/* * Copyright 2018 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include "si_pipe.h" #include "util/format/u_format.h" #include "util/format_srgb.h" #include "util/u_helpers.h" /* Determine the cache policy. */ static enum si_cache_policy get_cache_policy(struct si_context *sctx, enum si_coherency coher, uint64_t size) { if ((sctx->chip_class >= GFX9 && (coher == SI_COHERENCY_CB_META || coher == SI_COHERENCY_DB_META || coher == SI_COHERENCY_CP)) || (sctx->chip_class >= GFX7 && coher == SI_COHERENCY_SHADER)) return L2_LRU; /* it's faster if L2 doesn't evict anything */ return L2_BYPASS; } unsigned si_get_flush_flags(struct si_context *sctx, enum si_coherency coher, enum si_cache_policy cache_policy) { switch (coher) { default: case SI_COHERENCY_NONE: case SI_COHERENCY_CP: return 0; case SI_COHERENCY_SHADER: return SI_CONTEXT_INV_SCACHE | SI_CONTEXT_INV_VCACHE | (cache_policy == L2_BYPASS ? SI_CONTEXT_INV_L2 : 0); case SI_COHERENCY_CB_META: return SI_CONTEXT_FLUSH_AND_INV_CB; case SI_COHERENCY_DB_META: return SI_CONTEXT_FLUSH_AND_INV_DB; } } void si_launch_grid_internal(struct si_context *sctx, struct pipe_grid_info *info, void *shader, unsigned flags) { /* Wait for previous shaders to finish. */ if (flags & SI_OP_SYNC_PS_BEFORE) sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH; if (flags & SI_OP_SYNC_CS_BEFORE) sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH; if (!(flags & SI_OP_CS_IMAGE)) sctx->flags |= SI_CONTEXT_PFP_SYNC_ME; /* Invalidate L0-L1 caches. */ /* sL0 is never invalidated, because src resources don't use it. */ if (!(flags & SI_OP_SKIP_CACHE_INV_BEFORE)) sctx->flags |= SI_CONTEXT_INV_VCACHE; /* Set settings for driver-internal compute dispatches. */ sctx->flags &= ~SI_CONTEXT_START_PIPELINE_STATS; sctx->flags |= SI_CONTEXT_STOP_PIPELINE_STATS; if (!(flags & SI_OP_CS_RENDER_COND_ENABLE)) sctx->render_cond_enabled = false; /* Skip decompression to prevent infinite recursion. */ sctx->blitter_running = true; /* Dispatch compute. */ void *saved_cs = sctx->cs_shader_state.program; sctx->b.bind_compute_state(&sctx->b, shader); sctx->b.launch_grid(&sctx->b, info); sctx->b.bind_compute_state(&sctx->b, saved_cs); /* Restore default settings. */ sctx->flags &= ~SI_CONTEXT_STOP_PIPELINE_STATS; sctx->flags |= SI_CONTEXT_START_PIPELINE_STATS; sctx->render_cond_enabled = sctx->render_cond; sctx->blitter_running = false; if (flags & SI_OP_SYNC_AFTER) { sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH; if (flags & SI_OP_CS_IMAGE) { /* Make sure image stores are visible to CB, which doesn't use L2 on GFX6-8. */ sctx->flags |= sctx->chip_class <= GFX8 ? SI_CONTEXT_WB_L2 : 0; /* Make sure image stores are visible to all CUs. */ sctx->flags |= SI_CONTEXT_INV_VCACHE; } else { /* Make sure buffer stores are visible to all CUs. */ sctx->flags |= SI_CONTEXT_INV_SCACHE | SI_CONTEXT_INV_VCACHE | SI_CONTEXT_PFP_SYNC_ME; } } } void si_launch_grid_internal_ssbos(struct si_context *sctx, struct pipe_grid_info *info, void *shader, unsigned flags, enum si_coherency coher, unsigned num_buffers, const struct pipe_shader_buffer *buffers, unsigned writeable_bitmask) { if (!