.g.: sendmail). snprintf() takes an extra argument which is
the size of the target buffer. Any characters which do not fit inside the target
buffer will be discarded and the number of characters written will be returned.

Even though snprintf() is a draft standard, several vendors already include it as
part of their standard C libraries at the time of this writing!. xsnprintf() allows
code to use snprintf() where it is available.

If the symbol HAVE_SNPRINTF is defined, the a macro will be defined by this
header mapping xsnprintf() to snprintf(). Otherwise, xsnprintf() will be defined
as a function that ignores the size argument and passes its remaining arguments
to sprintf().

Obviously, xsnprintf() adds no additional safety when used on systems which
do not have snprintf(). It is not possible to implement snprintf() in a portable
manner without reimplementing the internals of sprintf(). It is recommended
that glibc be installed and used on systems that do not yet have snprintf until
the remaining vendors catch up.

INotably the GNU libc and the Solaris 2.6 libc

CHAPTER 5. STRING UTILS 28

5.3.2 xstrncpy()

char* xstrncpy(char* dest, const char* src, size_t n);

This function is the same as strncpy() except that the target buffer is always
null terminated.

5.3.3 xstrdup()

char* xstrdup(const char* s);

xstrdup() wraps strdup(), handling any memory allocation errors encountered by
calling QCl_fatal_error(). If xstrdup() is called with NULL, NULL will be returned.

5.3.4 xstrcasecmp()

int xstrcasecmp(const char* sl1, const char* s2);

strcasecmp() is a BSD 4.3 function which compares the two strings s1 and s2,
ignoring the case of the characters. It returns an integer less than, equal to, or
greater than zero if sl is found, respectively, to be less than, to match, or be
greater than s2.

Since strcasecmp() is not required by either ANSI or POSIX, this library provides
xstrcasecmp(). If the symbol HAVE_STRCASECMP is defined, xstrncasecmp()
will be defined as a macro which calles the BSD function. Otherwise, it will be
a function which provides the necessary functionality.

xstrcasecmp() first converts both strings to uppercase, then compares them nor-
mally using strcmp(). This is done for implementation simplicity and reliability
but is not likely to be as fast as the system library implementations found on
some systems.

See also xstrncasecmp(), below.

5.3.5 xstrncasecmp()
int xstrncasecmp(const char* sl, const char* s2, size_t n);

xstrncasecmp() is identical to xstrcasecmp() except that it only compares the
first n digits of sl and s2.

CHAPTER 5. STRING UTILS 29

5.3.6 split()

int QSTR_split(const char* string, int delim, char*x* list);

This routine searches the target string for occurences of the specified delimiter,
splits the string based on the delimiter, and returns the resultant chunks as
elements of an array of strings in list. The integer return value is the number of
elements in list

5.3.7 rspn()

size_t QSTR_rspn(const char* string, const char* accept);

rspn() is equivalent to strspn() except that it starts at the end of the string and
works backwards instead of at the head of the string.

rspn() returns the number of characters that form an unbroken span of characters
in accept occuring at the end of the string.

See also respn().

5.3.8 rcspn()

size_t QSTR_rcspn(const char* string, const char* reject);

rcspn() is the equivalent of strespn except that it starts at the end of the string
and works backwards.

rcspn() returns the number of characters that form an unbroken span of char-
acters at the end of the string that are not found in reject.

See also rspn().

5.3.9 triml()

char* QSTR_triml(const char* string, const char* trimchars);

This function returns a copy of the passed in string with characters found in
trimchars trimmed from the left side (beginning). This is a non-destructive left
trim.

See also trim(), and trimr().

CHAPTER 5. STRING UTILS 30

5.3.10 trimr()

char* QSTR_trimr(const char* string, const char* trimchars);

This function returns a copy of the passed in string with characters found in
trimchars trimmed from the right side (end). This is a non-destructive right
trim.

See also trim(), and triml().

5.3.11 trim()

char* QSTR_trim(const char* string, const char* trimchars);

This function returns a copy of the passed in string with characters found in
trimchars trimmed from both ends. This is a non-destructive trim function.

See also trim(), and triml().

5.3.12 glue()

char* QSTR_glue(int num, ...);

glue() takes the strings passed into it and concatenates them together into a
newly allocated buffer which it returns. The number of char pointers to be
passed in must be given as the first argument.

All arguments after the first must be non-null char pointers. Any errors in the
number or type of the arguments will lead to unpredictable behavior and hard
to diagnose errors.

5.3.13 toupper

char* QSTR_toupper (const char* string);

QSTR_toupper() is similar to toupper() except that it operates on whole strings
rather than single characters. This function will copy the source string into a
dynamically allocated buffer, converting each character to uppercase. As usual,
memory allocations are checked and this function will never return NULL.

string should never be NULL, although it can be zero length.

6. Utilities

Module: UTILITIES
Header: qci_util.h
Abbreviation: QCI

Summary: A collection of routines used by all modules of the C Utilities Li-
brary.

Dependencies: None

Version Documented: 3.5

This module is a place to store common routines and declarations used by all
modules of the C Utilities Library. At the moment, it mainly contains wrapper
functions that perform additional error checking on calls to a handful of standard
C or POSIX functions.

The wrapper functions below will exit with an error message when an out of
memory condition occurs. Since there is generally no way to recover from an
out of memory error in C (nearly any proposed handling mechanism will require
memory allocation) and many programmers forget to check the results of these
calls, it is felt that handling the condition immediately and cleanly is far better
than returning NULL to the caller and aborting on a null-pointer exception
somewhere distant from the original source of the problem.

