/* * Copyright (c) 2012-2019 Etnaviv Project * Copyright (c) 2019 Zodiac Inflight Innovations * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sub license, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Jonathan Marek * Wladimir J. van der Laan */ #include "etnaviv_compiler.h" #include "etnaviv_compiler_nir.h" #include "etnaviv_asm.h" #include "etnaviv_context.h" #include "etnaviv_debug.h" #include "etnaviv_nir.h" #include "etnaviv_uniforms.h" #include "etnaviv_util.h" #include #include "util/u_memory.h" #include "util/register_allocate.h" #include "compiler/nir/nir_builder.h" #include "tgsi/tgsi_strings.h" #include "util/compiler.h" #include "util/half_float.h" static bool etna_alu_to_scalar_filter_cb(const nir_instr *instr, const void *data) { const struct etna_specs *specs = data; if (instr->type != nir_instr_type_alu) return false; nir_alu_instr *alu = nir_instr_as_alu(instr); switch (alu->op) { case nir_op_frsq: case nir_op_frcp: case nir_op_flog2: case nir_op_fexp2: case nir_op_fsqrt: case nir_op_fcos: case nir_op_fsin: case nir_op_fdiv: case nir_op_imul: return true; /* TODO: can do better than alu_to_scalar for vector compares */ case nir_op_b32all_fequal2: case nir_op_b32all_fequal3: case nir_op_b32all_fequal4: case nir_op_b32any_fnequal2: case nir_op_b32any_fnequal3: case nir_op_b32any_fnequal4: case nir_op_b32all_iequal2: case nir_op_b32all_iequal3: case nir_op_b32all_iequal4: case nir_op_b32any_inequal2: case nir_op_b32any_inequal3: case nir_op_b32any_inequal4: return true; case nir_op_fdot2: if (!specs->has_halti2_instructions) return true; break; default: break; } return false; } static void etna_emit_block_start(struct etna_compile *c, unsigned block) { c->block_ptr[block] = c->inst_ptr; } static void etna_emit_output(struct etna_compile *c, nir_variable *var, struct etna_inst_src src) { struct etna_shader_io_file *sf = &c->variant->outfile; if (is_fs(c)) { switch (var->data.location) { case FRAG_RESULT_COLOR: case FRAG_RESULT_DATA0: /* DATA0 is used by gallium shaders for color */ c->variant->ps_color_out_reg = src.reg; break; case FRAG_RESULT_DEPTH: c->variant->ps_depth_out_reg = src.reg; break; default: unreachable("Unsupported fs output"); } return; } switch (var->data.location) { case VARYING_SLOT_POS: c->variant->vs_pos_out_reg = src.reg; break; case VARYING_SLOT_PSIZ: c->variant->vs_pointsize_out_reg = src.reg; break; default: sf->reg[sf->num_reg].reg = src.reg; sf->reg[sf->num_reg].slot = var->data.location; sf->reg[sf->num_reg].num_components = glsl_get_components(var->type); sf->num_reg++; break; } } #define OPT(nir, pass, ...) ({ \ bool this_progress = false; \ NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__); \ this_progress; \ }) static void etna_optimize_loop(nir_shader *s) { bool progress; do { progress = false; NIR_PASS_V(s, nir_lower_vars_to_ssa); progress |= OPT(s, nir_opt_copy_prop_vars); progress |= OPT(s, nir_opt_shrink_vectors, true); progress |= OPT(s, nir_copy_prop); progress |= OPT(s, nir_opt_dce); progress |= OPT(s, nir_opt_cse); progress |= OPT(s, nir_opt_peephole_select, 16, true, true); progress |= OPT(s, nir_opt_intrinsics); progress |= OPT(s, nir_opt_algebraic); progress |= OPT(s, nir_opt_constant_folding); progress |= OPT(s, nir_opt_dead_cf); if (OPT(s, nir_opt_trivial_continues)) { progress = true; /* If nir_opt_trivial_continues makes progress, then we need to clean * things up if we want any hope of nir_opt_if or nir_opt_loop_unroll * to make progress. */ OPT(s, nir_copy_prop); OPT(s, nir_opt_dce); } progress |= OPT(s, nir_opt_loop_unroll); progress |= OPT(s, nir_opt_if, false); progress |= OPT(s, nir_opt_remove_phis); progress |= OPT(s, nir_opt_undef); } while (progress); } static int etna_glsl_type_size(const struct glsl_type *type, bool bindless) { return glsl_count_attribute_slots(type, false); } static void copy_uniform_state_to_shader(struct etna_shader_variant *sobj, uint64_t *consts, unsigned count) { struct etna_shader_uniform_info *uinfo = &sobj->uniforms; uinfo->count = count * 4; uinfo->data = MALLOC(uinfo->count * sizeof(*uinfo->data)); uinfo->contents = MALLOC(uinfo->count * sizeof(*uinfo->contents)); for (unsigned i = 0; i < uinfo->count; i++) { uinfo->data[i] = consts[i]; uinfo->contents[i] = consts[i] >> 32; } etna_set_shader_uniforms_dirty_flags(sobj); } #define