(flags & SI_OP_SKIP_CACHE_INV_BEFORE)) sctx->flags |= si_get_flush_flags(sctx, coher, SI_COMPUTE_DST_CACHE_POLICY); /* Save states. */ struct pipe_shader_buffer saved_sb[3] = {}; assert(num_buffers <= ARRAY_SIZE(saved_sb)); si_get_shader_buffers(sctx, PIPE_SHADER_COMPUTE, 0, num_buffers, saved_sb); unsigned saved_writable_mask = 0; for (unsigned i = 0; i < num_buffers; i++) { if (sctx->const_and_shader_buffers[PIPE_SHADER_COMPUTE].writable_mask & (1u << si_get_shaderbuf_slot(i))) saved_writable_mask |= 1 << i; } /* Bind buffers and launch compute. */ sctx->b.set_shader_buffers(&sctx->b, PIPE_SHADER_COMPUTE, 0, num_buffers, buffers, writeable_bitmask); si_launch_grid_internal(sctx, info, shader, flags); /* Do cache flushing at the end. */ if (get_cache_policy(sctx, coher, 0) == L2_BYPASS) { if (flags & SI_OP_SYNC_AFTER) sctx->flags |= SI_CONTEXT_WB_L2; } else { while (writeable_bitmask) si_resource(buffers[u_bit_scan(&writeable_bitmask)].buffer)->TC_L2_dirty = true; } /* Restore states. */ sctx->b.set_shader_buffers(&sctx->b, PIPE_SHADER_COMPUTE, 0, num_buffers, saved_sb, saved_writable_mask); for (int i = 0; i < num_buffers; i++) pipe_resource_reference(&saved_sb[i].buffer, NULL); } /** * Clear a buffer using read-modify-write with a 32-bit write bitmask. * The clear value has 32 bits. */ void si_compute_clear_buffer_rmw(struct si_context *sctx, struct pipe_resource *dst, unsigned dst_offset, unsigned size, uint32_t clear_value, uint32_t writebitmask, unsigned flags, enum si_coherency coher) { assert(dst_offset % 4 == 0); assert(size % 4 == 0); assert(dst->target != PIPE_BUFFER || dst_offset + size <= dst->width0); /* Use buffer_load_dwordx4 and buffer_store_dwordx4 per thread. */ unsigned dwords_per_instruction = 4; unsigned wave_size = sctx->screen->compute_wave_size; unsigned dwords_per_wave = dwords_per_instruction * wave_size; unsigned num_dwords = size / 4; unsigned num_instructions = DIV_ROUND_UP(num_dwords, dwords_per_instruction); struct pipe_grid_info info = {}; info.block[0] = MIN2(wave_size, num_instructions); info.block[1] = 1; info.block[2] = 1; info.grid[0] = DIV_ROUND_UP(num_dwords, dwords_per_wave); info.grid[1] = 1; info.grid[2] = 1; struct pipe_shader_buffer sb = {}; sb.buffer = dst; sb.buffer_offset = dst_offset; sb.buffer_size = size; sctx->cs_user_data[0] = clear_value & writebitmask; sctx->cs_user_data[1] = ~writebitmask; if (!sctx->cs_clear_buffer_rmw) sctx->cs_clear_buffer_rmw = si_create_clear_buffer_rmw_cs(&sctx->b); si_launch_grid_internal_ssbos(sctx, &info, sctx->cs_clear_buffer_rmw, flags, coher, 1, &sb, 0x1); } static void si_compute_clear_12bytes_buffer(struct si_context *sctx, struct pipe_resource *dst, unsigned dst_offset, unsigned size, const uint32_t *clear_value, unsigned flags, enum si_coherency coher) { struct pipe_context *ctx = &sctx->b; assert(dst_offset % 4 == 0); assert(size % 4 == 0); unsigned size_12 = DIV_ROUND_UP(size, 12); struct pipe_shader_buffer sb = {0}; sb.buffer = dst; sb.buffer_offset = dst_offset; sb.buffer_size = size; memcpy(sctx->cs_user_data, clear_value, 12); struct pipe_grid_info info = {0}; if (!sctx->cs_clear_12bytes_buffer) sctx->cs_clear_12bytes_buffer = si_clear_12bytes_buffer_shader(ctx); info.block[0] = 64; info.last_block[0] = size_12 % 64; info.block[1] = 1; info.block[2] = 1; info.grid[0] = DIV_ROUND_UP(size_12, 64); info.grid[1] = 1; info.grid[2] = 1; si_launch_grid_internal_ssbos(sctx, &info, sctx->cs_clear_12bytes_buffer, flags, coher, 1, &sb, 0x1); } static void si_compute_do_clear_or_copy(struct si_context *sctx, struct pipe_resource *dst, unsigned dst_offset, struct pipe_resource *src, unsigned src_offset, unsigned size, const uint32_t *clear_value, unsigned clear_value_size, unsigned flags, enum si_coherency coher) { assert(src_offset % 4 == 0); assert(dst_offset % 4 == 0); assert(size % 4 == 0); assert(dst->target != PIPE_BUFFER || dst_offset + size <= dst->width0); assert(!src || src_offset + size <= src->width0); /* The memory accesses are coalesced, meaning that the 1st instruction writes * the 1st contiguous block of data for the whole