/* * Copyright 2012 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "ac_exp_param.h" #include "ac_sqtt.h" #include "si_build_pm4.h" #include "util/u_cpu_detect.h" #include "util/u_index_modify.h" #include "util/u_prim.h" #include "util/u_upload_mgr.h" #if (GFX_VER == 6) #define GFX(name) name##GFX6 #elif (GFX_VER == 7) #define GFX(name) name##GFX7 #elif (GFX_VER == 8) #define GFX(name) name##GFX8 #elif (GFX_VER == 9) #define GFX(name) name##GFX9 #elif (GFX_VER == 10) #define GFX(name) name##GFX10 #elif (GFX_VER == 103) #define GFX(name) name##GFX10_3 #else #error "Unknown gfx version" #endif /* special primitive types */ #define SI_PRIM_RECTANGLE_LIST PIPE_PRIM_MAX template static void si_emit_spi_map(struct si_context *sctx) { struct si_shader *ps = sctx->shader.ps.current; struct si_shader_info *psinfo = ps ? &ps->selector->info : NULL; unsigned spi_ps_input_cntl[NUM_INTERP]; STATIC_ASSERT(NUM_INTERP >= 0 && NUM_INTERP <= 32); if (!NUM_INTERP) return; struct si_shader *vs = si_get_vs(sctx)->current; struct si_state_rasterizer *rs = sctx->queued.named.rasterizer; for (unsigned i = 0; i < NUM_INTERP; i++) { union si_input_info input = psinfo->input[i]; unsigned ps_input_cntl = vs->info.vs_output_ps_input_cntl[input.semantic]; bool non_default_val = G_028644_OFFSET(ps_input_cntl) != 0x20; if (non_default_val) { if (input.interpolate == INTERP_MODE_FLAT || (input.interpolate == INTERP_MODE_COLOR && rs->flatshade)) ps_input_cntl |= S_028644_FLAT_SHADE(1); if (input.fp16_lo_hi_valid) { ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) | S_028644_ATTR0_VALID(1) | /* this must be set if FP16_INTERP_MODE is set */ S_028644_ATTR1_VALID(!!(input.fp16_lo_hi_valid & 0x2)); } } if (input.semantic == VARYING_SLOT_PNTC || (input.semantic >= VARYING_SLOT_TEX0 && input.semantic <= VARYING_SLOT_TEX7 && rs->sprite_coord_enable & (1 << (input.semantic - VARYING_SLOT_TEX0)))) { /* Overwrite the whole value (except OFFSET) for sprite coordinates. */ ps_input_cntl &= ~C_028644_OFFSET; ps_input_cntl |= S_028644_PT_SPRITE_TEX(1); if (input.fp16_lo_hi_valid & 0x1) { ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) | S_028644_ATTR0_VALID(1); } } spi_ps_input_cntl[i] = ps_input_cntl; } /* R_028644_SPI_PS_INPUT_CNTL_0 */ /* Dota 2: Only ~16% of SPI map updates set different values. */ /* Talos: Only ~9% of SPI map updates set different values. */ radeon_begin(&sctx->gfx_cs); radeon_opt_set_context_regn(sctx, R_028644_SPI_PS_INPUT_CNTL_0, spi_ps_input_cntl, sctx->tracked_regs.spi_ps_input_cntl, NUM_INTERP); radeon_end_update_context_roll(sctx); } template static bool si_update_shaders(struct si_context *sctx) { struct pipe_context *ctx = (struct pipe_context *)sctx; struct si_shader *old_vs = si_get_vs_inline(sctx, HAS_TESS, HAS_GS)->current; unsigned old_pa_cl_vs_out_cntl = old_vs ? old_vs->pa_cl_vs_out_cntl : 0; struct si_shader *old_ps = sctx->shader.ps.current; unsigned old_spi_shader_col_format = old_ps ? old_ps->key.part.ps.epilog.spi_shader_col_format : 0; int r; /* Update TCS and TES. */ if (HAS_TESS) { if (!sctx->tess_rings) { si_init_tess_factor_ring(sctx); if (!sctx->tess_rings) return false; } if (sctx->shader.tcs.cso) { r = si_shader_select(ctx, &sctx->shader.tcs); if (r) return false; si_pm4_bind_state(sctx, hs, sctx->shader.tcs.current); } else { if (!sctx->fixed_func_tcs_shader.cso) { sctx->fixed_func_tcs_shader.cso = (struct si_shader_selector*)si_create_fixed_func_tcs(sctx); if (!sctx->fixed_func_tcs_shader.cso) return false; sctx->fixed_func_tcs_shader.key.part.tcs.epilog.invoc0_tess_factors_are_def = sctx->fixed_func_tcs_shader.cso->info.tessfactors_are_def_in_all_invocs; } r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader); if (r) return false; si_pm4_bind_state(sctx, hs, sctx->fixed_func_tcs_shader.current); } if (!HAS_GS || GFX_VERSION <= GFX8) { r = si_shader_select(ctx, &sctx->shader.tes); if (r) return false; if (HAS_GS) { /* TES as ES */ assert(GFX_VERSION <= GFX8); si_pm4_bind_state(sctx, es, sctx->shader.tes.current); } else if (NGG) { si_pm4_bind_state(sctx, gs, sctx->shader.tes.current); } else { si_pm4_bind_state(sctx, vs, sctx->shader.tes.current); } } } else { if (GFX_VERSION <= GFX8) { si_pm4_bind_state(sctx, ls, NULL); sctx->prefetch_L2_mask &= ~SI_PREFETCH_LS; } si_pm4_bind_state(sctx, hs, NULL); sctx->prefetch_L2_mask &= ~SI_PREFETCH_HS; } /* Update GS. */ if (HAS_GS) { r = si_shader_select(ctx, &sctx->shader.gs); if (r) return false; si_pm4_bind_state(sctx, gs, sctx->shader.gs.current); if (!NGG) { si_pm4_bind_state(sctx, vs, sctx->shader.gs.cso->gs_copy_shader); if (!si_update_gs_ring_buffers(sctx)) return false; } else { si_pm4_bind_state(sctx, vs, NULL); sctx->prefetch_L2_mask &= ~SI_PREFETCH_VS; } } else { if (!NGG) { si_pm4_bind_state(sctx, gs, NULL); sctx->prefetch_L2_mask &= ~SI_PREFETCH_GS; if (GFX_VERSION <= GFX8) { si_pm4_bind_state(sctx, es, NULL); sctx->prefetch_L2_mask &= ~SI_PREFETCH_ES; } } } /* Update VS. */ if ((!HAS_TESS && !HAS_GS) || GFX_VERSION <= GFX8) { r = si_shader_select(ctx, &sctx->shader.vs); if (r) return false; if (!HAS_TESS && !HAS_GS) { if (NGG) { si_pm4_bind_state(sctx, gs, sctx->shader.vs.current); si_pm4_bind_state(sctx, vs, NULL); sctx->prefetch_L2_mask &= ~SI_PREFETCH_VS; } else { si_pm4_bind_state(sctx, vs, sctx->shader.vs.current); } } else if (HAS_TESS) { si_pm4_bind_state(sctx, ls, sctx->shader.vs.current); } else { assert(HAS_GS); si_pm4_bind_state(sctx, es, sctx->shader.vs.current); } } if (GFX_VERSION >= GFX9 && HAS_TESS) sctx->vs_uses_base_instance = sctx->queued.named.hs->uses_base_instance; else if (GFX_VERSION >= GFX9 && HAS_GS) sctx->vs_uses_base_instance = sctx->shader.gs.current->uses_base_instance; else sctx->vs_uses_base_instance = sctx->shader.vs.current->uses_base_instance; union si_vgt_stages_key key; key.index = 0; /* Update VGT_SHADER_STAGES_EN. */ if (HAS_TESS) key.u.tess = 1; if (HAS_GS) key.u.gs = 1; if (NGG) key.index |= si_get_vs_inline(sctx, HAS_TESS, HAS_GS)->current->ctx_reg.ngg.vgt_stages.index; struct si_pm4_state **pm4 = &sctx->vgt_shader_config[key.index]; if (unlikely(!*pm4)) *pm4 = si_build_vgt_shader_config(sctx->screen, key); si_pm4_bind_state(sctx, vgt_shader_config, *pm4); if (old_pa_cl_vs_out_cntl != si_get_vs_inline(sctx, HAS_TESS, HAS_GS)->current->pa_cl_vs_out_cntl) si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs); r = si_shader_select(ctx, &sctx->shader.ps); if (r) return false; si_pm4_bind_state(sctx, ps, sctx->shader.ps.current); if (si_pm4_state_changed(sctx, ps) || (!NGG && si_pm4_state_changed(sctx, vs)) || (NGG && si_pm4_state_changed(sctx, gs))) { sctx->atoms.s.spi_map.emit = sctx->emit_spi_map[sctx->shader.ps.current->ctx_reg.ps.num_interp]; si_mark_atom_dirty(sctx, &sctx->atoms.s.spi_map); } if ((GFX_VERSION >= GFX10_3 || (GFX_VERSION >= GFX9 && sctx->screen->info.rbplus_allowed)) && si_pm4_state_changed(sctx, ps) && (!old_ps || old_spi_shader_col_format != sctx->shader.ps.current->key.part.ps.epilog.spi_shader_col_format)) si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state); if (sctx->smoothing_enabled != sctx->shader.ps.current->key.part.ps.epilog.poly_line_smoothing) { sctx->smoothing_enabled = sctx->shader.ps.current->key.part.ps.epilog.poly_line_smoothing; si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config); /* NGG cull state uses smoothing_enabled. */ if (GFX_VERSION >= GFX10 && sctx->screen->use_ngg_culling) si_mark_atom_dirty(sctx, &sctx->atoms.s.ngg_cull_state); if (GFX_VERSION == GFX6) si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state); if (sctx->framebuffer.nr_samples <= 1) si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_sample_locs); } if (unlikely(sctx->screen->debug_flags & DBG(SQTT) && sctx->thread_trace)) { /* Pretend the bound shaders form a vk pipeline */ uint32_t pipeline_code_hash = 0; uint64_t base_address = ~0; for (int i = 0; i < SI_NUM_GRAPHICS_SHADERS; i++) { struct si_shader *shader = sctx->shaders[i].current; if (sctx->shaders[i].cso && shader) { pipeline_code_hash = _mesa_hash_data_with_seed( shader->binary.elf_buffer, shader->binary.elf_size, pipeline_code_hash); base_address = MIN2(base_address, shader->bo->gpu_address); } } struct ac_thread_trace_data *thread_trace_data = sctx->thread_trace; if (!si_sqtt_pipeline_is_registered(thread_trace_data, pipeline_code_hash)) { si_sqtt_register_pipeline(sctx, pipeline_code_hash, base_address, false); } si_sqtt_describe_pipeline_bind(sctx, pipeline_code_hash, 0); } if ((GFX_VERSION <= GFX8 && (si_pm4_state_enabled_and_changed(sctx, ls) || si_pm4_state_enabled_and_changed(sctx, es))) || si_pm4_state_enabled_and_changed(sctx, hs) || si_pm4_state_enabled_and_changed(sctx, gs) || si_pm4_state_enabled_and_changed(sctx, vs) || si_pm4_state_enabled_and_changed(sctx, ps)) { unsigned scratch_size = 0; if (HAS_TESS) { if (GFX_VERSION <= GFX8) /* LS */ scratch_size = MAX2(scratch_size, sctx->shader.vs.current->config.scratch_bytes_per_wave); scratch_size = MAX2(scratch_size, sctx->queued.named.hs->config.scratch_bytes_per_wave); if (HAS_GS) { if (GFX_VERSION <= GFX8) /* ES */ scratch_size = MAX2(scratch_size, sctx->shader.tes.current->config.scratch_bytes_per_wave); scratch_size = MAX2(scratch_size, sctx->shader.gs.current->config.scratch_bytes_per_wave); } else { scratch_size = MAX2(scratch_size, sctx->shader.tes.current->config.scratch_bytes_per_wave); } } else if (HAS_GS) { if (GFX_VERSION <= GFX8) /* ES */ scratch_size = MAX2(scratch_size, sctx->shader.vs.current->config.scratch_bytes_per_wave); scratch_size = MAX2(scratch_size, sctx->shader.gs.current->config.scratch_bytes_per_wave); } else { scratch_size = MAX2(scratch_size, sctx->shader.vs.current->config.scratch_bytes_per_wave); } scratch_size = MAX2(scratch_size, sctx->shader.ps.current->config.scratch_bytes_per_wave); if (scratch_size && !si_update_spi_tmpring_size(sctx, scratch_size)) return false; if (GFX_VERSION >= GFX7) { if (GFX_VERSION <= GFX8 && HAS_TESS && si_pm4_state_enabled_and_changed(sctx, ls)) sctx->prefetch_L2_mask |= SI_PREFETCH_LS; if (HAS_TESS && si_pm4_state_enabled_and_changed(sctx, hs)) sctx->prefetch_L2_mask |= SI_PREFETCH_HS; if (GFX_VERSION <= GFX8 && HAS_GS && si_pm4_state_enabled_and_changed(sctx, es)) sctx->prefetch_L2_mask |= SI_PREFETCH_ES; if ((HAS_GS || NGG) && si_pm4_state_enabled_and_changed(sctx, gs)) sctx->prefetch_L2_mask |= SI_PREFETCH_GS; if (!NGG && si_pm4_state_enabled_and_changed(sctx, vs)) sctx->prefetch_L2_mask |= SI_PREFETCH_VS; if (si_pm4_state_enabled_and_changed(sctx, ps)) sctx->prefetch_L2_mask |= SI_PREFETCH_PS; } } sctx->do_update_shaders = false; return true; } ALWAYS_INLINE static unsigned si_conv_pipe_prim(unsigned mode) { static const unsigned prim_conv[] = { [PIPE_PRIM_POINTS] = V_008958_DI_PT_POINTLIST, [PIPE_PRIM_LINES] = V_008958_DI_PT_LINELIST, [PIPE_PRIM_LINE_LOOP] = V_008958_DI_PT_LINELOOP, [PIPE_PRIM_LINE_STRIP] = V_008958_DI_PT_LINESTRIP, [PIPE_PRIM_TRIANGLES] = V_008958_DI_PT_TRILIST, [PIPE_PRIM_TRIANGLE_STRIP] = V_008958_DI_PT_TRISTRIP, [PIPE_PRIM_TRIANGLE_FAN] = V_008958_DI_PT_TRIFAN, [PIPE_PRIM_QUADS] = V_008958_DI_PT_QUADLIST, [PIPE_PRIM_QUAD_STRIP] = V_008958_DI_PT_QUADSTRIP, [PIPE_PRIM_POLYGON] = V_008958_DI_PT_POLYGON, [PIPE_PRIM_LINES_ADJACENCY] = V_008958_DI_PT_LINELIST_ADJ, [PIPE_PRIM_LINE_STRIP_ADJACENCY] = V_008958_DI_PT_LINESTRIP_ADJ, [PIPE_PRIM_TRIANGLES_ADJACENCY] = V_008958_DI_PT_TRILIST_ADJ, [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = V_008958_DI_PT_TRISTRIP_ADJ, [PIPE_PRIM_PATCHES] = V_008958_DI_PT_PATCH, [SI_PRIM_RECTANGLE_LIST] = V_008958_DI_PT_RECTLIST}; assert(mode < ARRAY_SIZE(prim_conv)); return prim_conv[mode]; } static void si_prefetch_shader_async(struct si_context *sctx, struct si_shader *shader) { struct pipe_resource *bo = &shader->bo->b.b; si_cp_dma_prefetch(sctx, bo, 0, bo->width0); } enum si_L2_prefetch_mode { PREFETCH_BEFORE_DRAW = 1, PREFETCH_AFTER_DRAW, PREFETCH_ALL, }; /** * Prefetch shaders. */ template static void si_prefetch_shaders(struct si_context *sctx) { unsigned mask = sctx->prefetch_L2_mask; /* GFX6 doesn't support the L2 prefetch. */ if (GFX_VERSION < GFX7 || !mask) return; /* Prefetch shaders and VBO descriptors to TC L2. */ if (GFX_VERSION >= GFX9) { /* Choose the right spot for the VBO prefetch. */ if (HAS_TESS) { if (mode != PREFETCH_AFTER_DRAW) { if (mask & SI_PREFETCH_HS) si_prefetch_shader_async(sctx, sctx->queued.named.hs); if (mode == PREFETCH_BEFORE_DRAW) return; } if ((HAS_GS || NGG) && mask & SI_PREFETCH_GS) si_prefetch_shader_async(sctx, sctx->queued.named.gs); if (!NGG && mask & SI_PREFETCH_VS) si_prefetch_shader_async(sctx, sctx->queued.named.vs); } else if (HAS_GS || NGG) { if (mode != PREFETCH_AFTER_DRAW) { if (mask & SI_PREFETCH_GS) si_prefetch_shader_async(sctx, sctx->queued.named.gs); if (mode == PREFETCH_BEFORE_DRAW) return; } if (!NGG && mask & SI_PREFETCH_VS) si_prefetch_shader_async(sctx, sctx->queued.named.vs); } else { if (mode != PREFETCH_AFTER_DRAW) { if (mask & SI_PREFETCH_VS) si_prefetch_shader_async(sctx, sctx->queued.named.vs); if (mode == PREFETCH_BEFORE_DRAW) return; } } } else { /* GFX6-GFX8 */ /* Choose the right spot for the VBO prefetch. */ if (HAS_TESS) { if (mode != PREFETCH_AFTER_DRAW) { if (mask & SI_PREFETCH_LS) si_prefetch_shader_async(sctx, sctx->queued.named.ls); if (mode == PREFETCH_BEFORE_DRAW) return; } if (mask & SI_PREFETCH_HS) si_prefetch_shader_async(sctx, sctx->queued.named.hs); if (mask & SI_PREFETCH_ES) si_prefetch_shader_async(sctx, sctx->queued.named.es); if (mask & SI_PREFETCH_GS) si_prefetch_shader_async(sctx, sctx->queued.named.gs); if (mask & SI_PREFETCH_VS) si_prefetch_shader_async(sctx, sctx->queued.named.vs); } else if (HAS_GS) { if (mode != PREFETCH_AFTER_DRAW) { if (mask & SI_PREFETCH_ES) si_prefetch_shader_async(sctx, sctx->queued.named.es); if (mode == PREFETCH_BEFORE_DRAW) return; } if (mask & SI_PREFETCH_GS) si_prefetch_shader_async(sctx, sctx->queued.named.gs); if (mask & SI_PREFETCH_VS) si_prefetch_shader_async(sctx, sctx->queued.named.vs); } else { if (mode != PREFETCH_AFTER_DRAW) { if (mask & SI_PREFETCH_VS) si_prefetch_shader_async(sctx, sctx->queued.named.vs); if (mode == PREFETCH_BEFORE_DRAW) return; } } } if (mask & SI_PREFETCH_PS) si_prefetch_shader_async(sctx, sctx->queued.named.ps); /* This must be cleared only when AFTER_DRAW is true. */ sctx->prefetch_L2_mask = 0; } /** * This calculates the LDS size for tessellation shaders (VS, TCS, TES). * LS.LDS_SIZE is shared by all 3 shader stages. * * The information about LDS and other non-compile-time parameters is then * written to userdata SGPRs. */ static void si_emit_derived_tess_state(struct si_context *sctx, unsigned *num_patches) { struct si_shader *ls_current; struct si_shader_selector *ls; /* The TES pointer will only be used for sctx->last_tcs. * It would be wrong to think that TCS = TES. */ struct si_shader_selector *tcs = sctx->shader.tcs.cso ? sctx->shader.tcs.cso : sctx->shader.tes.cso; unsigned tess_uses_primid = sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id; bool has_primid_instancing_bug = sctx->chip_class == GFX6 && sctx->screen->info.max_se == 1; unsigned tes_sh_base = sctx->shader_pointers.sh_base[PIPE_SHADER_TESS_EVAL]; uint8_t num_tcs_input_cp = sctx->patch_vertices; /* Since GFX9 has merged LS-HS in the TCS state, set LS = TCS. */ if (sctx->chip_class >= GFX9) { if (sctx->shader.tcs.cso) ls_current = sctx->shader.tcs.current; else ls_current = sctx->fixed_func_tcs_shader.current; ls = ls_current->key.part.tcs.ls; } else { ls_current = sctx->shader.vs.current; ls = sctx->shader.vs.cso; } if (sctx->last_ls == ls_current && sctx->last_tcs == tcs && sctx->last_tes_sh_base == tes_sh_base && sctx->last_num_tcs_input_cp == num_tcs_input_cp && (!has_primid_instancing_bug || (sctx->last_tess_uses_primid == tess_uses_primid))) { *num_patches = sctx->last_num_patches; return; } sctx->last_ls = ls_current; sctx->last_tcs = tcs; sctx->last_tes_sh_base = tes_sh_base; sctx->last_num_tcs_input_cp = num_tcs_input_cp; sctx->last_tess_uses_primid = tess_uses_primid; /* This calculates how shader inputs and outputs among VS, TCS, and TES * are laid out in LDS. */ unsigned num_tcs_inputs = util_last_bit64(ls->outputs_written); unsigned num_tcs_output_cp, num_tcs_outputs, num_tcs_patch_outputs; if (sctx->shader.tcs.cso) { num_tcs_outputs = util_last_bit64(tcs->outputs_written); num_tcs_output_cp = tcs->info.base.tess.tcs_vertices_out; num_tcs_patch_outputs = util_last_bit64(tcs->patch_outputs_written); } else { /* No TCS. Route varyings from LS to TES. */ num_tcs_outputs = num_tcs_inputs; num_tcs_output_cp = num_tcs_input_cp; num_tcs_patch_outputs = 2; /* TESSINNER + TESSOUTER */ } unsigned input_vertex_size = ls->lshs_vertex_stride; unsigned output_vertex_size = num_tcs_outputs * 16; unsigned input_patch_size; /* Allocate LDS for TCS inputs only if it's used. */ if (!ls_current->key.opt.same_patch_vertices || tcs->info.base.inputs_read & ~tcs->tcs_vgpr_only_inputs) input_patch_size = num_tcs_input_cp * input_vertex_size; else input_patch_size = 0; unsigned pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size; unsigned output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16; unsigned lds_per_patch; /* Compute the LDS size per patch. * * LDS is used to store TCS outputs if they are read, and to store tess * factors if they are not defined in all invocations. */ if (tcs->info.base.outputs_read || tcs->info.base.patch_outputs_read || !tcs->info.tessfactors_are_def_in_all_invocs) { lds_per_patch = input_patch_size + output_patch_size; } else { /* LDS will only store TCS inputs. The offchip buffer will only store TCS outputs. */ lds_per_patch = MAX2(input_patch_size, output_patch_size); } /* Ensure that we only need 4 waves per CU, so that we don't need to check * resource usage (such as whether we have enough VGPRs to fit the whole * threadgroup into the CU). It also ensures that the number of tcs in and out * vertices per threadgroup are at most 256, which is the hw limit. */ unsigned max_verts_per_patch = MAX2(num_tcs_input_cp, num_tcs_output_cp); *num_patches = 256 / max_verts_per_patch; /* Not necessary for correctness, but higher numbers are slower. * The hardware can do more, but the radeonsi shader constant is * limited to 6 bits. */ *num_patches = MIN2(*num_patches, 64); /* e.g. 64 triangles in exactly 3 waves */ /* When distributed tessellation is unsupported, switch between SEs * at a higher frequency to manually balance the workload between SEs. */ if (!sctx->screen->info.has_distributed_tess && sctx->screen->info.max_se > 1) *num_patches = MIN2(*num_patches, 16); /* recommended */ /* Make sure the output data fits in the offchip buffer */ *num_patches = MIN2(*num_patches, (sctx->screen->tess_offchip_block_dw_size * 4) / output_patch_size); /* Make sure that the data fits in LDS. This assumes the shaders only * use LDS for the inputs and outputs. * * The maximum allowed LDS size is 32K. Higher numbers can hang. * Use 16K as the maximum, so that we can fit 2 workgroups on the same CU. */ ASSERTED unsigned max_lds_size = 32 * 1024; /* hw limit */ unsigned target_lds_size = 16 * 1024; /* target at least 2 workgroups per CU, 16K each */ *num_patches = MIN2(*num_patches, target_lds_size / lds_per_patch); *num_patches = MAX2(*num_patches, 1); assert(*num_patches * lds_per_patch <= max_lds_size); /* Make sure that vector lanes are fully occupied by cutting off the last wave * if it's only partially filled. */ unsigned temp_verts_per_tg = *num_patches * max_verts_per_patch; unsigned wave_size = sctx->screen->ge_wave_size; if (temp_verts_per_tg > wave_size && (wave_size - temp_verts_per_tg % wave_size >= MAX2(max_verts_per_patch, 8))) *num_patches = (temp_verts_per_tg & ~(wave_size - 1)) / max_verts_per_patch; if (sctx->chip_class == GFX6) { /* GFX6 bug workaround, related to power management. Limit LS-HS * threadgroups to only one wave. */ unsigned one_wave = wave_size / max_verts_per_patch; *num_patches = MIN2(*num_patches, one_wave); } /* The VGT HS block increments the patch ID unconditionally * within a single threadgroup. This results in incorrect * patch IDs when instanced draws are used. * * The intended solution is to restrict threadgroups to * a single instance by setting SWITCH_ON_EOI, which * should cause IA to split instances up. However, this * doesn't work correctly on GFX6 when there is no other * SE to switch to. */ if (has_primid_instancing_bug && tess_uses_primid) *num_patches = 1; sctx->last_num_patches = *num_patches; unsigned output_patch0_offset = input_patch_size * *num_patches; unsigned perpatch_output_offset = output_patch0_offset + pervertex_output_patch_size; /* Compute userdata SGPRs. */ assert(((input_vertex_size / 4) & ~0xff) == 0); assert(((output_vertex_size / 4) & ~0xff) == 0); assert(((input_patch_size / 4) & ~0x1fff) == 0); assert(((output_patch_size / 4) & ~0x1fff) == 0); assert(((output_patch0_offset / 16) & ~0xffff) == 0); assert(((perpatch_output_offset / 16) & ~0xffff) == 0); assert(num_tcs_input_cp <= 32); assert(num_tcs_output_cp <= 32); assert(*num_patches <= 