ALU_SWIZ(s) INST_SWIZ((s)->swizzle[0], (s)->swizzle[1], (s)->swizzle[2], (s)->swizzle[3]) #define SRC_DISABLE ((hw_src){}) #define SRC_CONST(idx, s) ((hw_src){.use=1, .rgroup = INST_RGROUP_UNIFORM_0, .reg=idx, .swiz=s}) #define SRC_REG(idx, s) ((hw_src){.use=1, .rgroup = INST_RGROUP_TEMP, .reg=idx, .swiz=s}) typedef struct etna_inst_dst hw_dst; typedef struct etna_inst_src hw_src; static inline hw_src src_swizzle(hw_src src, unsigned swizzle) { if (src.rgroup != INST_RGROUP_IMMEDIATE) src.swiz = inst_swiz_compose(src.swiz, swizzle); return src; } /* constants are represented as 64-bit ints * 32-bit for the value and 32-bit for the type (imm, uniform, etc) */ #define CONST_VAL(a, b) (nir_const_value) {.u64 = (uint64_t)(a) << 32 | (uint64_t)(b)} #define CONST(x) CONST_VAL(ETNA_UNIFORM_CONSTANT, x) #define UNIFORM(x) CONST_VAL(ETNA_UNIFORM_UNIFORM, x) #define TEXSCALE(x, i) CONST_VAL(ETNA_UNIFORM_TEXRECT_SCALE_X + (i), x) static int const_add(uint64_t *c, uint64_t value) { for (unsigned i = 0; i < 4; i++) { if (c[i] == value || !c[i]) { c[i] = value; return i; } } return -1; } static hw_src const_src(struct etna_compile *c, nir_const_value *value, unsigned num_components) { /* use inline immediates if possible */ if (c->specs->halti >= 2 && num_components == 1 && value[0].u64 >> 32 == ETNA_UNIFORM_CONSTANT) { uint32_t bits = value[0].u32; /* "float" - shifted by 12 */ if ((bits & 0xfff) == 0) return etna_immediate_src(0, bits >> 12); /* "unsigned" - raw 20 bit value */ if (bits < (1 << 20)) return etna_immediate_src(2, bits); /* "signed" - sign extended 20-bit (sign included) value */ if (bits >= 0xfff80000) return etna_immediate_src(1, bits); } unsigned i; int swiz = -1; for (i = 0; swiz < 0; i++) { uint64_t *a = &c->consts[i*4]; uint64_t save[4]; memcpy(save, a, sizeof(save)); swiz = 0; for (unsigned j = 0; j < num_components; j++) { int c = const_add(a, value[j].u64); if (c < 0) { memcpy(a, save, sizeof(save)); swiz = -1; break; } swiz |= c << j * 2; } } assert(i <= ETNA_MAX_IMM / 4); c->const_count = MAX2(c->const_count, i); return SRC_CONST(i - 1, swiz); } /* how to swizzle when used as a src */ static const uint8_t reg_swiz[NUM_REG_TYPES] = { [REG_TYPE_VEC4] = INST_SWIZ_IDENTITY, [REG_TYPE_VIRT_SCALAR_X] = INST_SWIZ_IDENTITY, [REG_TYPE_VIRT_SCALAR_Y] = SWIZZLE(Y, Y, Y, Y), [REG_TYPE_VIRT_VEC2_XY] = INST_SWIZ_IDENTITY, [REG_TYPE_VIRT_VEC2T_XY] = INST_SWIZ_IDENTITY, [REG_TYPE_VIRT_VEC2C_XY] = INST_SWIZ_IDENTITY, [REG_TYPE_VIRT_SCALAR_Z] = SWIZZLE(Z, Z, Z, Z), [REG_TYPE_VIRT_VEC2_XZ] = SWIZZLE(X, Z, X, Z), [REG_TYPE_VIRT_VEC2_YZ] = SWIZZLE(Y, Z, Y, Z), [REG_TYPE_VIRT_VEC2C_YZ] = SWIZZLE(Y, Z, Y, Z), [REG_TYPE_VIRT_VEC3_XYZ] = INST_SWIZ_IDENTITY, [REG_TYPE_VIRT_VEC3C_XYZ] = INST_SWIZ_IDENTITY, [REG_TYPE_VIRT_SCALAR_W] = SWIZZLE(W, W, W, W), [REG_TYPE_VIRT_VEC2_XW] = SWIZZLE(X, W, X, W), [REG_TYPE_VIRT_VEC2_YW] = SWIZZLE(Y, W, Y, W), [REG_TYPE_VIRT_VEC3_XYW] = SWIZZLE(X, Y, W, X), [REG_TYPE_VIRT_VEC2_ZW] = SWIZZLE(Z, W, Z, W), [REG_TYPE_VIRT_VEC2T_ZW] = SWIZZLE(Z, W, Z, W), [REG_TYPE_VIRT_VEC2C_ZW] = SWIZZLE(Z, W, Z, W), [REG_TYPE_VIRT_VEC3_XZW] = SWIZZLE(X, Z, W, X), [REG_TYPE_VIRT_VEC3_YZW] = SWIZZLE(Y, Z, W, X), [REG_TYPE_VIRT_VEC3C_YZW] = SWIZZLE(Y, Z, W, X), }; /* how to swizzle when used as a dest */ static const uint8_t reg_dst_swiz[NUM_REG_TYPES] = { [REG_TYPE_VEC4] = INST_SWIZ_IDENTITY, [REG_TYPE_VIRT_SCALAR_X] = INST_SWIZ_IDENTITY, [REG_TYPE_VIRT_SCALAR_Y] = SWIZZLE(X, X, X, X), [REG_TYPE_VIRT_VEC2_XY] = INST_SWIZ_IDENTITY, [REG_TYPE_VIRT_VEC2T_XY] = INST_SWIZ_IDENTITY, [REG_TYPE_VIRT_VEC2C_XY] = INST_SWIZ_IDENTITY, [REG_TYPE_VIRT_SCALAR_Z] = SWIZZLE(X, X, X, X), [REG_TYPE_VIRT_VEC2_XZ] = SWIZZLE(X, X, Y, Y), [REG_TYPE_VIRT_VEC2_YZ] = SWIZZLE(X, X, Y, Y), [REG_TYPE_VIRT_VEC2C_YZ] = SWIZZLE(X, X, Y, Y), [REG_TYPE_VIRT_VEC3_XYZ] = INST_SWIZ_IDENTITY, [REG_TYPE_VIRT_VEC3C_XYZ] = INST_SWIZ_IDENTITY, [REG_TYPE_VIRT_SCALAR_W] = SWIZZLE(X, X, X, X), [REG_TYPE_VIRT_VEC2_XW] = SWIZZLE(X, X, Y, Y), [REG_TYPE_VIRT_VEC2_YW] = SWIZZLE(X, X, Y, Y), [REG_TYPE_VIRT_VEC3_XYW] = SWIZZLE(X, Y, Z, Z), [REG_TYPE_VIRT_VEC2_ZW] = SWIZZLE(X, X, X, Y), [REG_TYPE_VIRT_VEC2T_ZW] = SWIZZLE(X, X, X, Y), [REG_TYPE_VIRT_VEC2C_ZW] = SWIZZLE(X, X, X, Y), [REG_TYPE_VIRT_VEC3_XZW] = SWIZZLE(X, Y, Y, Z), [REG_TYPE_VIRT_VEC3_YZW] = SWIZZLE(X, X, Y, Z), [REG_TYPE_VIRT_VEC3C_YZW] = SWIZZLE(X, X, Y, Z), }; /* nir_src to allocated register */ static hw_src