wave, the 2nd instruction * writes the 2nd contiguous block of data, etc. */ unsigned dwords_per_thread = src ? SI_COMPUTE_COPY_DW_PER_THREAD : SI_COMPUTE_CLEAR_DW_PER_THREAD; unsigned instructions_per_thread = MAX2(1, dwords_per_thread / 4); unsigned dwords_per_instruction = dwords_per_thread / instructions_per_thread; unsigned wave_size = sctx->screen->compute_wave_size; unsigned dwords_per_wave = dwords_per_thread * wave_size; unsigned num_dwords = size / 4; unsigned num_instructions = DIV_ROUND_UP(num_dwords, dwords_per_instruction); struct pipe_grid_info info = {}; info.block[0] = MIN2(wave_size, num_instructions); info.block[1] = 1; info.block[2] = 1; info.grid[0] = DIV_ROUND_UP(num_dwords, dwords_per_wave); info.grid[1] = 1; info.grid[2] = 1; struct pipe_shader_buffer sb[2] = {}; sb[0].buffer = dst; sb[0].buffer_offset = dst_offset; sb[0].buffer_size = size; bool shader_dst_stream_policy = SI_COMPUTE_DST_CACHE_POLICY != L2_LRU; if (src) { sb[1].buffer = src; sb[1].buffer_offset = src_offset; sb[1].buffer_size = size; if (!sctx->cs_copy_buffer) { sctx->cs_copy_buffer = si_create_dma_compute_shader( &sctx->b, SI_COMPUTE_COPY_DW_PER_THREAD, shader_dst_stream_policy, true); } si_launch_grid_internal_ssbos(sctx, &info, sctx->cs_copy_buffer, flags, coher, 2, sb, 0x1); } else { assert(clear_value_size >= 4 && clear_value_size <= 16 && util_is_power_of_two_or_zero(clear_value_size)); for (unsigned i = 0; i < 4; i++) sctx->cs_user_data[i] = clear_value[i % (clear_value_size / 4)]; if (!sctx->cs_clear_buffer) { sctx->cs_clear_buffer = si_create_dma_compute_shader( &sctx->b, SI_COMPUTE_CLEAR_DW_PER_THREAD, shader_dst_stream_policy, false); } si_launch_grid_internal_ssbos(sctx, &info, sctx->cs_clear_buffer, flags, coher, 1, sb, 0x1); } } void si_clear_buffer(struct si_context *sctx, struct pipe_resource *dst, uint64_t offset, uint64_t size, uint32_t *clear_value, uint32_t clear_value_size, unsigned flags, enum si_coherency coher, enum si_clear_method method) { if (!size) return; ASSERTED unsigned clear_alignment = MIN2(clear_value_size, 4); assert(clear_value_size != 3 && clear_value_size != 6); /* 12 is allowed. */ assert(offset % clear_alignment == 0); assert(size % clear_alignment == 0); assert(size < (UINT_MAX & ~0xf)); /* TODO: test 64-bit sizes in all codepaths */ uint32_t clamped; if (util_lower_clearsize_to_dword(clear_value, (int*)&clear_value_size, &clamped)) clear_value = &clamped; if (clear_value_size == 12) { si_compute_clear_12bytes_buffer(sctx, dst, offset, size, clear_value, flags, coher); return; } uint64_t aligned_size = size & ~3ull; if (aligned_size >= 4) { uint64_t compute_min_size; if (sctx->chip_class <= GFX8) { /* CP DMA clears are terribly slow with GTT on GFX6-8, which can always * happen due to BO evictions. */ compute_min_size = 0; } else { /* Use a small enough size because CP DMA is slower than compute with bigger sizes. */ compute_min_size = 4 * 1024; } if (method == SI_AUTO_SELECT_CLEAR_METHOD && ( clear_value_size > 4 || (clear_value_size == 4 && offset % 4 == 0 && size > compute_min_size))) { method = SI_COMPUTE_CLEAR_METHOD; } if (method == SI_COMPUTE_CLEAR_METHOD) { si_compute_do_clear_or_copy(sctx, dst, offset, NULL, 0, aligned_size, clear_value, clear_value_size, flags, coher); } else { assert(clear_value_size == 4); si_cp_dma_clear_buffer(sctx, &sctx->gfx_cs, dst, offset, aligned_size, *clear_value, flags, coher, get_cache_policy(sctx, coher, size)); } offset += aligned_size; size -= aligned_size; } /* Handle non-dword alignment. */ if (size) { assert(dst); assert(dst->target == PIPE_BUFFER); assert(size < 