64); assert(((pervertex_output_patch_size * *num_patches) & ~0x1fffff) == 0); uint64_t ring_va = (unlikely(sctx->ws->cs_is_secure(&sctx->gfx_cs)) ? si_resource(sctx->tess_rings_tmz) : si_resource(sctx->tess_rings))->gpu_address; assert((ring_va & u_bit_consecutive(0, 19)) == 0); unsigned tcs_in_layout = S_VS_STATE_LS_OUT_PATCH_SIZE(input_patch_size / 4) | S_VS_STATE_LS_OUT_VERTEX_SIZE(input_vertex_size / 4); unsigned tcs_out_layout = (output_patch_size / 4) | (num_tcs_input_cp << 13) | ring_va; unsigned tcs_out_offsets = (output_patch0_offset / 16) | ((perpatch_output_offset / 16) << 16); unsigned offchip_layout = (*num_patches - 1) | ((num_tcs_output_cp - 1) << 6) | ((pervertex_output_patch_size * *num_patches) << 11); /* Compute the LDS size. */ unsigned lds_size = lds_per_patch * *num_patches; if (sctx->chip_class >= GFX7) { assert(lds_size <= 65536); lds_size = align(lds_size, 512) / 512; } else { assert(lds_size <= 32768); lds_size = align(lds_size, 256) / 256; } /* Set SI_SGPR_VS_STATE_BITS. */ sctx->current_vs_state &= C_VS_STATE_LS_OUT_PATCH_SIZE & C_VS_STATE_LS_OUT_VERTEX_SIZE; sctx->current_vs_state |= tcs_in_layout; /* We should be able to support in-shader LDS use with LLVM >= 9 * by just adding the lds_sizes together, but it has never * been tested. */ assert(ls_current->config.lds_size == 0); struct radeon_cmdbuf *cs = &sctx->gfx_cs; radeon_begin(cs); if (sctx->chip_class >= GFX9) { unsigned hs_rsrc2 = ls_current->config.rsrc2; if (sctx->chip_class >= GFX10) hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX10(lds_size); else hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX9(lds_size); radeon_set_sh_reg(R_00B42C_SPI_SHADER_PGM_RSRC2_HS, hs_rsrc2); /* Set userdata SGPRs for merged LS-HS. */ radeon_set_sh_reg_seq( R_00B430_SPI_SHADER_USER_DATA_LS_0 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4, 3); radeon_emit(offchip_layout); radeon_emit(tcs_out_offsets); radeon_emit(tcs_out_layout); } else { unsigned ls_rsrc2 = ls_current->config.rsrc2; si_multiwave_lds_size_workaround(sctx->screen, &lds_size); ls_rsrc2 |= S_00B52C_LDS_SIZE(lds_size); /* Due to a hw bug, RSRC2_LS must be written twice with another * LS register written in between. */ if (sctx->chip_class == GFX7 && sctx->family != CHIP_HAWAII) radeon_set_sh_reg(R_00B52C_SPI_SHADER_PGM_RSRC2_LS, ls_rsrc2); radeon_set_sh_reg_seq(R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2); radeon_emit(ls_current->config.rsrc1); radeon_emit(ls_rsrc2); /* Set userdata SGPRs for TCS. */ radeon_set_sh_reg_seq( R_00B430_SPI_SHADER_USER_DATA_HS_0 + GFX6_SGPR_TCS_OFFCHIP_LAYOUT * 4, 4); radeon_emit(offchip_layout); radeon_emit(tcs_out_offsets); radeon_emit(tcs_out_layout); radeon_emit(tcs_in_layout); } /* Set userdata SGPRs for TES. */ radeon_set_sh_reg_seq(tes_sh_base + SI_SGPR_TES_OFFCHIP_LAYOUT * 4, 2); radeon_emit(offchip_layout); radeon_emit(ring_va); radeon_end(); unsigned ls_hs_config = S_028B58_NUM_PATCHES(*num_patches) | S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) | S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp); if (sctx->last_ls_hs_config != ls_hs_config) { radeon_begin(cs); if (sctx->chip_class >= GFX7) { radeon_set_context_reg_idx(R_028B58_VGT_LS_HS_CONFIG, 2, ls_hs_config); } else { radeon_set_context_reg(R_028B58_VGT_LS_HS_CONFIG, ls_hs_config); } radeon_end_update_context_roll(sctx); sctx->last_ls_hs_config = ls_hs_config; } } static unsigned si_num_prims_for_vertices(enum pipe_prim_type prim, unsigned count, unsigned vertices_per_patch) { switch (prim) { case PIPE_PRIM_PATCHES: return count / vertices_per_patch; case PIPE_PRIM_POLYGON: /* It's a triangle fan with different edge flags. */ return count >= 3 ? count - 2 : 0; case SI_PRIM_RECTANGLE_LIST: return count / 3; default: return u_decomposed_prims_for_vertices(prim, count); } } static unsigned si_get_init_multi_vgt_param(struct si_screen *sscreen, union si_vgt_param_key *key) { STATIC_ASSERT(sizeof(union si_vgt_param_key) == 2); unsigned max_primgroup_in_wave = 2; /* SWITCH_ON_EOP(0) is always preferable. */ bool wd_switch_on_eop = false; bool ia_switch_on_eop = false; bool ia_switch_on_eoi = false; bool partial_vs_wave = false; bool partial_es_wave = false; if (key->u.uses_tess) { /* SWITCH_ON_EOI must be set if PrimID is used. */ if (key->u.tess_uses_prim_id) ia_switch_on_eoi = true; /* Bug with tessellation and GS on Bonaire and older 2 SE chips. */ if ((sscreen->info.family == CHIP_TAHITI || sscreen->info.family == CHIP_PITCAIRN || sscreen->info.family == CHIP_BONAIRE) && key->u.uses_gs) partial_vs_wave = true; /* Needed for 028B6C_DISTRIBUTION_MODE != 0. (implies >= GFX8) */ if (sscreen->info.has_distributed_tess) { if (key->u.uses_gs) { if (sscreen->info.chip_class == GFX8) partial_es_wave = true; } else { partial_vs_wave = true; } } } /* This is a hardware requirement. */ if (key->u.line_stipple_enabled || (sscreen->debug_flags & DBG(SWITCH_ON_EOP))) { ia_switch_on_eop = true; wd_switch_on_eop = true; } if (sscreen->info.chip_class >= GFX7) { /* WD_SWITCH_ON_EOP has no effect on GPUs with less than * 4 shader engines. Set 1 to pass the assertion below. * The other cases are hardware requirements. * * Polaris supports primitive restart with WD_SWITCH_ON_EOP=0 * for points, line strips, and tri strips. */ if (sscreen->info.max_se <= 2 || key->u.prim == PIPE_PRIM_POLYGON || key->u.prim == PIPE_PRIM_LINE_LOOP || key->u.prim == PIPE_PRIM_TRIANGLE_FAN || key->u.prim == PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY || (key->u.primitive_restart && (sscreen->info.family < CHIP_POLARIS10 || (key->u.prim != PIPE_PRIM_POINTS && key->u.prim != PIPE_PRIM_LINE_STRIP && key->u.prim != PIPE_PRIM_TRIANGLE_STRIP))) || key->u.count_from_stream_output) wd_switch_on_eop = true; /* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0. * We don't know that for indirect drawing, so treat it as * always problematic. */ if (sscreen->info.family == CHIP_HAWAII && key->u.uses_instancing) wd_switch_on_eop = true; /* Performance recommendation for 4 SE Gfx7-8 parts if * instances are smaller than a primgroup. * Assume indirect draws always use small instances. * This is needed for good VS wave utilization. */ if (sscreen->info.chip_class <= GFX8 && sscreen->info.max_se == 4 && key->u.multi_instances_smaller_than_primgroup) wd_switch_on_eop = true; /* Required on GFX7 and later. */ if (sscreen->info.max_se == 4 && !wd_switch_on_eop) ia_switch_on_eoi = true; /* HW engineers suggested that PARTIAL_VS_WAVE_ON should be set * to work around a GS hang. */ if (key->u.uses_gs && (sscreen->info.family == CHIP_TONGA || sscreen->info.family == CHIP_FIJI || sscreen->info.family == CHIP_POLARIS10 || sscreen->info.family == CHIP_POLARIS11 || sscreen->info.family == CHIP_POLARIS12 || sscreen->info.family == CHIP_VEGAM)) partial_vs_wave = true; /* Required by Hawaii and, for some special cases, by GFX8. */ if (ia_switch_on_eoi && (sscreen->info.family == CHIP_HAWAII || (sscreen->info.chip_class == GFX8 && (key->u.uses_gs || max_primgroup_in_wave != 2)))) partial_vs_wave = true; /* Instancing bug on Bonaire. */ if (sscreen->info.family == CHIP_BONAIRE && ia_switch_on_eoi && key->u.uses_instancing) partial_vs_wave = true; /* This only applies to Polaris10 and later 4 SE chips. * wd_switch_on_eop is already true on all other chips. */ if (!wd_switch_on_eop && key->u.primitive_restart) partial_vs_wave = true; /* If the WD switch is false, the IA switch must be false too. */ assert(wd_switch_on_eop || !ia_switch_on_eop); } /* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */ if (sscreen->info.chip_class <= GFX8 && ia_switch_on_eoi) partial_es_wave = true; return S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) | S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) | S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) | S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) | S_028AA8_WD_SWITCH_ON_EOP(sscreen->info.chip_class >= GFX7 ? wd_switch_on_eop : 0) | /* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */ S_028AA8_MAX_PRIMGRP_IN_WAVE(sscreen->info.chip_class == GFX8 ? max_primgroup_in_wave : 0) | S_030960_EN_INST_OPT_BASIC(sscreen->info.chip_class >= GFX9) | S_030960_EN_INST_OPT_ADV(sscreen->info.chip_class >= GFX9); } static void si_init_ia_multi_vgt_param_table(struct si_context *sctx) { for (int prim = 0; prim <= SI_PRIM_RECTANGLE_LIST; prim++) for (int uses_instancing = 0; uses_instancing < 2; uses_instancing++) for (int multi_instances = 0; multi_instances < 2; multi_instances++) for (int primitive_restart = 0; primitive_restart < 2; primitive_restart++) for (int count_from_so = 0; count_from_so < 2; count_from_so++) for (int line_stipple = 0; line_stipple < 2; line_stipple++) for (int uses_tess = 0; uses_tess < 2; uses_tess++) for (int tess_uses_primid = 0; tess_uses_primid < 2; tess_uses_primid++) for (int uses_gs = 0; uses_gs < 2; uses_gs++) { union si_vgt_param_key key; key.index = 0; key.u.prim = prim; key.u.uses_instancing = uses_instancing; key.u.multi_instances_smaller_than_primgroup = multi_instances; key.u.primitive_restart = primitive_restart; key.u.count_from_stream_output = count_from_so; key.u.line_stipple_enabled = line_stipple; key.u.uses_tess = uses_tess; key.u.tess_uses_prim_id = tess_uses_primid; key.u.uses_gs = uses_gs; sctx->ia_multi_vgt_param[key.index] = si_get_init_multi_vgt_param(sctx->screen, &key); } } static bool si_is_line_stipple_enabled(struct si_context *sctx) { struct si_state_rasterizer *rs = sctx->queued.named.rasterizer; return rs->line_stipple_enable && sctx->current_rast_prim != PIPE_PRIM_POINTS && (rs->polygon_mode_is_lines || util_prim_is_lines(sctx->current_rast_prim)); } enum si_is_draw_vertex_state { DRAW_VERTEX_STATE_OFF, DRAW_VERTEX_STATE_ON, }; template ALWAYS_INLINE static bool num_instanced_prims_less_than(const struct pipe_draw_indirect_info *indirect, enum pipe_prim_type prim, unsigned min_vertex_count, unsigned instance_count, unsigned num_prims, ubyte vertices_per_patch) { if (IS_DRAW_VERTEX_STATE) return 0; if (indirect) { return indirect->buffer || (instance_count > 1 && indirect->count_from_stream_output); } else { return instance_count > 1 && si_num_prims_for_vertices(prim, min_vertex_count, vertices_per_patch) < num_prims; } } template ALWAYS_INLINE static unsigned si_get_ia_multi_vgt_param(struct si_context *sctx, const struct pipe_draw_indirect_info *indirect, enum pipe_prim_type prim, unsigned num_patches, unsigned instance_count, bool primitive_restart, unsigned min_vertex_count) { union si_vgt_param_key key = sctx->ia_multi_vgt_param_key; unsigned primgroup_size; unsigned ia_multi_vgt_param; if (HAS_TESS) { primgroup_size = num_patches; /* must be a multiple of NUM_PATCHES */ } else if (HAS_GS) { primgroup_size = 64; /* recommended with a GS */ } else { primgroup_size = 128; /* recommended without a GS and tess */ } key.u.prim = prim; key.u.uses_instancing = !IS_DRAW_VERTEX_STATE && ((indirect && indirect->buffer) || instance_count > 1); key.u.multi_instances_smaller_than_primgroup = num_instanced_prims_less_than(indirect, prim, min_vertex_count, instance_count, primgroup_size, sctx->patch_vertices); key.u.primitive_restart = !IS_DRAW_VERTEX_STATE && primitive_restart; key.u.count_from_stream_output = !IS_DRAW_VERTEX_STATE && indirect && indirect->count_from_stream_output; key.u.line_stipple_enabled = si_is_line_stipple_enabled(sctx); ia_multi_vgt_param = sctx->ia_multi_vgt_param[key.index] | S_028AA8_PRIMGROUP_SIZE(primgroup_size - 1); if (HAS_GS) { /* GS requirement. */ if (GFX_VERSION <= GFX8 && SI_GS_PER_ES / primgroup_size >= sctx->screen->gs_table_depth - 3) ia_multi_vgt_param |= S_028AA8_PARTIAL_ES_WAVE_ON(1); /* GS hw bug with single-primitive instances and SWITCH_ON_EOI. * The hw doc says all multi-SE chips are affected, but Vulkan * only applies it to Hawaii. Do what Vulkan does. */ if (GFX_VERSION == GFX7 && sctx->family == CHIP_HAWAII && G_028AA8_SWITCH_ON_EOI(ia_multi_vgt_param) && num_instanced_prims_less_than(indirect, prim, min_vertex_count, instance_count, 2, sctx->patch_vertices)) sctx->flags |= SI_CONTEXT_VGT_FLUSH; } return ia_multi_vgt_param; } ALWAYS_INLINE static unsigned si_conv_prim_to_gs_out(unsigned mode) { static const int prim_conv[] = { [PIPE_PRIM_POINTS] = V_028A6C_POINTLIST, [PIPE_PRIM_LINES] = V_028A6C_LINESTRIP, [PIPE_PRIM_LINE_LOOP] = V_028A6C_LINESTRIP, [PIPE_PRIM_LINE_STRIP] = V_028A6C_LINESTRIP, [PIPE_PRIM_TRIANGLES] = V_028A6C_TRISTRIP, [PIPE_PRIM_TRIANGLE_STRIP] = V_028A6C_TRISTRIP, [PIPE_PRIM_TRIANGLE_FAN] = V_028A6C_TRISTRIP, [PIPE_PRIM_QUADS] = V_028A6C_TRISTRIP, [PIPE_PRIM_QUAD_STRIP] = V_028A6C_TRISTRIP, [PIPE_PRIM_POLYGON] = V_028A6C_TRISTRIP, [PIPE_PRIM_LINES_ADJACENCY] = V_028A6C_LINESTRIP, [PIPE_PRIM_LINE_STRIP_ADJACENCY] = V_028A6C_LINESTRIP, [PIPE_PRIM_TRIANGLES_ADJACENCY] = V_028A6C_TRISTRIP, [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = V_028A6C_TRISTRIP, [PIPE_PRIM_PATCHES] = V_028A6C_POINTLIST, [SI_PRIM_RECTANGLE_LIST] = V_028A6C_RECTLIST, }; assert(mode < ARRAY_SIZE(prim_conv)); return prim_conv[mode]; } /* rast_prim is the primitive type after GS. */ template ALWAYS_INLINE static void si_emit_rasterizer_prim_state(struct si_context *sctx) { struct radeon_cmdbuf *cs = &sctx->gfx_cs; enum pipe_prim_type rast_prim = sctx->current_rast_prim; struct si_state_rasterizer *rs = sctx->queued.named.rasterizer; radeon_begin(cs); if (unlikely(si_is_line_stipple_enabled(sctx))) { /* For lines, reset the stipple pattern at each primitive. Otherwise, * reset the stipple pattern at each packet (line strips, line loops). */ bool reset_per_prim = rast_prim == PIPE_PRIM_LINES || rast_prim == PIPE_PRIM_LINES_ADJACENCY; /* 0 = no reset, 1 = reset per prim, 2 = reset per packet */ unsigned value = rs->pa_sc_line_stipple | S_028A0C_AUTO_RESET_CNTL(reset_per_prim ? 1 : 2); radeon_opt_set_context_reg(sctx, R_028A0C_PA_SC_LINE_STIPPLE, SI_TRACKED_PA_SC_LINE_STIPPLE, value); } unsigned gs_out_prim = si_conv_prim_to_gs_out(rast_prim); if (unlikely(gs_out_prim != sctx->last_gs_out_prim && (NGG || HAS_GS))) { radeon_set_context_reg(R_028A6C_VGT_GS_OUT_PRIM_TYPE, gs_out_prim); sctx->last_gs_out_prim = gs_out_prim; } if (GFX_VERSION == GFX9) radeon_end_update_context_roll(sctx); else radeon_end(); if (NGG) { struct si_shader *hw_vs = si_get_vs_inline(sctx, HAS_TESS, HAS_GS)->current; if (hw_vs->uses_vs_state_provoking_vertex) { unsigned vtx_index = rs->flatshade_first ? 0 : gs_out_prim; sctx->current_vs_state &= C_VS_STATE_PROVOKING_VTX_INDEX; sctx->current_vs_state |= S_VS_STATE_PROVOKING_VTX_INDEX(vtx_index); } if (hw_vs->uses_vs_state_outprim) { sctx->current_vs_state &= C_VS_STATE_OUTPRIM; sctx->current_vs_state |= S_VS_STATE_OUTPRIM(gs_out_prim); } } } template ALWAYS_INLINE static void si_emit_vs_state(struct si_context *sctx, unsigned index_size) { if (!IS_DRAW_VERTEX_STATE && sctx->num_vs_blit_sgprs) { /* Re-emit the state after we leave u_blitter. */ sctx->last_vs_state = ~0; return; } if (sctx->shader.vs.cso->info.uses_base_vertex) { sctx->current_vs_state &= C_VS_STATE_INDEXED; sctx->current_vs_state |= S_VS_STATE_INDEXED(!!index_size); } if (sctx->current_vs_state != sctx->last_vs_state) { struct radeon_cmdbuf *cs = &sctx->gfx_cs; /* For the API vertex shader (VS_STATE_INDEXED, LS_OUT_*). */ unsigned vs_base = si_get_user_data_base(GFX_VERSION, HAS_TESS, HAS_GS, NGG, PIPE_SHADER_VERTEX); radeon_begin(cs); radeon_set_sh_reg(vs_base + SI_SGPR_VS_STATE_BITS * 4, sctx->current_vs_state); /* Set CLAMP_VERTEX_COLOR and OUTPRIM in the last stage * before the rasterizer. * * For TES or the GS copy shader without NGG: */ if (vs_base != R_00B130_SPI_SHADER_USER_DATA_VS_0) { radeon_set_sh_reg(R_00B130_SPI_SHADER_USER_DATA_VS_0 + SI_SGPR_VS_STATE_BITS * 4, sctx->current_vs_state); } /* For NGG: */ if (GFX_VERSION >= GFX10 && vs_base != R_00B230_SPI_SHADER_USER_DATA_GS_0) { radeon_set_sh_reg(R_00B230_SPI_SHADER_USER_DATA_GS_0 + SI_SGPR_VS_STATE_BITS * 4, sctx->current_vs_state); } radeon_end(); sctx->last_vs_state = sctx->current_vs_state; } } ALWAYS_INLINE static bool si_prim_restart_index_changed(struct si_context *sctx, bool primitive_restart, unsigned restart_index) { return primitive_restart && (restart_index != sctx->last_restart_index || sctx->last_restart_index == SI_RESTART_INDEX_UNKNOWN); } template ALWAYS_INLINE static void si_emit_ia_multi_vgt_param(struct si_context *sctx, const struct pipe_draw_indirect_info *indirect, enum pipe_prim_type prim, unsigned num_patches, unsigned instance_count, bool primitive_restart, unsigned min_vertex_count) { struct radeon_cmdbuf *cs = &sctx->gfx_cs; unsigned ia_multi_vgt_param; ia_multi_vgt_param = si_get_ia_multi_vgt_param (sctx, indirect, prim, num_patches, instance_count, primitive_restart, min_vertex_count); /* Draw state. */ if (ia_multi_vgt_param != sctx->last_multi_vgt_param || /* Workaround for SpecviewPerf13 Catia hang on GFX9. */ (GFX_VERSION == GFX9 && prim != sctx->last_prim)) { radeon_begin(cs); if (GFX_VERSION == GFX9) radeon_set_uconfig_reg_idx(sctx->screen, GFX_VERSION, R_030960_IA_MULTI_VGT_PARAM, 4, ia_multi_vgt_param); else if (GFX_VERSION >= GFX7) radeon_set_context_reg_idx(R_028AA8_IA_MULTI_VGT_PARAM, 1, ia_multi_vgt_param); else radeon_set_context_reg(R_028AA8_IA_MULTI_VGT_PARAM, ia_multi_vgt_param); radeon_end(); sctx->last_multi_vgt_param = ia_multi_vgt_param; } } /* GFX10 removed IA_MULTI_VGT_PARAM in exchange for GE_CNTL. * We overload last_multi_vgt_param. */ template ALWAYS_INLINE static void gfx10_emit_ge_cntl(struct si_context *sctx, unsigned num_patches) { union si_vgt_param_key key = sctx->ia_multi_vgt_param_key; unsigned ge_cntl; if (NGG) { if (HAS_TESS) { ge_cntl = S_03096C_PRIM_GRP_SIZE(num_patches) | S_03096C_VERT_GRP_SIZE(0) | S_03096C_BREAK_WAVE_AT_EOI(key.u.tess_uses_prim_id); } else { ge_cntl = si_get_vs_inline(sctx, HAS_TESS, HAS_GS)->current->ge_cntl; } } else { unsigned primgroup_size; unsigned vertgroup_size; if (HAS_TESS) { primgroup_size = num_patches; /* must be a multiple of NUM_PATCHES */ vertgroup_size = 0; } else if (HAS_GS) { unsigned vgt_gs_onchip_cntl = sctx->shader.gs.current->ctx_reg.gs.vgt_gs_onchip_cntl; primgroup_size = G_028A44_GS_PRIMS_PER_SUBGRP(vgt_gs_onchip_cntl); vertgroup_size = G_028A44_ES_VERTS_PER_SUBGRP(vgt_gs_onchip_cntl); } else { primgroup_size = 128; /* recommended without a GS and tess */ vertgroup_size = 0; } ge_cntl = S_03096C_PRIM_GRP_SIZE(primgroup_size) | S_03096C_VERT_GRP_SIZE(vertgroup_size) | S_03096C_BREAK_WAVE_AT_EOI(key.u.uses_tess && key.u.tess_uses_prim_id); } ge_cntl |= S_03096C_PACKET_TO_ONE_PA(si_is_line_stipple_enabled(sctx)); if (ge_cntl != sctx->last_multi_vgt_param) { struct radeon_cmdbuf *cs = &sctx->gfx_cs; radeon_begin(cs); radeon_set_uconfig_reg(R_03096C_GE_CNTL, ge_cntl); radeon_end(); sctx->last_multi_vgt_param = ge_cntl; } } template ALWAYS_INLINE static void si_emit_draw_registers(struct si_context *sctx, const struct pipe_draw_indirect_info *indirect, enum pipe_prim_type prim, unsigned num_patches, unsigned instance_count, bool primitive_restart, unsigned restart_index, unsigned min_vertex_count) { struct radeon_cmdbuf *cs = &sctx->gfx_cs; if (IS_DRAW_VERTEX_STATE) primitive_restart = false; if (GFX_VERSION >= GFX10) gfx10_emit_ge_cntl(sctx, num_patches); else si_emit_ia_multi_vgt_param (sctx, indirect, prim, num_patches, instance_count, primitive_restart, min_vertex_count); radeon_begin(cs); if (prim != sctx->last_prim) { unsigned vgt_prim = si_conv_pipe_prim(prim); if (GFX_VERSION >= GFX10) radeon_set_uconfig_reg(R_030908_VGT_PRIMITIVE_TYPE, vgt_prim); else if (GFX_VERSION >= GFX7) radeon_set_uconfig_reg_idx(sctx->screen, GFX_VERSION, R_030908_VGT_PRIMITIVE_TYPE, 1, vgt_prim); else radeon_set_config_reg(R_008958_VGT_PRIMITIVE_TYPE, vgt_prim); sctx->last_prim = prim; } /* Primitive restart. */ if (primitive_restart != sctx->last_primitive_restart_en) { if (GFX_VERSION >= GFX9) radeon_set_uconfig_reg(R_03092C_VGT_MULTI_PRIM_IB_RESET_EN, primitive_restart); else radeon_set_context_reg(R_028A94_VGT_MULTI_PRIM_IB_RESET_EN, primitive_restart); sctx->last_primitive_restart_en = primitive_restart; } if (si_prim_restart_index_changed(sctx, primitive_restart, restart_index)) { radeon_set_context_reg(R_02840C_VGT_MULTI_PRIM_IB_RESET_INDX, restart_index); sctx->last_restart_index = restart_index; if (GFX_VERSION == GFX9) sctx->context_roll = true; } radeon_end(); } #define EMIT_SQTT_END_DRAW do { \ if (GFX_VERSION >= GFX9 && unlikely(sctx->thread_trace_enabled)) { \ radeon_begin(&sctx->gfx_cs); \ radeon_emit(PKT3(PKT3_EVENT_WRITE, 0, 0)); \ radeon_emit(EVENT_TYPE(V_028A90_THREAD_TRACE_MARKER) | \ EVENT_INDEX(0)); \ radeon_end(); \ } \ } while (0) template ALWAYS_INLINE static void si_emit_draw_packets(struct si_context *sctx, const struct pipe_draw_info *info, unsigned drawid_base, const struct pipe_draw_indirect_info *indirect, const struct pipe_draw_start_count_bias *draws, unsigned num_draws, unsigned total_count, struct pipe_resource *indexbuf, unsigned index_size, unsigned index_offset, unsigned instance_count, unsigned original_index_size) { struct radeon_cmdbuf *cs = &sctx->gfx_cs; if (unlikely(sctx->thread_trace_enabled)) { si_sqtt_write_event_marker(sctx, &sctx->gfx_cs, sctx->sqtt_next_event, UINT_MAX, UINT_MAX, UINT_MAX); } uint32_t use_opaque = 0; if (!IS_DRAW_VERTEX_STATE && indirect && indirect->count_from_stream_output) { struct si_streamout_target *t = (struct si_streamout_target *)indirect->count_from_stream_output; radeon_begin(cs); radeon_set_context_reg(R_028B30_VGT_STRMOUT_DRAW_OPAQUE_VERTEX_STRIDE, t->stride_in_dw); radeon_end(); si_cp_copy_data(sctx, &sctx->gfx_cs, COPY_DATA_REG, NULL, R_028B2C_VGT_STRMOUT_DRAW_OPAQUE_BUFFER_FILLED_SIZE >> 2, COPY_DATA_SRC_MEM, t->buf_filled_size, t->buf_filled_size_offset); use_opaque = S_0287F0_USE_OPAQUE(1); indirect = NULL; } uint32_t index_max_size = 0; uint64_t index_va = 0; radeon_begin(cs); /* draw packet */ if (index_size) { /* Register shadowing doesn't shadow INDEX_TYPE. */ if (index_size != sctx->last_index_size || sctx->shadowed_regs) { unsigned index_type; /* Index type computation. When we look at how we need to translate index_size, * we can see that we just need 2 shifts to get the hw value. * * 1 = 001b --> 10b = 2 * 2 = 010b --> 00b = 0 * 4 = 100b --> 01b = 1 */ index_type = ((index_size >> 2) | (index_size << 1)) & 0x3; if (GFX_VERSION <= GFX7 && SI_BIG_ENDIAN) { /* GFX7 doesn't support ubyte indices. */ index_type |= index_size == 2 ? V_028A7C_VGT_DMA_SWAP_16_BIT : V_028A7C_VGT_DMA_SWAP_32_BIT; } if (GFX_VERSION >= GFX9) { radeon_set_uconfig_reg_idx(sctx->screen, GFX_VERSION, R_03090C_VGT_INDEX_TYPE, 2, index_type); } else { radeon_emit(PKT3(PKT3_INDEX_TYPE, 0, 0)); radeon_emit(index_type); } sctx->last_index_size = index_size; } index_max_size = (indexbuf->width0 - index_offset) >> util_logbase2(index_size); /* Skip draw calls with 0-sized index buffers. * They cause a hang on some chips, like Navi10-14. */ if (!index_max_size) { radeon_end(); return; } index_va = si_resource(indexbuf)->gpu_address + index_offset; radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, si_resource(indexbuf), RADEON_USAGE_READ, RADEON_PRIO_INDEX_BUFFER); } else { /* On GFX7 and later, non-indexed draws overwrite VGT_INDEX_TYPE, * so the state must be re-emitted before the next indexed draw. */ if (GFX_VERSION >= GFX7) sctx->last_index_size = -1; } unsigned sh_base_reg = sctx->shader_pointers.sh_base[PIPE_SHADER_VERTEX]; bool render_cond_bit = sctx->render_cond_enabled; if (!IS_DRAW_VERTEX_STATE && indirect) { assert(num_draws == 1); uint64_t indirect_va = si_resource(indirect->buffer)->gpu_address; assert(indirect_va % 8 == 0); si_invalidate_draw_constants(sctx); radeon_emit(PKT3(PKT3_SET_BASE, 2, 0)); radeon_emit(1); radeon_emit(indirect_va); radeon_emit(indirect_va >> 32); radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, si_resource(indirect->buffer), RADEON_USAGE_READ, RADEON_PRIO_DRAW_INDIRECT); unsigned di_src_sel = index_size ? V_0287F0_DI_SRC_SEL_DMA : V_0287F0_DI_SRC_SEL_AUTO_INDEX; assert(indirect->offset % 4 == 0); if (index_size) { radeon_emit(PKT3(PKT3_INDEX_BASE, 1, 0)); radeon_emit(index_va); radeon_emit(index_va >> 32); radeon_emit(PKT3(PKT3_INDEX_BUFFER_SIZE, 0, 0)); radeon_emit(index_max_size); } if (!sctx->screen->has_draw_indirect_multi) { radeon_emit(PKT3(index_size ? PKT3_DRAW_INDEX_INDIRECT : PKT3_DRAW_INDIRECT, 3, render_cond_bit)); radeon_emit(indirect->offset); radeon_emit((sh_base_reg + SI_SGPR_BASE_VERTEX * 4 - SI_SH_REG_OFFSET) >> 2); radeon_emit((sh_base_reg + SI_SGPR_START_INSTANCE * 4 - SI_SH_REG_OFFSET) >> 2); radeon_emit(di_src_sel); } else { uint64_t count_va = 0; if (indirect->indirect_draw_count) { struct si_resource *params_buf = si_resource(indirect->indirect_draw_count); radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, params_buf, RADEON_USAGE_READ, RADEON_PRIO_DRAW_INDIRECT); count_va = params_buf->gpu_address + indirect->indirect_draw_count_offset; } radeon_emit(PKT3(index_size ? PKT3_DRAW_INDEX_INDIRECT_MULTI : PKT3_DRAW_INDIRECT_MULTI, 8, render_cond_bit)); radeon_emit(indirect->offset); radeon_emit((sh_base_reg + SI_SGPR_BASE_VERTEX * 4 - SI_SH_REG_OFFSET) >> 2); radeon_emit((sh_base_reg + SI_SGPR_START_INSTANCE * 4 - SI_SH_REG_OFFSET) >> 2); radeon_emit(((sh_base_reg + SI_SGPR_DRAWID * 4 - SI_SH_REG_OFFSET) >> 2) | S_2C3_DRAW_INDEX_ENABLE(sctx->shader.vs.cso->info.uses_drawid) | S_2C3_COUNT_INDIRECT_ENABLE(!!indirect->indirect_draw_count)); radeon_emit(indirect->draw_count); radeon_emit(count_va); radeon_emit(count_va >> 32); radeon_emit(indirect->stride); radeon_emit(di_src_sel); } } else { /* Register shadowing requires that we always emit PKT3_NUM_INSTANCES. */ if (sctx->shadowed_regs || sctx->last_instance_count == SI_INSTANCE_COUNT_UNKNOWN || sctx->last_instance_count != instance_count) { radeon_emit(PKT3(PKT3_NUM_INSTANCES, 0, 0)); radeon_emit(instance_count); sctx->last_instance_count = instance_count; } /* Base vertex and start instance. */ int base_vertex = original_index_size ? draws[0].index_bias : draws[0].start; bool set_draw_id = !IS_DRAW_VERTEX_STATE && sctx->vs_uses_draw_id; bool set_base_instance = sctx->vs_uses_base_instance; if (!IS_DRAW_VERTEX_STATE && sctx->num_vs_blit_sgprs) { /* Re-emit draw constants after we leave u_blitter. */ si_invalidate_draw_sh_constants(sctx); /* Blit VS doesn't use BASE_VERTEX, START_INSTANCE, and DRAWID. */ radeon_set_sh_reg_seq(sh_base_reg + SI_SGPR_VS_BLIT_DATA * 4, sctx->num_vs_blit_sgprs); radeon_emit_array(sctx->vs_blit_sh_data, sctx->num_vs_blit_sgprs); } else if (base_vertex != sctx->last_base_vertex || sctx->last_base_vertex == SI_BASE_VERTEX_UNKNOWN || (set_base_instance && (info->start_instance != sctx->last_start_instance || sctx->last_start_instance == SI_START_INSTANCE_UNKNOWN)) || (set_draw_id && (drawid_base != sctx->last_drawid || sctx->last_drawid == SI_DRAW_ID_UNKNOWN)) || sh_base_reg != sctx->last_sh_base_reg) { if (set_base_instance) { radeon_set_sh_reg_seq(sh_base_reg + SI_SGPR_BASE_VERTEX * 4, 3); radeon_emit(base_vertex); radeon_emit(drawid_base); radeon_emit(info->start_instance); sctx->last_start_instance = info->start_instance; sctx->last_drawid = drawid_base; } else if (set_draw_id) { radeon_set_sh_reg_seq(sh_base_reg + SI_SGPR_BASE_VERTEX * 4, 2); radeon_emit(base_vertex); radeon_emit(drawid_base); sctx->last_drawid = drawid_base; } else { radeon_set_sh_reg(sh_base_reg + SI_SGPR_BASE_VERTEX * 4, base_vertex); } sctx->last_base_vertex = base_vertex; sctx->last_sh_base_reg = sh_base_reg; } /* Don't update draw_id in the following code if it doesn't increment. */ bool increment_draw_id = !IS_DRAW_VERTEX_STATE && num_draws > 1 && set_draw_id && info->increment_draw_id; if (index_size) { /* NOT_EOP allows merging multiple draws into 1 wave, but only user VGPRs * can be changed between draws, and GS fast launch must be disabled. * NOT_EOP doesn't work on gfx9 and older. * * Instead of doing this, which evaluates the case conditions repeatedly: * for (all draws) { * if (case1); * else; * } * * Use this structuring to evaluate the case conditions once: * if (case1) for (all draws); * else for (all draws); * */ bool index_bias_varies = !IS_DRAW_VERTEX_STATE && num_draws > 1 && info->index_bias_varies; if (increment_draw_id) { if (index_bias_varies) { for (unsigned i = 0; i < num_draws; i++) { uint64_t va = index_va + draws[i].start * index_size; if (i > 0) { radeon_set_sh_reg_seq(sh_base_reg + SI_SGPR_BASE_VERTEX * 4, 2); radeon_emit(draws[i].index_bias); radeon_emit(drawid_base + i); } radeon_emit(PKT3(PKT3_DRAW_INDEX_2, 4, render_cond_bit)); radeon_emit(index_max_size); radeon_emit(va); radeon_emit(va >> 32); radeon_emit(draws[i].count); radeon_emit(V_0287F0_DI_SRC_SEL_DMA); /* NOT_EOP disabled */ } if (num_draws > 1) { sctx->last_base_vertex = draws[num_draws - 1].index_bias; sctx->last_drawid = drawid_base + num_draws - 1; } } else { /* Only DrawID varies. */ for (unsigned i = 0; i < num_draws; i++) { uint64_t va = index_va + draws[i].start * index_size; if (i > 0) radeon_set_sh_reg(sh_base_reg + SI_SGPR_DRAWID * 4, drawid_base + i); radeon_emit(PKT3(PKT3_DRAW_INDEX_2, 4, render_cond_bit)); radeon_emit(index_max_size); radeon_emit(va); radeon_emit(va >> 32); radeon_emit(draws[i].count); radeon_emit(V_0287F0_DI_SRC_SEL_DMA); /* NOT_EOP disabled */ } if (num_draws > 1) sctx->last_drawid = drawid_base + num_draws - 1; } } else { if (index_bias_varies) { /* Only BaseVertex varies. */ for (unsigned i = 0; i < num_draws; i++) { uint64_t va = index_va + draws[i].start * index_size; if (i > 0) radeon_set_sh_reg(sh_base_reg + SI_SGPR_BASE_VERTEX * 4, draws[i].index_bias); radeon_emit(PKT3(PKT3_DRAW_INDEX_2, 4, render_cond_bit)); radeon_emit(index_max_size); radeon_emit(va); radeon_emit(va >> 32); radeon_emit(draws[i].count); radeon_emit(V_0287F0_DI_SRC_SEL_DMA); /* NOT_EOP disabled */ } if (num_draws > 1) sctx->last_base_vertex = draws[num_draws - 1].index_bias; } else { /* DrawID and BaseVertex are constant. */ if (GFX_VERSION == GFX10) { /* GFX10 has a bug that consecutive draw packets with NOT_EOP must not have * count == 0 in the last draw (which doesn't set NOT_EOP). * * So remove all trailing draws with count == 0. */ while (num_draws > 1 && !draws[num_draws - 1].count) num_draws--; } for (unsigned i = 0; i < num_draws; i++) { uint64_t va = index_va + draws[i].start * index_size; radeon_emit(PKT3(PKT3_DRAW_INDEX_2, 4, render_cond_bit)); radeon_emit(index_max_size); radeon_emit(va); radeon_emit(va >> 32); radeon_emit(draws[i].count); radeon_emit(V_0287F0_DI_SRC_SEL_DMA | S_0287F0_NOT_EOP(GFX_VERSION >= GFX10 && i < num_draws - 1)); } } } } else { for (unsigned i = 0; i < num_draws; i++) { if (i > 0) { if (increment_draw_id) { unsigned draw_id = drawid_base + i; radeon_set_sh_reg_seq(sh_base_reg + SI_SGPR_BASE_VERTEX * 4, 2); radeon_emit(draws[i].start); radeon_emit(draw_id); sctx->last_drawid = draw_id; } else { radeon_set_sh_reg(sh_base_reg + SI_SGPR_BASE_VERTEX * 4, draws[i].start); } } radeon_emit(PKT3(PKT3_DRAW_INDEX_AUTO, 1, render_cond_bit)); radeon_emit(draws[i].count); radeon_emit(V_0287F0_DI_SRC_SEL_AUTO_INDEX | use_opaque); } if (num_draws > 1 && (IS_DRAW_VERTEX_STATE || !sctx->num_vs_blit_sgprs)) sctx->last_base_vertex = draws[num_draws - 1].start; } } radeon_end(); EMIT_SQTT_END_DRAW; } /* Return false if not bound. */ template static bool ALWAYS_INLINE si_set_vb_descriptor(struct si_vertex_elements *velems, struct pipe_vertex_buffer *vb, unsigned index, /* vertex element index */ uint32_t *desc) /* where to upload descriptors */ { struct si_resource *buf = si_resource(vb->buffer.resource); if (!buf) { memset(desc, 0, 