ra_src(struct etna_compile *c, nir_src *src) { unsigned reg = ra_get_node_reg(c->g, c->live_map[src_index(c->impl, src)]); return SRC_REG(reg_get_base(c, reg), reg_swiz[reg_get_type(reg)]); } static hw_src get_src(struct etna_compile *c, nir_src *src) { if (!src->is_ssa) return ra_src(c, src); nir_instr *instr = src->ssa->parent_instr; if (instr->pass_flags & BYPASS_SRC) { assert(instr->type == nir_instr_type_alu); nir_alu_instr *alu = nir_instr_as_alu(instr); assert(alu->op == nir_op_mov); return src_swizzle(get_src(c, &alu->src[0].src), ALU_SWIZ(&alu->src[0])); } switch (instr->type) { case nir_instr_type_load_const: return const_src(c, nir_instr_as_load_const(instr)->value, src->ssa->num_components); case nir_instr_type_intrinsic: { nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); switch (intr->intrinsic) { case nir_intrinsic_load_input: case nir_intrinsic_load_instance_id: case nir_intrinsic_load_uniform: case nir_intrinsic_load_ubo: return ra_src(c, src); case nir_intrinsic_load_front_face: return (hw_src) { .use = 1, .rgroup = INST_RGROUP_INTERNAL }; case nir_intrinsic_load_frag_coord: return SRC_REG(0, INST_SWIZ_IDENTITY); case nir_intrinsic_load_texture_rect_scaling: { int sampler = nir_src_as_int(intr->src[0]); nir_const_value values[] = { TEXSCALE(sampler, 0), TEXSCALE(sampler, 1), }; return src_swizzle(const_src(c, values, 2), SWIZZLE(X,Y,X,X)); } default: compile_error(c, "Unhandled NIR intrinsic type: %s\n", nir_intrinsic_infos[intr->intrinsic].name); break; } } break; case nir_instr_type_alu: case nir_instr_type_tex: return ra_src(c, src); case nir_instr_type_ssa_undef: { /* return zero to deal with broken Blur demo */ nir_const_value value = CONST(0); return src_swizzle(const_src(c, &value, 1), SWIZZLE(X,X,X,X)); } default: compile_error(c, "Unhandled NIR instruction type: %d\n", instr->type); break; } return SRC_DISABLE; } static bool vec_dest_has_swizzle(nir_alu_instr *vec, nir_ssa_def *ssa) { for (unsigned i = 0; i < 4; i++) { if (!(vec->dest.write_mask & (1 << i)) || vec->src[i].src.ssa != ssa) continue; if (vec->src[i].swizzle[0] != i) return true; } /* don't deal with possible bypassed vec/mov chain */ nir_foreach_use(use_src, ssa) { nir_instr *instr = use_src->parent_instr; if (instr->type != nir_instr_type_alu) continue; nir_alu_instr *alu = nir_instr_as_alu(instr); switch (alu->op) { case nir_op_mov: case nir_op_vec2: case nir_op_vec3: case nir_op_vec4: return true; default: break; } } return false; } /* get allocated dest register for nir_dest * *p_swiz tells how the components need to be placed into register */ static hw_dst ra_dest(struct etna_compile *c, nir_dest *dest, unsigned *p_swiz) { unsigned swiz = INST_SWIZ_IDENTITY, mask = 0xf; dest = real_dest(dest, &swiz, &mask); unsigned r = ra_get_node_reg(c->g, c->live_map[dest_index(c->impl, dest)]); unsigned t = reg_get_type(r); *p_swiz = inst_swiz_compose(swiz, reg_dst_swiz[t]); return (hw_dst) { .use = 1, .reg = reg_get_base(c, r), .write_mask = inst_write_mask_compose(mask, reg_writemask[t]), }; } static void emit_alu(struct etna_compile *c, nir_alu_instr * alu) { const nir_op_info *info = &nir_op_infos[alu->op]; /* marked as dead instruction (vecN and other bypassed instr) */ if (alu->instr.pass_flags) return; assert(!(alu->op >= nir_op_vec2 && alu->op <= nir_op_vec4)); unsigned dst_swiz; hw_dst dst = ra_dest(c, &alu->dest.dest, &dst_swiz); /* compose alu write_mask with RA write mask */ if (!alu->dest.dest.is_ssa) dst.write_mask = inst_write_mask_compose(alu->dest.write_mask, dst.write_mask); switch (alu->op) { case nir_op_fdot2: case nir_op_fdot3: case nir_op_fdot4: /* not per-component - don't compose dst_swiz */ dst_swiz = INST_SWIZ_IDENTITY; break; default: break; } hw_src srcs[3]; for (int i = 0; i < info->num_inputs; i++) { nir_alu_src *asrc = &alu->src[i]; hw_src src; src = src_swizzle(get_src(c, &asrc->src), ALU_SWIZ(asrc)); src = src_swizzle(src, dst_swiz); if (src.rgroup != INST_RGROUP_IMMEDIATE) { src.neg = asrc->negate || (alu->op == nir_op_fneg); src.abs = asrc->abs || (alu->op == nir_op_fabs); } else { assert(!asrc->negate && alu->op != nir_op_fneg); assert(!asrc->abs && alu->op != nir_op_fabs); } srcs[i] = src; } etna_emit_alu(c, alu->op, dst, srcs, alu->dest.saturate || (alu->op == nir_op_fsat)); } static void emit_tex(struct etna_compile *c, nir_tex_instr * tex) { unsigned dst_swiz; hw_dst