/* * Copyright 2013-2017 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include "si_build_pm4.h" #include "util/os_time.h" #include "util/u_memory.h" #include "util/u_queue.h" #include "util/u_upload_mgr.h" #include struct si_fine_fence { struct si_resource *buf; unsigned offset; }; struct si_fence { struct pipe_reference reference; struct pipe_fence_handle *gfx; struct tc_unflushed_batch_token *tc_token; struct util_queue_fence ready; /* If the context wasn't flushed at fence creation, this is non-NULL. */ struct { struct si_context *ctx; unsigned ib_index; } gfx_unflushed; struct si_fine_fence fine; }; /** * Write an EOP event. * * \param event EVENT_TYPE_* * \param event_flags Optional cache flush flags (TC) * \param dst_sel MEM or TC_L2 * \param int_sel NONE or SEND_DATA_AFTER_WR_CONFIRM * \param data_sel DISCARD, VALUE_32BIT, TIMESTAMP, or GDS * \param buf Buffer * \param va GPU address * \param old_value Previous fence value (for a bug workaround) * \param new_value Fence value to write for this event. */ void si_cp_release_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, unsigned event, unsigned event_flags, unsigned dst_sel, unsigned int_sel, unsigned data_sel, struct si_resource *buf, uint64_t va, uint32_t new_fence, unsigned query_type) { unsigned op = EVENT_TYPE(event) | EVENT_INDEX(event == V_028A90_CS_DONE || event == V_028A90_PS_DONE ? 6 : 5) | event_flags; unsigned sel = EOP_DST_SEL(dst_sel) | EOP_INT_SEL(int_sel) | EOP_DATA_SEL(data_sel); bool compute_ib = !ctx->has_graphics; radeon_begin(cs); if (ctx->chip_class >= GFX9 || (compute_ib && ctx->chip_class >= GFX7)) { /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion * counters) must immediately precede every timestamp event to * prevent a GPU hang on GFX9. * * Occlusion queries don't need to do it here, because they * always do ZPASS_DONE before the timestamp. */ if (ctx->chip_class == GFX9 && !compute_ib && query_type != PIPE_QUERY_OCCLUSION_COUNTER && query_type != PIPE_QUERY_OCCLUSION_PREDICATE && query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) { struct si_resource *scratch = unlikely(ctx->ws->cs_is_secure(&ctx->gfx_cs)) ? ctx->eop_bug_scratch_tmz : ctx->eop_bug_scratch; assert(16 * ctx->screen->info.max_render_backends <= scratch->b.b.width0); radeon_emit(PKT3(PKT3_EVENT_WRITE, 2, 0)); radeon_emit(EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1)); radeon_emit(scratch->gpu_address); radeon_emit(scratch->gpu_address >> 32); radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, scratch, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); } radeon_emit(PKT3(PKT3_RELEASE_MEM, ctx->chip_class >= GFX9 ? 6 : 5, 0)); radeon_emit(op); radeon_emit(sel); radeon_emit(va); /* address lo */ radeon_emit(va >> 32); /* address hi */ radeon_emit(new_fence); /* immediate data lo */ radeon_emit(0); /* immediate data hi */ if (ctx->chip_class >= GFX9) radeon_emit(0); /* unused */ } else { if (ctx->chip_class == GFX7 || ctx->chip_class == GFX8) { struct si_resource *scratch = ctx->eop_bug_scratch; uint64_t va = scratch->gpu_address; /* Two EOP events are required to make all engines go idle * (and optional cache flushes executed) before the timestamp * is written. */ radeon_emit(PKT3(PKT3_EVENT_WRITE_EOP, 4, 0)); radeon_emit(op); radeon_emit(va); radeon_emit(((va >> 32) & 0xffff) | sel); radeon_emit(0); /* immediate data */ radeon_emit(0); /* unused */ radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, scratch, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); } radeon_emit(PKT3(PKT3_EVENT_WRITE_EOP, 4, 0)); radeon_emit(op); radeon_emit(va); radeon_emit(((va >> 32) & 0xffff) | sel); radeon_emit(new_fence); /* immediate data */ radeon_emit(0); /* unused */ } radeon_end(); if (buf) { radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); } } unsigned si_cp_write_fence_dwords(struct si_screen *screen) { unsigned dwords = 6; if (screen->info.chip_class == GFX7 || screen->info.chip_class == GFX8) dwords *= 2; return dwords; } void si_cp_wait_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, uint64_t va, uint32_t