4); pipe_buffer_write(&sctx->b, dst, offset, size, clear_value); } } void si_screen_clear_buffer(struct si_screen *sscreen, struct pipe_resource *dst, uint64_t offset, uint64_t size, unsigned value, unsigned flags) { struct si_context *ctx = (struct si_context *)sscreen->aux_context; simple_mtx_lock(&sscreen->aux_context_lock); si_clear_buffer(ctx, dst, offset, size, &value, 4, flags, SI_COHERENCY_SHADER, SI_AUTO_SELECT_CLEAR_METHOD); sscreen->aux_context->flush(sscreen->aux_context, NULL, 0); simple_mtx_unlock(&sscreen->aux_context_lock); } static void si_pipe_clear_buffer(struct pipe_context *ctx, struct pipe_resource *dst, unsigned offset, unsigned size, const void *clear_value, int clear_value_size) { si_clear_buffer((struct si_context *)ctx, dst, offset, size, (uint32_t *)clear_value, clear_value_size, SI_OP_SYNC_BEFORE_AFTER, SI_COHERENCY_SHADER, SI_AUTO_SELECT_CLEAR_METHOD); } void si_copy_buffer(struct si_context *sctx, struct pipe_resource *dst, struct pipe_resource *src, uint64_t dst_offset, uint64_t src_offset, unsigned size, unsigned flags) { if (!size) return; enum si_coherency coher = SI_COHERENCY_SHADER; enum si_cache_policy cache_policy = get_cache_policy(sctx, coher, size); uint64_t compute_min_size = 8 * 1024; /* Only use compute for VRAM copies on dGPUs. */ if (sctx->screen->info.has_dedicated_vram && si_resource(dst)->domains & RADEON_DOMAIN_VRAM && si_resource(src)->domains & RADEON_DOMAIN_VRAM && size > compute_min_size && dst_offset % 4 == 0 && src_offset % 4 == 0 && size % 4 == 0) { si_compute_do_clear_or_copy(sctx, dst, dst_offset, src, src_offset, size, NULL, 0, flags, coher); } else { si_cp_dma_copy_buffer(sctx, dst, src, dst_offset, src_offset, size, flags, coher, cache_policy); } } void si_compute_copy_image(struct si_context *sctx, struct pipe_resource *dst, unsigned dst_level, struct pipe_resource *src, unsigned src_level, unsigned dstx, unsigned dsty, unsigned dstz, const struct pipe_box *src_box, bool is_dcc_decompress, unsigned flags) { struct pipe_context *ctx = &sctx->b; struct si_texture *ssrc = (struct si_texture*)src; struct si_texture *sdst = (struct si_texture*)dst; unsigned width = src_box->width; unsigned height = src_box->height; unsigned depth = src_box->depth; enum pipe_format src_format = util_format_linear(src->format); enum pipe_format dst_format = util_format_linear(dst->format); bool is_linear = ssrc->surface.is_linear || sdst->surface.is_linear; assert(util_format_is_subsampled_422(src_format) == util_format_is_subsampled_422(dst_format)); if (!vi_dcc_enabled(ssrc, src_level) && !vi_dcc_enabled(sdst, dst_level) && src_format == dst_format && util_format_is_float(src_format) && !util_format_is_compressed(src_format)) { /* Interpret as integer values to avoid NaN issues */ switch(util_format_get_blocksizebits(src_format)) { case 16: src_format = dst_format = PIPE_FORMAT_R16_UINT; break; case 32: src_format = dst_format = PIPE_FORMAT_R32_UINT; break; case 64: src_format = dst_format = PIPE_FORMAT_R32G32_UINT; break; case 128: src_format = dst_format = PIPE_FORMAT_R32G32B32A32_UINT; break; default: assert(false); } } if (util_format_is_subsampled_422(src_format)) { src_format = dst_format = PIPE_FORMAT_R32_UINT; /* Interpreting 422 subsampled format (16 bpp) as 32 bpp * should force us to divide src_box->x, dstx and width by 2. * But given that ac_surface allocates this format as 32 bpp * and that surf_size is then modified to pack the values * we must keep the original values to get the correct results. */ } if (width == 0 || height == 0) return; /* The driver doesn't decompress resources automatically here. */ si_decompress_subresource(ctx, dst, PIPE_MASK_RGBAZS, dst_level, dstz, dstz + src_box->depth - 1); si_decompress_subresource(ctx, src, PIPE_MASK_RGBAZS, src_level, src_box->z, src_box->z + src_box->depth - 1); /* src and dst have the same number of samples. */ si_make_CB_shader_coherent(sctx, src->nr_samples, true, ssrc->surface.u.gfx9.color.dcc.pipe_aligned); if (sctx->chip_class >= GFX10) { /* GFX10+ uses DCC stores so si_make_CB_shader_coherent is required for dst too */ si_make_CB_shader_coherent(sctx, dst->nr_samples, true, sdst->surface.u.gfx9.color.dcc.pipe_aligned); } struct si_images *images = &sctx->images[PIPE_SHADER_COMPUTE]; struct pipe_image_view saved_image[2] = {0}; util_copy_image_view(&saved_image[0], &images->views[0]); util_copy_image_view(&saved_image[1], &images->views[1]); struct pipe_image_view image[2] = {0}; image[0].resource = src; image[0].shader_access = image[0].access = PIPE_IMAGE_ACCESS_READ; image[0].format = src_format; image[0].u.tex.level = src_level; image[0].u.tex.first_layer = 0; image[0].u.tex.last_layer = src->target == PIPE_TEXTURE_3D ? u_minify(src->depth0, src_level) - 1 : (unsigned)(src->array_size - 1); image[1].resource = dst; image[1].shader_access = image[1].access = PIPE_IMAGE_ACCESS_WRITE; image[1].format = dst_format; image[1].u.tex.level = dst_level; image[1].u.tex.first_layer = 0; image[1].u.tex.last_layer = dst->target == PIPE_TEXTURE_3D ? u_minify(dst->depth0, dst_level) - 1 : (unsigned)(dst->array_size - 1); /* SNORM8 blitting has precision issues on some chips. Use the SINT * equivalent instead, which doesn't force DCC decompression. */ if (util_format_is_snorm8(dst->format)) { image[0].format = image[1].format = util_format_snorm8_to_sint8(dst->format); } if (is_dcc_decompress) image[1].access |= SI_IMAGE_ACCESS_DCC_OFF; else if (sctx->chip_class >= GFX10) image[1].access |= SI_IMAGE_ACCESS_ALLOW_DCC_STORE; ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 2, 0, image); if (!is_dcc_decompress) { sctx->cs_user_data[0] = src_box->x | (dstx << 16); sctx->cs_user_data[1] = src_box->y | (dsty << 16); sctx->cs_user_data[2] = src_box->z | (dstz << 16); } struct pipe_grid_info info = {0}; if (is_dcc_decompress) { /* The DCC decompression is a normal blit where the load is compressed * and the store is uncompressed. The workgroup size is either equal to * the DCC block size or a multiple thereof. The shader uses a barrier * between loads and stores to safely overwrite each DCC block of pixels. */ unsigned dim[3] = {src_box->width, src_box->height, src_box->depth}; assert(src == dst); assert(dst->target != PIPE_TEXTURE_1D && dst->target != PIPE_TEXTURE_1D_ARRAY); if (!sctx->cs_dcc_decompress) sctx->cs_dcc_decompress = si_create_dcc_decompress_cs(ctx); info.block[0] = ssrc->surface.u.gfx9.color.dcc_block_width; info.block[1] = ssrc->surface.u.gfx9.color.dcc_block_height; info.block[2] = ssrc->surface.u.gfx9.color.dcc_block_depth; /* Make sure the block size is at least the same as wave size. */ while (info.block[0] * info.block[1] * info.block[2] < sctx->screen->compute_wave_size) { info.block[0] *= 2; } for (unsigned i = 0; i < 3; i++) { info.last_block[i] = dim[i] % info.block[i]; info.grid[i] = DIV_ROUND_UP(dim[i], info.block[i]); } si_launch_grid_internal(sctx, &info, sctx->cs_dcc_decompress, flags | SI_OP_CS_IMAGE); } else if (dst->target == PIPE_TEXTURE_1D_ARRAY && src->target == PIPE_TEXTURE_1D_ARRAY) { if (!sctx->cs_copy_image_1d_array) sctx->cs_copy_image_1d_array = si_create_copy_image_compute_shader_1d_array(ctx); info.block[0] = 64; info.last_block[0] = width % 64; info.block[1] = 