dst = ra_dest(c, &tex->dest, &dst_swiz); nir_src *coord = NULL, *lod_bias = NULL, *compare = NULL; for (unsigned i = 0; i < tex->num_srcs; i++) { switch (tex->src[i].src_type) { case nir_tex_src_coord: coord = &tex->src[i].src; break; case nir_tex_src_bias: case nir_tex_src_lod: assert(!lod_bias); lod_bias = &tex->src[i].src; break; case nir_tex_src_comparator: compare = &tex->src[i].src; break; default: compile_error(c, "Unhandled NIR tex src type: %d\n", tex->src[i].src_type); break; } } etna_emit_tex(c, tex->op, tex->sampler_index, dst_swiz, dst, get_src(c, coord), lod_bias ? get_src(c, lod_bias) : SRC_DISABLE, compare ? get_src(c, compare) : SRC_DISABLE); } static void emit_intrinsic(struct etna_compile *c, nir_intrinsic_instr * intr) { switch (intr->intrinsic) { case nir_intrinsic_store_deref: etna_emit_output(c, nir_src_as_deref(intr->src[0])->var, get_src(c, &intr->src[1])); break; case nir_intrinsic_discard_if: etna_emit_discard(c, get_src(c, &intr->src[0])); break; case nir_intrinsic_discard: etna_emit_discard(c, SRC_DISABLE); break; case nir_intrinsic_load_uniform: { unsigned dst_swiz; struct etna_inst_dst dst = ra_dest(c, &intr->dest, &dst_swiz); /* TODO: rework so extra MOV isn't required, load up to 4 addresses at once */ emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_MOVAR, .dst.write_mask = 0x1, .src[2] = get_src(c, &intr->src[0]), }); emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_MOV, .dst = dst, .src[2] = { .use = 1, .rgroup = INST_RGROUP_UNIFORM_0, .reg = nir_intrinsic_base(intr), .swiz = dst_swiz, .amode = INST_AMODE_ADD_A_X, }, }); } break; case nir_intrinsic_load_ubo: { /* TODO: if offset is of the form (x + C) then add C to the base instead */ unsigned idx = nir_src_as_const_value(intr->src[0])[0].u32; unsigned dst_swiz; emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_LOAD, .type = INST_TYPE_U32, .dst = ra_dest(c, &intr->dest, &dst_swiz), .src[0] = get_src(c, &intr->src[1]), .src[1] = const_src(c, &CONST_VAL(ETNA_UNIFORM_UBO0_ADDR + idx, 0), 1), }); } break; case nir_intrinsic_load_front_face: case nir_intrinsic_load_frag_coord: assert(intr->dest.is_ssa); /* TODO - lower phis could cause this */ break; case nir_intrinsic_load_input: case nir_intrinsic_load_instance_id: case nir_intrinsic_load_texture_rect_scaling: break; default: compile_error(c, "Unhandled NIR intrinsic type: %s\n", nir_intrinsic_infos[intr->intrinsic].name); } } static void emit_instr(struct etna_compile *c, nir_instr * instr) { switch (instr->type) { case nir_instr_type_alu: emit_alu(c, nir_instr_as_alu(instr)); break; case nir_instr_type_tex: emit_tex(c, nir_instr_as_tex(instr)); break; case nir_instr_type_intrinsic: emit_intrinsic(c, nir_instr_as_intrinsic(instr)); break; case nir_instr_type_jump: assert(nir_instr_is_last(instr)); break; case nir_instr_type_load_const: case nir_instr_type_ssa_undef: case nir_instr_type_deref: break; default: compile_error(c, "Unhandled NIR instruction type: %d\n", instr->type); break; } } static void emit_block(struct etna_compile *c, nir_block * block) { etna_emit_block_start(c, block->index); nir_foreach_instr(instr, block) emit_instr(c, instr); /* succs->index < block->index is for the loop case */ nir_block *succs = block->successors[0]; if (nir_block_ends_in_jump(block) || succs->index < block->index) etna_emit_jump(c, succs->index, SRC_DISABLE); } static void emit_cf_list(struct etna_compile *c, struct exec_list *list); static void emit_if(struct etna_compile *c, nir_if * nif) { etna_emit_jump(c, nir_if_first_else_block(nif)->index, get_src(c, &nif->condition)); emit_cf_list(c, &nif->then_list); /* jump at end of then_list to skip else_list * not needed if then_list already ends with a jump or else_list is empty */ if (!nir_block_ends_in_jump(nir_if_last_then_block(nif)) && !nir_cf_list_is_empty_block(&nif->else_list)) etna_emit_jump(c, nir_if_last_else_block(nif)->successors[0]->index, SRC_DISABLE); emit_cf_list(c, &nif->else_list); } static void emit_cf_list(struct etna_compile *c, struct exec_list *list) { foreach_list_typed(nir_cf_node, node, node, list) { switch (node->type) { case nir_cf_node_block: emit_block(c, nir_cf_node_as_block(node)); break; case nir_cf_node_if: emit_if(c, nir_cf_node_as_if(node)); break; case nir_cf_node_loop: emit_cf_list(c, &nir_cf_node_as_loop(node)->body); break; default: compile_error(c, "Unknown NIR node type\n"); break; } } } /* based on nir_lower_vec_to_movs */ static unsigned insert_vec_mov(nir_alu_instr *vec, unsigned start_idx, nir_shader *shader) { assert(start_idx < nir_op_infos[vec->op].num_inputs); unsigned write_mask = (1u << start_idx); nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_mov); nir_alu_src_copy(&mov->src[0], &vec->src[start_idx]); mov->src[0].swizzle[0] = vec->src[start_idx].swizzle[0]; mov->src[0].negate = vec->src[start_idx].negate; mov->src[0].abs = vec->src[start_idx].abs; unsigned num_components = 1; for (unsigned i = start_idx + 1; i < 4; i++) { if (!