These wrappers are used throughout this library and most code written by QCI
unless there is a specific requirement to try to trap and recover from these
(usually hopeless) conditions.

When this behavior is not desired, such as when allocating a very large buffer
that may reasonably fail, the underlying system calls should be used directly,
the return checked, and perhaps the call retried with a smaller value. In general,
this is a bad practice. Facilities like memmap() can be used to do this sort of
thing in a cleaner, more efficient, and less error-prone manner.

Critical programs that cannot be allowed to fail can be handled proactively
by making sure that enough memory is available in the first place and setting
strict resource quotas on non-critical processes. In our experience, the critical
program is often rendered useless by constant page thrashing long before virtual
memory is actually exhausted.

31

CHAPTER 6. UTILITIES

6.1 Interface Summary

bool :
#define bool int

#define FALSE O
#define TRUE 1

fatal_error() :

void QCI_fatal_error(const char* msg, ...);

daemonize() :
void QCI_daemonize(const char* prog_name,
int syslog_optioms,
int facility);

xfork() :
pid_t xfork();

xmalloc() :
void* xmalloc(size_t size);

xcalloc() :
void* xcalloc(size_t nmemb, size_t size);

xrealloc() :
void* xrealloc(void* ptr, size_t newsize);

xmemdup() :
void* xmemdup(const void* src, size_t n);

scalloc() :
void*x QCI_scalloc(size_t n);

mda_malloc() :
void* QCI_mda_malloc(int esiz, int dims,

xgetlogin() char* xgetlogin();

is_.daemon_proc :
extern bool QCI_is_daemon_proc;

fatal_error_log_level :
extern int QCI_fatal_error_log_level

);

CHAPTER 6. UTILITIES 33

6.2 Member Descriptions

6.2.1 bool
#define bool int

#define FALSE O
#define TRUE 1

bool is a basic boolean type represented as a set of macros. These are used as
placeholders until compilers implement the new ANSI C standard. bool includes
the constants TRUE and FALSE which follow the standard C definition (zero
is FALSE, one is TRUE).

6.2.2 fatal_error()

void QCI_fatal_error(const char* msg, ...);

fatal_error() will print the specified message on stderr and call exit() to end the
program. If is_.daemon_process is TRUE, then the message is sent to syslog
instead, using the log level fatal_error_log_level.

6.2.3 daemonize()

void QCI_daemonize(const char* prog_name,
int syslog_optiomns,
int facility);

Initializes a daemon process:

1. forks

2. creates a new session (setsid())

forks again

sets is_.daemon_proc to TRUE
changes the working directory to ” /”
clears the umask

closes open file descriptors

S B A

initializes syslog

CHAPTER 6. UTILITIES 34

In short, nearly everything that a daemon has to do at startup is taken care
of. stdin, stdout, and stderr are left as invalid descriptors- the calling code is
expected to deal with them appropriately. Aln the future, there will probably
be a separate utility to open “/dev/null” and dup it, as this is often what is
desired, but some daemons like to assign stderr and stdout to a log file, so this
is not done automatically.

6.2.4 xfork()

pid_t xfork();

This wrapper checks the return from fork(). Resource exhaustion is detected
and fatal_error() is called. If this call returns, the fork succeeded.

6.2.5 xmalloc()

void* xmalloc(size_t size);

xmalloc() wraps malloc(). If an out of memory condition occurs, xmalloc() calls
fatal_error() with an appropriate message.

6.2.6 xcalloc()

void* xcalloc(size_t nmemb, size_t size);

xcalloc() wraps calloc(). If an out of memory condition occurs, xcalloc() calls
fatal_error() with an appropriate message.

6.2.7 xrealloc()

void* xrealloc(void* ptr, size_t newsize);

xrealloc() wraps realloc(). If an out of memory condition occurs, xrealloc() calls
fatal_error() with an appropriate message.

6.2.8 xmemdup()

void* xmemdup(const void* src, size_t n);

xmemdup() is a simple utility function that duplicates the contents of the spec-
ified range of memory by calling xmalloc()() followed by memcpy()(). A pointer
to the new copy is returned.

CHAPTER 6. UTILITIES 35

6.2.9 scalloc()

void* QCI_scalloc(size_t n);

This function is identical to xcalloc() except that it is more convenient for allo-
cating structures since it only takes one argument.

6.2.10 mda malloc()
void* QCI_mda_malloc(int esiz, int dims, ...);

This function allocates a homogenous multi-dimensional array of elements with
size esize and the the number of dimensions dims. The remaining arguments
should be integers that give the sizes of the individual dimensions.

mda_malloc() allocates its memory in one chunk so that the entire array can be
deallocated with a single call to free().

This function is based heavily on public domain code written by Paul Schlyter.

6.2.11 xgetlogin()

char* xgetlogin();

A wrapper for getlogin(). This function copies the string returned by the system
into a dynamically allocated buffer, which it returns. The string returned by
getlogin() is transient and is not safe to store long-term.

Memory allocation is checked, and this function will never return NULL due to
an out of memory condition, although it can return NULL if the information is
not available.

6.2.12 is_daemon_proc

extern bool QCI_is_daemon_proc;

This flag indicates whether or not the current process is a daemon. If it is
TRUE, then fatal_error() will write to syslog instead of to stderr(). This flag
defaults to FALSE.

6.2.13 fatal error_log_level

extern int QCI_fatal_error_log_level

This variable sets the syslog priority level used to log messages from fatal_error().
This variable defaults to LOG_ERR.