ref, uint32_t mask, unsigned flags) { radeon_begin(cs); radeon_emit(PKT3(PKT3_WAIT_REG_MEM, 5, 0)); radeon_emit(WAIT_REG_MEM_MEM_SPACE(1) | flags); radeon_emit(va); radeon_emit(va >> 32); radeon_emit(ref); /* reference value */ radeon_emit(mask); /* mask */ radeon_emit(4); /* poll interval */ radeon_end(); } static void si_add_fence_dependency(struct si_context *sctx, struct pipe_fence_handle *fence) { struct radeon_winsys *ws = sctx->ws; ws->cs_add_fence_dependency(&sctx->gfx_cs, fence, 0); } static void si_add_syncobj_signal(struct si_context *sctx, struct pipe_fence_handle *fence) { sctx->ws->cs_add_syncobj_signal(&sctx->gfx_cs, fence); } static void si_fence_reference(struct pipe_screen *screen, struct pipe_fence_handle **dst, struct pipe_fence_handle *src) { struct radeon_winsys *ws = ((struct si_screen *)screen)->ws; struct si_fence **sdst = (struct si_fence **)dst; struct si_fence *ssrc = (struct si_fence *)src; if (pipe_reference(&(*sdst)->reference, &ssrc->reference)) { ws->fence_reference(&(*sdst)->gfx, NULL); tc_unflushed_batch_token_reference(&(*sdst)->tc_token, NULL); si_resource_reference(&(*sdst)->fine.buf, NULL); FREE(*sdst); } *sdst = ssrc; } static struct si_fence *si_create_multi_fence() { struct si_fence *fence = CALLOC_STRUCT(si_fence); if (!fence) return NULL; pipe_reference_init(&fence->reference, 1); util_queue_fence_init(&fence->ready); return fence; } struct pipe_fence_handle *si_create_fence(struct pipe_context *ctx, struct tc_unflushed_batch_token *tc_token) { struct si_fence *fence = si_create_multi_fence(); if (!fence) return NULL; util_queue_fence_reset(&fence->ready); tc_unflushed_batch_token_reference(&fence->tc_token, tc_token); return (struct pipe_fence_handle *)fence; } static bool si_fine_fence_signaled(struct radeon_winsys *rws, const struct si_fine_fence *fine) { char *map = rws->buffer_map(rws, fine->buf->buf, NULL, PIPE_MAP_READ | PIPE_MAP_UNSYNCHRONIZED); if (!map) return false; uint32_t *fence = (uint32_t *)(map + fine->offset); return *fence != 0; } static void si_fine_fence_set(struct si_context *ctx, struct si_fine_fence *fine, unsigned flags) { uint32_t *fence_ptr; assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1); /* Use cached system memory for the fence. */ u_upload_alloc(ctx->cached_gtt_allocator, 0, 4, 4, &fine->offset, (struct pipe_resource **)&fine->buf, (void **)&fence_ptr); if (!fine->buf) return; *fence_ptr = 0; if (flags & PIPE_FLUSH_TOP_OF_PIPE) { uint32_t value = 0x80000000; si_cp_write_data(ctx, fine->buf, fine->offset, 4, V_370_MEM, V_370_PFP, &value); } else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) { uint64_t fence_va = fine->buf->gpu_address + fine->offset; radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, fine->buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); si_cp_release_mem(ctx, &ctx->gfx_cs, V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DST_SEL_MEM, EOP_INT_SEL_NONE, EOP_DATA_SEL_VALUE_32BIT, NULL, fence_va, 0x80000000, PIPE_QUERY_GPU_FINISHED); } else { assert(false); } } static bool si_fence_finish(struct pipe_screen *screen, struct pipe_context *ctx, struct pipe_fence_handle *fence, uint64_t timeout) { struct radeon_winsys *rws = ((struct si_screen *)screen)->ws; struct si_fence *sfence = (struct si_fence *)fence; struct si_context *sctx; int64_t abs_timeout = os_time_get_absolute_timeout(timeout); ctx = threaded_context_unwrap_sync(ctx); sctx = (struct si_context *)(ctx ? ctx : NULL); if (!util_queue_fence_is_signalled(&sfence->ready)) { if (sfence->tc_token) { /* Ensure that si_flush_from_st will be called for * this fence, but only if we're in the API thread * where the context is current. * * Note that the batch containing the flush may already * be in flight in the driver thread, so the fence * may not be ready yet when this call returns. */ threaded_context_flush(ctx, sfence->tc_token, timeout == 0); } if (!timeout) return false; if (timeout == PIPE_TIMEOUT_INFINITE) { util_queue_fence_wait(&sfence->ready); } else { if (!util_queue_fence_wait_timeout(&sfence->ready, abs_timeout)) return