(vec->dest.write_mask & (1 << i))) continue; if (nir_srcs_equal(vec->src[i].src, vec->src[start_idx].src) && vec->src[i].negate == vec->src[start_idx].negate && vec->src[i].abs == vec->src[start_idx].abs) { write_mask |= (1 << i); mov->src[0].swizzle[num_components] = vec->src[i].swizzle[0]; num_components++; } } mov->dest.write_mask = (1 << num_components) - 1; nir_ssa_dest_init(&mov->instr, &mov->dest.dest, num_components, 32, NULL); /* replace vec srcs with inserted mov */ for (unsigned i = 0, j = 0; i < 4; i++) { if (!(write_mask & (1 << i))) continue; nir_instr_rewrite_src(&vec->instr, &vec->src[i].src, nir_src_for_ssa(&mov->dest.dest.ssa)); vec->src[i].swizzle[0] = j++; } nir_instr_insert_before(&vec->instr, &mov->instr); return write_mask; } /* * for vecN instructions: * -merge constant sources into a single src * -insert movs (nir_lower_vec_to_movs equivalent) * for non-vecN instructions: * -try to merge constants as single constant * -insert movs for multiple constants (pre-HALTI5) */ static void lower_alu(struct etna_compile *c, nir_alu_instr *alu) { const nir_op_info *info = &nir_op_infos[alu->op]; nir_builder b; nir_builder_init(&b, c->impl); b.cursor = nir_before_instr(&alu->instr); switch (alu->op) { case nir_op_vec2: case nir_op_vec3: case nir_op_vec4: break; default: /* pre-GC7000L can only have 1 uniform src per instruction */ if (c->specs->halti >= 5) return; nir_const_value value[4] = {}; uint8_t swizzle[4][4] = {}; unsigned swiz_max = 0, num_const = 0; for (unsigned i = 0; i < info->num_inputs; i++) { nir_const_value *cv = nir_src_as_const_value(alu->src[i].src); if (!cv) continue; unsigned num_components = info->input_sizes[i] ?: alu->dest.dest.ssa.num_components; for (unsigned j = 0; j < num_components; j++) { int idx = const_add(&value[0].u64, cv[alu->src[i].swizzle[j]].u64); swizzle[i][j] = idx; swiz_max = MAX2(swiz_max, (unsigned) idx); } num_const++; } /* nothing to do */ if (num_const <= 1) return; /* resolve with single combined const src */ if (swiz_max < 4) { nir_ssa_def *def = nir_build_imm(&b, swiz_max + 1, 32, value); for (unsigned i = 0; i < info->num_inputs; i++) { nir_const_value *cv = nir_src_as_const_value(alu->src[i].src); if (!cv) continue; nir_instr_rewrite_src(&alu->instr, &alu->src[i].src, nir_src_for_ssa(def)); for (unsigned j = 0; j < 4; j++) alu->src[i].swizzle[j] = swizzle[i][j]; } return; } /* resolve with movs */ num_const = 0; for (unsigned i = 0; i < info->num_inputs; i++) { nir_const_value *cv = nir_src_as_const_value(alu->src[i].src); if (!cv) continue; num_const++; if (num_const == 1) continue; nir_ssa_def *mov = nir_mov(&b, alu->src[i].src.ssa); nir_instr_rewrite_src(&alu->instr, &alu->src[i].src, nir_src_for_ssa(mov)); } return; } nir_const_value value[4]; unsigned num_components = 0; for (unsigned i = 0; i < info->num_inputs; i++) { nir_const_value *cv = nir_src_as_const_value(alu->src[i].src); if (cv) value[num_components++] = cv[alu->src[i].swizzle[0]]; } /* if there is more than one constant source to the vecN, combine them * into a single load_const (removing the vecN completely if all components * are constant) */ if (num_components > 1) { nir_ssa_def *def = nir_build_imm(&b, num_components, 32, value); if (num_components == info->num_inputs) { nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, def); nir_instr_remove(&alu->instr); return; } for (unsigned i = 0, j = 0; i < info->num_inputs; i++) { nir_const_value *cv = nir_src_as_const_value(alu->src[i].src); if (!cv) continue; nir_instr_rewrite_src(&alu->instr, &alu->src[i].src, nir_src_for_ssa(def)); alu->src[i].swizzle[0] = j++; } } unsigned finished_write_mask = 0; for (unsigned i = 0; i < 4; i++) { if (!