16); return false; } int64_t offset = (int64_t)((int)vb->buffer_offset) + velems->src_offset[index]; if (offset >= buf->b.b.width0) { assert(offset < buf->b.b.width0); memset(desc, 0, 16); return false; } uint64_t va = buf->gpu_address + offset; int64_t num_records = (int64_t)buf->b.b.width0 - offset; if (GFX_VERSION != GFX8 && vb->stride) { /* Round up by rounding down and adding 1 */ num_records = (num_records - velems->format_size[index]) / vb->stride + 1; } assert(num_records >= 0 && num_records <= UINT_MAX); uint32_t rsrc_word3 = velems->rsrc_word3[index]; /* OOB_SELECT chooses the out-of-bounds check: * - 1: index >= NUM_RECORDS (Structured) * - 3: offset >= NUM_RECORDS (Raw) */ if (GFX_VERSION >= GFX10) rsrc_word3 |= S_008F0C_OOB_SELECT(vb->stride ? V_008F0C_OOB_SELECT_STRUCTURED : V_008F0C_OOB_SELECT_RAW); desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(vb->stride); desc[2] = num_records; desc[3] = rsrc_word3; return true; } #if GFX_VER == 6 /* declare this function only once because it supports all chips. */ void si_set_vertex_buffer_descriptor(struct si_screen *sscreen, struct si_vertex_elements *velems, struct pipe_vertex_buffer *vb, unsigned element_index, uint32_t *out) { switch (sscreen->info.chip_class) { case GFX6: si_set_vb_descriptor(velems, vb, element_index, out); break; case GFX7: si_set_vb_descriptor(velems, vb, element_index, out); break; case GFX8: si_set_vb_descriptor(velems, vb, element_index, out); break; case GFX9: si_set_vb_descriptor(velems, vb, element_index, out); break; case GFX10: si_set_vb_descriptor(velems, vb, element_index, out); break; case GFX10_3: si_set_vb_descriptor(velems, vb, element_index, out); break; default: unreachable("unhandled chip class"); } } #endif /* util_bitcount has large measurable overhead (~2% difference in viewperf), so we use * the POPCNT x86 instruction via inline assembly if the CPU supports it. */ enum si_has_popcnt { POPCNT_NO, POPCNT_YES, }; template unsigned bitcount_asm(unsigned n) { if (POPCNT == POPCNT_YES) return util_popcnt_inline_asm(n); else return util_bitcount(n); } template static ALWAYS_INLINE unsigned get_next_vertex_state_elem(struct pipe_vertex_state *state, uint32_t *partial_velem_mask) { unsigned semantic_index = u_bit_scan(partial_velem_mask); assert(state->input.full_velem_mask & BITFIELD_BIT(semantic_index)); /* A prefix mask of the full mask gives us the index in pipe_vertex_state. */ return bitcount_asm(state->input.full_velem_mask & BITFIELD_MASK(semantic_index)); } template ALWAYS_INLINE static bool si_upload_and_prefetch_VB_descriptors(struct si_context *sctx, struct pipe_vertex_state *state, uint32_t partial_velem_mask) { struct si_vertex_state *vstate = (struct si_vertex_state *)state; unsigned count = IS_DRAW_VERTEX_STATE ? bitcount_asm(partial_velem_mask) : sctx->num_vertex_elements; unsigned sh_base = si_get_user_data_base(GFX_VERSION, HAS_TESS, HAS_GS, NGG, PIPE_SHADER_VERTEX); unsigned num_vbos_in_user_sgprs = si_num_vbos_in_user_sgprs_inline(GFX_VERSION); bool pointer_dirty, user_sgprs_dirty; assert(count <= SI_MAX_ATTRIBS); if (sctx->vertex_buffers_dirty || IS_DRAW_VERTEX_STATE) { assert(count); struct si_vertex_elements *velems = sctx->vertex_elements; unsigned alloc_size = IS_DRAW_VERTEX_STATE ? vstate->velems.vb_desc_list_alloc_size : velems->vb_desc_list_alloc_size; uint32_t *ptr; if (alloc_size) { /* Vertex buffer descriptors are the only ones which are uploaded directly * and don't go through si_upload_graphics_shader_descriptors. */ u_upload_alloc(sctx->b.const_uploader, 0, alloc_size, si_optimal_tcc_alignment(sctx, alloc_size), &sctx->vb_descriptors_offset, (struct pipe_resource **)&sctx->vb_descriptors_buffer, (void **)&ptr); if (!sctx->vb_descriptors_buffer) { sctx->vb_descriptors_offset = 0; sctx->vb_descriptors_gpu_list = NULL; return false; } sctx->vb_descriptors_gpu_list = ptr; radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, sctx->vb_descriptors_buffer, RADEON_USAGE_READ, RADEON_PRIO_DESCRIPTORS); /* GFX6 doesn't support the L2 prefetch. */ if (GFX_VERSION >= GFX7) si_cp_dma_prefetch(sctx, &sctx->vb_descriptors_buffer->b.b, sctx->vb_descriptors_offset, alloc_size); } else { si_resource_reference(&sctx->vb_descriptors_buffer, NULL); } if (IS_DRAW_VERTEX_STATE) { unsigned i = 0; if (num_vbos_in_user_sgprs) { unsigned num_vb_sgprs = MIN2(count, num_vbos_in_user_sgprs) * 4; radeon_begin(&sctx->gfx_cs); radeon_set_sh_reg_seq(sh_base + SI_SGPR_VS_VB_DESCRIPTOR_FIRST * 4, num_vb_sgprs); for (; partial_velem_mask && i < num_vbos_in_user_sgprs; i++) { unsigned velem_index = get_next_vertex_state_elem(state, &partial_velem_mask); radeon_emit_array(&vstate->descriptors[velem_index * 4], 4); } radeon_end(); } for (; partial_velem_mask; i++) { unsigned velem_index = get_next_vertex_state_elem(state, &partial_velem_mask); uint32_t *desc = &ptr[(i - num_vbos_in_user_sgprs) * 4]; memcpy(desc, &vstate->descriptors[velem_index * 4], 16); } if (vstate->b.input.vbuffer.buffer.resource != vstate->b.input.indexbuf) { radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, si_resource(vstate->b.input.vbuffer.buffer.resource), RADEON_USAGE_READ, RADEON_PRIO_VERTEX_BUFFER); } /* The next draw_vbo should recompute and rebind vertex buffer descriptors. */ sctx->vertex_buffers_dirty = sctx->num_vertex_elements > 0; user_sgprs_dirty = false; /* We just set them above. */ pointer_dirty = count > num_vbos_in_user_sgprs; } else { unsigned first_vb_use_mask = velems->first_vb_use_mask; for (unsigned i = 0; i < count; i++) { unsigned vbo_index = velems->vertex_buffer_index[i]; struct pipe_vertex_buffer *vb = &sctx->vertex_buffer[vbo_index]; uint32_t *desc = i < num_vbos_in_user_sgprs ? &sctx->vb_descriptor_user_sgprs[i * 4] : &ptr[(i - num_vbos_in_user_sgprs) * 4]; if (!si_set_vb_descriptor(velems, vb, i, desc)) continue; if (first_vb_use_mask & (1 << i)) { radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, si_resource(vb->buffer.resource), RADEON_USAGE_READ, RADEON_PRIO_VERTEX_BUFFER); } } sctx->vertex_buffers_dirty = false; user_sgprs_dirty = num_vbos_in_user_sgprs > 0; pointer_dirty = alloc_size != 0; } } else { pointer_dirty = sctx->vertex_buffer_pointer_dirty; user_sgprs_dirty = sctx->vertex_buffer_user_sgprs_dirty; } if (pointer_dirty || user_sgprs_dirty) { struct radeon_cmdbuf *cs = &sctx->gfx_cs; assert(count); radeon_begin(cs); /* Set the pointer to vertex buffer descriptors. */ if (pointer_dirty && count > num_vbos_in_user_sgprs) { /* Find the location of the VB descriptor pointer. */ unsigned sh_dw_offset = SI_VS_NUM_USER_SGPR; if (GFX_VERSION >= GFX9) { if (HAS_TESS) sh_dw_offset = GFX9_TCS_NUM_USER_SGPR; else if (HAS_GS) sh_dw_offset = GFX9_VSGS_NUM_USER_SGPR; } radeon_set_sh_reg(sh_base + sh_dw_offset * 4, sctx->vb_descriptors_buffer->gpu_address + sctx->vb_descriptors_offset); sctx->vertex_buffer_pointer_dirty = false; } /* Set VB descriptors in user SGPRs. */ if (user_sgprs_dirty) { assert(num_vbos_in_user_sgprs); unsigned num_sgprs = MIN2(count, num_vbos_in_user_sgprs) * 4; radeon_set_sh_reg_seq(sh_base + SI_SGPR_VS_VB_DESCRIPTOR_FIRST * 4, num_sgprs); radeon_emit_array(sctx->vb_descriptor_user_sgprs, num_sgprs); sctx->vertex_buffer_user_sgprs_dirty = false; } radeon_end(); } return true; } static void si_get_draw_start_count(struct si_context *sctx, const struct pipe_draw_info *info, const struct pipe_draw_indirect_info *indirect, const struct pipe_draw_start_count_bias *draws, unsigned num_draws, unsigned *start, unsigned *count) { if (indirect && !indirect->count_from_stream_output) { unsigned indirect_count; struct pipe_transfer *transfer; unsigned begin, end; unsigned map_size; unsigned *data; if (indirect->indirect_draw_count) { data = (unsigned*) pipe_buffer_map_range(&sctx->b, indirect->indirect_draw_count, indirect->indirect_draw_count_offset, sizeof(unsigned), PIPE_MAP_READ, &transfer); indirect_count = *data; pipe_buffer_unmap(&sctx->b, transfer); } else { indirect_count = indirect->draw_count; } if (!indirect_count) { *start = *count = 0; return; } map_size = (indirect_count - 1) * indirect->stride + 3 * sizeof(unsigned); data = (unsigned*) pipe_buffer_map_range(&sctx->b, indirect->buffer, indirect->offset, map_size, PIPE_MAP_READ, &transfer); begin = UINT_MAX; end = 0; for (unsigned i = 0; i < indirect_count; ++i) { unsigned count = data[0]; unsigned start = data[2]; if (count > 0) { begin = MIN2(begin, start); end = MAX2(end, start + count); } data += indirect->stride / sizeof(unsigned); } pipe_buffer_unmap(&sctx->b, transfer); if (begin < end) { *start = begin; *count = end - begin; } else { *start = *count = 0; } } else { unsigned min_element = UINT_MAX; unsigned max_element = 0; for (unsigned i = 0; i < num_draws; i++) { min_element = MIN2(min_element, draws[i].start); max_element = MAX2(max_element, draws[i].start + draws[i].count); } *start = min_element; *count = max_element - min_element; } } template ALWAYS_INLINE static void si_emit_all_states(struct si_context *sctx, const struct pipe_draw_info *info, const struct pipe_draw_indirect_info *indirect, enum pipe_prim_type prim, unsigned instance_count, unsigned min_vertex_count, bool primitive_restart, unsigned skip_atom_mask) { unsigned num_patches = 0; si_emit_rasterizer_prim_state(sctx); if (HAS_TESS) si_emit_derived_tess_state(sctx, &num_patches); /* Emit state atoms. */ unsigned mask = sctx->dirty_atoms & ~skip_atom_mask; if (mask) { do { sctx->atoms.array[u_bit_scan(&mask)].emit(sctx); } while (mask); sctx->dirty_atoms &= skip_atom_mask; } /* Emit states. */ mask = sctx->dirty_states; if (mask) { do { unsigned i = u_bit_scan(&mask); struct si_pm4_state *state = sctx->queued.array[i]; /* All places should unset dirty_states if this doesn't pass. */ assert(state && state != sctx->emitted.array[i]); si_pm4_emit(sctx, state); sctx->emitted.array[i] = state; } while (mask); sctx->dirty_states = 0; } /* Emit draw states. */ si_emit_vs_state(sctx, info->index_size); si_emit_draw_registers (sctx, indirect, prim, num_patches, instance_count, primitive_restart, info->restart_index, min_vertex_count); } #define DRAW_CLEANUP do { \ if (index_size && indexbuf != info->index.resource) \ pipe_resource_reference(&indexbuf, NULL); \ } while (0) template ALWAYS_INLINE static void si_draw(struct pipe_context *ctx, const struct pipe_draw_info *info, unsigned drawid_offset, const struct pipe_draw_indirect_info *indirect, const struct pipe_draw_start_count_bias *draws, unsigned num_draws, struct pipe_vertex_state *state, uint32_t partial_velem_mask) { /* Keep code