false; } if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { int64_t time = os_time_get_nano(); timeout = abs_timeout > time ? abs_timeout - time : 0; } } if (!sfence->gfx) return true; if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine)) { rws->fence_reference(&sfence->gfx, NULL); si_resource_reference(&sfence->fine.buf, NULL); return true; } /* Flush the gfx IB if it hasn't been flushed yet. */ if (sctx && sfence->gfx_unflushed.ctx == sctx && sfence->gfx_unflushed.ib_index == sctx->num_gfx_cs_flushes) { /* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile) * spec says: * * "If the sync object being blocked upon will not be * signaled in finite time (for example, by an associated * fence command issued previously, but not yet flushed to * the graphics pipeline), then ClientWaitSync may hang * forever. To help prevent this behavior, if * ClientWaitSync is called and all of the following are * true: * * * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags, * * sync is unsignaled when ClientWaitSync is called, * * and the calls to ClientWaitSync and FenceSync were * issued from the same context, * * then the GL will behave as if the equivalent of Flush * were inserted immediately after the creation of sync." * * This means we need to flush for such fences even when we're * not going to wait. */ si_flush_gfx_cs(sctx, (timeout ? 0 : PIPE_FLUSH_ASYNC) | RADEON_FLUSH_START_NEXT_GFX_IB_NOW, NULL); sfence->gfx_unflushed.ctx = NULL; if (!timeout) return false; /* Recompute the timeout after all that. */ if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { int64_t time = os_time_get_nano(); timeout = abs_timeout > time ? abs_timeout - time : 0; } } if (rws->fence_wait(rws, sfence->gfx, timeout)) return true; /* Re-check in case the GPU is slow or hangs, but the commands before * the fine-grained fence have completed. */ if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine)) return true; return false; } static void si_create_fence_fd(struct pipe_context *ctx, struct pipe_fence_handle **pfence, int fd, enum pipe_fd_type type) { struct si_screen *sscreen = (struct si_screen *)ctx->screen; struct radeon_winsys *ws = sscreen->ws; struct si_fence *sfence; *pfence = NULL; sfence = si_create_multi_fence(); if (!sfence) return; switch (type) { case PIPE_FD_TYPE_NATIVE_SYNC: if (!sscreen->info.has_fence_to_handle) goto finish; sfence->gfx = ws->fence_import_sync_file(ws, fd); break; case PIPE_FD_TYPE_SYNCOBJ: if (!sscreen->info.has_syncobj) goto finish; sfence->gfx = ws->fence_import_syncobj(ws, fd); break; default: unreachable("bad fence fd type when importing"); } finish: if (!sfence->gfx) { FREE(sfence); return; } *pfence = (struct pipe_fence_handle *)sfence; } static int si_fence_get_fd(struct pipe_screen *screen, struct pipe_fence_handle *fence) { struct si_screen *sscreen = (struct si_screen *)screen; struct radeon_winsys *ws = sscreen->ws; struct si_fence *sfence = (struct si_fence *)fence; int gfx_fd = -1; if (!sscreen->info.has_fence_to_handle) return -1; util_queue_fence_wait(&sfence->ready); /* Deferred fences aren't supported. */ assert(!sfence->gfx_unflushed.ctx); if (sfence->gfx_unflushed.ctx) return -1; if (sfence->gfx) { gfx_fd = ws->fence_export_sync_file(ws, sfence->gfx); if (gfx_fd == -1) { return -1; } } /* If we don't have FDs at this point, it means we don't have fences * either. */ if (gfx_fd == -1) return ws->export_signalled_sync_file(ws); return gfx_fd; } static void si_flush_all_queues(struct pipe_context *ctx, struct pipe_fence_handle **fence, unsigned flags, bool force_flush) { struct pipe_screen *screen = ctx->screen; struct si_context *sctx = (struct si_context *)ctx; struct radeon_winsys *ws = sctx->ws; struct pipe_fence_handle *gfx_fence = NULL; bool deferred_fence = false; struct si_fine_fence fine = {}; unsigned rflags = PIPE_FLUSH_ASYNC; if (!