(alu->dest.write_mask & (1 << i))) continue; nir_ssa_def *ssa = alu->src[i].src.ssa; /* check that vecN instruction is only user of this */ bool need_mov = list_length(&ssa->if_uses) != 0; nir_foreach_use(use_src, ssa) { if (use_src->parent_instr != &alu->instr) need_mov = true; } nir_instr *instr = ssa->parent_instr; switch (instr->type) { case nir_instr_type_alu: case nir_instr_type_tex: break; case nir_instr_type_intrinsic: if (nir_instr_as_intrinsic(instr)->intrinsic == nir_intrinsic_load_input) { need_mov = vec_dest_has_swizzle(alu, &nir_instr_as_intrinsic(instr)->dest.ssa); break; } FALLTHROUGH; default: need_mov = true; } if (need_mov && !(finished_write_mask & (1 << i))) finished_write_mask |= insert_vec_mov(alu, i, c->nir); } } static bool emit_shader(struct etna_compile *c, unsigned *num_temps, unsigned *num_consts) { nir_shader *shader = c->nir; c->impl = nir_shader_get_entrypoint(shader); bool have_indirect_uniform = false; unsigned indirect_max = 0; nir_builder b; nir_builder_init(&b, c->impl); /* convert non-dynamic uniform loads to constants, etc */ nir_foreach_block(block, c->impl) { nir_foreach_instr_safe(instr, block) { switch(instr->type) { case nir_instr_type_alu: /* deals with vecN and const srcs */ lower_alu(c, nir_instr_as_alu(instr)); break; case nir_instr_type_load_const: { nir_load_const_instr *load_const = nir_instr_as_load_const(instr); for (unsigned i = 0; i < load_const->def.num_components; i++) load_const->value[i] = CONST(load_const->value[i].u32); } break; case nir_instr_type_intrinsic: { nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); /* TODO: load_ubo can also become a constant in some cases * (at the moment it can end up emitting a LOAD with two * uniform sources, which could be a problem on HALTI2) */ if (intr->intrinsic != nir_intrinsic_load_uniform) break; nir_const_value *off = nir_src_as_const_value(intr->src[0]); if (!off || off[0].u64 >> 32 != ETNA_UNIFORM_CONSTANT) { have_indirect_uniform = true; indirect_max = nir_intrinsic_base(intr) + nir_intrinsic_range(intr); break; } unsigned base = nir_intrinsic_base(intr); /* pre halti2 uniform offset will be float */ if (c->specs->halti < 2) base += (unsigned) off[0].f32; else base += off[0].u32; nir_const_value value[4]; for (unsigned i = 0; i < intr->dest.ssa.num_components; i++) value[i] = UNIFORM(base * 4 + i); b.cursor = nir_after_instr(instr); nir_ssa_def *def = nir_build_imm(&b, intr->dest.ssa.num_components, 32, value); nir_ssa_def_rewrite_uses(&intr->dest.ssa, def); nir_instr_remove(instr); } break; default: break; } } } /* TODO: only emit required indirect uniform ranges */ if (have_indirect_uniform) { for (unsigned i = 0; i < indirect_max * 4; i++) c->consts[i] = UNIFORM(i).u64; c->const_count = indirect_max; } /* add mov for any store output using sysval/const and for depth stores from intrinsics */ nir_foreach_block(block, c->impl) { nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); switch (intr->intrinsic) { case nir_intrinsic_store_deref: { nir_deref_instr *deref = nir_src_as_deref(intr->src[0]); nir_src *src = &intr->src[1]; if (nir_src_is_const(*src) || is_sysval(src->ssa->parent_instr) || (shader->info.stage == MESA_SHADER_FRAGMENT && deref->var->data.location == FRAG_RESULT_DEPTH && src->is_ssa && src->ssa->parent_instr->type != nir_instr_type_alu)) { b.cursor = nir_before_instr(instr); nir_instr_rewrite_src(instr, src, nir_src_for_ssa(nir_mov(&b, src->ssa))); } } break; default: break; } } } /* call directly to avoid validation (load_const don't pass validation at this point) */ nir_convert_from_ssa(shader, true); nir_opt_dce(shader); etna_ra_assign(c, shader); emit_cf_list(c, &nir_shader_get_entrypoint(shader)->body); *num_temps = etna_ra_finish(c); *num_consts = c->const_count; return true; } static bool etna_compile_check_limits(struct etna_shader_variant *v) { const struct etna_specs *specs = v->shader->specs; int max_uniforms = (v->stage == MESA_SHADER_VERTEX) ? specs->max_vs_uniforms : specs->max_ps_uniforms; if (!specs->has_icache && v->needs_icache) { DBG("Number of instructions (%d) exceeds maximum %d", v->code_size / 4, specs->max_instructions); return false; } if (v->num_temps > specs->max_registers) { DBG("Number of registers (%d) exceeds maximum %d", v->num_temps, specs->max_registers); return false; } if (v->uniforms.count / 4 > max_uniforms) { DBG("Number of uniforms (%d) exceeds maximum %d", v->uniforms.count / 