that uses the least number of local variables as close to the beginning * of this function as possible to minimize register pressure. * * It doesn't matter where we return due to invalid parameters because such cases * shouldn't occur in practice. */ struct si_context *sctx = (struct si_context *)ctx; /* Recompute and re-emit the texture resource states if needed. */ unsigned dirty_tex_counter = p_atomic_read(&sctx->screen->dirty_tex_counter); if (unlikely(dirty_tex_counter != sctx->last_dirty_tex_counter)) { sctx->last_dirty_tex_counter = dirty_tex_counter; sctx->framebuffer.dirty_cbufs |= ((1 << sctx->framebuffer.state.nr_cbufs) - 1); sctx->framebuffer.dirty_zsbuf = true; si_mark_atom_dirty(sctx, &sctx->atoms.s.framebuffer); si_update_all_texture_descriptors(sctx); } unsigned dirty_buf_counter = p_atomic_read(&sctx->screen->dirty_buf_counter); if (unlikely(dirty_buf_counter != sctx->last_dirty_buf_counter)) { sctx->last_dirty_buf_counter = dirty_buf_counter; /* Rebind all buffers unconditionally. */ si_rebind_buffer(sctx, NULL); } si_decompress_textures(sctx, u_bit_consecutive(0, SI_NUM_GRAPHICS_SHADERS)); si_need_gfx_cs_space(sctx, num_draws); if (HAS_TESS) { struct si_shader_selector *tcs = sctx->shader.tcs.cso; /* The rarely occuring tcs == NULL case is not optimized. */ bool same_patch_vertices = GFX_VERSION >= GFX9 && tcs && sctx->patch_vertices == tcs->info.base.tess.tcs_vertices_out; if (sctx->shader.tcs.key.opt.same_patch_vertices != same_patch_vertices) { sctx->shader.tcs.key.opt.same_patch_vertices = same_patch_vertices; sctx->do_update_shaders = true; } if (GFX_VERSION == GFX9 && sctx->screen->info.has_ls_vgpr_init_bug) { /* Determine whether the LS VGPR fix should be applied. * * It is only required when num input CPs > num output CPs, * which cannot happen with the fixed function TCS. We should * also update this bit when switching from TCS to fixed * function TCS. */ bool ls_vgpr_fix = tcs && sctx->patch_vertices > tcs->info.base.tess.tcs_vertices_out; if (ls_vgpr_fix != sctx->shader.tcs.key.part.tcs.ls_prolog.ls_vgpr_fix) { sctx->shader.tcs.key.part.tcs.ls_prolog.ls_vgpr_fix = ls_vgpr_fix; sctx->fixed_func_tcs_shader.key.part.tcs.ls_prolog.ls_vgpr_fix = ls_vgpr_fix; sctx->do_update_shaders = true; } } } enum pipe_prim_type prim = (enum pipe_prim_type)info->mode; unsigned instance_count = info->instance_count; /* GFX6-GFX7 treat instance_count==0 as instance_count==1. There is * no workaround for indirect draws, but we can at least skip * direct draws. * 'instance_count == 0' seems to be problematic on Renoir chips (#4866), * so simplify the condition and drop these draws for all <= GFX9 chips. */ if (GFX_VERSION <= GFX9 && unlikely(!IS_DRAW_VERTEX_STATE && !indirect && !instance_count)) return; struct si_shader_selector *vs = sctx->shader.vs.cso; struct si_vertex_state *vstate = (struct si_vertex_state *)state; if (unlikely(!vs || (!IS_DRAW_VERTEX_STATE && sctx->num_vertex_elements < vs->num_vs_inputs) || (IS_DRAW_VERTEX_STATE && vstate->velems.count < vs->num_vs_inputs) || !sctx->shader.ps.cso || (HAS_TESS != (prim == PIPE_PRIM_PATCHES)))) { assert(0); return; } if (GFX_VERSION <= GFX9 && HAS_GS) { /* Determine whether the GS triangle strip adjacency fix should * be applied. Rotate every other triangle if triangle strips with * adjacency are fed to the GS. This doesn't work if primitive * restart occurs after an odd number of triangles. */ bool gs_tri_strip_adj_fix = !HAS_TESS && prim == PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY; if (gs_tri_strip_adj_fix != sctx->shader.gs.key.part.gs.prolog.tri_strip_adj_fix) { sctx->shader.gs.key.part.gs.prolog.tri_strip_adj_fix = gs_tri_strip_adj_fix; sctx->do_update_shaders = true; } } struct pipe_resource *indexbuf = info->index.resource; unsigned index_size = info->index_size; unsigned index_offset = indirect && indirect->buffer ? draws[0].start * index_size : 0; if (index_size) { /* Translate or upload, if needed. */ /* 8-bit indices are supported on GFX8. */ if (!IS_DRAW_VERTEX_STATE && GFX_VERSION <= GFX7 && index_size == 1) { unsigned start, count, start_offset, size, offset; void *ptr; si_get_draw_start_count(sctx, info, indirect, draws, num_draws, &start, &count); start_offset = start * 2; size = count * 2; indexbuf = NULL; u_upload_alloc(ctx->stream_uploader, start_offset, size, si_optimal_tcc_alignment(sctx, size), &offset, &indexbuf, &ptr); if (unlikely(!indexbuf)) return; util_shorten_ubyte_elts_to_userptr(&sctx->b, info, 0, 0, index_offset + start, count, ptr); /* info->start will be added by the drawing code */ index_offset = offset - start_offset; index_size = 2; } else if (!IS_DRAW_VERTEX_STATE && info->has_user_indices) { unsigned start_offset; assert(!indirect); assert(num_draws == 1); start_offset = draws[0].start * index_size; indexbuf = NULL; u_upload_data(ctx->stream_uploader, start_offset, draws[0].count * index_size, sctx->screen->info.tcc_cache_line_size, (char *)info->index.user + start_offset, &index_offset, &indexbuf); if (unlikely(!indexbuf)) return; /* info->start will be added by the drawing code */ index_offset -= start_offset; } else if (GFX_VERSION <= GFX7 && si_resource(indexbuf)->TC_L2_dirty) { /* GFX8 reads index buffers through TC L2, so it doesn't * need this. */ sctx->flags |= SI_CONTEXT_WB_L2; si_resource(indexbuf)->TC_L2_dirty = false; } } unsigned min_direct_count = 0; unsigned total_direct_count = 0; if (!IS_DRAW_VERTEX_STATE && indirect) { /* Add the buffer size for memory checking in need_cs_space. */ if (indirect->buffer) si_context_add_resource_size(sctx, indirect->buffer); /* Indirect buffers use TC L2 on GFX9, but not older hw. */ if (GFX_VERSION <= GFX8) { if (indirect->buffer && si_resource(indirect->buffer)->TC_L2_dirty) { sctx->flags |= SI_CONTEXT_WB_L2; si_resource(indirect->buffer)->TC_L2_dirty = false; } if (indirect->indirect_draw_count && si_resource(indirect->indirect_draw_count)->TC_L2_dirty) { sctx->flags |= SI_CONTEXT_WB_L2; si_resource(indirect->indirect_draw_count)->TC_L2_dirty = false; } } total_direct_count = INT_MAX; /* just set something other than 0 to enable shader culling */ } else { total_direct_count = min_direct_count = draws[0].count; for (unsigned i = 1; i < num_draws; i++) { unsigned count = draws[i].count; total_direct_count += count; min_direct_count = MIN2(min_direct_count, count); } } struct si_state_rasterizer *rs = sctx->queued.named.rasterizer; bool primitive_restart = info->primitive_restart && (!sctx->screen->options.prim_restart_tri_strips_only || (prim != PIPE_PRIM_TRIANGLE_STRIP && prim != PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY)); unsigned original_index_size = index_size; /* Set the rasterization primitive type. * * This must be done after si_decompress_textures, which can call * draw_vbo recursively, and before si_update_shaders, which uses * current_rast_prim for this draw_vbo call. */ if (!HAS_GS && !HAS_TESS) { enum pipe_prim_type rast_prim; if (util_rast_prim_is_triangles(prim)) { rast_prim = PIPE_PRIM_TRIANGLES; } else { /* Only possibilities, POINTS, LINE*, RECTANGLES */ rast_prim = prim; } if (rast_prim != sctx->current_rast_prim) { if (util_prim_is_points_or_lines(sctx->current_rast_prim) != util_prim_is_points_or_lines(rast_prim)) si_mark_atom_dirty(sctx, &sctx->atoms.s.guardband); sctx->current_rast_prim = rast_prim; sctx->do_update_shaders = true; } } if (IS_DRAW_VERTEX_STATE) { /* draw_vertex_state doesn't use the current vertex buffers and vertex elements, * so disable any non-trivial VS prolog that is based on them, such as vertex * format lowering. */ if (!sctx->force_trivial_vs_prolog) { sctx->force_trivial_vs_prolog = true; /* Update shaders to disable the non-trivial VS prolog. */ if (sctx->uses_nontrivial_vs_prolog) { si_vs_key_update_inputs(sctx); sctx->do_update_shaders = true; } } } else { if (sctx->force_trivial_vs_prolog) { sctx->force_trivial_vs_prolog = false; /* Update shaders to enable the non-trivial VS prolog. */ if (sctx->uses_nontrivial_vs_prolog) { si_vs_key_update_inputs(sctx); sctx->do_update_shaders = true; } } } /* Update NGG culling settings. */ uint8_t old_ngg_culling = sctx->ngg_culling; if (GFX_VERSION >= GFX10) { struct si_shader_selector *hw_vs = si_get_vs_inline(sctx, HAS_TESS, HAS_GS)->cso; if (NGG && !HAS_GS && /* Tessellation sets ngg_cull_vert_threshold to UINT_MAX if the prim type * is not points, so this check is only needed without tessellation. */ (HAS_TESS || util_rast_prim_is_lines_or_triangles(sctx->current_rast_prim)) && /* Only the first draw for a shader starts with culling disabled and it's disabled * until we pass the total_direct_count check and then it stays enabled until * the shader is changed. This eliminates most culling on/off state changes. */ (old_ngg_culling || total_direct_count > hw_vs->ngg_cull_vert_threshold)) { /* Check that the current shader allows culling. */ assert(hw_vs->ngg_cull_vert_threshold != UINT_MAX); uint8_t ngg_culling = sctx->viewport0_y_inverted ? rs->ngg_cull_flags_y_inverted : rs->ngg_cull_flags; assert(ngg_culling); /* rasterizer state should always set this to non-zero */ if (util_prim_is_lines(sctx->current_rast_prim)) { /* Overwrite it to mask out face cull flags. */ ngg_culling = SI_NGG_CULL_ENABLED | SI_NGG_CULL_LINES; } if (ngg_culling != old_ngg_culling) { /* If shader compilation is not ready, this setting will be rejected. */ sctx->ngg_culling = ngg_culling; sctx->do_update_shaders = true; } } else if (old_ngg_culling) { sctx->ngg_culling = 0; sctx->do_update_shaders = true; } } if (unlikely(sctx->do_update_shaders)) { if (unlikely(!