(flags & PIPE_FLUSH_DEFERRED)) { si_flush_implicit_resources(sctx); } if (flags & PIPE_FLUSH_END_OF_FRAME) rflags |= PIPE_FLUSH_END_OF_FRAME; if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) { assert(flags & PIPE_FLUSH_DEFERRED); assert(fence); si_fine_fence_set(sctx, &fine, flags); } if (force_flush) { sctx->initial_gfx_cs_size = 0; } if (!radeon_emitted(&sctx->gfx_cs, sctx->initial_gfx_cs_size)) { if (fence) ws->fence_reference(&gfx_fence, sctx->last_gfx_fence); if (!(flags & PIPE_FLUSH_DEFERRED)) ws->cs_sync_flush(&sctx->gfx_cs); tc_driver_internal_flush_notify(sctx->tc); } else { /* Instead of flushing, create a deferred fence. Constraints: * - the gallium frontend must allow a deferred flush. * - the gallium frontend must request a fence. * - fence_get_fd is not allowed. * Thread safety in fence_finish must be ensured by the gallium frontend. */ if (flags & PIPE_FLUSH_DEFERRED && !(flags & PIPE_FLUSH_FENCE_FD) && fence) { gfx_fence = sctx->ws->cs_get_next_fence(&sctx->gfx_cs); deferred_fence = true; } else { si_flush_gfx_cs(sctx, rflags, fence ? &gfx_fence : NULL); } } /* Both engines can signal out of order, so we need to keep both fences. */ if (fence) { struct si_fence *new_fence; if (flags & TC_FLUSH_ASYNC) { new_fence = (struct si_fence *)*fence; assert(new_fence); } else { new_fence = si_create_multi_fence(); if (!new_fence) { ws->fence_reference(&gfx_fence, NULL); goto finish; } screen->fence_reference(screen, fence, NULL); *fence = (struct pipe_fence_handle *)new_fence; } /* If both fences are NULL, fence_finish will always return true. */ new_fence->gfx = gfx_fence; if (deferred_fence) { new_fence->gfx_unflushed.ctx = sctx; new_fence->gfx_unflushed.ib_index = sctx->num_gfx_cs_flushes; } new_fence->fine = fine; fine.buf = NULL; if (flags & TC_FLUSH_ASYNC) { util_queue_fence_signal(&new_fence->ready); tc_unflushed_batch_token_reference(&new_fence->tc_token, NULL); } } assert(!fine.buf); finish: if (!(flags & (PIPE_FLUSH_DEFERRED | PIPE_FLUSH_ASYNC))) { ws->cs_sync_flush(&sctx->gfx_cs); } } static void si_flush_from_st(struct pipe_context *ctx, struct pipe_fence_handle **fence, unsigned flags) { return si_flush_all_queues(ctx, fence, flags, false); } static void si_fence_server_signal(struct pipe_context *ctx, struct pipe_fence_handle *fence) { struct si_context *sctx = (struct si_context *)ctx; struct si_fence *sfence = (struct si_fence *)fence; assert(sfence->gfx); if (sfence->gfx) si_add_syncobj_signal(sctx, sfence->gfx); /** * The spec does not require a flush here. We insert a flush * because syncobj based signals are not directly placed into * the command stream. Instead the signal happens when the * submission associated with the syncobj finishes execution. * * Therefore, we must make sure that we flush the pipe to avoid * new work being emitted and getting executed before the signal * operation. * * Forces a flush even if the GFX CS is empty. */ si_flush_all_queues(ctx, NULL, PIPE_FLUSH_ASYNC, true); } static void si_fence_server_sync(struct pipe_context *ctx, struct pipe_fence_handle *fence) { struct si_context *sctx = (struct si_context *)ctx; struct si_fence *sfence = (struct si_fence *)fence; util_queue_fence_wait(&sfence->ready); /* Unflushed fences from the same context are no-ops. */ if (sfence->gfx_unflushed.ctx && sfence->gfx_unflushed.ctx == sctx) return; /* All unflushed commands will not start execution before this fence * dependency is signalled. That's fine. Flushing is very expensive * if we get fence_server_sync after every draw call. (which happens * with Android/SurfaceFlinger) * * In a nutshell, when CPU overhead is greater than GPU overhead, * or when the time it takes to execute an IB on the GPU is less than * the time it takes to create and submit that IB, flushing decreases * performance. Therefore, DO NOT FLUSH. */ if (sfence->gfx) si_add_fence_dependency(sctx, sfence->gfx); } void si_init_fence_functions(struct si_context *ctx) { ctx->b.flush = si_flush_from_st; ctx->b.create_fence_fd = si_create_fence_fd; ctx->b.fence_server_sync = si_fence_server_sync; ctx->b.fence_server_signal = si_fence_server_signal; } void si_init_screen_fence_functions(struct si_screen *screen) { screen->b.fence_finish = si_fence_finish; screen->b.fence_reference = si_fence_reference; screen->b.fence_get_fd = si_fence_get_fd; }