1; info.block[2] = 1; info.grid[0] = DIV_ROUND_UP(width, 64); info.grid[1] = depth; info.grid[2] = 1; si_launch_grid_internal(sctx, &info, sctx->cs_copy_image_1d_array, flags | SI_OP_CS_IMAGE); } else { if (!sctx->cs_copy_image) sctx->cs_copy_image = si_create_copy_image_compute_shader(ctx); /* This is better for access over PCIe. */ if (is_linear) { info.block[0] = 64; info.block[1] = 1; } else { info.block[0] = 8; info.block[1] = 8; } info.last_block[0] = width % info.block[0]; info.last_block[1] = height % info.block[1]; info.block[2] = 1; info.grid[0] = DIV_ROUND_UP(width, info.block[0]); info.grid[1] = DIV_ROUND_UP(height, info.block[1]); info.grid[2] = depth; si_launch_grid_internal(sctx, &info, sctx->cs_copy_image, flags | SI_OP_CS_IMAGE); } ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 2, 0, saved_image); for (int i = 0; i < 2; i++) pipe_resource_reference(&saved_image[i].resource, NULL); } void si_retile_dcc(struct si_context *sctx, struct si_texture *tex) { /* Set the DCC buffer. */ assert(tex->surface.meta_offset && tex->surface.meta_offset <= UINT_MAX); assert(tex->surface.display_dcc_offset && tex->surface.display_dcc_offset <= UINT_MAX); assert(tex->surface.display_dcc_offset < tex->surface.meta_offset); assert(tex->buffer.bo_size <= UINT_MAX); struct pipe_shader_buffer sb = {}; sb.buffer = &tex->buffer.b.b; sb.buffer_offset = tex->surface.display_dcc_offset; sb.buffer_size = tex->buffer.bo_size - sb.buffer_offset; sctx->cs_user_data[0] = tex->surface.meta_offset - tex->surface.display_dcc_offset; sctx->cs_user_data[1] = (tex->surface.u.gfx9.color.dcc_pitch_max + 1) | (tex->surface.u.gfx9.color.dcc_height << 16); sctx->cs_user_data[2] = (tex->surface.u.gfx9.color.display_dcc_pitch_max + 1) | (tex->surface.u.gfx9.color.display_dcc_height << 16); /* We have only 1 variant per bpp for now, so expect 32 bpp. */ assert(tex->surface.bpe == 4); void **shader = &sctx->cs_dcc_retile[tex->surface.u.gfx9.swizzle_mode]; if (!*shader) *shader = si_create_dcc_retile_cs(sctx, &tex->surface); /* Dispatch compute. */ unsigned width = DIV_ROUND_UP(tex->buffer.b.b.width0, tex->surface.u.gfx9.color.dcc_block_width); unsigned height = DIV_ROUND_UP(tex->buffer.b.b.height0, tex->surface.u.gfx9.color.dcc_block_height); struct pipe_grid_info info = {}; info.block[0] = 8; info.block[1] = 8; info.block[2] = 1; info.last_block[0] = width % info.block[0]; info.last_block[1] = height % info.block[1]; info.grid[0] = DIV_ROUND_UP(width, info.block[0]); info.grid[1] = DIV_ROUND_UP(height, info.block[1]); info.grid[2] = 1; si_launch_grid_internal_ssbos(sctx, &info, *shader, SI_OP_SYNC_BEFORE, SI_COHERENCY_CB_META, 1, &sb, 0x1); /* Don't flush caches. L2 will be flushed by the kernel fence. */ } void gfx9_clear_dcc_msaa(struct si_context *sctx, struct pipe_resource *res, uint32_t clear_value, unsigned flags, enum si_coherency coher) { struct si_texture *tex = (struct si_texture*)res; /* Set the DCC buffer. */ assert(tex->surface.meta_offset && tex->surface.meta_offset <= UINT_MAX); assert(tex->buffer.bo_size <= UINT_MAX); struct pipe_shader_buffer sb = {}; sb.buffer = &tex->buffer.b.b; sb.buffer_offset = tex->surface.meta_offset; sb.buffer_size = tex->buffer.bo_size - sb.buffer_offset; sctx->cs_user_data[0] = (tex->surface.u.gfx9.color.dcc_pitch_max + 1) | (tex->surface.u.gfx9.color.dcc_height << 16); sctx->cs_user_data[1] = (clear_value & 0xffff) | ((uint32_t)tex->surface.tile_swizzle << 16); /* These variables identify the shader variant. */ unsigned swizzle_mode = tex->surface.u.gfx9.swizzle_mode; unsigned bpe_log2 = util_logbase2(tex->surface.bpe); unsigned log2_samples = util_logbase2(tex->buffer.b.b.nr_samples); bool fragments8 = tex->buffer.b.b.nr_storage_samples == 8; bool is_array = tex->buffer.b.b.array_size > 1; void **shader = &sctx->cs_clear_dcc_msaa[swizzle_mode][bpe_log2][fragments8][log2_samples - 2][is_array]; if (!