(si_update_shaders(sctx)))) { DRAW_CLEANUP; return; } /* si_update_shaders can clear the ngg_culling in the shader key if the shader compilation * hasn't finished. Set it to the correct value in si_context. */ if (GFX_VERSION >= GFX10 && NGG) sctx->ngg_culling = si_get_vs_inline(sctx, HAS_TESS, HAS_GS)->current->key.opt.ngg_culling; } /* Since we've called si_context_add_resource_size for vertex buffers, * this must be called after si_need_cs_space, because we must let * need_cs_space flush before we add buffers to the buffer list. * * This must be done after si_update_shaders because si_update_shaders can * flush the CS when enabling tess and GS rings. */ if (sctx->bo_list_add_all_gfx_resources) si_gfx_resources_add_all_to_bo_list(sctx); /* Graphics shader descriptors must be uploaded after si_update_shaders because * it binds tess and GS ring buffers. */ if (unlikely(!si_upload_graphics_shader_descriptors(sctx))) { DRAW_CLEANUP; return; } /* Vega10/Raven scissor bug workaround. When any context register is * written (i.e. the GPU rolls the context), PA_SC_VPORT_SCISSOR * registers must be written too. */ unsigned masked_atoms = 0; bool gfx9_scissor_bug = false; if (GFX_VERSION == GFX9 && sctx->screen->info.has_gfx9_scissor_bug) { masked_atoms |= si_get_atom_bit(sctx, &sctx->atoms.s.scissors); gfx9_scissor_bug = true; if ((!IS_DRAW_VERTEX_STATE && indirect && indirect->count_from_stream_output) || sctx->dirty_atoms & si_atoms_that_always_roll_context() || sctx->dirty_states & si_states_that_always_roll_context()) sctx->context_roll = true; } /* Use optimal packet order based on whether we need to sync the pipeline. */ if (unlikely(sctx->flags & (SI_CONTEXT_FLUSH_AND_INV_CB | SI_CONTEXT_FLUSH_AND_INV_DB | SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH | SI_CONTEXT_VS_PARTIAL_FLUSH | SI_CONTEXT_VGT_FLUSH))) { /* If we have to wait for idle, set all states first, so that all * SET packets are processed in parallel with previous draw calls. * Then draw and prefetch at the end. This ensures that the time * the CUs are idle is very short. */ if (unlikely(sctx->flags & SI_CONTEXT_FLUSH_FOR_RENDER_COND)) masked_atoms |= si_get_atom_bit(sctx, &sctx->atoms.s.render_cond); /* Emit all states except possibly render condition. */ si_emit_all_states (sctx, info, indirect, prim, instance_count, min_direct_count, primitive_restart, masked_atoms); sctx->emit_cache_flush(sctx, &sctx->gfx_cs); /* <-- CUs are idle here. */ /* This uploads VBO descriptors, sets user SGPRs, and executes the L2 prefetch. * It should done after cache flushing. */ if (unlikely((!si_upload_and_prefetch_VB_descriptors (sctx, state, partial_velem_mask)))) { DRAW_CLEANUP; return; } if (si_is_atom_dirty(sctx, &sctx->atoms.s.render_cond)) { sctx->atoms.s.render_cond.emit(sctx); sctx->dirty_atoms &= ~si_get_atom_bit(sctx, &sctx->atoms.s.render_cond); } if (GFX_VERSION == GFX9 && gfx9_scissor_bug && (sctx->context_roll || si_is_atom_dirty(sctx, &sctx->atoms.s.scissors))) { sctx->atoms.s.scissors.emit(sctx); sctx->dirty_atoms &= ~si_get_atom_bit(sctx, &sctx->atoms.s.scissors); } assert(sctx->dirty_atoms == 0); si_emit_draw_packets (sctx, info, drawid_offset, indirect, draws, num_draws, total_direct_count, indexbuf, index_size, index_offset, instance_count, original_index_size); /* <-- CUs are busy here. */ /* Start prefetches after the draw has been started. Both will run * in parallel, but starting the draw first is more important. */ si_prefetch_shaders(sctx); } else { /* If we don't wait for idle, start prefetches first, then set * states, and draw at the end. */ if (sctx->flags) sctx->emit_cache_flush(sctx, &sctx->gfx_cs); /* Only prefetch the API VS and VBO descriptors. */ si_prefetch_shaders(sctx); /* This uploads VBO descriptors, sets user SGPRs, and executes the L2 prefetch. * It should done after cache flushing and after the VS prefetch. */ if (unlikely((!si_upload_and_prefetch_VB_descriptors (sctx, state, partial_velem_mask)))) { DRAW_CLEANUP; return; } si_emit_all_states (sctx, info, indirect, prim, instance_count, min_direct_count, primitive_restart, masked_atoms); if (GFX_VERSION == GFX9 && gfx9_scissor_bug && (sctx->context_roll || si_is_atom_dirty(sctx, &sctx->atoms.s.scissors))) { sctx->atoms.s.scissors.emit(sctx); sctx->dirty_atoms &= ~si_get_atom_bit(sctx, &sctx->atoms.s.scissors); } assert(sctx->dirty_atoms == 0); si_emit_draw_packets (sctx, info, drawid_offset, indirect, draws, num_draws, total_direct_count, indexbuf, index_size, index_offset, instance_count, original_index_size); /* Prefetch the remaining shaders after the draw has been * started. */ si_prefetch_shaders(sctx); } /* Clear the context roll flag after the draw call. * Only used by the gfx9 scissor bug. */ if (GFX_VERSION == GFX9) sctx->context_roll = false; if (unlikely(sctx->current_saved_cs)) { si_trace_emit(sctx); si_log_draw_state(sctx, sctx->log); } /* Workaround for a VGT hang when streamout is enabled. * It must be done after drawing. */ if (((GFX_VERSION == GFX7 && sctx->family == CHIP_HAWAII) || (GFX_VERSION == GFX8 && (sctx->family == CHIP_TONGA || sctx->family == CHIP_FIJI))) && si_get_strmout_en(sctx)) { sctx->flags |= SI_CONTEXT_VGT_STREAMOUT_SYNC; } if (unlikely(sctx->decompression_enabled)) { sctx->num_decompress_calls++; } else { sctx->num_draw_calls += num_draws; if (primitive_restart) sctx->num_prim_restart_calls += num_draws; } if (sctx->framebuffer.state.zsbuf) { struct si_texture *zstex = (struct si_texture *)sctx->framebuffer.state.zsbuf->texture; zstex->depth_cleared_level_mask &= ~BITFIELD_BIT(sctx->framebuffer.state.zsbuf->u.tex.level); } DRAW_CLEANUP; } template static void si_draw_vbo(struct pipe_context *ctx, const struct pipe_draw_info *info, unsigned drawid_offset, const struct pipe_draw_indirect_info *indirect, const struct pipe_draw_start_count_bias *draws, unsigned num_draws) { si_draw (ctx, info, drawid_offset, indirect, draws, num_draws, NULL, 0); } template static void si_draw_vertex_state(struct pipe_context *ctx, struct pipe_vertex_state *vstate, uint32_t partial_velem_mask, struct pipe_draw_vertex_state_info info, const struct pipe_draw_start_count_bias *draws, unsigned num_draws) { struct si_vertex_state *state = (struct si_vertex_state *)vstate; struct pipe_draw_info dinfo = {}; dinfo.mode = info.mode; dinfo.index_size = 4; dinfo.instance_count = 1; dinfo.index.resource = state->b.input.indexbuf; si_draw (ctx, &dinfo, 0, NULL, draws, num_draws, vstate, partial_velem_mask); if (info.take_vertex_state_ownership) pipe_vertex_state_reference(&vstate, NULL); } static void si_draw_rectangle(struct blitter_context *blitter, void *vertex_elements_cso, blitter_get_vs_func get_vs, int x1, int y1, int x2, int y2, float depth, unsigned num_instances, enum blitter_attrib_type type, const union blitter_attrib *attrib) { struct pipe_context *pipe = util_blitter_get_pipe(blitter); struct si_context *sctx = (struct si_context *)pipe; /* Pack position coordinates as signed int16. */ sctx->vs_blit_sh_data[0] = (uint32_t)(x1 & 0xffff) | ((uint32_t)(y1 & 0xffff) << 16); sctx->vs_blit_sh_data[1] = (uint32_t)(x2 & 0xffff) | ((uint32_t)(y2 & 0xffff) << 16); sctx->vs_blit_sh_data[2] = fui(depth); switch (type) { case UTIL_BLITTER_ATTRIB_COLOR: memcpy(&sctx->vs_blit_sh_data[3], attrib->color, sizeof(float) * 4); break; case UTIL_BLITTER_ATTRIB_TEXCOORD_XY: case UTIL_BLITTER_ATTRIB_TEXCOORD_XYZW: memcpy(&sctx->vs_blit_sh_data[3], &attrib->texcoord, sizeof(attrib->texcoord)); break; case UTIL_BLITTER_ATTRIB_NONE:; } pipe->bind_vs_state(pipe, si_get_blitter_vs(sctx, type, num_instances)); struct pipe_draw_info info = {}; struct pipe_draw_start_count_bias draw; info.mode = SI_PRIM_RECTANGLE_LIST; info.instance_count = num_instances; draw.start = 0; draw.count = 3; /* Don't set per-stage shader pointers for VS. */ sctx->shader_pointers_dirty &= ~SI_DESCS_SHADER_MASK(VERTEX); sctx->vertex_buffer_pointer_dirty = false; sctx->vertex_buffer_user_sgprs_dirty = false; pipe->draw_vbo(pipe, &info, 0, NULL, &draw, 1); } template static void si_init_draw_vbo(struct si_context *sctx) { if (NGG && GFX_VERSION < GFX10) return; sctx->draw_vbo[HAS_TESS][HAS_GS][NGG] = si_draw_vbo; if (util_get_cpu_caps()->has_popcnt) { sctx->draw_vertex_state[HAS_TESS][HAS_GS][NGG] = si_draw_vertex_state; } else { sctx->draw_vertex_state[HAS_TESS][HAS_GS][NGG] = si_draw_vertex_state; } } template static void si_init_draw_vbo_all_pipeline_options(struct si_context *sctx) { si_init_draw_vbo(sctx); si_init_draw_vbo(sctx); si_init_draw_vbo(sctx); si_init_draw_vbo(sctx); si_init_draw_vbo(sctx); si_init_draw_vbo(sctx); si_init_draw_vbo(sctx); si_init_draw_vbo(sctx); } static void si_invalid_draw_vbo(struct pipe_context *pipe, const struct pipe_draw_info *info, unsigned drawid_offset, const struct pipe_draw_indirect_info *indirect, const struct pipe_draw_start_count_bias *draws, unsigned num_draws) { unreachable("vertex shader not bound"); } static void si_invalid_draw_vertex_state(struct pipe_context *ctx, struct pipe_vertex_state *vstate, uint32_t partial_velem_mask, struct pipe_draw_vertex_state_info info, const struct pipe_draw_start_count_bias *draws, unsigned num_draws) { unreachable("vertex shader not bound"); } extern "C" void GFX(si_init_draw_functions_)(struct si_context *sctx) { assert(sctx->chip_class == GFX()); si_init_draw_vbo_all_pipeline_options(sctx); /* Bind a fake draw_vbo, so that draw_vbo isn't NULL, which would skip * initialization of callbacks in upper layers (such as u_threaded_context). */ sctx->b.draw_vbo = si_invalid_draw_vbo; sctx->b.draw_vertex_state = si_invalid_draw_vertex_state; sctx->blitter->draw_rectangle = si_draw_rectangle; si_init_ia_multi_vgt_param_table(sctx); } #if GFX_VER == 6 /* declare this function only once because it supports all chips. */ extern "C" void si_init_spi_map_functions(struct si_context *sctx) { /* This unrolls the loops in si_emit_spi_map and inlines memcmp and memcpys. * It improves performance for viewperf/snx. */ sctx->emit_spi_map[0] = si_emit_spi_map<0>; sctx->emit_spi_map[1] = si_emit_spi_map<1>; sctx->emit_spi_map[2] = si_emit_spi_map<2>; sctx->emit_spi_map[3] = si_emit_spi_map<3>; sctx->emit_spi_map[4] = si_emit_spi_map<4>; sctx->emit_spi_map[5] = si_emit_spi_map<5>; sctx->emit_spi_map[6] = si_emit_spi_map<6>; sctx->emit_spi_map[7] = si_emit_spi_map<7>; sctx->emit_spi_map[8] = si_emit_spi_map<8>; sctx->emit_spi_map[9] = si_emit_spi_map<9>; sctx->emit_spi_map[10] = si_emit_spi_map<10>; sctx->emit_spi_map[11] = si_emit_spi_map<11>; sctx->emit_spi_map[12] = si_emit_spi_map<12>; sctx->emit_spi_map[13] = si_emit_spi_map<13>; sctx->emit_spi_map[14] = si_emit_spi_map<14>; sctx->emit_spi_map[15] = si_emit_spi_map<15>; sctx->emit_spi_map[16] = si_emit_spi_map<16>; sctx->emit_spi_map[17] = si_emit_spi_map<17>; sctx->emit_spi_map[18] = si_emit_spi_map<18>; sctx->emit_spi_map[19] = si_emit_spi_map<19>; sctx->emit_spi_map[20] = si_emit_spi_map<20>; sctx->emit_spi_map[21] = si_emit_spi_map<21>; sctx->emit_spi_map[22] = si_emit_spi_map<22>; sctx->emit_spi_map[23] = si_emit_spi_map<23>; sctx->emit_spi_map[24] = si_emit_spi_map<24>; sctx->emit_spi_map[25] = si_emit_spi_map<25>; sctx->emit_spi_map[26] = si_emit_spi_map<26>; sctx->emit_spi_map[27] = si_emit_spi_map<27>; sctx->emit_spi_map[28] = si_emit_spi_map<28>; sctx->emit_spi_map[29] = si_emit_spi_map<29>; sctx->emit_spi_map[30] = si_emit_spi_map<30>; sctx->emit_spi_map[31] = si_emit_spi_map<31>; sctx->emit_spi_map[32] = si_emit_spi_map<32>; } #endif