/* * Copyright (c) 2019 Zodiac Inflight Innovations * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sub license, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Jonathan Marek */ #include "etnaviv_compiler_nir.h" #include "util/register_allocate.h" /* use "r63.z" for depth reg, it will wrap around to r0.z by reg_get_base * (fs registers are offset by 1 to avoid reserving r0) */ #define REG_FRAG_DEPTH ((ETNA_MAX_TEMPS - 1) * NUM_REG_TYPES + REG_TYPE_VIRT_SCALAR_Z) /* precomputed by register_allocate */ static unsigned int *q_values[] = { (unsigned int[]) {1, 2, 3, 4, 2, 2, 3, }, (unsigned int[]) {3, 5, 6, 6, 5, 5, 6, }, (unsigned int[]) {3, 4, 4, 4, 4, 4, 4, }, (unsigned int[]) {1, 1, 1, 1, 1, 1, 1, }, (unsigned int[]) {1, 2, 2, 2, 1, 2, 2, }, (unsigned int[]) {2, 3, 3, 3, 2, 3, 3, }, (unsigned int[]) {2, 2, 2, 2, 2, 2, 2, }, }; static inline int reg_get_class(int virt_reg) { switch (reg_get_type(virt_reg)) { case REG_TYPE_VEC4: return REG_CLASS_VEC4; case REG_TYPE_VIRT_VEC3_XYZ: case REG_TYPE_VIRT_VEC3_XYW: case REG_TYPE_VIRT_VEC3_XZW: case REG_TYPE_VIRT_VEC3_YZW: return REG_CLASS_VIRT_VEC3; case REG_TYPE_VIRT_VEC2_XY: case REG_TYPE_VIRT_VEC2_XZ: case REG_TYPE_VIRT_VEC2_XW: case REG_TYPE_VIRT_VEC2_YZ: case REG_TYPE_VIRT_VEC2_YW: case REG_TYPE_VIRT_VEC2_ZW: return REG_CLASS_VIRT_VEC2; case REG_TYPE_VIRT_SCALAR_X: case REG_TYPE_VIRT_SCALAR_Y: case REG_TYPE_VIRT_SCALAR_Z: case REG_TYPE_VIRT_SCALAR_W: return REG_CLASS_VIRT_SCALAR; case REG_TYPE_VIRT_VEC2T_XY: case REG_TYPE_VIRT_VEC2T_ZW: return REG_CLASS_VIRT_VEC2T; case REG_TYPE_VIRT_VEC2C_XY: case REG_TYPE_VIRT_VEC2C_YZ: case REG_TYPE_VIRT_VEC2C_ZW: return REG_CLASS_VIRT_VEC2C; case REG_TYPE_VIRT_VEC3C_XYZ: case REG_TYPE_VIRT_VEC3C_YZW: return REG_CLASS_VIRT_VEC3C; } assert(false); return 0; } struct ra_regs * etna_ra_setup(void *mem_ctx) { struct ra_regs *regs = ra_alloc_reg_set(mem_ctx, ETNA_MAX_TEMPS * NUM_REG_TYPES, false); /* classes always be created from index 0, so equal to the class enum * which represents a register with (c+1) components */ struct ra_class *classes[NUM_REG_CLASSES]; for (int c = 0; c < NUM_REG_CLASSES; c++) classes[c] = ra_alloc_reg_class(regs); /* add each register of each class */ for (int r = 0; r < NUM_REG_TYPES * ETNA_MAX_TEMPS; r++) ra_class_add_reg(classes[reg_get_class(r)], r); /* set conflicts */ for (int r = 0; r < ETNA_MAX_TEMPS; r++) { for (int i = 0; i < NUM_REG_TYPES; i++) { for (int j = 0; j < i; j++) { if (reg_writemask[i] & reg_writemask[j]) { ra_add_reg_conflict(regs, NUM_REG_TYPES * r + i, NUM_REG_TYPES * r + j); } } } } ra_set_finalize(regs, q_values); return regs; } void etna_ra_assign(struct etna_compile *c, nir_shader *shader) { struct etna_compiler *compiler = c->variant->shader->compiler; struct ra_regs *regs = compiler->regs; nir_function_impl *impl = nir_shader_get_entrypoint(shader); /* liveness and interference */ nir_index_blocks(impl); nir_index_ssa_defs(impl); nir_foreach_block(block, impl) { nir_foreach_instr(instr, block) instr->pass_flags = 0; } /* this gives an approximation/upper limit on how many nodes are needed * (some ssa values do not represent an allocated register) */ unsigned max_nodes = impl->ssa_alloc + impl->reg_alloc; unsigned *live_map = ralloc_array(NULL, unsigned, max_nodes); memset(live_map, 0xff, sizeof(unsigned) * max_nodes); struct live_def *defs = rzalloc_array(NULL, struct live_def, max_nodes); unsigned num_nodes = etna_live_defs(impl, defs, live_map); struct ra_graph *g = ra_alloc_interference_graph(regs, num_nodes); /* set classes from num_components */ for (unsigned i = 0; i < num_nodes; i++) { nir_instr *instr = defs[i].instr; nir_dest *dest = defs[i].dest; unsigned comp = nir_dest_num_components(*dest) - 1; if (instr->type == nir_instr_type_alu && c->specs->has_new_transcendentals) { switch (nir_instr_as_alu(instr)->op) { case nir_op_fdiv: case nir_op_flog2: case nir_op_fsin: case nir_op_fcos: assert(dest->is_ssa); comp = REG_CLASS_VIRT_VEC2T; break; default: break; } } if (instr->type == nir_instr_type_intrinsic) { nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); /* can't have dst swizzle or sparse writemask on UBO loads */ if (intr->intrinsic == nir_intrinsic_load_ubo) { assert(dest == &intr->dest); if (dest->ssa.num_components == 2) comp = REG_CLASS_VIRT_VEC2C; if (dest->ssa.num_components == 3) comp = REG_CLASS_VIRT_VEC3C; } } ra_set_node_class(g, i, ra_get_class_from_index(regs, comp)); } nir_foreach_block(block, impl) { nir_foreach_instr(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_dest *dest = dest_for_instr(instr); nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); unsigned reg; switch (intr->intrinsic) { case nir_intrinsic_store_deref: { /* don't want outputs to be swizzled * TODO: better would be to set the type to X/XY/XYZ/XYZW * TODO: what if fragcoord.z is read after writing fragdepth? */ nir_deref_instr *deref = nir_src_as_deref(intr->src[0]); unsigned index = live_map[src_index(impl, &intr->src[1])]; if (shader->info.stage == MESA_SHADER_FRAGMENT && deref->var->data.location == FRAG_RESULT_DEPTH) { ra_set_node_reg(g, index, REG_FRAG_DEPTH); } else { ra_set_node_class(g, index, ra_get_class_from_index(regs, REG_CLASS_VEC4)); } } continue; case nir_intrinsic_load_input: reg = nir_intrinsic_base(intr) * NUM_REG_TYPES + (unsigned[]) { REG_TYPE_VIRT_SCALAR_X, REG_TYPE_VIRT_VEC2_XY, REG_TYPE_VIRT_VEC3_XYZ, REG_TYPE_VEC4, }[nir_dest_num_components(*dest) - 1]; break; case nir_intrinsic_load_instance_id: reg = c->variant->infile.num_reg * NUM_REG_TYPES + REG_TYPE_VIRT_SCALAR_Y; break; default: continue; } ra_set_node_reg(g, live_map[dest_index(impl, dest)], reg); } } /* add interference for intersecting live ranges */ for (unsigned i = 0; i < num_nodes; i++) { assert(defs[i].live_start < defs[i].live_end); for (unsigned j = 0; j < i; j++) { if (defs[i].live_start >= defs[j].live_end || defs[j].live_start >= defs[i].live_end) continue; ra_add_node_interference(g, i, j); } } ralloc_free(defs); /* Allocate registers */ ASSERTED bool ok = ra_allocate(g); assert(ok); c->g = g; c->live_map = live_map; c->num_nodes = num_nodes; } unsigned etna_ra_finish(struct etna_compile *c) { /* TODO: better way to get number of registers used? */ unsigned j = 0; for (unsigned i = 0; i < c->num_nodes; i++) { j = MAX2(j, reg_get_base(c, ra_get_node_reg(c->g, i)) + 1); } ralloc_free(c->g); ralloc_free(c->live_map); return j; }