*shader) *shader = gfx9_create_clear_dcc_msaa_cs(sctx, tex); /* Dispatch compute. */ unsigned width = DIV_ROUND_UP(tex->buffer.b.b.width0, tex->surface.u.gfx9.color.dcc_block_width); unsigned height = DIV_ROUND_UP(tex->buffer.b.b.height0, tex->surface.u.gfx9.color.dcc_block_height); unsigned depth = DIV_ROUND_UP(tex->buffer.b.b.array_size, tex->surface.u.gfx9.color.dcc_block_depth); struct pipe_grid_info info = {}; info.block[0] = 8; info.block[1] = 8; info.block[2] = 1; info.last_block[0] = width % info.block[0]; info.last_block[1] = height % info.block[1]; info.grid[0] = DIV_ROUND_UP(width, info.block[0]); info.grid[1] = DIV_ROUND_UP(height, info.block[1]); info.grid[2] = depth; si_launch_grid_internal_ssbos(sctx, &info, *shader, flags, coher, 1, &sb, 0x1); } /* Expand FMASK to make it identity, so that image stores can ignore it. */ void si_compute_expand_fmask(struct pipe_context *ctx, struct pipe_resource *tex) { struct si_context *sctx = (struct si_context *)ctx; bool is_array = tex->target == PIPE_TEXTURE_2D_ARRAY; unsigned log_fragments = util_logbase2(tex->nr_storage_samples); unsigned log_samples = util_logbase2(tex->nr_samples); assert(tex->nr_samples >= 2); /* EQAA FMASK expansion is unimplemented. */ if (tex->nr_samples != tex->nr_storage_samples) return; si_make_CB_shader_coherent(sctx, tex->nr_samples, true, ((struct si_texture*)tex)->surface.u.gfx9.color.dcc.pipe_aligned); /* Save states. */ struct pipe_image_view saved_image = {0}; util_copy_image_view(&saved_image, &sctx->images[PIPE_SHADER_COMPUTE].views[0]); /* Bind the image. */ struct pipe_image_view image = {0}; image.resource = tex; /* Don't set WRITE so as not to trigger FMASK expansion, causing * an infinite loop. */ image.shader_access = image.access = PIPE_IMAGE_ACCESS_READ; image.format = util_format_linear(tex->format); if (is_array) image.u.tex.last_layer = tex->array_size - 1; ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, 0, &image); /* Bind the shader. */ void **shader = &sctx->cs_fmask_expand[log_samples - 1][is_array]; if (!*shader) *shader = si_create_fmask_expand_cs(ctx, tex->nr_samples, is_array); /* Dispatch compute. */ struct pipe_grid_info info = {0}; info.block[0] = 8; info.last_block[0] = tex->width0 % 8; info.block[1] = 8; info.last_block[1] = tex->height0 % 8; info.block[2] = 1; info.grid[0] = DIV_ROUND_UP(tex->width0, 8); info.grid[1] = DIV_ROUND_UP(tex->height0, 8); info.grid[2] = is_array ? tex->array_size : 1; si_launch_grid_internal(sctx, &info, *shader, SI_OP_SYNC_BEFORE_AFTER); /* Restore previous states. */ ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, 0, &saved_image); pipe_resource_reference(&saved_image.resource, NULL); /* Array of fully expanded FMASK values, arranged by [log2(fragments)][log2(samples)-1]. */ #define INVALID 0 /* never used */ static const uint64_t fmask_expand_values[][4] = { /* samples */ /* 2 (8 bpp) 4 (8 bpp) 8 (8-32bpp) 16 (16-64bpp) fragments */ {0x02020202, 0x0E0E0E0E, 0xFEFEFEFE, 0xFFFEFFFE}, /* 1 */ {0x02020202, 0xA4A4A4A4, 0xAAA4AAA4, 0xAAAAAAA4}, /* 2 */ {INVALID, 0xE4E4E4E4, 0x44443210, 0x4444444444443210}, /* 4 */ {INVALID, INVALID, 0x76543210, 0x8888888876543210}, /* 8 */ }; /* Clear FMASK to identity. */ struct si_texture *stex = (struct si_texture *)tex; si_clear_buffer(sctx, tex, stex->surface.fmask_offset, stex->surface.fmask_size, (uint32_t *)&fmask_expand_values[log_fragments][log_samples - 1], log_fragments >= 2 && log_samples == 4 ? 