4, max_uniforms); return false; } return true; } static void fill_vs_mystery(struct etna_shader_variant *v) { const struct etna_specs *specs = v->shader->specs; v->input_count_unk8 = DIV_ROUND_UP(v->infile.num_reg + 4, 16); /* XXX what is this */ /* fill in "mystery meat" load balancing value. This value determines how * work is scheduled between VS and PS * in the unified shader architecture. More precisely, it is determined from * the number of VS outputs, as well as chip-specific * vertex output buffer size, vertex cache size, and the number of shader * cores. * * XXX this is a conservative estimate, the "optimal" value is only known for * sure at link time because some * outputs may be unused and thus unmapped. Then again, in the general use * case with GLSL the vertex and fragment * shaders are linked already before submitting to Gallium, thus all outputs * are used. * * note: TGSI compiler counts all outputs (including position and pointsize), here * v->outfile.num_reg only counts varyings, +1 to compensate for the position output * TODO: might have a problem that we don't count pointsize when it is used */ int half_out = v->outfile.num_reg / 2 + 1; assert(half_out); uint32_t b = ((20480 / (specs->vertex_output_buffer_size - 2 * half_out * specs->vertex_cache_size)) + 9) / 10; uint32_t a = (b + 256 / (specs->shader_core_count * half_out)) / 2; v->vs_load_balancing = VIVS_VS_LOAD_BALANCING_A(MIN2(a, 255)) | VIVS_VS_LOAD_BALANCING_B(MIN2(b, 255)) | VIVS_VS_LOAD_BALANCING_C(0x3f) | VIVS_VS_LOAD_BALANCING_D(0x0f); } bool etna_compile_shader_nir(struct etna_shader_variant *v) { if (unlikely(!v)) return false; struct etna_compile *c = CALLOC_STRUCT(etna_compile); if (!c) return false; c->variant = v; c->specs = v->shader->specs; c->nir = nir_shader_clone(NULL, v->shader->nir); nir_shader *s = c->nir; const struct etna_specs *specs = c->specs; v->stage = s->info.stage; v->uses_discard = s->info.fs.uses_discard; v->num_loops = 0; /* TODO */ v->vs_id_in_reg = -1; v->vs_pos_out_reg = -1; v->vs_pointsize_out_reg = -1; v->ps_color_out_reg = 0; /* 0 for shader that doesn't write fragcolor.. */ v->ps_depth_out_reg = -1; /* * Lower glTexCoord, fixes e.g. neverball point sprite (exit cylinder stars) * and gl4es pointsprite.trace apitrace */ if (s->info.stage == MESA_SHADER_FRAGMENT && v->key.sprite_coord_enable) { NIR_PASS_V(s, nir_lower_texcoord_replace, v->key.sprite_coord_enable, false, v->key.sprite_coord_yinvert); } /* setup input linking */ struct etna_shader_io_file *sf = &v->infile; if (s->info.stage == MESA_SHADER_VERTEX) { nir_foreach_shader_in_variable(var, s) { unsigned idx = var->data.driver_location; sf->reg[idx].reg = idx; sf->reg[idx].slot = var->data.location; sf->reg[idx].num_components = glsl_get_components(var->type); sf->num_reg = MAX2(sf->num_reg, idx+1); } } else { unsigned count = 0; nir_foreach_shader_in_variable(var, s) { unsigned idx = var->data.driver_location; sf->reg[idx].reg = idx + 1; sf->reg[idx].slot = var->data.location; sf->reg[idx].num_components = glsl_get_components(var->type); sf->num_reg = MAX2(sf->num_reg, idx+1); count++; } assert(sf->num_reg == count); } NIR_PASS_V(s, nir_lower_io, nir_var_shader_in | nir_var_uniform, etna_glsl_type_size, (nir_lower_io_options)0); NIR_PASS_V(s, nir_lower_regs_to_ssa); NIR_PASS_V(s, nir_lower_vars_to_ssa); NIR_PASS_V(s, nir_lower_indirect_derefs, nir_var_all, UINT32_MAX); NIR_PASS_V(s, nir_lower_tex, &(struct nir_lower_tex_options) { .lower_txp = ~0u }); NIR_PASS_V(s, nir_lower_alu_to_scalar, etna_alu_to_scalar_filter_cb, specs); nir_lower_idiv_options idiv_options = { .imprecise_32bit_lowering = true, .allow_fp16 = true, }; NIR_PASS_V(s, nir_lower_idiv, &idiv_options); etna_optimize_loop(s); /* TODO: remove this extra run if nir_opt_peephole_select is able to handle ubo's. */ if (OPT(s, etna_nir_lower_ubo_to_uniform)) etna_optimize_loop(s); NIR_PASS_V(s, etna_lower_io, v); if (v->shader->specs->vs_need_z_div) NIR_PASS_V(s, nir_lower_clip_halfz); /* lower pre-halti2 to float (halti0 has integers, but only scalar..) */ if (c->specs->halti < 2) { /* use opt_algebraic between int_to_float and boot_to_float because * int_to_float emits ftrunc, and ftrunc lowering generates bool ops */ NIR_PASS_V(s, nir_lower_int_to_float); NIR_PASS_V(s, nir_opt_algebraic); NIR_PASS_V(s, nir_lower_bool_to_float); } else { NIR_PASS_V(s, nir_lower_bool_to_int32); } while( OPT(s, nir_opt_vectorize, NULL, NULL) ); NIR_PASS_V(s, nir_lower_alu_to_scalar, etna_alu_to_scalar_filter_cb, specs); NIR_PASS_V(s, nir_remove_dead_variables, nir_var_function_temp, NULL); NIR_PASS_V(s, nir_opt_algebraic_late); NIR_PASS_V(s, nir_move_vec_src_uses_to_dest); NIR_PASS_V(s, nir_copy_prop); /* only HW supported integer source mod is ineg for iadd instruction (?) */ NIR_PASS_V(s, nir_lower_to_source_mods, ~nir_lower_int_source_mods); /* need copy prop after uses_to_dest, and before src mods: see * dEQP-GLES2.functional.shaders.random.all_features.fragment.95 */ NIR_PASS_V(s, nir_opt_dce); NIR_PASS_V(s, nir_lower_bool_to_bitsize); NIR_PASS_V(s, etna_lower_alu, c->specs->has_new_transcendentals); if (DBG_ENABLED(ETNA_DBG_DUMP_SHADERS)) nir_print_shader(s, stdout); unsigned block_ptr[nir_shader_get_entrypoint(s)->num_blocks]; c->block_ptr = block_ptr; unsigned num_consts; ASSERTED bool ok = emit_shader(c, &v->num_temps, &num_consts); assert(ok); /* empty shader, emit NOP */ if (!c->inst_ptr) emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_NOP }); /* assemble instructions, fixing up labels */ uint32_t *code = MALLOC(c->inst_ptr * 16); for (unsigned i = 0; i < c->inst_ptr; i++) { struct etna_inst *inst = &c->code[i]; if (inst->opcode == INST_OPCODE_BRANCH) inst->imm = block_ptr[inst->imm]; inst->halti5 = specs->halti >= 5; etna_assemble(&code[i * 4], inst); } v->code_size = c->inst_ptr * 4; v->code = code; v->needs_icache = c->inst_ptr > specs->max_instructions; copy_uniform_state_to_shader(v, c->consts, num_consts); if (s->info.stage == MESA_SHADER_FRAGMENT) { v->input_count_unk8 = 31; /* XXX what is this */ assert(v->ps_depth_out_reg <= 0); } else { fill_vs_mystery(v); } bool result = etna_compile_check_limits(v); ralloc_free(c->nir); FREE(c); return result; } static const struct etna_shader_inout * etna_shader_vs_lookup(const struct etna_shader_variant *sobj, const struct etna_shader_inout *in) { for (int i = 0; i < sobj->outfile.num_reg; i++) if (sobj->outfile.reg[i].slot == in->slot) return &sobj->outfile.reg[i]; return NULL; } bool etna_link_shader_nir(struct etna_shader_link_info *info, const struct etna_shader_variant *vs, const struct etna_shader_variant *fs) { int comp_ofs = 0; /* For each fragment input we need to find the associated vertex shader * output, which can be found by matching on semantic name and index. A * binary search could be used because the vs outputs are sorted by their * semantic index and grouped by semantic type by fill_in_vs_outputs. */ assert(fs->infile.num_reg < ETNA_NUM_INPUTS); info->pcoord_varying_comp_ofs = -1; for (int idx = 0; idx < fs->infile.num_reg; ++idx) { const struct etna_shader_inout *fsio = &fs->infile.reg[idx]; const struct etna_shader_inout *vsio = etna_shader_vs_lookup(vs, fsio); struct etna_varying *varying; bool interpolate_always = true; assert(fsio->reg > 0 && fsio->reg <= ARRAY_SIZE(info->varyings)); if (fsio->reg > info->num_varyings) info->num_varyings = fsio->reg; varying = &info->varyings[fsio->reg - 1]; varying->num_components = fsio->num_components; if (!interpolate_always) /* colors affected by flat shading */ varying->pa_attributes = 0x200; else /* texture coord or other bypasses flat shading */ varying->pa_attributes = 0x2f1; varying->use[0] = VARYING_COMPONENT_USE_UNUSED; varying->use[1] = VARYING_COMPONENT_USE_UNUSED; varying->use[2] = VARYING_COMPONENT_USE_UNUSED; varying->use[3] = VARYING_COMPONENT_USE_UNUSED; /* point/tex coord is an input to the PS without matching VS output, * so it gets a varying slot without being assigned a VS register. */ if (fsio->slot == VARYING_SLOT_PNTC) { varying->use[0] = VARYING_COMPONENT_USE_POINTCOORD_X; varying->use[1] = VARYING_COMPONENT_USE_POINTCOORD_Y; info->pcoord_varying_comp_ofs = comp_ofs; } else if (util_varying_is_point_coord(fsio->slot, fs->key.sprite_coord_enable)) { /* * Do nothing, TexCoord is lowered to PointCoord above * and the TexCoord here is just a remnant. This needs * to be removed with some nir_remove_dead_variables(), * but that one removes all FS inputs ... why? */ } else { if (vsio == NULL) { /* not found -- link error */ BUG("Semantic value not found in vertex shader outputs\n"); return true; } varying->reg = vsio->reg; } comp_ofs += varying->num_components; } assert(info->num_varyings == fs->infile.num_reg); return false; }