8 : 4, SI_OP_SYNC_AFTER, SI_COHERENCY_SHADER, SI_AUTO_SELECT_CLEAR_METHOD); } void si_init_compute_blit_functions(struct si_context *sctx) { sctx->b.clear_buffer = si_pipe_clear_buffer; } /* Clear a region of a color surface to a constant value. */ void si_compute_clear_render_target(struct pipe_context *ctx, struct pipe_surface *dstsurf, const union pipe_color_union *color, unsigned dstx, unsigned dsty, unsigned width, unsigned height, bool render_condition_enabled) { struct si_context *sctx = (struct si_context *)ctx; struct si_texture *tex = (struct si_texture*)dstsurf->texture; unsigned num_layers = dstsurf->u.tex.last_layer - dstsurf->u.tex.first_layer + 1; unsigned data[4 + sizeof(color->ui)] = {dstx, dsty, dstsurf->u.tex.first_layer, 0}; if (width == 0 || height == 0) return; /* The driver doesn't decompress resources automatically here. */ si_decompress_subresource(ctx, dstsurf->texture, PIPE_MASK_RGBA, dstsurf->u.tex.level, dstsurf->u.tex.first_layer, dstsurf->u.tex.last_layer); if (util_format_is_srgb(dstsurf->format)) { union pipe_color_union color_srgb; for (int i = 0; i < 3; i++) color_srgb.f[i] = util_format_linear_to_srgb_float(color->f[i]); color_srgb.f[3] = color->f[3]; memcpy(data + 4, color_srgb.ui, sizeof(color->ui)); } else { memcpy(data + 4, color->ui, sizeof(color->ui)); } si_make_CB_shader_coherent(sctx, dstsurf->texture->nr_samples, true, tex->surface.u.gfx9.color.dcc.pipe_aligned); struct pipe_constant_buffer saved_cb = {}; si_get_pipe_constant_buffer(sctx, PIPE_SHADER_COMPUTE, 0, &saved_cb); struct si_images *images = &sctx->images[PIPE_SHADER_COMPUTE]; struct pipe_image_view saved_image = {0}; util_copy_image_view(&saved_image, &images->views[0]); struct pipe_constant_buffer cb = {}; cb.buffer_size = sizeof(data); cb.user_buffer = data; ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, false, &cb); struct pipe_image_view image = {0}; image.resource = dstsurf->texture; image.shader_access = image.access = PIPE_IMAGE_ACCESS_WRITE | SI_IMAGE_ACCESS_ALLOW_DCC_STORE; image.format = util_format_linear(dstsurf->format); image.u.tex.level = dstsurf->u.tex.level; image.u.tex.first_layer = 0; /* 3D images ignore first_layer (BASE_ARRAY) */ image.u.tex.last_layer = dstsurf->u.tex.last_layer; ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, 0, &image); struct pipe_grid_info info = {0}; void *shader; if (dstsurf->texture->target != PIPE_TEXTURE_1D_ARRAY) { if (!sctx->cs_clear_render_target) sctx->cs_clear_render_target = si_clear_render_target_shader(ctx); shader = sctx->cs_clear_render_target; info.block[0] = 8; info.last_block[0] = width % 8; info.block[1] = 8; info.last_block[1] = height % 8; info.block[2] = 1; info.grid[0] = DIV_ROUND_UP(width, 8); info.grid[1] = DIV_ROUND_UP(height, 8); info.grid[2] = num_layers; } else { if (!sctx->cs_clear_render_target_1d_array) sctx->cs_clear_render_target_1d_array = si_clear_render_target_shader_1d_array(ctx); shader = sctx->cs_clear_render_target_1d_array; info.block[0] = 64; info.last_block[0] = width % 64; info.block[1] = 1; info.block[2] = 1; info.grid[0] = DIV_ROUND_UP(width, 64); info.grid[1] = num_layers; info.grid[2] = 1; } si_launch_grid_internal(sctx, &info, shader, SI_OP_SYNC_BEFORE_AFTER | SI_OP_CS_IMAGE | (render_condition_enabled ? SI_OP_CS_RENDER_COND_ENABLE : 0)); ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, 0, &saved_image); ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, true, &saved_cb); pipe_resource_reference(&saved_image.resource, NULL); }